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A B S T R A C T

Myocardial infarction (MI) is the leading cause of mortality in the world. Its early diagnosis can mitigate
the extent of myocardial damage by facilitating early therapeutic interventions. The regional wall motion
abnormality (RWMA) of the ischemic myocardial segments is the earliest change to set in that can be captured
by echocardiography. However, assessing the motion only from a single echocardiography view may lead to
missing the diagnosis of MI as the RWMA may not be visible on that specific view. Therefore, in this study, we
propose to fuse apical 4-chamber (A4C) and apical 2-chamber (A2C) views in which a total of 12 myocardial
segments can be analyzed for MI detection. The proposed method first estimates the motion of the left ventricle
wall by Active Polynomials (APs), which extract and track the endocardial boundary to compute myocardial
segment displacements. The features are extracted from the displacements, which are concatenated and fed into
the classifiers to detect MI. The main contributions of this study are (1) creation of a new benchmark dataset
by including both A4C and A2C views in a total of 260 echocardiography recordings, which is publicly shared
with the research community, (2) improving the performance of the prior work of threshold-based APs by a
machine learning based approach, and (3) a pioneer MI detection approach via multi-view echocardiography
by fusing the information of A4C and A2C views. The proposed method achieves 90.91% sensitivity and
86.36% precision for MI detection over multi-view echocardiography. The software implementation is shared
at https://github.com/degerliaysen/MultiEchoAI.
1. Introduction

Myocardial infarction (MI) is caused by the death of myocardial
cells subsequent to ischemia due to the blockage of coronary arteries.
Presentation of MI is generally evident with shortness of breath, pain
around the chest, shoulders, back, and arms [1]. However, these symp-
toms may not occur in the early stages of MI. Due to the blockage of the
coronary artery and deprivation of blood supply, there is progressive
damage to the affected part of the myocardium. Hence, it is critical to
make an early detection of MI, to limit and prevent death & disability.
Currently, the diagnosis of MI is based on a time-consuming method of
serial observations of electrocardiography (ECG), blood level of cardiac
enzymes, and imaging techniques [2]. In the literature, ECG signals
are widely utilized as an initiative tool to assess any symptoms related
to cardiovascular diseases including cardiac ischemia detection [3,4],
beat classification [5,6], and arrhythmia classification [7,8]. However,
at the outset of MI, ECG is an insensitive tool with 0.77 predictive value
in ruling out MI [9]. Moreover, human error leads to misdiagnosis of
ischemic ECG changes in 12 − 16% cases of MI [10–12]. Furthermore,
cardiac biomarkers take time to evolve to a diagnostic level. After the
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onset of MI, the high sensitivity cardiac troponin (hs-cTn) starts to
rise in 3 hours and it needs a repeat sample at least 6 hours after
the onset of chest pain to quantify according to the American Heart
Association definition of MI [13]. Therefore, the most convenient tool
to diagnose and assess MI in its early stages is echocardiography, which
has easy accessibility, low cost, and lowest risk compared to other
cardiac imaging options [14,15].

Two-dimensional (2D) echocardiography was first introduced in the
late 1950s, which is a non-invasive ultrasound imaging technique that
monitors the heart in real-time [15,16]. The early detection of MI
can be performed by evaluating the regional wall motion abnormality
(RWMA) in 2D echocardiography, where the abnormalities caused by
MI can be detected as a region of weaker motion of the myocardium.
However, the assessment of RWMA is highly subjective and variant
among experts [17]. Moreover, the echocardiography recordings are
generally subject to a high level of noise with low image quality,
where the left ventricle (LV) wall is mostly unrecognizable. Thus,
visual assessment of the RWMA highly depends on the expertise of the
echocardiographist and the quality of the echocardiography recordings.
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Therefore, in order to achieve reliable MI detection, computer-aided
diagnosis techniques are developed to help cardiologists in the diagno-
sis. Consequently, motion estimation algorithms are utilized to assess
and quantify the RWMA in echocardiography. Several approaches that
are popular for estimating myocardial motion are optical flow methods,
deformation imaging, and active contours.

Gradient-based optical flow methods estimate the motion by cap-
turing the flow of pixels with constant intensity over time. The optical
flow can be described as the velocity distributions of the bright pixel
movements in the image that can be approximated by the partial
derivatives with respect to spatial and temporal coordinates. Several
studies [18–21] have utilized gradient-based optical flow methods by
adding constraints to regularize the myocardial motion in 2D echocar-
diography. However, ultrasound imaging is highly variant with the
angle and depth of the ultrasound beam, which results in many ar-
tifacts, such as noise, shadowing, and dropouts on the image that
cause optical flow methods to fail at estimating large LV wall dis-
placements [22,23]. Moreover, the noisy nature of echocardiography
degrades the performance of the optical flow algorithms.

Deformation imaging is widely used in echocardiography to perform
strain analysis of the myocardium [24–33]. The strain is defined by
the length of the LV wall that is measured via the speckle tracking
method, which is known also as the region-based optical flow or block-
matching method in echocardiography. The speckle tracking method
searches for a similar block of pixels through consecutive frames in a
specified search window. The strain measurements refer to deformation
of the myocardium, e.g., if the velocity of the LV wall segments is non-
uniform, then the myocardium is infarcted. Even though deformation
imaging is a promising method to detect MI, it suffers severely from
the weakness of the optical flow methods, which are not robust to the
noisy nature of echocardiography. Thus, there is a need for high-quality
echocardiography recordings with 50 − 70 frames per second (fps) in
order to tackle the issues raised by speckle tracking in deformation
imaging [34]. As a result, the clinical usage of deformation imaging
is limited.

The active contour (snake) is introduced by Kass et al. [35] that
evolves iteratively to minimize the energy curves to extract the edges,
lines, or boundaries in images. They are used in studies [36–38] to
extract and track the endocardial boundary of the LV wall in echocar-
diography. However, the endocardial boundary is often discontinuous
in echocardiography due to the high level of noise. These occlusions
and indentations on the LV wall cause the snake to fail at extracting to
the true boundary [39].

In this study, in order to overcome the aforementioned limitations
of the motion estimation algorithms, we use the Active Polynomi-
als (APs) [40] that constrain the active contours to achieve robust
segmentation and tracking of the endocardial boundary of the LV
wall. In our previous study [40], we proposed a single-view MI de-
tection approach by thresholding the maximum displacement of APs
in A4C view echocardiography. However, setting a fixed threshold
is never guaranteed to be optimal for decision-making. Moreover, in
the literature, many studies have also used single-view, high-quality,
or simulated echocardiographic data [36]. Additionally, in cardiol-
ogy, several studies [41–47] diagnose MI using conventional and deep
learning methods over echocardiography data. However, one major
limitation is that they require large datasets for training. Therefore,
the reliability and performance of the previously proposed methods
may significantly vary as the clinical data is usually scarce, in low
quality/resolution, and subject to a high level of noise. Hence, our first
objective in this study is to improve the performance of our previous
work [40] by bringing an intelligent diagnosis via machine learning
over the hand-crafted features to surpass threshold-based diagnosis in
single-view echocardiography.

A common and major drawback of all the prior studies in this do-
main is that the proposed MI detection methods all rely on single-view,
mostly over the apical 4-chamber view. Only certain segments can be
2

Fig. 1. The chambers of the heart in A2C and A4C view echocardiography.

analyzed on a single-view and this brings an inevitable problem of
missing the ongoing MI if the RWMA is not present on those segments.
In other words, regardless of their accuracy, if the segment(s) that show
the abnormal motion is not visible on that particular echocardiography
view, they are bound to fail the MI detection. Therefore, the second
objective of this study is to diagnose MI on the LV wall by using multi-
view echocardiography, which includes apical 4-chamber (A4C) and
apical 2-chamber (A2C) views, where all the chambers of the heart,
and only left atrium and LV are visible, respectively as it is depicted in
Fig. 1.

In order to improve the robustness and generalization of MI diag-
nosis, in this study, we propose a multi-view machine learning (ML)
approach over the maximum displacement features as depicted in
Fig. 2. As the pioneer MI diagnosis study in the literature over multi-
view echocardiography, we aim to determine the best ML approach
for this purpose. Therefore, we perform an extensive set of compar-
ative evaluations among several ML methods including Decision Tree
(DT), Random Forest (RF), k-Nearest Neighbor (k-NN), Support Vector
Machine (SVM), and 1D-Convolutional Neural Networks (1D-CNN).
Accordingly, the contributions of this study are summarized as follows.
We improve the performance of threshold-based APs [40] over single-
view echocardiography. Additionally, APs are adapted for the A2C view
echocardiography for the first time. We propose a pioneer approach
for MI diagnosis using multi-view echocardiography. Noting that the
ground-truth labels of single-view and multi-view echocardiography are
different, direct comparison is not viable. Hence, our study reveals the
results of multi-view echocardiography for the first time to perform
a reliable MI diagnosis by considering more myocardial segments in
the analysis phase. Lastly, we created an extended benchmark dataset,
HMC-QU1 that includes 260 echocardiography recordings of 130 MI
patients and healthy subjects from A4C and A2C views.

The rest of the article is organized as follows. In Section 2, we give
the details of the proposed approach. In Section 3.1, we introduce the
HMC-QU dataset, and in Sections 3.3 and 3.4 we report the experimen-
tal results. Finally, we conclude the paper and suggest topics for future
research in Section 4.

2. Methodology

In this section, the proposed approach will be described in detail.
As it is depicted in Fig. 2, in the first step, the endocardial boundary
of the LV wall is extracted by APs. Then, the boundary is divided
into myocardial segments from which the displacement curves are

1 The benchmark HMC-QU dataset is publicly shared with the research
community at the repository https://www.kaggle.com/aysendegerli/hmcqu-
dataset.

https://www.kaggle.com/aysendegerli/hmcqu-dataset
https://www.kaggle.com/aysendegerli/hmcqu-dataset


Biomedical Signal Processing and Control 87 (2024) 105448A. Degerli et al.
Fig. 2. The diagram of the proposed MI detection approach using multi-view echocardiography. The endocardial boundary is first extracted by the APs method. Then, the defined
myocardial segments are tracked through one-cardiac cycle to form the displacement curves. The maximum displacements are generated from each segment to define the features
that are then concatenated and fed into the classifier to detect MI.
generated. Lastly, the features are extracted from the displacements
of each myocardial segment, which are then used as the input for the
classifiers for MI diagnosis.

2.1. Endocardial boundary extraction by active polynomials

Accurate extraction of the LV wall is crucial to obtain the true
motion of the myocardium. In order to overcome the limitations of
the active contours [35] in echocardiography, we use Active Poly-
nomials [40] to extract the endocardial boundary of the LV wall.
Echocardiography is usually subjected to a high level of noise, and
during acquisition, some parts of the chamber walls might be missing
or out of view. APs provide a robust and reliable segmentation and
tracking of the LV wall, where their formation is illustrated in Fig. 3.
A brief summary will be presented next and the details of the method
can be found in [40].

In the first stage of the APs formation, the Ridge Polynomials
(RPs) are formed on the LV wall. In echocardiography, the LV wall
may partially be missing or invisible due to low quality. Thus, in the
evolvement process of the active contours, the contour may escape
from the chamber causing inaccurate segmentation of the endocardial
boundary. Therefore, the RPs are first created to constrain the active
3

contours as illustrated in Fig. 4. In the second stage of the proposed
method, we initialize an active contour from inside the chamber. The
initial mask for the contour is located in the middle of the LV as a
mini-version of the current frame’s RPs. The aim is to evolve an active
contour to detect and extract the endocardial boundary of the LV wall.
A typical edge detector is expressed as follows:

lim
𝑧→∞

𝑔(𝑧) = 0, (1)

where 𝑔 is a function with positive and decreasing values, 𝑧 is an
image, and the edges of 𝑧 are detected at the locations where the
gradient is zero. However, detecting the edges of images with rough
and discontinuous objects is challenging with the gradient method since
generally gradient is not zero on that particular edges. Thus, Chan–
Vese [48] active contour method is utilized since its stopping criteria
do not depend on the gradient. Therefore, it is suitable especially for
echocardiography, where there are discontinuities (even though it has
been minimized by RPs) and rough edges on the LV wall due to the high
level of noise and acquisition. Once the active contour has converged
to the endocardial boundary, the APs can then be formed over the
evolved active contour. As shown in Fig. 4, the active contour may be
noisy with severe discontinuities on the LV wall. In order to achieve a
smooth endocardial boundary segmentation, the evolved active contour
Fig. 3. The APs method for the endocardial boundary of the LV wall extraction consists of three stages: (1) the RPs on the LV wall are formed in input echocardiography, (2)
the active contour is evolved from inside of the LV and constrained by the RPs, and (3) the APs are formed by fitting 4th−order polynomials on the evolved active contour.
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Fig. 4. The comparison of the original and constrained active contours. In both A4C
and A2C views, the constrained active contours can extract the endocardial boundary
more accurately.

is divided into two sections. The left part of the contour corresponds to
the active contour points from start to apex, whereas the right part is
from apex to end. After the division, we compose 4th−order smooth
polynomials each of which is fitted to the equally distanced 9 points
from both right and left parts to form APs that are the final form
of the endocardial boundary. Thus, APs provide a robust and smooth
endocardial boundary for MI diagnosis.

2.2. Myocardial segment displacements

After extracting the endocardial boundary by APs in each frame
of the echocardiography recordings, the boundary is tracked and its
displacement is measured in one-cardiac cycle. In the diagnosis, the
LV wall is segmented into 17 myocardial segments, which is the rec-
ommendation of the American Heart Association Writing Group on
Myocardial Segmentation and Registration for Cardiac Imaging [49].
The myocardial segments on the LV wall for both A4C and A2C views
can be seen in Fig. 5 with a total of 12 distinct myocardial segments.
It is recommended that segment−17 should be removed if the wall
motion or regional strain is analyzed using the 17−segment model [50].
Thus, in the analysis, we have excluded segment−17 shown as the white
myocardial segment in the APs block in Fig. 3. Consequently, analyzing

Fig. 5. The myocardial segments of A4C and A2C views echocardiography based on
the 17−segment model.
4

the motion of the 12 myocardial segments in multi-view echocardiog-
raphy yields information regarding all the coronary arteries feeding the
heart muscle since they cover most of the heart area as illustrated in
Fig. 6. The myocardial segments are divided based on the length of the
APs that are formed at the end of the endocardial boundary extraction
process. The length of the APs is considered individually as previously
explained left and right parts, where the length of the left part is
represented as 𝐿, whereas the right part’s length is 𝑅. Accordingly, in
A2C and A4C views, the length of apical myocardial segments are 𝑅∕7
and 𝐿∕7, whereas other segments have 2𝑅∕7 and 2𝐿∕7 for right and
left parts, respectively.

The displacement curves are plotted for each myocardial segment
in A2C and A4C views echocardiography. The displacements are cal-
culated over one-cardiac cycle echocardiography recordings, where the
reference frame is at time 𝑡 = 0. At each time instance, the displacement
is defined as follows:

𝐷𝑠𝜅 (𝑡) =
1
𝑁

𝑁
∑

𝑖=1
√

(𝑥𝑖𝑠𝜅 (𝑡 = 0) − 𝑥𝑖𝑠𝜅 (𝑡))
2 + (𝑦𝑖𝑠𝜅 (𝑡 = 0) − 𝑦𝑖𝑠𝜅 (𝑡))

2,

(2)

where 𝐷𝑠𝜅 is the average displacement measure of the 𝜅 numbered
myocardial segment 𝑠𝜅 at a time instant 𝑡, 𝑁 is the number of points
equally taken on the myocardial segment, i.e., 𝑁 = 5 in our implemen-
tation, and (𝑥, 𝑦) is the coordinate of each point taken. Accordingly, at
the reference frame, the displacement measurement is equal to zero.
It is expected that the displacement measures of each segment would
gradually increase from end-diastole to middle of the cycle; on the other
hand, gradually decrease from middle of the cycle to end-systole as
illustrated in Fig. 7.

2.3. Feature engineering

In the feature engineering stage, we extract information from the
displacement curves by quantitatively imitating the evaluation of car-
diologists. A cardiologist visually assesses the RWMA by correlating
the infarction to the displacement measurement of a myocardial seg-
ment. Accordingly, the larger the displacement measure a myocardial

Fig. 6. The myocardial segment names and numbers are shown for both A4C and A2C
views echocardiography at the top row. The bull eye’s plot of the 17−segment model
is illustrated, where each color-coded and numbered segment corresponds to coronary
arteries at the bottom row.
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Fig. 7. The displacement curves of A4C and A2C view echocardiography recordings of a patient, where the frames consist of one-cardiac cycle.
segment has, the less the chance of it being infarcted. Thus, the max-
imum displacement of each myocardial segment is extracted as the
features. However, a myocardial segment displacement cannot directly
be compared since the displacements decrease gradually from the valve
to the apical cap due to the structure of the heart. Therefore, the
displacements of the myocardial segments are normalized by dividing
the maximum displacement of a segment with the minimum interval
between the segment and the other segment at the opposite side. For
example, the interval between segment−3 and its opposite segment−6
is greater than the interval between segment−14 and its opposite
segment−16. Thus, we bring each displacement to the same level for a
fair comparison. The interval measurement used in the normalization
is defined as follows:

𝐼(𝑠𝜅 ,𝑠𝜀)(𝑡) =
1
𝑁

𝑁
∑

𝑖=1
|𝑥𝑖𝑠𝜅 (𝑡) − 𝑥𝑖𝑠𝜀 (𝑡)| + |𝑦𝑖𝑠𝜅 (𝑡) − 𝑦𝑖𝑠𝜀 (𝑡)|, (3)

where 𝐼(𝑠𝜅 ,𝑠𝜀) is the averaged Manhattan distance of 𝑁 = 5 number of
equally taken points on the two opposite segments 𝑠𝜅 , 𝑠𝜀 at time 𝑡, and
𝜅, 𝜀 are the segment numbers. Accordingly, we form the features of
each myocardial segment as follows:

𝑓𝑠𝜅 =
𝑚𝑎𝑥(𝐃𝐬𝜿 )
𝑚𝑖𝑛(𝐈(𝐬𝜿 ,𝐬𝜺))

, (4)

where 𝑓 is the displacement feature of segment 𝑠𝜅 that is the maximum
displacement divided by the minimum interval between its opposite
segment 𝑠𝜀. For the displacement calculation, we have used the Eu-
clidean distance, whereas, for the interval measurement, the Manhattan
distance is utilized to scale the features into [0, 1] more precisely as
adapted by the threshold-based APs [40] approach. Consequently, in
single-view echocardiography, where we only use A4C or A2C view
echocardiography recording, we extract feature vectors Φ𝟏, Φ𝟐 ∈ R6×1

in a one-cardiac cycle, respectively defined as follows:

Φ𝟏 =
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, (5)

where 𝑠 denotes the numbered myocardial segment features as illus-
trated in Fig. 6 and calculated in Eq. (4). On the other hand, in
multi-view echocardiography, we concatenate the feature vectors to
form 𝐅 =

[ T T] ∈ R1×12.
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Φ𝟏 Φ𝟐
2.4. MI detection

The MI detection is performed via binary classification task, where
the extracted features are fed into several classifiers as follows: Sup-
port Vector Machine (SVM), k-Nearest Neighbors (k-NN), Decision
Tree (DT), Random Forest (RF), and 1D-Convolutional Neural Net-
works (1D-CNN). The training is performed over 𝐾 number of sam-
ples {𝑓 𝑗

𝑡𝑟𝑎𝑖𝑛, 𝐿
𝑗
𝑡𝑟𝑎𝑖𝑛}

𝐾
𝑗=1, where 𝑓 and 𝐿 are the data and ground-truths,

respectively.

Support Vector Machines. In machine learning, SVMs are pop-
ular supervised learning models that are used for classification and
regression tasks. The binary classification task via SVM is performed
by separating the different data classes of data points with an optimal
hyperplane [51]. The best-fitting hyperplane is determined by maxi-
mizing the inter-class and minimizing the intra-class differences, where
the support vectors are the closest data points to the hyperplane in the
feature space. SVMs can separate data points both linearly and non-
linearly. In order to impose non-linearity on SVM models, kernel-based
methods are used to construct non-linear features that map the data
into higher dimensions to perform an easier class separation. Thus, the
performance of classification can be improved, and overfitting can be
avoided. Lastly, SVMs are resistant to overfitting as the regularization
parameters and the choice of the kernel function for the non-linear
cases avoid the overfitting issue.

Decision Tree. The hierarchical structure of DT performs a classifi-
cation task by feeding the data to nodes that are divided into branches,
which finally leads to leaf nodes representing the final predicted out-
put [52]. In this way, DTs transfer the input to the most suitable class
label. The tree is formed by selecting the nodes as they are divided
into branches, and whenever the stopping criterion is satisfied, the final
node is assigned to a class. DT models are suitable for small datasets,
and computationally less expensive compared to other models used
in this study. Lastly, DT models can avoid overfitting by employing
pruning with the hyper-parameters (tree depth and leaf size) selected
optimally in the cross-validation phase.

Random Forest. As an ensemble version of the DT, the RF model
prevents the overfitting issue that occurs due to the tight-fitting of
the model to the training data. Accordingly, RF merges multiple DTs
by training each individual tree using a subset of training data and
combining their predictions by majority voting for the final predic-
tion. Overfitting causes the generalization capability of the model to
deteriorate. Therefore, the RF model overcomes the overfitting issue

by constructing individual trees by minimizing their correlation in the
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Fig. 8. The proposed 1D-CNN structure consists of two 1D-convolutional (1D-Conv)
and two max-pooling (MaxP.) layers. The input, filter, and fully connected layer sizes
are denoted as 𝐴, 𝐵, and 𝐷, respectively.

classification task. Additionally, the aggregation of multiple trained DTs
boosts the performance of RF models by producing highly accurate
predictions.

k-Nearest Neighbors. The k-NN method classifies data by assign-
ing a sample to the same class as its k-nearest neighbors [53]. In
the training phase, each feature vector along with its label is stored
for distance calculation, which is then used in the testing phase to
determine the class label of input data by the majority vote of k
nearest neighbors class labels. It is popular due to the simplicity of
the algorithm. However, k-NNs are known to be noise-sensitive as
their performance heavily relies on the quality of training data [54].
Nevertheless, their robustness to noise can be improved by adopting
a large k value [55]. Moreover, it requires a few parameters to tune,
which makes the cross-validation process straightforward [56]. The
performance of the k-NN method improves as more data is used to train
it. However, more training data increases its computational cost and
memory consumption since k-NN stores the training data in order to
calculate the distance between samples to classify a test sample.

1D-Convolutional Neural Networks. The most popular ML method
during the last decade is Convolutional Neural Networks (CNNs),
which are feed-forward models consisting of input, output, and hidden
layers [57]. Their difference from Artificial Neural Networks is that
convolution operations are performed in the hidden layers. In one-
dimensional signal processing applications, 1D-CNNs are preferred due
to their feasibility for one-dimensional convolution operations and
low computational complexity compared to 2D-CNNs [57]. Accord-
ingly, 1D-convolutional layers perform one-dimensional convolution
operations over the input of its prior layer, where the number of
filters, kernel size of the convolution filter, and padding option are
determined empirically. As a sequence, an activation function and
max-pooling operation are added after convolutional layers to bring
non-linearity and reduce the size, respectively [58]. For classification
tasks, fully connected layers are added after a number of convolutional
layers and max-pooling operations to learn a mapping of the input to
the class label. The 1D-CNN model proposed in this study maps the
input feature, 𝐅 to the corresponding class label, 𝐋 ∶ 𝐋 ←←← 𝑃𝜗,𝜒 (𝐅).

Table 1
The number of myocardial segments corresponds to the ground-truth labels of the
HMC-QU dataset.

Myocardial segments MI patients non-MI subjects

Segment−1 29 101
Segment−3 26 104
Segment−4 29 101
Segment−6 16 114
Segment−7 40 90
Segment−9 46 84
Segment−10 31 99
Segment−12 28 102
Segment−13 47 83
Segment−14 64 66
Segment−15 53 77
Segment−16 53 77
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The first block 𝜗 ∈ {𝑏𝑗 , 𝑤𝑗}𝑀𝑗=1 consists of 𝑀 = 2 number of 1D-
convolutional layers, Rectified Linear Unit (ReLU) activation function,
and max-pooling layers by the size of 2, respectively. The second
block 𝜒 consists of a fully connected layer, a ReLU activation function,
an output layer, and a softmax activation function, respectively. The
filter and kernel sizes of the convolutional layers are presented in
Section 3.2. Accordingly, the block diagram of the proposed 1D-CNN is
illustrated in Fig. 8, where the model has a compact structure with only
two convolutional layers and two dense layers. The compact structure
prevents the overfitting issue since it is well-known that mostly deep
models encounter overfitting issues due to their deep structures.

3. Experimental results

In this section, we detail the HMC-QU dataset and report the exper-
imental results for single-view and multi-view echocardiography.

3.1. HMC-QU dataset

The cardiologists of Hamad Medical Corporation, and researchers
from Qatar University and Tampere University have compiled the
HMC-QU dataset that includes 2D echocardiography recordings for MI
detection. This benchmark dataset has been approved for usage by the
local ethics board of the hospital in February 2019. The dataset consists
of 260 recordings from A2C and A4C views of 130 subjects. The MI
term indicates any sign of RWMA, whereas subjects without RMWA are
labeled as non-MI in the dataset. All the MI patients had first-time acute
MI and were admitted with ECG and cardiac enzymes evidence. The
patients were treated with coronary angiography/angioplasty whose
echocardiography recordings are taken within 24 hours after admission
or before the operation. Non-MI subjects were not diagnosed with MI
according to their echocardiography recordings, but they underwent a
required health check in the hospital.

The number of myocardial segments with respect to ground-truth
labels are presented in Table 1. The A4C view includes 80 MI and 50
non-MI recordings, whereas 68 MI and 62 non-MI recordings are from
the A2C view. Accordingly, MI ratios are 61.54% and 52.3% in A4C and
A2C views, respectively. The ratios differ from each other since only 60
patients have their MI visible in both views. Therefore, in multi-view
echocardiography, the ground-truth labels correspond to 88 MI patients
and 42 non-MI subjects, where the ground-truth labels are formed as
MI if any of the views depict RWMA, whereas non-MI if no sign of
RWMA is visible in both views. Thus, the overall MI ratio is 67.69% in
multi-view echocardiography. In Table 2, a detailed ground-truth label
formation with respect to views is presented.

In each echocardiography recording, the myocardial segments on
the LV wall are categorized into five different stages: 1−normal or hy-
perkinesia, 2−hypokinesia, 3−akinesia, 4−dyskinesia, and 5−aneurysm
as the severity of MI ascends, respectively. In this study, we perform
a binary classification task to simplify the problem. Therefore, we
have downsized the ground-truth labels to 1−non-MI (normal), and
(2, 3, 4, 5)−MI. The ultrasound machines used for acquisition are Phillips
and GE Vivid from GE Healthcare (United States). The spatial resolution
of the echocardiography recordings varies from (422 × 636) to (768 ×
1024), and the temporal resolution is 25 frames per second (fps).

Table 2
The number of patients with respect to their corresponding ground-truth labels from
A4C and A2C views.

Ground-truths # of patients

A4C view A2C view

MI MI 60
non-MI non-MI 42
MI non-MI 20
non-MI MI 8
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Table 3
Average MI detection performance results (%) computed from 5-folds in single-view echocardiography.

MI ratios Model Sensitivity Specificity Precision F1−Score F2−Score Accuracy

A4
C 61.54%

DT 85.00 68.00 80.95 82.93 84.16 78.46
RF 86.25 84.00 89.61 87.90 86.90 85.38
SVM 82.50 70.00 81.48 81.99 82.29 77.69
k-NN 88.75 78.00 86.59 87.65 88.31 84.62
1D-CNN 83.75 78.00 85.90 84.81 84.17 81.54
APs [40] 86.25 77.08 86.25 86.25 86.25 82.81

A2
C 52.30%

DT 67.65 58.06 63.89 65.71 66.86 63.08
RF 66.18 77.42 76.27 70.87 67.98 71.54
SVM 76.47 66.13 71.23 73.76 75.36 71.54
k-NN 72.06 77.42 77.78 74.81 73.13 74.62
1D-CNN 64.71 75.81 74.58 69.29 66.47 70.00
APs [40] 69.12 59.68 65.28 67.14 68.31 64.62
3.2. Experimental setup

The detection models are evaluated over the dataset in a stratified 5-
fold cross-validation scheme with a ratio of 80% training, and 20% test
(unseen data) sets considering a balanced ratio of classes. The confusion
matrices are formed by the elements: true positive (𝑇𝑃 ), true negative
(𝑇𝑁), false positive (𝐹𝑃 ), and false negative (𝐹𝑁). Thus, the standard
performance metrics are calculated as follows:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (6)

where the sensitivity (recall) is the ratio of correctly detected MI
patients to all MI patients in the dataset,

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

, (7)

where the specificity is the ratio of correctly classified non-MI subjects
to all non-MI subjects in the dataset,

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (8)

where the precision refers to the number of correctly detected MI
patients over the total number of samples detected as positive class in
the dataset,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

, (9)

where the accuracy is the ratio of correctly detected samples in the
dataset,

𝐹 (𝛽) = (1 + 𝛽2)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
, (10)

where the F1−Score and F2−Score are calculated as the weighting
parameter 𝛽 = 1 and 𝛽 = 2, respectively. The F1−Score refers to the
harmonic average of precision and sensitivity metrics. On the other
hand, F2−Score emphasizes the sensitivity metric with a higher 𝛽 value.
Consequently, the objective of the detection phase is to maximize
sensitivity with a preferable specificity to avoid missing MI patients.
Moreover, F2−Score is targeted to be maximized with a reasonable
F1−Score value.

The implementation of the detection models is performed on Python
using the TensorFlow library [59] and Scikit-learn library [60], whereas
the feature engineering of the proposed method is implemented on
MATLAB version R2019a. For the experiments, we have used a PC with
Intel® i7 − 8665U CPU 32 GB system memory, and a workstation with
NVidia® GeForce RTX 2080 Ti GPU card 128 GB system memory. We
have performed a nested cross-validation scheme, where we use 5-
folds to report the experimental results over the test set, and we use
inclusive 5-folds to select the best hyper-parameters using a validation
set. Accordingly, in the training phase of each classifier, we have
performed a grid search over a 5-fold cross-validation scheme that is an
exhaustive search of specified parameter values for each model in order
to set the best hyper-parameters for the testing phase. The grid search is
performed by the GridSearchCV function of the Scikit-learn library. The
7

best parameters are selected according to the highest F1−Score over the
validation data, which is extracted from the training set of each fold.
Thus, in the testing phase, the best parameters are set for each fold
differently. Consequently, we perform a hyper-parameter search, where
the best parameters achieving the highest F1−Score over the validation
set are determined as the final parameters of the model, which is
trained and evaluated using the training and test sets, respectively.
Accordingly, we search for the best parameters of the classifiers as
follows:

DT has searched the function of Gini impurity and entropy for
measuring the quality of a split, the maximum number of features that
are selected for the best split is defined by the auto, 𝑙𝑜𝑔2, and square root
of the number of features in the training set, the nodes are separated
by the supported strategies that are set to random and best, and the
performance of the model is evaluated on the test set by checking the
scoring of each standard performance metrics.

RF classifier has bootstrap parameter set to false and true that
indicates the data usage as building the trees, the class weights are de-
termined by balanced and balanced subsample mode, the quality of splits
are measured by Gini impurity and entropy functions, the maximum
number of features that are selected for the best split is defined by the
auto, 𝑙𝑜𝑔2, and the square root of the number of features in the training
set, the warm start parameter is set to false and true, the number of

Fig. 9. A4C and A2C view frames for the endocardial boundary extraction process by
the APs method. The sample images at the first row are subjected to artifacts, noise,
or low contrast.
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Table 4
Average MI detection performance results (%) of state-of-the-art models, threshold-based APs, and our proposed approach computed from 5-folds in A4C view
echocardiography.
Method Model Sensitivity Specificity Precision F1−Score F2−Score Accuracy

Kusunose et al. [41]

ResNet-50 74.68 54.84 68.95 71.59 73.38 66.25
DenseNet-121 73.39 63.52 73.48 72.46 72.79 69.38
InceptionResNetv2 72.34 65.05 73.56 72.26 72.15 69.38
Inception-v3 67.95 66.70 73.71 70.17 68.72 67.50
Xception 85.61 47.36 69.26 76.24 81.49 69.38

Kiranyaz et al. [40] APs [40] 86.25 77.08 86.25 86.25 86.25 82.81

Ours

DT 85.00 68.00 80.95 82.93 84.16 78.46
RF 86.25 84.00 89.61 87.90 86.90 85.38
SVM 82.50 70.00 81.48 81.99 82.29 77.69
k-NN 88.75 78.00 86.59 87.65 88.31 84.62
1D-CNN 83.75 78.00 85.90 84.81 84.17 81.54
trees in the forest is searched in [5, 50] with a gap of 5 increasing at
ach step and the performance on the test set is evaluated by checking
he scoring of each performance metrics.
SVM classifier has radial basis function (rbf) and linear kernel func-

ions with the regularization parameter searched in [1, 1000] with a gap
of ×10 increasing at each step. The kernel coefficients are determined
in [10−1, 10−6] with a decrease of 10−1 at each step and the scoring
parameters for the testing phase are searched over each performance
metric.

k-NN decides the best algorithm for computing the nearest neigh-
bors automatically or with brute-search, BallTree, and KDTree algo-
rithms by weighting each neighborhood uniformly and inverse of their
distance. The number of neighbors is determined in [5, 30] with a
gap of 5 increasing at each step, the metric used for computing the
distances between neighbors are Manhattan and Euclidean, and the
coring parameters are selected as the performance metric with the
ighest scoring value.
1D-CNN is trained by Adam optimization algorithm [61] along

ith categorical cross-entropy loss function with a learning rate of
10−1, 10−7] decreasing at each step by 10−1. The filter sizes of [4, 8, 12,
16, 24, 32] and the kernel sizes of [3, 5, 7, 9, 11, 13, 15] are searched to
train the model with [25, 50, 75, 100] epochs by setting the scoring
parameter to the performance metric with the highest value.

3.3. Single-view experimental results

In Fig. 9, some examples of the APs formation can be depicted.
The figure reveals that the APs can successfully represent the true
endocardial boundary even for low quality A4C and A2C views.

We present the performance of each classifier in single-view (A4C
or A2C view) echocardiography, individually. The MI detection results
are presented in Table 3. In A4C view echocardiography, the prior
approach with the threshold-based APs method [40] achieves 86.25%
sensitivity with a specificity level of 77.08%. The results indicate that
imposing ML into the algorithm generally outperforms the threshold-
based APs method in [40] by the classifiers utilized in this study. In
the A4C view, the k-NN classifier achieves the highest sensitivity level
of 88.75%, whereas the highest specificity of 84% is obtained by the
RF classifier.

The performance of prior work in [40] for A2C view echocardiogra-
phy is 69.12% sensitivity with 59.68% specificity as shown in Table 3.
Once again, it was generally outperformed by the proposed approach
8

with the evaluated classifiers. The SVM classifier achieved the highest
sensitivity level of 76.47%, whereas the highest F1−Score is obtained
by the k-NN classifier with 74.81% in A2C view echocardiography.

Comparison to existing studies. For further investigation, we
compare our proposed approach with an end-to-end solution using
deep learning models. Accordingly, we adapted the method proposed
by Kusunose et al. [41] that utilizes Deep Convolutional Neural Net-
works (DCNNs) to detect RWMAs over circular view echocardiography
recordings. For the comparison, we used A4C view echocardiography
recordings of the HMC-QU dataset. From state-of-the-art DCNNs, we
use the models ResNet-50 [62], Inception-v3 [63], DenseNet-121 [64],
Xception [65], and InceptionResNetv2 [66] with transfer learning,
where the networks are initialized with ImageNet dataset weights. We
resized the echocardiography frames and selected the three frames cor-
responding to a one-cardiac-cycle: end-diastole to end-systole and end-
systole to end-diastole to use as the input of pre-trained models with
(224×224×3) image sizes. Then, we performed a stratified 5-fold cross-
validation scheme and applied data augmentation using the Image Data
Generator in Keras to the training set of each fold to avoid overfitting
with an increased number of images up to 2000. Accordingly, we
compare the average MI detection performances between Kusunose
et al. [41] (DCNNs), Kiranyaz et al. [40] (threshold-based APs), and our
proposed method with machine learning-based APs, where the perfor-
mance of each model is computed over a cross-validation scheme with
the same train/test sets for each fold. Consequently, Table 4 reveals that
our proposed approach outperforms the end-to-end network solution
proposed by Kusunose et al. [41] and achieves the highest performance
for each performance metric. Furthermore, Sanjeevi et al. [44] and
Saeed et al. [45] have performed single-view myocardial infarction
detection over the HMC-QU dataset. Accordingly, Sanjeevi et al. [44]
propose Echo-Cardio 3D Net (EC3D-Net), which is a 3D convolutional
neural network that uses A4C view echocardiography for MI detection.
EC3D-Net achieves with its best configuration the precision, recall,
and F1−Score levels of 82% for MI detection, whereas our proposed
framework achieves better performance compared to EC3D-Net with
the highest scores using RF classifier 86.25% recall, 89.61% precision,
and 87.90% F1−Score. Additionally, Saeed et al. [45] propose an end-
to-end approach by developing a 3D-CNN for MI detection, which
has two variations: 3D ResNet-18 (R3D-18) and (2+1)D ResNet-18
(R(2+1D)-18), where they split the 3D convolution into two operations
in the latter case. Accordingly, in A4C view echocardiography, our
proposed approach achieved higher performance compared to R3D-

18 and R(2+1D)-18 networks with an increase of 2.96% and 2.38%
Table 5
The confusion matrices of MI detection in multi-view echocardiography by the RF model, where the symbol ⋆ indicates the concatenated features.

(a) (b)

Multi-view⋆ Predicted Multi-view Predicted

non-MI MI non-MI MI

Ground truth non-MI 26 16 Ground truth non-MI 30 12
MI 11 77 MI 12 76
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Table 6
Average MI detection performance results (%) computed from 5-folds in multi-view echocardiography, where the symbol ⋆ indicates the concatenated features.
Echocardiography view Model Sensitivity Specificity Precision F1−Score F2−Score Accuracy

Multi-view⋆

DT 84.09 64.29 83.15 83.62 83.90 77.69
RF 87.50 61.90 82.80 85.08 86.52 79.23
SVM 90.91 42.86 76.92 83.33 87.72 75.38
k-NN 86.36 59.52 81.72 83.98 85.39 77.69
1D-CNN 76.14 73.81 85.90 80.72 77.91 75.38

Multi-view

DT 90.91 45.24 77.67 83.77 87.91 76.15
RF 86.36 71.43 86.36 86.36 86.36 81.54
SVM 88.64 47.62 78.00 82.98 86.28 75.38
k-NN 89.77 64.29 84.04 86.81 88.57 81.54
1D-CNN 84.19 64.29 83.15 83.62 83.90 77.69
in the F1−Score and accuracy, respectively. Moreover, in A2C view
echocardiography, R(2+1D)-18 network achieves 74.24% precision and
72.24% accuracy, whereas our proposed approach achieves 77.78%
precision and 74.62% using the k-NN classifier.

3.4. Multi-view experimental results

In multi-view echocardiography, we merge the single-view infor-
mation by concatenating the features as 𝐅 =

[

Φ𝟏
T Φ𝟐

T] ∈ R1×12.
Alternatively, we utilize both of the single-view echocardiography re-
sults to detect MI in multi-view echocardiography by simply merging
the A4C and A2C view detection results with the ‘‘OR’’ operator as
a straight-forward solution. Accordingly, if either of the single-view
detection outcomes is MI, the multi-view detection outcome will also
be MI.

In Table 6, the MI detection performances for multi-view echocar-
diography are presented. The results indicate that the proposed ap-
proach that concatenates the single-view features has proximate perfor-
mance compared to the alternative solution in multi-view MI detection.
Accordingly, the proposed multi-view approach with the SVM classifier
achieves an elegant sensitivity level of 90.91%. On the other hand,
the alternative approach with the RF classifier has the highest preci-
sion by 86.36%. Accordingly, the confusion matrices of the RF model
that gives the highest accuracy in multi-view echocardiography are
shown in Table 5, where both solutions are compared. The F1−Score
performance metrics of each ML classifier is plotted in Fig. 10 for single-
view (A4C and A2C) and multi-view echocardiography. As can be seen
from the figure, the detection of MI is successful with the proposed
approach. Due to the different myocardial segments appearing on each
view, a direct comparison of the experimental results of multi-view
and single-view is not viable, e.g., consider the case that MI detection
from a single-view will always fail if the infarcted segment is not
one of the segments visible on that view. Therefore, the results of
single-view indicate the MI detection performance over the infarcted
segments visible on that view only. Similarly, the results of multi-
view indicate the MI detection performance over the infarcted segments
visible on one of the views. Therefore, with fewer cases, the single-
view performance may be higher than the one for multi-view. Hence,
the reliable way to perform the diagnosis would be to use multi-
view echocardiography that includes more information regarding the
myocardial segment motion from both A4C and A2C views.

Comparison to existing studies. This is the pioneer study that
proposes a multi-view MI detection framework. A few other studies,
Li et al. [46] and Degerli et al. [47], have used our multi-view MI de-
tection framework over the HMC-QU dataset and have proposed certain
extensions and applications. Li et al. [46] presented an automated ver-
sion of the APs by proposing a deep learning model namely LVSnake to
predict the key points (start, apex, and end) to initiate the triangle con-
tour in the APs approach. Then, the initial triangle contour is adjusted
using DeepSnake [67], which is a deep learning model that performs in-
stance segmentation given an initial contour. Experimental results over
the HMC-QU dataset show that using our proposed framework over the
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LVSnake features [46], the SVM classifier achieves 90.11% sensitivity,
whereas our proposed APs features achieve a higher sensitivity level
of 90.91%. Moreover, the RF classifier achieves 65.23% specificity by
the LVSnake algorithm [46], which is 6.2% below our specificity level.
On the other hand, our proposed APs features achieve a comparable
precision level using the RF classifier with an insignificant gap of only
0.1%. Furthermore, Degerli et al. [47] recently investigated OCC classi-
fiers using our proposed framework over multi-view echocardiography.
Accordingly, Degerli et al. [47] report the experimental results of OCC
classifiers over the multi-view HMC-QU dataset, where Support Vec-
tor Data Description (SVDD) achieves 86.36% sensitivity, Multi-modal
Subspace SVDD (MS-SVDD) classifier achieves 79.49% precision, and
one-class SVM (OC-SVM) reaches 56.52% F1−Score using our proposed
APs features. Consequently, we conclude that our proposed approach
with binary-class classifiers outperforms OCC classifiers.

3.5. Computational complexity

The computational complexity of the proposed multi-view MI de-
tection method is the total computational complexity that arises from
each individual block depicted in Fig. 2. The endocardial boundary
extraction, myocardial segment displacement, and feature engineering
blocks of the method are from the prior work, where their computa-
tional complexities are detailed in [40]. However, the time elapsed for
executing the algorithm is doubled since both A4C and A2C views are
used in this study. On the other hand, the MI detection stage has a
computational complexity that differs with respect to the utilized clas-
sifiers. Accordingly, the classifiers have the computational complexities
in the prediction phase as follows: DT as 𝑂(𝑉 ), RF as 𝑂(𝑉 𝑛𝑡𝑟𝑒𝑒), SVM as
𝑂(𝑉 𝑛𝑠𝑣), and k-NN as 𝑂(𝑉 𝑛𝑡𝑟𝑎𝑖𝑛), where the length of the feature vector,

Fig. 10. The F1−Scores of the ML classifiers are plotted for single-view (A4C and A2C)
and multi-view (the proposed feature concatenation) echocardiography.
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Table 7
The average time elapsed for executing the algorithm stages in multi-view
echocardiography.
Algorithm stage Proposed methods Elapsed time (s)

Endocardial Boundary
Extraction APs 59.0696

Myocardial Segment
Displacement

Maximum
Displacements 0.0712

Feature
Engineering

Scaled
Displacements 0.0120

MI Detection

DT 3.023 × 10−6

RF 5.250 × 10−5

SVM 7.592 × 10−6

k-NN 3.725 × 10−5

1D-CNN 2.665 × 10−3

the number of trees, the number of support vectors, and the number of
training samples are denoted as 𝑉 , 𝑛𝑡𝑟𝑒𝑒, 𝑛𝑠𝑣, and 𝑛𝑡𝑟𝑎𝑖𝑛, respectively.
Furthermore, the convolutional layer computations of 1D-CNN are as
follows:

𝐶 =
𝐿
∑

𝑙=1
𝑁(𝑙−1)𝑁𝑙𝑉(𝑙−1)𝐾

2
(𝑙−1)+

𝐿−1
∑

𝑙=0
𝑁(𝑙+1)𝑁𝑙(𝐾𝑙 + 𝑉𝑙)𝐾2

𝑙 +

𝐿−1
∑

𝑙=0
𝑁(𝑙+1)𝑁𝑙𝐾𝑙(𝐾𝑙 + 𝑉𝑙)2,

(11)

here 𝐶 in Eq. (11) is the multiplication operations of 𝐿 number of
ayers at each back propagation iteration, 𝑁 number of connections be-
ween layers, and 𝐾 sized filter. Thus, 1D-CNN has the time complexity
(𝐶).

Table 7 shows the average time elapsed in seconds (s) during
he inference of each step of the proposed algorithm in multi-view
chocardiography that is illustrated in Fig. 2. Accordingly, the most
ime-consuming stage arises from APs, where around 60 seconds have
assed for its execution. On the other hand, the fastest block of the
lgorithm is MI detection with real-time execution. Overall, the pro-
osed algorithm requires 61.0318 s on average to process A4C and A2C
chocardiography views with one-cardiac cycle each (≈ 30 − 50 frames
n total).

. Conclusions

The early detection of MI is a crucial task to prevent further tissue
amage or even death. In this study, we propose to detect MI over
ulti-view echocardiography by merging the information extracted

rom A4C and A2C views. Contrary to the recent studies proposed
or single-view, this is the first study that accomplishes a multi-view
I detection for a reliable and robust diagnosis. Moreover, this study

hows that the threshold-based APs method in [40] can significantly be
mproved by using an ML-based approach even for single-view MI de-
ection. The experimental results show that the detection performance
as increased with the proposed approach in single-view echocardiog-
aphy by 2.50% and 7.35% for the sensitivity metric in A4C and A2C
iews, respectively. Furthermore, in multi-view echocardiography, the
roposed approach has achieved a sensitivity level of 90.91% and an
2−Score of 87.72%.

The proposed method can be clinically used as an assistive tool to
elp cardiologists and technicians to prevent subjective and operator-
ependent assessments by accurately measuring the LV myocardial
isplacements and plotting the color-coded myocardial segments. Com-
ared to existing studies performing MI detection over the HMC-QU
chocardiography dataset, our approach achieves higher detection per-
ormance and proposes a compact framework compared to the devel-
10

ped deep learning models in the literature. Finally, another major
contribution of this study is the formation of the multi-view HMC-
QU dataset that is publicly shared with the research community. The
published HMC-QU dataset includes 130 subjects from A4C and A2C
echocardiography views, which is quite limited for deep learning model
training due to including only 260 echocardiography recordings in total.
In future work, we plan to extend our approach to other views in order
to detect MI due to the blockage of any coronary artery. With this
accomplishment, we will be able to identify the blocked arteries and
also predict the location of the blockage simultaneously for the benefit
of localizing the revascularization targets.
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