'D Tampere University

Omolola Martha Shokunbi

COMPARISON AND FEASIBILITY OF
NETWORK HETEROGENEITY AND
INSPECTION TOOLS FOR QUIC

Masters of Science Thesis

Information Technology and Communication Sciences
Supervisor: Bilhanan Silverajan

October 2023

ABSTRACT

Omolola Martha Shokunbi: Comparison and Feasibility of Network Heterogeneity and Inspection
Tools for QUIC

Masters of Science Thesis

Tampere University

Information Security

October 2023

QUIC protocol founded by Google and standardized by IETF, is a fairly new protocol that is
here to stay. It has gained popularity among large organizations, which implies it acceptance. The
weaknesses of HTTP — presumed to be the future of the web, which could not handle the high
bandwidth and latency sensitive applications, brought about the development of QUIC. HTTP/3 is
solely built on QUIC and makes the best use of QUIC’s properties. This thesis aims at comparing
QUIC under different network conditions, to see if the different properties of QUIC hold and how
well they perform. In making this comparison, the QUIC traffic had to be inspected, and the tools
used for this inspection were assessed based on their feasibility. To be able to understand the
properties of QUIC, literature review was done. After which live experiments were done to see
that the properties held. This thesis helped to understand the current state of QUIC, the security it
provides to its users, and how feasible the tools used for carrying out inspection were. There were
some limitations to what the tools could achieve, based on its intended usage. The visualization
tool — QVIS, could not be used to illustrate the captured file from wireshark, which was a drawback.
Samples from the qvis github were used in this paper, to demonstrate how the visualization would
have looked.

Keywords: QUIC, HTTP, QLOG, QVIS

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

PREFACE

This thesis was a prerequisite in partial fulfilment of my Master of Science in Information
Technology at Tampere University, Finland. This thesis was supervised by Bilhanan Sil-
verajan, Tampere University’s Postdoctoral Research Fellow and Hanning Zhao, Doctoral
Researcher at Tampere University.

Firstly, | would like to thank God for the grace given to me, to be able to start my program
and complete the program, with the submission of this thesis. It would not have been
possible without his infinite mercies. Secondly, thanks goes to Bilhanan Silverajan for
being a wonderful supervisor, all the times he took out from his busy schedules to meet
with me, and his pleasant guidance. | am grateful to you for believing in me to deliver
this thesis. | would like to thank my parents, Mr and Mrs Shokunbi for their unwavering
support throughout my thesis writing and my program as a whole. And to my aunt and
her husband, Pastor and Pastor Mrs Sunmonu, they provided support both materially and
spiritually, which | appreciate immensely. My brothers who constantly harassed me about
completing my thesis, | am done now, and | appreciate their own way of showing support.
My appreciation would not be complete without thanking you, Ope, you stood by me all
through this, and | thank you :*.

Thank you to all my family and friends, it truly does take a community to raise a child.

Tampereella, 17th October 2023

Omolola Martha Shokunbi

CONTENTS

Introduction .

1.1 Overview .

1.2 Research Questions

1.3 Scope .

1.4 Methodology

1.5 Structure of the Thesis

Background.

2.1 HTTP .

2.2 Why QUIC? .

2.3 What is QUIC?.

2.4 Properties of QUIC .
2.4.1 Security. .
2.4.2 Stream Multiplexing .
2.4.3 Lower Latency .
2.4.4 Congestion Control .
2.4.5 Flow Control .

2.4.6 Forward Error Correction .

2.4.7 Connection Migration
2.5 QLOG and QVIS .
2.5.1 QLOG
252 QVIS.
2.5.3 Sequence Tool .
2.5.4 Packetization Tool.
2.5.5 Congestion Tool
2.5.6 Multiplexing Tool .
2.6 Related Works.
Design and Implementation
3.1 Design and Implementation.
3.2 Experimental Setup.
3.2.1 Experiment Topology
3.2.2 Software Tools .
3.2.3 QUIC Client and Server
3.2.4 Setting up the Connection
3.2.5 The Setups .

o O o A ODDDDDODDND =2 =

[T) T) T S e e e e e T T S e S S S S S
- =24 O © © © © © 0 0o N N N NOoOO OO P~ P> P> W =+ O

3.2.6
3.2.7

Setup A.
Setup B.

3.3 Traffic Conditions.
4. Results and Analysis . Ce
4.1 Capture of the Different Traffic Conditions .

411
41.2
413

Baseline
GEO Satellite
LTE

4.2 Visualization of Captured Traffic .

4.2.1

Diagrammatic Representation of the Visualization Tools.

5. Conclusion .

References.

.21
. 22
. 24
.27
.27
.27
. 28
. 28
. 28
. 29
. 39
.4

LIST OF FIGURES

2.1 Architecture of QUIC Protocol [12] L. 6
2.2 ShortHeader[2] 6
23 LongHeader[2] e 7
24 QUICHeader[2] 7
2.5 Version Negotiation[25] o 8
2.6 Header Structure of QUIC packet[26] 8
2.7 HTTP Requestover TCP + TLS[11]. 10
2.8 HTTP RequestoverQUIC[11]. 11
2.9 Multiplexing [38]« . 12
2.10 QUIC Connection Establishment[2] 13
211 Startup Latency [3] L 13
2.12 QUIC Connection Migration[2] 15
2.13 Top-level Structure of Qlog File [20] 16
214 QUIC EventsusedinQlog[21] 17
3.1 Topology of the Experiment 19
3.2 QUICConnectionSetupo 21
3.3 SSLKEYLOGFILE Imported to Wireshark 22
3.4 Wireshark Capture of Connection to Public QUIC Server 22
3.5 Wireshark Capture Showing Encrypted QUIC Packets 23
3.6 Wireshark Capture Showing Decrypted QUIC Packets 23
3.7 Diagram of Laboratory Setupo oo 25
4.1 Baseline Wireshark Capture 28
4.2 Resultof Baseline Capture 29
43 GEO Wireshark Capture 30
4.4 Resultof GEOCapture 31
45 LTE Wireshark Capture 32
46 Resultof LTE Capture i 32
4.7 QUIC and HTTP/3 Visualization Toolsuite 33
48 SampleQlogTrace o e 34
49 QlogStats 35
410 Qlog Stats 36
411 QVIS - Congestion Tool 36

4.12 QVIS - Multiplexing Tool 37

4.13 QVIS - Packetization Tool

4.14 QVIS - Sequence Tool
4.15 QVIS - Sequence Tool

vi

GLOSSARY

CHLO
CLI
DoS
DTLS
FEC
FreeBSD
FTP
GEO
HTTP
HTTPS
IETF
IATEX
LTE
RTT
SHLO
SSH
SSL
TAU
TLS
TUNI
UDP
URL

Vii

Client Hello

Command Line

Denial of Service

Datagram Transport Layer Security
Forward Error Correction

Free Berkeley Software Distribution
File Transfer Protocol
Geostationary Equatorial Orbit
Hypertext Transfer Protocol
Hypertext Transfer Protocol Secure
Internet Engineering Task Force

a document preparation system for scientific writing
Long-Term Evolution
Round Trip Time

Server Hello

Secure Socket Shell

Secure Sockets Layer

Tampere University
Transport Layer Security

Tampere Universities

User Datagram Protocol

Uniform Resource Locator

1. INTRODUCTION

1.1 Overview

With the invention of the Internet, protocols have become the most essential part of the
Internet — a building block. A computer protocol is used to execute technical standards
based on certain rules [10]. While network protocols form the set of rules that govern
the way data is transmitted between devices connected in a network. Examples of some
protocols (network) are, Hypertext Transfer Protocol (HTTP), QUIC protocol, File Transfer
Protocol (FTP), Secure Socket Shell (SSH). Communication, network management and
security are the primary actions of network protocols [5].

In communication, the protocols enable the connected devices in the network communi-
cate with each other, transfer files, or access the Internet, such as QUIC protocol, File
Transfer Protocol (FTP), Internet Protocol (IP), Bluetooth, Instant Messaging. Network
management protocols guarantee the whole networks performs ideally, by ensuring the
individual devices like computers, routers, servers, function optimally. They can estab-
lish connections; combine multiple network connections between devices, into one link —
link aggregation; troubleshoot networks. For security protocols, they protect the data or
network it sends from unauthorized access. Some of its basic functions are encryption,
authenticating entities, protecting data in transport [5].

According to [8], the choice of protocol is very vital in a communication system. In this
paper, the web is the communication system where devices and networks are intercon-
nected. The underlying protocol of the web is the HTTP, known as "the protocol of the
web" [29]. HTTP is used solely for communication over the web, in the transfer of files,
video, text, other multimedia files. Video content is the largest Internet traffic source, and
this propelled the use of HTTP on the web [3].

The weaknesses of HTTP were barriers to a faster Internet, even if studies showed that
HTTP would be the future of the Internet [3] — which it was for about 15 years, until the
arrival of QUIC protocol. QUIC protocol was developed to improve the overall perfor-
mance of the Internet — by improving HTTP traffic performance, due to emergence of
latency-sensitive applications and demands in bandwidth, which was unsustainable for
HTTP [4].

In this thesis, QUIC traffic was inspected, and the feasibility of the tools used in this
inspection. These tools are used to show the behavior in different networks, and further
compared.

1.2 Research Questions

This thesis has three distinct research questions:

1. What is the current state of QUIC protocol?

2. How does QUIC protocol perform in networks, and the feasibility of the tools used
in inspecting QUIC?

3. What security does QUIC protocol offer?

The second research question is the focus of this thesis. The rest of the questions would
be answered for more insights into QUIC protocol, and build a solid structure for the thesis.

1.3 Scope

The scope for research question 1 will explain how QUIC came about, the current state
of QUIC, and possible shape of its future.

The scope for research question 2 which happens to be the focus of this thesis, will
describe how QUIC performs under different network conditions, a baseline network con-
dition, Geostationary Equatorial Orbit (GEQ) satellite network condition and Long-Term
Evolution (LTE) network condition. It will also explore the tools used in capturing QUIC
traffic and evaluating its performance in the traffic.

The scope of research question 3 will highlight the different properties of QUIC and how
they come together to form its security properties. Also, it briefly describes the suscepti-
bility of QUIC to attacks or the attacks QUIC can protect the average user from.

1.4 Methodology

The purpose of this thesis was to provide detailed background information about QUIC,
its properties, which form its advantages, and disadvantages. Also, to evaluate QUIC’s
performance under different network conditions, and the feasibility of the tools used in the
inspection.

The detailed background information of QUIC was carried out by researching journals,
papers, websites and blogs; using Google scholar, Andor — Tampere University academic
search engine, and Google search engine.

The evaluation of QUIC’s performance under different network conditions was carried out

by setting up QUIC server, uploading documents to the server, then using wireshark to
capture the traffic. The Secure Sockets Layer (SSL) session keys were also imported to
wireshark to be able to decrypt parts of the QUIC traffic. The captured traffic on wireshark
was illustrated using glog and qvis as visualization tools.

1.5 Structure of the Thesis

This thesis is divided into five distinct parts;

* Introduction

» Background

* Design and Implementation
* Results

» Conclusion
Each of these parts of the thesis are intertwined together to form the whole picture.

The first chapter of this thesis is the introduction of the topic. The introduction sets the
pace for the thesis, telling the reader what the thesis will be about. Describing the re-
search questions, the scope, methodology of the thesis, and the structure of the rest of
the thesis.

The background part is Chapter 2 of this thesis. This gives a brief history of HTTP, de-
scribes how and why QUIC came about, the improvements made to the HTTP stack.
It further describes the current state of QUIC, the properties of QUIC. In describing the
properties of QUIC, the advantages and disadvantages are discussed, which also high-
lights the security properties of QUIC, and its susceptibility to attacks or the attacks that
can be prevented whilst using QUIC protocol. Then the feasibility of the tools used in
measuring its performance.

The third and fourth chapters are about the design and implementation part of thesis. In
details, it describes the setup of the environment to carry out the evaluation of the traffic,
how the capture and measurement will be done — using wireshark [28], the feasibility of
the tools used for evaluation, the visualization of captured traffic with glog and qvis tools
[24], and the networks in which they performed.

The conclusion part of the thesis which is the fifth chapter, summarises the thesis as a
whole, it reminds the reader of the salient points, basically the takeaways. The chapter
also points out the limitations faced while carrying out the design and implementation,
and suggests recommendations to the limitations. This chapters helps to make sense of
everything read from the beginning of the thesis to the end.

2. BACKGROUND

21 HTTP

HTTP is an application level protocol — simply a protocol that defines how messages are
transported across application processes, typically running on different end systems[3].
It is the most widely used protocol by web-based applications, it is used in building up
connection and communication between end-points, remote servers [27]. It was invented
by Tim Berners-Lee in 1989.

There are different versions of HT TP, which are HTTP/0.9, HTTP/1.0, HTTP/1.1, HTTP/2,
HTTP/3. HTTP/0.9 and HTTP/1.0 are now obsolete HTTP versions.

The slow start in HTTP/1.0 was improved in HTTP/1.1 by applying just one Transmission
Control Protocol (TCP) socket when downloading. To download a web-page, only one
persistent connection was used. The concept of pipelining was introduced in HTTP/1.1,
when a client that sends a request to a server, sends out many requests without waiting
for a response from the server [27].

HTTP/2 was released as an improvement to its predecessor — HTTP/1.1. HTTP/2 utilized
network resources effectively [4], by multiplexing multiple HTTP requests on the same
TCP connection [11]. It also improved header compression [4].

HTTP/3 is known as HTTP over QUIC, because it uses QUIC as the transport layer pro-
tocol [1]. The idea was to make the best use of QUIC, to help improve the Quality of
Experience of users and web performance [8]. This also implies that HTTP/3 connec-
tions can only be accomplished over QUIC [4].

According to [1], the following are notable features of HTTP/3:

1. QUIC protocol: It improves web performance with its faster connection establish-
ment, the built-in encryption system and its congestion control.

2. Connection migration: As part of QUIC protocol, there is provision for connection
migration. Users of HTTP/3 protocol can easily switch between networks, without
a break in connection — mobile network to WiFi.

3. Better security: There is a secure communication between clients and servers
provided by the built-in encryption system.

4. User Datagram Protocol (UDP)-based transport: Because HTTP/3 relies on
QUIC protocol and QUIC protocol was built on UDP, by extension HTTP/3 uses
UDP. This UDP translates to faster connection, lower latency but no reliable deliv-
ery, QUIC has its own reliability system.

2.2 Why QUIC?

As previously stated in the introductory chapter, [8] makes us understand that, the choice
of protocol is the most essential part of a communication system — the web. It was
paramount to have a protocol to improve the performance of web traffic and make it more
secure. Most of the web is powered by HTTP/2.0, with Transport Layer Security (TLS)
on top of TCP. A downside to this structure has been the emergence of latency-sensitive
applications and demands in bandwidth, which was unsustainable for it [4]. It is worth
noting that QUIC was envisioned for web-content delivery and mobile applications [16].
[13] established QUIC as the foundation of HTTP/3.

2.3 What is QUIC?

QUIC protocol, developed as an advancement for HTTP(s) stack of HTTP/2, TLS, TCP;
was proposed by google and standardized by the Internet Engineering Task Force (IETF)
[8]. It was formally standardized by the IETF in May 2021, but its initial experimental
version dates as far back as 2012 [15], it was standardized in RFC 9000 [4], and QUIC is
not an acronym.

It is a transport protocol built on UDP [8]. By building QUIC on UDP instead of TCP, the
round trip time of TCP handshake is eliminated. Also, an encryption system is infused
in QUIC — which is similar to TLS, connection establishment and key generation jointly
make up one round trip — which can sometimes be zero round trip [6]. In achieving this
reduced round trip, connections use known server credentials for recurrent connections,
which eliminates unnecessary handshake overhead in the network stack (reduces hand-
shake latency), which is called cryptographic handshake [15]. For faster development,
the reliability of TCP in the transport layer is implemented in the application layer [23].

There are two versions of QUIC; the gQUIC — the original protocol that was designed
by Google, and IETF QUIC — now regarded as just QUIC, adopted from gQUIC with a
lot of modifications [11]. gQUIC transports HTTP/2 frames, while IETF QUIC transports
application protocols such as HTTP/3, DNS — making it general purpose, this is a pratical
difference between the two versions of QUIC [4].

In this thesis, QUIC here would be referring to the IETF standardized QUIC, while any
reference to gQUIC will be gQUIC.

HTTP/2
Multistream
QUIC
TLS .
Encrypted payload Multustrgam
Encryption

Congestion Control

TCP Reliable data stream

s -/
Congestion control

Reliable data stream

Figure 2.1. Architecture of QUIC Protocol [12]

QUIC packet: this is contained in UDP datagrams which are usually exchanged by QUIC
endpoints. Long and short headers are the types of QUIC packet headers. Long header
defines packet headers that have the most significant bit of first byte set, and short head-
ers do not have the most significant bit set — the bit is cleared [26].

In 2.3, according to [26], the most significant bit of first byte is header form and is set to
1. While in2.2, the header form is set to 0, which signifies that it is short header, which
also does not contain Destination Connection ID Length, Source Connection ID Length,
Source Connection ID and Version fields.

Short Header Packet { =
Header Form (1) = @,
Version-Specific Bits (7),
Destination Connection ID (..),
Version-Specific Data (..),

Figure 2.2. Short Header [2]

The header structure of QUIC is as follows:

Long Header Packet {
Header Form (1) = 1,
Version-Specific Bits (7),
Version (32),
Destination Connection ID Length (8),
Destination Connection ID (@..2040),
Source Connection ID Length (8),
Source Connection ID (@..2040),
Version-Specific Data (..),

Figure 2.3. Long Header [2]

Long Header

Long Packet | Type Speicific

Header Form i i
Fixed Bit Type bits. Version ID | DCID Len DCID 5CID Len 5CID
1 bit 1 bit 2 bits 4 bits 32 bits 8 bits 0-160 bits B hits 0-160 bits
Short Header
.) Packet Protected
Header FOrm | Fixed Bit | Spin bits Reserved Key Phase P pcio Number payload

1 bit 1 bit 1 bit 2bits 1 hit 2 hits 160 bits P+8 bits

Figure 2.4. QUIC Header [2]

Public flag: the existence of connection ID field and length of the packet number field
are concealed by the flag

Version: This has an identifier 4-byte in size, and is used in associating the QUIC protocol
to its version, identified by the endpoint [26].

Connection Identifier: connection ID is used by QUIC connection to deliver packets to
the right endpoint, as a result of address change at lower protocol levels — UDP, IP. It
has to be unique for every connection, to prevent packets from being sent to the wrong
endpoint. Both the source and destination have separate connection IDs [2].

This connection ID is used in mapping packets to its resulting QUIC connection [26].
Connection Identifier is not based on IP address, therefore, any change in network is
conveniently handled between the networks, and eliminating the need to establish the
connection again [3].

Version Negotiation: a version negotiation packet is triggered, and sent as a response
in a case where a long header type of packet is sent to a QUIC endpoint, with a QUIC
version that the QUIC endpoint does not understand. Version negotiation packet is in line
with the format of long header type of packet, it does this by setting the high bit of the first
byte. It is not triggered by a short header type of packet, and is identifiable by the version

field [26].

Version Negotiation Packet {
Header Form (1) = 1,
Unused (7),
Version (32) = 0,
Destination Connection ID Length (8),
Destination Connection ID (@..2040),
Source Connection ID Length (8),
Source Connection ID (@..2040),
Supported Version (32) ...

Figure 2.5. Version Negotiation [25]

Packet number: this identifies cryptography nonce, which protects packets. For all traffic
— incoming and outgoing, and for each endpoint, the packet number differs. This packet
number is also segregated into 3 spaces by QUIC: initial space, where all initial packets
are contained; handshake space, it encompasses all handshake packets; application data
space, this is where the 0-Round Trip Time1 (RTT) and 1-RTT packets are held [2].

Public Flag Version _Tokenlnfn Packet Length r&’acket
. _ Number |

Figure 2.6. Header Structure of QUIC packet [26]

2.4 Properties of QUIC

2.4.1 Security

According to [4], QUIC protocol is very enticing to threat actors due to the rising traction
gained, and its acceptance among major technology organizations.

QUIC protocol is an encrypted-by-default transport protocol [11]. To develop the security
and congestion control functionality in QUIC, it incorporates parts of TCP, TLS, and Data-
gram Transport Layer Security (DTLS) [16], this allows for reliable communication [8]. For
QUIC, TLS 1.3 is the security component [4].

Naturally, application of security is through authenticated and encrypted packet header
and pay-load, this prevents modification [6]. Cryptographic protection is added to gQUIC,
this protects against Internet Protocol (IP) spoofing and packet re-ordering. IP spoofing
as defined by Microsoft, is when threat actors maliciously attack devices with malware, to

crash your server or possibly steal your data. Packet re-ordering and drops is solved by
including a packet number in each packet [4]. [25] explains that, by encrypting everything
in the transport layer, this eliminates the dependence on TCP + TLS mode of encryption.
In turn, modifications by interceptors is prevented, which all improves the security in QUIC.

The built-in security of QUIC protocol improves the performance of QUIC protocol. The
three-way handshake in TCP and the TLS 1.3 handshake are combined into QUIC’s initial
handshake. This causes the initial connection establishment to be faster, leading to just
a single round trip between client and server, in the initial handshake [11]. The TLS v1.3
provides some security against handshake Denial of Service, because the security of
handshake procedure is dependent on the TLS v1.3 handshake [4].

A downside to this 0-RTT connection establishment can be the replay attack from previ-
ous connection handshake. This replay attack can be advanced to a Denial of Service
(DoS) attack, if the client and server are made to complete a handshake, and it leads to
computational resources and memory space to be used up [7]. The threat of pervasive
monitoring attacks is a possibility with some information such as connection identifier,
because of its unencrypted state [7].

[9] discussed some common security issues with QUIC and how they are addressed, they
are as follows:

» Handshake costs: for QUIC, each connection is uniquely encrypted. To achieve
this, the server provides the configuration, and the configuration supplies the public
keys used to encrypt the communication.

» Replay attacks: the client sets a unique nonce which QUIC uses to avoid a request
getting replayed later — a unique nonce per request processed. Nonces are stored
in a shared register by the server, which is checked when requests are received,
and if a nonce exists, such requests are rejected.

» Wire Protocol: this helps overcome traffic analysis problem, by including padding
(PAD) tag to message data, which keeps the bandwidth consumption constant at
all times.

+ |P address spoofing: to protect devices using QUIC protocol from IP spoofing, a
source-address token is used. This source-address token is encrypted client IP
and server timestamp, which is sent by the server to the client IP only. The token
helps to prove ownership of their IP in subsequent requests that will be made to the
server.

[11] describes with 2.7 the way HTTP request between client and server, is carried out
over TCP and TLS. While 2.8, [11] describes how HTTP request is carried out over QUIC.

10

HTTP Request Over TCP + TLS

Client Server

= TCP SYN
-
= ! TCPSYN +ACK || o

TCP ACK

TLS ClientHello
TLS ServerHello

TLS Finished

HTTP Request

HTTP Response

Figure 2.7. HTTP Request over TCP + TLS [11]

2.4.2 Stream Multiplexing

In HTTP/2, head-of-line (HoL) blocking was a problem at the TCP level with connections,
when a stream is held up up because of a lost or delayed packet, where multiple simulta-
neous streams exist between endpoints communicating [8].

QUIC allows a client send many HTTP requests over same UDP socket, and in turn
receive many responses on the same UDP socket, this is known as multiplexing. Sim-
ply allows endpoints that are communicating to have multiple concurrent streams exist
between them, while eliminating head-of-line blocking. There is premium support for mul-
tiplexing by QUIC [11]. With this property, there is better organization of streams, use
of the same UDP connection for more traffic, and allows for the compression of HTTP
headers in the same connection [3]. In [22], header compression causes a significant

11

HTTP Request Over QUIC

Client Server
3 QUIC [N N N]
i [55% o——)
= ! QuIC T —
QUIC

HTTP Request

HTTP Response

Figure 2.8. HTTP Request over QUIC [11]

reduction in needless header information, whenever there is a new page request.

2.4.3 Lower Latency

QUIC was designed to provide lower latency and security [13]. QUIC takes the best of
UDP and TCP, to realize its latency reduction capability on the Internet [22] .

Low latency is achievable in QUIC because it is built on UDP [6]. TLS encryption hand-
shakes and connection establishment are integrated together, and simplified in QUIC;
this aids faster connection, re-connection [8]. This makes the connection time to be one
round trip — for a fresh connection, and zero round trip time (RTT) if there was already
a pre-established connection [3]. The inception of wireless devices has been a major
driving factor for the need of faster access times of the Internet[22].

First time connection establishment: This connection is established after a successful
version negotiation, and one RTT is used in the establishment [7]. The first time a con-
nection is initialized, there is no information about the server with the client. But once
the handshake has succeeded, the server information gets stored by the client. For the
first time connection, the client sends a client hello (CHLO) message to the server. Then
the server sends a reject (REJ) message, which holds information about the authentica-

12

Requests
[HTTP :—- ~ HTTP]
Client | ntrmet EEEEE E”E@‘k Server
TCP Connection

a) HTTP

Reguests
™ QUIC streams
QUIC Internet EE B _ QUIC
Client ‘® EE | Server

UDP Connection

b) QUIC

Figure 2.9. Multiplexing [3]

tion certificate, source-address token, and signature for the server certificate. This reject
message is used in forming a complete client hello message, which is eventually sent
to a Diffie-Hellman public key that is temporary, for the client [2]. It is important to note
that, if the version of the client is not supported by the server, the client will be forced to
go through an additional version negotiation process. Or the client receives the Server
Hello message, certificate, session certificate from the server, which will now be used for
subsequent connection to the server [7].

The zero round trip time is accomplished with the initial keys for the connection, from
the initial handshake. The client can begin to send data to the server before it receives
Server Hello (SHLO) message, immediately after it sends a complete CHLO message.
When the client receives the SHLO message, it begins to use the final keys calculated
from the details of the SHLO message to send data [2].

According to [7], in the course of establishing the first connection, there are parameters
negotiated and are stored on the client, contained in a cryptographic cookie. The encryp-
tion key of the QUIC protocol is calculated with Diffie-Hellman value, this is also contained
in the cryptographic cookie. All these information serves as the foundation for establishing
0-RTT connection.

In 2.10, [2] used the diagram to explain connection establishment in QUIC, where the
cryptographic and transport handshake have been infused together, to set-up a transport
connection.

13

Client Server Client Server Client Server
Inchoate CHi o Complete CHLO Complete Ciy g
. Eng;
RE) Encrypted Request YPled Reques;
Complete CHLO GHLO REJ

Ene
CrYpt request Encrypt Response Complete CHLO

Encrypt requesy

SHLO

SHLO
Encrypt ResPOME Encrypt RespOnse
Initial 1-RTT Handshake 0-RTT Handshake Failed 0-RTT Handshake
Figure 2.10. QUIC Connection Establishment [2]
HTTP HTTP QUIC QUIC
Client Server Client Server
TCP T QuIC
TRTT Handshake ' T I oooonoo 0| StartUp
1 RTT TLS
T T-----_____| negotiation
1 RTT ¢ Ca---
* e = Tl
y Y)
a) ' b) '

Figure 2.11. Startup Latency [3]

2.4.4 Congestion Control

With the support of multiplexing by QUIC, the same connection is shared by streams,
extra handshakes are not required, and causes congestion to be shared. Packet loss of
one stream does not affect other streams, because QUIC streams are delivered indepen-
dently [11]. [15] tells us that QUIC protocol does not depend on any specific congestion
algorithm.

14

2.4.5 Flow Control

Juniper Networks defines flow control as a mechanism for controlling traffic flows, in order
to prevent frames getting dropped during congestion, it basically aids lossless transmis-
sion. The buffer size of the receiver is limited by flow control, when data is read slowly
from QUIC’s receive buffers, by an application.

We see in [15] that connection-level control and stream-level control are implemented in
QUIC. In connection-level control, the total buffer consumed by a sender at the receiver
across all streams is restricted, while the buffer consumed by the sender on any stream
is restricted by stream-level control.

It is worthy to note that, the whole connection’s receive buffer can be consumed by a
slowly draining stream, which can hinder a sender from sending data on other streams,
which is head-of-line blocking. By limiting the buffer size that a stream can consume, it
reduces the risk of head-of-line blocking occurring [15].

2.4.6 Forward Error Correction

This is used for latency re-transmission reduction. Lost packets are not obviously re-
transmitted, the receiver regains the lost packets by using redundancy in the sent data
stream [6]. In managing packet loss, it swiftly recovers the lost packets, thereby making
Forward Error Correction useful in head-of-line reduction over a QUIC stream [3].

Improving loss tolerance and quicker recovery with the use of any unnecessary infor-
mation sent with Forward Error Correction (FEC) is done by coding — which detects
and corrects limited number of errors in data transmitted. Coding is used when there
is congestion and the packet loss leads to extra delays from slow recovery, replicated ac-
knowledgements or re-transmission timeouts, especially after the sending rate has been
correctly reduced. It is essential in situations where there is high packet loss — wireless
networks, because it will boost performance, but the energy consumption will be more [7].

2.4.7 Connection Migration

A connection ID is used by QUIC to identify a connection, this is to help any connection
between a client and server remain alive, if there happens to be subsequent change of
port or client IP. A connection migration begins when there is a change in the client’s
network, and the client makes use of the connection ID from previous connection to make
the request to the server whilst utilizing a probing packet [2].

CM CM
Initiator Responder

r-~-~~~""~""~""7T~"~"~“"~"="=—==== - N
| _ Non-probing Packet I

Prior to a CM _ >
| request Non- probing Packet |
e -
cF--~-~-"---=---T-~"--"--"-"=—-=-=-=-==% - N
, Probing Packet ,
(Path CHALLENGE) |

I L >

Path validation Probing Packet
| |
| basedona (Path_RESPONDE) |
o

I new IP Probing Packet I
| address (Path_CHALLENGE) I
| B |
I Probing Packet :
, (Path_RESPONDE) ,

-
U - J
r-—~>~---T~"--"-"--=-=-=-=-=-7 - N
: Start Non-probing Packet :

. _
1 transporting |
| data based on _ I
: the new < Non-probing Packet :
I address !
U - J

Figure 2.12. QUIC Connection Migration [2]

2.5 QLOG and QVIS

15

In order to secure QUIC packets, the packets are encrypted completely, except the fields

used in routing, forwarding and decrypting the packet. This security feature has a down-

side, which is difficulty in analyzing and debugging the protocol — which are essential for

fishing out bugs and understanding the behaviour of the protocol. Since the most im-

portant fields for analysis are encrypted, there is inadequate information contained in the

16

metadata of packets. Furthermore, it is impossible to decrypt or encrypt packets in transit,
because packets encrypted or decrypted in transit pose the risk of revealing the informa-
tion contained in the payload. Also, session keys will be required accordingly. Where
packets are sent from and received, are the best places to capture packets, these are the
encryption and decryption points, endpoints [13].

2.5.1 QLOG

Qlog is defined by the Internet Engineering Task Force as an extensible high-level schema,
that makes available a logging format for endpoints, that is whole, organized and share-
able [20].

This logging format was created to help with the problems of encrypting and decrypting
packets in transit, also, to extract sufficient information from packets that are not readily
available in the packets’ metadata. Qlog is built on JavaScript Object Notation (JSON),
which makes it easily deploy-able, irrespective of language-specific characteristics. In
order to be extensible, it has timestamp, category, event type, type-specific data aspects
for each event logged [13]. The use of JSON allows for custom events to be defined, it is
also easy to add, modify or extend new categories, metadata [18]. By tagging log details
with high-level metadata, high-level filtering and tracing event chains can be done easily
[19].

Some of the principles of glog framework by [20] are:

» Event data and metadata are stored together
* It is stream-able, its logging style is event-based
* Itis extensible

* It can be grouped and transformed easily

Figure 2.13 summarizes how the top-level of a glog file looks like. glog version describes
header fields and component traces. glog format describes the serialization method used,
because glog can be serialized in many ways, such as: JSON, CBOR, CSV. If the field is
not set, "JSON" becomes the default option. It also helps glog files parse better [20].

QlogFile = {
glog_version: text
? gqlog_format: text .default "JSON"
title: text
description: text
traces: [+ Trace /
TraceError]

RVIESIEN]

Figure 2.13. Top-level Structure of Qlog File [20]

17

Events

F— —— —

parameters_set MG“T;_:::::“T‘“’ — [)my_xm:_'\rad] [):ny_updatad] [parameters_set]——{ datagrams_sent]
metrics_updated server listening ———— connection_id updated [packet_sent]——[datagrams_received]
ion_started spin bit updated [packet_received]——[datagrams_dropped]
[loss_timer set]—4[marked_for_retransmit] [—— connection retried [packet_dropped]74[stream state updated]
[loss_timer expired]——[packet lost] L— connection_state updated [packet buffered]——[frames processed]

Figure 2.14. QUIC Events used in Qlog [21]

The structured and standardized format of glog makes it important in the area of re-using
existing tools, which qvis falls under [18].

2.5.2 QVIS

Textual formats — Qlog, could become impracticable when there are many long traces
to be compared, and error-prone. By using qvis — an interactive visual tool, redundant
details can be hidden and debugging is simplified [19]. Qvis visualizes glog files and
data, to make it clear and very illustrative, and can show information, such as round trip
time. Also, it is designed to be used in browsers, and is largely executed TypeScript and
Vue. [13] describes QUIC visualization methods, and they would be discussed in the
following section:

2.5.3 Sequence Tool

This tool is used mainly to illustrate the flow of data from one endpoint to another, and is
plotted on a vertical timeline. An interesting part of sequence tool is when it is used with
logs from both client and server side, it is very accurate in displaying details of the log,
such as: RTT, loss and reordering [19].

2.5.4 Packetization Tool

How QUIC packets are made up of QUIC and HTTP/3 frames is visualized by this packe-
tization tool. In [17], packetization tool emphasizes the efficiency of wire-format.

2.5.5 Congestion Tool

It is used to illustrate in bytes, the amount of data sent over time, and the RTT taken by
packets. Congestion window size and lost data can be shown with this tool. When there

18

is a change in the slope of graph, it can be used to signify a change in rate of data being
sent.

2.5.6 Multiplexing Tool

This visualizes how the sent data on the current QUIC streams were split on them. This
tool in [17] helps to spot anomalies in patterns, to illustrate how Head-of-Line blocking
affects QUIC, and it shows how the data re-transmissions in QUIC are organized.

2.6 Related Works

In [16], A security model was proposed to investigate QUIC’s performance, to identify
QUIC’s strengths and weaknesses. In the course of the investigation, it was discovered
that the very methods put in place for latency reduction, introduced security weaknesses
for QUIC.

The model used in this work is aimed to be extended for use in other performance driven
protocols. Also, the methodologies for dealing with the weaknesses were not explored,
and will be relevant to be explored.

QUIC over UDP is examined in [3], by evaluating the web-page load time of different
protocols — HTTP/1.1, SPDY and QUIC. The result of comparisons showed that QUIC
had a better web page load time. Forward Error Correction, another property of QUIC,
will make the performance of QUIC worse, when enabled.

This paper [18], assesses the application, utilization and dissemination of glog and qvis —
real world applications. Survey method was used among QUIC experts for the evaluation.

The use of endpoint logging for to replace packet capture in large deployments is not fully
known, and open for future works.

In [21], QUIC and HTTP/3 were evaluated, based on their designs, benchmarks, for static
and mobile cellular network. This assessment was done on real mobile networks, the
data was recorded and collected from a platform.

The evaluation proved that QUIC was very efficient for connection migration i.e in users
that move. Also, the congestion algorithm used was vital in affecting the performance of
QUIC. With the tools used being applicable to future of QUIC’s ever evolving nature.

19

3. DESIGN AND IMPLEMENTATION

3.1 Design and Implementation

In this chapter, the experimental setup to analyze the performance of QUIC protocol under
different network conditions are described. We define the tools used to capture and
analyze the traffic at different points, then the setups for the experiment were described.

3.2 Experimental Setup

3.2.1 Experiment Topology

For the analysis of QUIC protocol under different network conditions, 3.1 shows the simple
topology of the setups. The setup is basically a client machine communicating with a
server, over a network.

Client Network Server

Figure 3.1. Topology of the Experiment

3.2.2 Software Tools

This section describes the tools that were used in setting up the experiment, actualizing
the experiment topology, and capturing the QUIC traffic for inspection.

* Qlog: it was used to make available a logging format for the endpoints, that is
whole, organized and shareable

» Quis: it was used to visualize the glog files gotten from the captured QUIC packets,
to make it clear and very illustrative. It was used in the web browsers.

» Operating System: Linux was the primary operating system of this experiment,
Ubuntu 22.04 was the distro and version. It was used along with the oracle Virtual-

20

Box virtual machine.

» Wireshark: this is a network packet analyzer and packet capture software [14], it
was used to capture the live traffic of QUIC and HTTP/3 packets, to display data
and meta-data of the captured traffic. The wireshark needed to be up to date, to
be able to capture the packets. The wireshark version had to be installed using
the source code from wireshark’s own github repository. To launch wireshark the
command sudo ./wireshark was run in the folder "run" located in "build" folder.

+ SSLKEYLOGFILE: this is required in decrypting the QUIC packets. This environ-
ment variable instructs the browser to store the encryption keys into a specifically
created file. This sslkeylodfile is used in combination with wireshark, which is used
to show the decrytped information of the captured QUIC packets.

» FreeBSD PC: Free Berkeley Software Distribution was used to set the traffic condi-
tions for the QUIC capture. It was used to set firewall rules, the latency, up-link and
down-link speed, in the laboratory setup of the experiment.

» Curl: a command line tool used over network protocols for data transfer. It is used
to upload files from the client to the server, and to download files from server to the
client, over QUIC network — basically data exchange. The command line which
follows is the syntax for single file upload: curl -F fileToUpload="@ /path/to/file/
https.//server-address/upload.php

+ Web Browser: Google Chrome was the web browser used in this experiment, it
was the client in this experiment.

+ Virtual Machine: Oracle VirtualBox was the virtual machine used in this experi-
ment.

3.2.3 QUIC Client and Server

The QUIC client is a chosen web browser, which will establish the connection with the
server, it will send the CHLO message in the handshake, For this experiment, the chosen
web browser was Google Chrome, which already supports QUIC. QUIC is not enabled
by default, to enable QUIC, the web browser had to be accessed from the command line
interface (CLI) with these commands: google-chrome —enable-quic —quic-version=h3-29

For confirmation that the browser has enabled the QUIC and HTTP/3 connections, visit
https://cloudflare-quic.com/. This would tell if the connections have been enabled by the
browser.

The QUIC server sends the REJ/SHLO message during the handshake, and gives the
client a certificate to verify. There are many public QUIC servers that use HTTP/3, avail-
able on the Internet such as: cloudflare-quic.com, google.com, www.litespeedtech.com,
facebook.com.

21

3.2.4 Setting up the Connection

As the background of this paper described for setting up a QUIC connection, a handshake
request is sent by the client to the server, after a successful version negotiation. It is
worthy to remember that for a first time connection establishment, it takes one round trip,
and for subsequent trips, it uses zero round trip. After a successful handshake, the client
begins to send data to the server, which will be captured, this forms the basis for this

experiment.
CHLO [
% REJ + Token
.---""f--
Encrypted CHLO [.f”
Client Server

Figure 3.2. QUIC Connection Setup

3.2.5 The Setups

For the experiments to be actualized, there were necessary steps to be taken, set tasks, to
actualize the implementations. There were two different setups used for this experiment.
They will all be described in the following sections.

3.2.6 Setup A

For this experiment, the setup was done with the virtual machine connecting to public
QUIC servers, and using wireshark to capture the traffic. For this setup A, the following
steps were taken:

1. Installed the virtual machine with Ubuntu 22.04 on a Windows laptop

2. Next, the latest version of wireshark was installed from its own github repository.

3. Then SSLKEYLOGFILE was imported to the wireshark, to enable decryption of the
encrypted packets. The information of the decrypted packets can be seen on wire-
shark when traffic has been captured. Fig 3.3 shows how the SSLKEYLOGFILE
previously created was imported to wireshark, into the "pre-shared mastersecret."

22

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

A= ® Db X @ & = [=[lC¥Sqa

wireshark - Preferences

TDMoE =
TDMoP Transport Layer Security
TDS TLS debug file
TeamSpeak2
TECMP
1ELB‘I’ET v| Reassemble TLS records spanning multiple TCP segments

eredo
TETRA v Reassemble TLS Application Data spanning multiple TLS records
LE?P Message Authentication Code (MAC), ignore "mac Failed”
Thread
Thrift
Tibia (Pre)-Master-Secret log filename
TIME
TIPC
TiVoConnect
TLS
TNS |
Token-Ring Es shown~
TPCP i
TPKT A -
TPLINK-SMA.. '

TPM2.0 |
TPNCP

TRANSUM
TSDNS
TSP -
TTE
TURNCHANN.

TUXENO %
q » - Donate

Browse...

Pre-Shared Key

/home/gadmin/.ssl-key.log Browse...

@Help © cancel Qok

Ready to load or capture Mo Packets Profile: Default

Figure 3.3. SSLKEYLOGFILE Imported to Wireshark

4.

In fig 3.4, the public QUIC server was facebook.com whose IP address is 157.240.205.35.

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
gL @DPERLE Qe - EFQaQuE
(W[apply a display filter ... <Ctrl-/> =0
No. Time Source Destination Protocol Length Info =
224 7.696214239 157.240.205.35 130.230.152.192 TLSV1.3 97 Application Data
225 7.696214272 157.240.205.35 130.230.152.192 TLSv1.3 101 Application Data
226 7.696529855 130.230.152.192 157.240.205.35 TLSV1.3 97 Application Data
227 7.742571483 157.240.205.35 130.230.152.192 TCP 66 443 . 41498 [ACK] Seq=3752 Ack=1105 Win=68864 Len=0 TSval=1728356114 TSecr=2270583848
228 7.830169288 157.240.205.35 130.230.152.192 TLSV1.3 321 Application Data
r 229 7.860422190 130.230.152.192 157.240.205.35 QuIC 1399 Initial, DCID=187a4038affd42a2, SCID=04d486, PKN: ©, CRYPTO
2360 7.8615956034 130.230.152.192 130.230.224.11 DNS 87 Standard query ©x897b A www.facebook.com OPT [—
231 7.861799234 130.230.152.192 130.230.224.11 DNS 87 Standard query ©xlaed AAAA www.facebook.com OPT
232 7.868587691 130.230.224.11 130.230.152.192 DNS 375 Standard query response 0x897b A www.facebook.com CNAME star-mini.c10r.facebook.com A 157.240.205.35 NS b.ns.c16r.face.
233 7.868587849 157.240.205.35 130.230.152.192 QuIc 1274 Initial, DCID=04d486, SCID=831d009B20FE7bb9, PKN: 6875412, CRYPTO, ACK, PADDING _—
234 7.869533252 130.230.152.192 157.240.205.35 QuIc 82 =8 0 .
235 7.869801202 157.240.205.35 130.230.152.192 QuIC 1274 Handshake, DC: d486, SCID=831d009820f87bb9
236 7.869801281 157.240.205.35 130.230.152.192 QuIc 1274 Handshake, DC d486, SCID=831d009820f87bbY
237 7.869802971 157.240.205.35 130.230.152.192 QuIc 1066 Handshake, DCID=04d486, SCID=831d009820f87bb9
238 7.869803011 157.240.205.35 130.230.152.192 QuICc 122 Protected Payload (KP@), DCID=04d486
239 7.869803052 130.230.224.11 130.230.152.192 DNS 387 Standard query response Oxlaed AAAA www.facebook.com CNAME star-mini.c10r.facebook.com AAAA 2a03:2880:113:81:face:boe.
240 7.870450662 130.230.152.192 157.240.205.35 TCP 66 41498 . 443 [ACK] Seq=1105 Ack=4007 Win=64128 Len=0 TSval=2270584022 TSecr=1728356199
241 7.872971184 130.230.152.192 157.240.205.35 QuIc 8 DCID=831 0
242 7.873350546 130.230.152.192 157.240.205.35 TLSv1.3 148 Application Data
243 7.873396631 1360.230.152.192 157.240.205.35 TCP 74 41510 —~ 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=2270584025 TSecr=0 WS=128
244 7.876254636 130.230.152.192 157.240.205.35 QuIC 153 Protected Payload (KPO), DCID=831d009820f87bb9 -
245 7.876291452 130.230.152.192 157.240.205.35 QuICc 112 Protected Payload (KP@), DCID=831d009820f87bb9
246 7.877487214 157.240.205.35 130.230.152.192 TCP 66 443 . 41498 [ACK] Seq=4007 Ack=1187 Win=68864 Len=0 TSval=1728356249 TSecr=2270584025
247 7.879939164 157.240.205.35 130.230.152.192 TLSv1.3 101 Application Data
248 7.879939240 157.240.205.35 130.230.152.192 TCP 74 443 . 41510 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1250 SACK_PERM TSval=2578287026 TSecr=2270584025 WS=256 |
249 7.879951694 130.230.152.192 157.240.205.35 TCP 66 41498 . 443 [ACK] Seq=1187 Ack=4042 Win=64128 Len=0 TSval=2270584031 TSecr=1728356249
250 7.879968744 130.230.152.192 157.240.205.35 Tcp 66 41510 — 443 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=2270584031 TSecr=2578287026
251 7.881456450 157.240.205.35 130.230.152.192 QuICc 84 Handshake, DCID=04d486, SCID=831d009820f87bb9
252 7.881456665 157.240.205.35 130.230.152.192 QuIc 154 Protected Payload (KPO), DCID=04d486
%2 7 AR11RA7AR 187 24a 2Am 2% 120 20 120 100 aure 314 Dratartad Pavlnad (KPAY' nDETRZAAdARA -

Figure 3.4. Wireshark Capture of Connection to Public QUIC Server

3.2.7 Setup B

This setup was a laboratory based setup as shown in fig 3.7, the QUIC server was con-
nected to the cyberlab, through the RDNET. The cyberlab consisted of laptop, patch rack
which housed the patch panel, switch and a FreeBSD PC (linksim). The FreeBSD PC and

Eille Edit View Go Capture Analyze Statistics

Am i@ DERE @

Telephony _ Wireless Tools Help

es -~ Qe

23

(W[Apply a display filter ... <Ctrl-/>

Source

Destination

[268 16.105888241 34.120.208.123 130.230.152.192 LS\
| 26916.105888292 34.120.208.123 130.230.152.192 TLSv1.3
| 27016.106132795 130.230.152.192 34.120.208.123 TP
| 27116.125916869 34.120.208.123 130.230.152.192 TCP.
16669641 130 23(192 A QUIC
273 16.216722911 130.230.152.192 1C
274 16.222794922 157.240.205.35 b uIC
275 16.238273549 157.240.205.35 130.230.152.192 UIC
276 16.243765206 130.230.152.192 157.240.205.35 uIC
277 16.444765622 157.240.205.35 130.230.152.192 uIC
278 16.445239641 130.230.152.192 157.240.205.35 UIC
279 16.465963841 130.230.152.192 157.240.205.35 uIC
280 16.473112884 157.240.205.35 130.230.152.192 uIC
281 17.242949966 130.230.152.192 157.240.205.35 uIC
282 17.243310152 130.230.152.192 157.240.205.35 uIC
283 17.243463126 130.230.152.192 157.240.205.35 uIC
284 17.243619842 130.230.152.192 157.240.205.35 UIC
285 17.243748850 130.230.152.192 157.240.205.35 uIC
286 17.244906961 130.230.152.192 157.240.205.35 U
287 17.263730547 157.240.205.35 130.230.152.192 uIC
288 17.273077943 157.240.205.35 130.230.152.192 uIC
289 17.284278833 130.230.152.192 157.240.205.35 U
290 17.381481787 157.240.205.35 130.230.152.192 UIC
291 17.382707100 130.230.152.192 157.240.205.35 uIC
292 17.402596710 130.230.152.192 157.240.205.35 uIc
L 29317.417726151 157.240.205.35 130.230.152.192 uIC
294 17.544948536 130.230.152.192 52.98.228.226 cP
295 17.544994429 130.230.152.192 52.98.228.226 TP
296 17.547551629 130.230.152.192 52.98.228.226 ez
297 17 5AARSRART 52 98 278 276 30 23n 152 192 P

Ethernet II, Src: IntelCor_i
Internet Protocol Version 4, Sr
User Datagram Protocol, Src Port:
QUIC IETF

:1d:ea:f3:19:5¢

51320, Dst Port: 443

[Connection Number: ©]
[Packet Length: 1357

Protocol Length Info

357 Application Data

217 Application Data
66 60982 — 443 [ACK] Sex
66 443 . 60982 [ACK] Se
1399 Protected Payload (KPO),
196 Protected Payload
90 Protected Payload
90 Protected Payload
77 Protected Payload
250 Protected Payload
73 Protected Payload
77 Protected Payload
90 Protected Payload
1399 Protected Payload
1399 Protected Payload
1399 Protected Payload
1399 Protected Payload
1399 Protected Payload
76 Protected Payload
90 Protected Payload
90 Protected Payload
77 Protected Payload
218 Protected Payload
73 Protected Payload
77 Protected Payload
90 Protected Payload
1304 50606 — 443 [ACK]
1304 50606 — 443 [PSH,
i b o,
443 _ 500K TACKT Se

(kPO),
(KPO),
(KPO),
(kPO),
(kPO),

(kpo),
(KPO),

Frame 272: 1399 bytes on wire (11192 bits), 1399 bytes captured (11192 b)ts) on interface wlp3se, i(
:19: 8 c), Dst: IETF-VRRP-VRID 9c (00:00:5e:00:01:9c)
135.239.152,192, Dst: 157.240.205.35

QUIC Connection information

1
» QUIC Short Header DCID=841d003042af4d93
17

Remaining Payload: a3771 f

O 7 Textitem (text)

1900bb...

Seq=2840 Ac!
ACK] Seq=4078 Ack=1028 Win:
Ll

DC: 41\10@3042af4d93
DCID=fcbb7c

41d003042af4d93
41d003042af4d93

41d003042af4d93

41d003042af 4493

41d003042af4d93
DCID=841d003042af4d93
DCID=841d003042af4d93
DCID=fcbb7c
DCID=fcbb7c
DCID=841d003042af4d93
DCID=fcbb7c
DCID=841d003042af4d93
DCID=841d003042af4d93
DCI

028 Win=501 Len=1238 TSval=1972528553 TSecr=32251045 [TCP
01 Len=1238 TSval=1972528553 TSecr=32251045

Data

Packets: 304 - Displaved: 304 (100.0%) - Dropped: 0 (0.0%)

Figure 3.5. Wireshark Capture Showing Encrypted QUIC Packets

segment of
[TCP segment of a reassemble.

a

reassembled PDU]

Profile: Default

Fille Edit View Go Capture Analyze statistics Telephony Wireless Tools Help

AN JOBPERE Q&= ol QRQuE
(W[Apply a display filter ... <Ctrl-/>
No. Time Source Destination Protocol Length Info
281 5.094946667 35.174.127.31 1360.230.152.192 TCP 66 443 — 46726 [ACK] Seq=1 Ack=250 Win=263 Len=0 TSval=4130633556 TSecr=3295323746
282 5.094946856 35.174.127.31 TLSv1.2 334 Application Data
283 5.094976570 130.230.152.192 TCP 66 46726 — 443 [ACK] Seq=250 Ack=269 Win=501 Len=0 TSval=3295323866 TSecr=4130633556
284 5.097844669 157.240.205.35 QuIc 218 Protected Payload (KP@)
285 5.098276991 130.230.152.192 QuIC 73 Protected Payload (KPO)
286 5.119058955 1360.230.152.192 QuIC 77 Protected Payload (KPO)
287 5.124147330 157.240.205.35 QuIc 90 Protected Payload (KPO)
288 5.160291348 142.250.74.74 HTTP3 335 Protected Payload (KPG), PKN: 9, STREAM(11), STREAM(@), HEADERS
289 5.160477867 130.230.152.192 HTTP3 77 Payload (KPO) 8, ACK, STREAM(6)
290 5.161717726 142.250.74.74 QuIC 63 Protected Payload (KP@), PKN: 10, STREAM(O
r 291 5.162135637 130.230.152.192 QuIC 1292 Initial, DCID=(BGBBeZAffAcBhBGA PKN: 1, PADDING, CRYPTO, PADDING, CRYPTO, CRYPTO, PADDING
292 5.162368781 1360.230.152.192 HTTP3 115 @-RTT, DCID 096e24ff4c8b864, PKN 2, STREAM(2), SETTINGS
293 5.190056772 130.230.152.192 QuIC 74 Frotected Payload (KP@), DCID=e326590e30a88673, PKN: 9, ACK
294 5.198451010 142.250.74.74 QuIC 67 Protected Payload (KP®), PKN: 11, ACK
195 5.211949977 142.250.74.74 HTTP3 1292 Protected Payload (KP®), PKN: 3, STREAM(S), SETTINGS
296 5.211950153 142.250.74.74 QuIC 850 Protected Payload (KPO),
211950193 250.74.74 QUIC 228 Protected Payload (KP@), PKI
. 298 5.212366105 130. 23 QUIC 120 Handshake, 096e24ff4c8b864, PKN: 3, ACK, CRYPTO
299 5.212440659 130.230.152.192 142.250. 74 74 QuIC 73 Protected Payload (KPO), 4, ACK
300 5.212629512 130.230.152.192 142.250.74.74 HTTP3 1288 Protected Payload (KP®) 5, ACK, STREAM(2), PRIORITY_UPDATE, STREAM(10)
301 5.212670133 130.230.152.192 142.250.74.74 HTTP3 1292 Protected Payload (KP®), DC: KN: 6, STREAM(10)
302 5.212678909 130.230.152.192 142.250.74.74 HTTP3 222 Protected Payload (KP@), DCID=e096e24ff4c8b864, PKN: 7, STREAM(16), STREAM(©), HEADERS, DATA
303 5.224487901 1604.18.19.239 1360.230.152.192 HTTP3 1097 Protected Payload (KP@), PKN: 7, STREAM(O), NEADERS DATA
304 5.224488050 104.18.19.239 130.230.152.192 HTTP3 71 Protected Payload (KP@), PKN: 8, STREAM(), DATA, DATA
305 5.224713327 130.230.152.192 104.18.19.239 QuIC 85 Protected Payload (KPO) T 14a802f13eef7c8e04acf2f25eef07ae5b9034e, PKN: 10, ACK
306 5.226233330 130.230.152.192 1604.18.19.239 HTTP3 555 Protected Payload (KP@), DCID=014a802f13eef7c8e@4acf2f25eef07ae5b9034e, PKN: 11, STREAM(2), PRIORITY_UPDATE, STREAM(4).
307 5.226902476 142.250.74.74 130.230.152.192 QuIC 66 Protected Payload (KP®), PKN , ACK
308 5.231375559 104.18.19.239 130.230.152.192 QuIC 66 Protected Payload (KP®), PKN: 9, ACK
309 5.251787160 142.250.74.74 130.230.152.192 QuIc 162 Protected Payload (KPB), PKN: 7, DONE, NT, NCI
, Frame 298: 120 bytes on wire (960 bits), 120 hytes captured (960 bits) on interface wlp3se, id @ 00 00 5e 00 01 9c 18 1d ea f3 19 5c 08 00 45 00 n E
» Ethernet II, Src: IntelCor_f3:19:5c (18:1d:ea:f3:19:5c), Dst: IETF-VRRP-VRID_9c (00:00:5e:00:01: Sc)) 00 6a 4b bo 40 00 40 11 f9 e7 82 e6 98 cO 8e fa jK-@-@
» Internet Protoccl Version 4, Src: 130.230.152.192, Dst: 142.250.74.74 4a 4a dc 5f 01 bb 0 56 30 c® e5 00 00 00 61 08 - Ve
» User Datagram Protocol, Src Port: 56415, Dst Port: 443] €0 96 e2 4f f4 c8 b8 64 ©0 40 3d 15 43 b9 9e 4c o d @=cC L
- QUIC IETF 040 55 2a 09 72 88 3c 3b b8 ce 50 90 35 8a 33 eb 9b U*.r.<;. P.5.3
50 4536 c9 fb 99 11 47 35 d5 62 5b 1 6c d2 e1 €2 C
[Connect n Number: 5]) 66 a2 77 05 6b 54 f5 35 7d 65 6b 2a c4 47 6f de fw-kT-5 }e * Go
[Packet Length 78] 070 8e 4c 20 fe 2f a9 46 1le F
Header Form: Long Header (1)
Fixed Bit: Tru
Packet Type4 Handshake (2)
= Reserved
. Packet Mumber Length: 1 bytes (0)
Version: 1. (exaoeaeem)
Destination Connection ID Length:
Destination Connection ID: eBSEeZAffAchEEd
Source Connection ID Lengtl]
Lengtl 61
Packet Number 3
Payload: b99114 16cd2e1e2.
» ACK
- D Frame (120 bytes) Decrypted QUIC (44 bytes)

O 7 Textitem (text)

Figure 3.6. Wireshark Capture Showing Decrypted QUIC Packets

Packets: 343 - Displayed: 343 (100.0%) - Dropped: 0 (0.0%)

Profile: Default

laptop were connected to the switch, then the FreeBSD PC was connected to the patch

panel, the patch panel was now connected to the QUIC server linked by the RDNET.

The QUIC server was openlitespeed server, hosted on another laptop. The client and

server were on the same network when they communicated. The openlitespeed server

used in this setup was a test server, because the experiment did not require anything

sophisticated.

In this setup, the following steps were taken to be able to get the client and server to

establish communication:

8.

24

. A laptop running Ubuntu 22.04 Linux operating system was the client’s machine.

Google Chrome was the browser which was used to connect with the server by
sending the CHLO message.

For the server, the openlitespeed server was downloaded and installed using the
instructions from their website. While the installation was going on, the admin cre-
dentials was given, which was important and used in subsequent steps.

When the installation was done, the server was started. The server’s web admin
console became accessible through the localhost:7080. To login, the admin cre-
dentials described in step 2 was used. This gave access to the configurations for
the server and monitoring access.

. The site is a test site by default, which was accessed using the localhost’s address

127.0.0.1.

In this step, configuring HTTPS connection was done. Because HTTP/3 and QUIC
are encrypted by default, an authenticated certificate is required for it to work. The
certificate used in this experiment for the local host was generated by mkcert —
a tool for making trusted certificates locally. The instructions for installation were
found on mkcert’s github repository.

The certificate for the test site was created for the IP address of the machine hosting
the server.

mkcert localhost x.x.x.x was the command to create the certificate. It created .pem
and key.pem files.

The two files created in step 6 were moved to the openlitespeed server’s root folder
/Isws/conf/cert. Then a listener for port 443 (SSL) was created on the openlite-
speed admin console, using the two files from step 6 — which were located in
/lsws/conf/cert.

The test site was now accessible through HTTPS connection.

After, successful completion of the steps, the client was able to establish communication

with the server using curl. Curl was the tool used to upload files to the server. To evaluate

the performance of QUIC under different network conditions, the evaluation is done from

the client’s point of view. The traffic characteristics are set with the FreeBSD tool, and the

capture of the traffic data commenced.

3.3

Traffic Conditions

Following the lab setup and connection establishment between client and server, the

FreeBSD PC was used to control the network parameters, ipfw was used to give the link

simulator the traffic characteristics, to achieve the heterogeneous traffic conditions, which

25

130.230.113.10

Quic
SERVER
DHCP
T~ Xx.x.113.x
SWITCH [
| LAPTOP
113 LINKSIM
(FreeBSD BOX)
CYBERLAB
Figure 3.7. Diagram of Laboratory Setup
were:

» Baseline: in this traffic condition, there was no alteration with the FreeBSD PC, the
client machine was connected directly to the QUIC server, which did not have any
significant impact on the network.

These were the traffic characteristics: 1000 Mbps full duplex, Oms latency

+ GEO Satellite: this was achieved by using ipfw to set the traffic characteristics: 27
Mbps down, 3 Mbps up, 725ms latency, to emulate a satellite network, as seen
below:

#!/bin/sh

ipfw -q -flush
ipfw -q pipe flush

ipfw 0005 allow all from any to any via 1lo0
ipfw 0006 allow all from any to any via emO

#Upload

ipfw add 0010 pipe 1 all from any to any out recv eml
ipfw pipe 1 config bw 3Mbps delay 725ms

#Download

26

ipfw add 0020 pipe 2 all from any to any out recv em2
ipfw pipe 2 config bw 21Mbps delay 725ms

ipfw add 7000 allow all from any to any

» LTE: Long Term Evolution traffic condition was achieved using ipfw to set the fol-
lowing characteristics 236 Mbps down, 70 Mbps up, 10ms latency, as seen below:

#!/bin/sh

ipfw -q -flush
ipfw -q pipe flush

ipfw 0005 allow all from any to any via 1lo0
ipfw 0006 allow all from any to any via em0

#Upload

ipfw add 0010 pipe 1 all from any to any out recv eml
ipfw pipe 1 config bw 70Mbps delay 10ms

#Download

ipfw add 0020 pipe 2 all from any to any out recv em2
ipfw pipe 2 config bw 236Mbps delay 10ms

ipfw add 7000 allow all from any to any

27

4. RESULTS AND ANALYSIS

This chapter discusses the results gotten from the design and implementation of this pa-
per — chapter 3. This chapter will provide the reader a good understanding of QUIC’s
performance in networks, the tools used for inspecting the traffic and visualizing the cap-
tured traffic.

4.1 Capture of the Different Traffic Conditions

The wireshark capture and results of the network conditions set in 3.3 will be shown in
the next sections. The results of the different traffic conditions shows the different time
taken during data transmission, which are:

+ time-namelookup: this column shows the time it took from the start of the connec-
tion for the name resolve to happen. The time was in seconds.

» time-connect: this column shows the time from the start of the connection taken for
the TCP connect to the remote host was done. The time was in seconds.

« time-appconnect: this column shows how long the SSL/SSH handshake to the re-
mote host took from the start, it was measured in seconds.

« time-pretransfer: this was the time taken from the start till the actual packet to be
transferred was just about to begin. This was measured in seconds.

 time-starttransfer: this was the time it took from start of the connection till the first
byte was going to be transferred. This was measured in seconds.

+ time-total: this is the time taken for the whole connection lasted, including the com-
plete data transfer. This was measured in milliseconds.

4.1.1 Baseline

Fig 4.1 shows the wireshark capture of the baseline traffic condition, while fig 4.2 shows
the results of the capture with respect to time.

The performance of QUIC under this traffic condition has no latency.

28

quic-300B.pcapng - B8 x
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AN i@ BPBIRE QCHI>»I-IEEQAQQE
(]Apply a display filter .. <Ctrl =)o
No. Time Source Destination Protocol Length Info 2
1 0.000000000 130.230.113.47 130.230.113.10 QuIC 1244 Initial, DCID=5c1b71b@66bab13ccob840eb985cadf8, SCID=ead2ca7263b4affde2fabe5d1c366f5f04125f151, PKN: ©, CRYPTO —
2 0.005570671 130.230.113.10 130.230.113.47 QuIC 1296 Initial, DCID=ead2ca7263baffde2fabe5d1c366f5f04125f151, SCID=b4b86d06c68db3e8, PKN: ©, CRYPTO, PADDING
3 0.005571013 130.230.113.10 130.230.113.47 QuIC 1296 Handshake, DCID=ead2ca7263b4ffde2fabe5d1c366f5f04125f151, SCID=b4b86d06c68db3es f—
4 0.005571133 .10 130.230.113.47 431 Initial, DCID=ead2ca7263b4affde2fabe5d1c366f5f04125f151, SCID=b4b86d06c68db3e8, PKN: 3, ACK
5 0.006805664 130.230.113.10 1244 f 941257151 —
6 0.006989428 130.230.113.10 94 Protected Payload (KP@), DCID=b4b86d066c68db3es
7 0.007016076 130.230.113.10 76 Protected Payload (KP@), DC: b86d06c68db3e8
8 0.007037046 130.230.113.10 76 Protected Payload (KP@), DC: 4b86d06c68db3e8

9 0.007058094
10 6.007163641
11 0.008235553
12 9.008235790
13 ©.008408861

130.230.113.10 214 Protected Payload (KP@), DCID=b4b86de6c68db3Ies
130.230.113.10 580 Protected Payload (KP®), DC:
130.230.113.47 515 Protected Payload (KP®), DCID=ead2ca7263b4ffdo2fabe5d1c366f5F04125F151
130.230.113.47 199 Protected Payload (KP@), DCID=ead2ca7263b4ffdo2fabe5d1c366f5F04125F151
130.230.113.10 83 Protected Payload (KP@), DCID=b4b86d06c68db3es

14 0.009254058 130.230.113.10 130.230.113.47 90 Protected Payload (KP@), DC 42ca7263b4ffde2fabe5d10366f504125F151

15 0.009420666 130.230.113.47 130.230.113.10 76 Protected Payload (KP@), DCID=b4b86d06c68db3es 1
16 0.011559527 130.230.113.10 130.230.113.47 91 Protected Payload (KP@), DCID=ead2ca7263baffde2fabe5d1c366f5f04125F151

17 0.011795653 130.230.113.47 130.230.113.10 214 Protected Payload (KP®), DC: b86d06c68db3es

18 0.014002624 130.230.113.10 130.230.113.47 91 Protected Payload (KP@), DCID=ead2ca7263b4ffde2fabe5d1c366f5f04125F151 —
190.014215190 130.230.113.47 130.230.113.10 580 Protected Payload (KP@), DCID=bab86de6c68db3Ies

20 0.016225235 130.230.113.10 130.230.113.47 91 Protected Payload (KP@), DCID=ead2ca7263baffdo2fabe5d1c366f5f04125F151 1
210.016423800 130.230.113.10 130.230.113.47 317 Protected Payload (KP@), DCID=ead2ca7263b4ffde2fabe5d1c366f5f04125F151

22 0.016572517 130.230.113.47 130.230.113.10 75 Protected Payload (KP@), DCID=b4b86d06c68db3es 1
230.017124690 130.230.113.47 130.230.113.10 74 Protected Payload (KPO), DC b86d06c68db3es

24 0.017317470 130.230.113.10 130.230.113.47 88 Protected Payload (KP@), DC 42ca7263b4ffde2fabe5d10366F504125F151 1

25 0.017317626 _ 130.230.113

135 Protected Payload (KPO), D 42ca7263b4f fd02fabe5d1c366F5F04125F151

28 0.892284132

114 130.230.113 62 Echo (ping) request X0017, 5eq=17253/25923, t 1 (reply in 29)

290.892343223 130.230.113.47 3.26.228.114 52 Echo (ping) reply id=0x8017, seq=17253/25923, t (request in 28)

30 1.053038681 130.230.113.47 139.230.113.10 1244 Initial, DCID=b049964b92836a8947c81aBa7fbodefC, SCID=321ec534d38e95ef5cadb696bassr9143e172f77, PKN: 6, CRYPTO
311.058982653 130.230.113.10 130.230.113.47 1296 Initial, DCID=321ec534d38e95ef5cadb696ba58r9143e172f77, SCID=945d04do1b3d2cfd, PKN: O, CRYPTO, PADDING

321.058982814 130.230.113.10 130.230.113.47 1296 DCID=32 9143e172f77, 1b3d2cfd 1
33 1.058982848 X 130.230.113.47 431 Initial, DCID=321ec534d38e95ef5cadb696ba58F9143e172F77, SCID=945d04de1b3d2cfd, PKN: 3, ACK

34 1.059569833 130.230.113.10 1244 DCT d, SCID=32 9143e172f77

35 1.059657597 130.230.113.10 94 Protected Payload (KP@), DCID=945d04de1b3d2cfd

36 1.059673191 130.230.113.10 76 Protected Payload (KPO),
37 1.059684333 136. 130.230.113.10 76 Protected Payload (KPO),
22 1 050AA2870 120 220 112 A7 120 720 112 1A 214 Drotectad Pavlnad (kDA
Frame 92: 76 bytes on wire (608 bits), 76 bytes captured (608 bits) on interface any, id 0

» Linux cooked capture vi

» Internet Protocol Version 4, Src: 130.230.113.47, Dst: 130.230.113.16

» User Datagram Protocol, Src Port: 55334, Dst Port: 443

» QUIC IETF

(Moo 04 00 61 60 66 3c 97 ©e 54 Se 63 00 00 68 60|
[LECHNa5 00 00 3c 06 88 40 00 40 11 4c 23 B2 e6 71 2f]
[LFIME> 6 71 6a d8 26 ©1 bb @0 28 e8 3f 4b a5 f3 6a
[LECQo3 Sc Ge ee Se d6 cO 46 a6 b7 57 06 05 3e 46 3:
[LYCM53 8a cf 28 a5 9c 6c 77 76 bc de 6

O 7 Erama (frama) 74 hutac Darkare: €20 . Nicalauad: €20 (100 N2 rnfila: Rafault

Figure 4.1. Baseline Wireshark Capture

4.1.2 GEO Satellite

Fig 4.3 shows the wireshark capture of the GEO satellite traffic condition, while fig 4.4
shows the results of the capture with respect to time.

The performance of QUIC under this traffic condition has little latency of 725ms, which is
almost not noticeable during data transfer.

4.1.3 LTE

Fig 4.5 shows the wireshark capture of the LTE traffic condition, while fig 4.6 shows the
results of the capture with respect to time.

The performance of QUIC under this traffic condition has a minute latency of 10ms, which
is almost not noticeable during data transfer.

4.2 Visualization of Captured Traffic

In visualizing captured traffic, the pcap files obtained from the decrypted traffic captured
by wireshark is converted to glog events. For this paper, demo samples were gotten from
glog and qvis’ github, and used for visualizations.

In fig 4.7, it shows the homepage of the visualization toolsuite for QUIC and HTTP/3 —
quic and glog. It is important to know that the only file formats supported by this toolsuite
are: .qlog, .sqlog, and .netlog. On this page, there are different options for uploading the
files of captured packets, the options are:

29

result_http3_native_300B.txt

e_connect:time_appconnect:time_pretransfer:time_starttransfer:time_total

Plain Text ~ Tab Width: 8 v Ln1, Col1

Figure 4.2. Result of Baseline Capture

1. Loading the file using URL: In this method, the link to the file is used for the upload,
for visualization to be done.

2. Uploading the file directly: The file gotten from the packet capture can be uploaded
directly in this method.

3. Loading demo files premade: Here, there are sample files from the qvis github
repository that can be loaded and visualized.

4. Loading a massive demo file: This supports large single glog files. It is used to
show qvis visualizations on larger traces.

Also, on this homepage, the different qvis visualization methods are located here. After
the file has been loaded, the different visualization methods can be viewed by just clicking
on the particular one of interest. There is also the option of viewing glog stats.

4.2.1 Diagrammatic Representation of the Visualization Tools

A sample of glog trace file can be seen in 4.8, serialized in JSON, and it is in .qglog format.
This is the file that was loaded into the toolsuite, and the upload file directly option was
used to load the glog trace file. In this trace file, the different data logged for the

In fig 4.9 and fig 4.10, the details about the traffic captured is given. This details are quite

30

Wireshark

@ ox
File Edit View Go Capture Analyze Statistics Telephony Wireless Iools Help
Ao DRE ACHII-~EEQQQE
(WTApply a display filter ... <Ctrl-/> -je
No. Time Source Destination Protocol Length Info =
10.000000000 130.230.113.47 130.230.113.10 QUIC 1244 Initial, DCI 78a10598fd13f 78f30d7 e0ede7b0e63, PKN: 6, CRYPTO
2 0.999003639 130.230.113.47 130.230.113.10 QUIC 1244 Initial, DCID=623e5369df78a10598fd13fc8ea922d8, SCID=bb56f78f30d7fadc2beco49bde8d7edede7b0e63, PKN: 1, CRYPTO
3 1.459295241 130.230.113.10 130.230.113.47 QUIC 1296 Initial, DCID=bb56f78f30d7f: 7b0e63, 70aa5b7beb12, PKN: ©, CRYPTO, PADDING
41.459295371 130.230.113.10 130.230.113.47 QUIC 1296 78f30d7f
51.459537936 130.230.113.47 130.230.113.10 QUIC 1244 DCIH 12, 8f30d7f 7e0ede7b0e63 =
61.460276381 130.230.113.10 130.230.113.47 QUIC 431 Initial, DCID=bb56f78f30d7f: 7b0e63, ©aa5b7beb12, PKN: 3, ACK
7 1.460612240 130.230.113.47 130.230.113.10 QUIC 143 DCID=a63! 12, 78f30d7f: eBede7b0e63
8 1.460701991 130.230.113.47 130.230.113.10 QUIC 94 Protected Payload (KP@), DCID=a63970aaSb7beb12
91.460713077 130.230.113.47 130.230.113.10 QUIC 76 Protected Payload (KPO), DCID=a63970aaSb7beb12
10 1.460720788 130.230.113.47 130.230.113.10 QUIC 76 Protected Payload (KP@), DCID=a63970aaSh7beb12
11 1.460728974 130.230.113.47 130.230.113.10 QUIC 215 Protected Payload (KP®), DCID=a63970aaS5b7bebl2
12 1.460781005 130.230.113.47 130.230.113.10 QUIC 580 Protected Payload (KP@), DCID=a63970aaSb7beb12
13 1.947643571 WistronI_54:5e:63 ARP 44 Who has 130.2360.113.1? Tell 130.230.113.47
14 1.950006108 IETF-VRRP-VRID_04 ARP
15 1.950006519 IETF-VRRP-VRID_04 ARP

TETF-VRRP-VRID_04

17 1.952133825

18 2.355026014 JuniperN_17:ff:10 ARP 62 who has 130.230.113.2467 Tell 130.230.113.2

19 2.356753660 JuniperN_17:ff:10 ARP 62 Who has 130.230.113.2467 Tell 130.230.113.2 —
20 2.453449228 130.230.113.10 130.230.113.47 QUIC 1296 Initial, DCID=bbS6f78f30d7f 12, PKN: 4, CRYPTO, PADDING =
212.453449645 130.230.113.10 130.230.113.47 QUIC 1296 Handshake, DCID=bbS6f78f30d7fadc2becodobdesd7e0ede7boe63, SCID=a63970aasb7bebi2 L |
22 2.453730509 130.230.113.47 130.230.113.10 QUIC 139 Protected Payload (KP@), DCID=a63970aaSb7beb12 =
23 2.454349704 130.230.113.10 130.230.113.47 QUIC 430 Initial, ucm bbS678F30d7f: b 70aasb7beb12, PKN: 7, ACK

24 2.454506961 130.230.113.47 130.230.113.10 QUIC 105 12, f e0ede7boe63 —
252.915419413 130.230.113.10 130.230.113.47 QUIC 515 Protected Payluad (KPO), DCID=bb6F78F30d7Fadc2becoasbacad7e0ede7bocs3 —
26 2.915419707 130.230.113.10 130.230.113.47 QUIC 103 Handshake, DCID=bb56f78f30d7fadc2bec04gbdesd7edede7bOe63, SCID=a63970aa5h7beb12

27 2.915419895 130.230.113.10 130.230.113.47 QUIC 1296 Handshake, DCID=bbS6f78f30d7fadc2beco4sbaesd7edede7b0e63, SCID=a63976aasb7beb12 —
28 2.915419975 130.230.113.10 130.230.113.47 QUIC 466 Protected Payload (KP@), DCID=bbS6f78f30d7fadc2beco4sbae8d7eede7boe63 =
29 2.915420065 130.230.113.10 130.230.113.47 QUIC 87 Protected Payload (KP@), DCID=bbS6f78f3ed7fadc2beceashdesd7eoede7boess

30 2.915789346 130.230.113.47 130.230.113.10 QUIC 77 Protected Payload (KP@), DCID=a63970aaSb7bebi2 =
312.918451212 130.230.113.16 130.230.113.47 QUIC 86 Protected Payload (KPG), DCID=bbS6f78f30d7fadc2becoashdesd7eoede7boes3

322.918451620 130.230.113.10 130.230.113.47 QUIC 324 Protected Payload (KP@), DCID=bbS6f78f3ed7fadc2becoashdesd7eoede7boes3 =

33 2.918767502
34 2.919507939
35 2.926446898

130. zao 113.10 83 Protected Payload (KP@), DCID=a63970aa5b7bebl2
30 74 Protected Payload (KP@), DCID=a63970aa5h7bebi2

370 Nanﬂshake DCID=! bbsaf7af3od7fanc2bec949h4e5u7eoede7boea3 SCID=a63970aasb7bebi2
b1

3 e Payload (KPO), DCID=bbS6T

39d7fadczbecaasmesmeoeaemmesa

1412401 130.2: 5 130.230.113.47 QUIC 515 Protected Payload (KP@), DCID=bbS6f78f30d7fadc2bec0agbdesd7edede7boe6d
dl 2.941412574130.230.113.16 130.230.113.47 QUIC 135 Protected Payload (KP@), DCID=bb56f78f30d7fadc2becoagbdesd7edede7boesd
- 1745 113 &
» Frame 16: 62 bytes on wire (496 bits), 62 bytes captured (496 bits) on interface any, id © ©0 00 60 01 00 66 00 00 5e 00 O1 64 00 00 08 06 A
» Linux cooked capture vi ©0 01 08 00 06 04 00 02 00 00 Se 60 01 04 82 €6 A
» Address Resolution Protocol (reply) 71 01 3¢ 97 Ge 54 Se 63 82 e6 71 2f 20 €O 03 18 q-<--TAc --q/

00 00 00 16 00 60 60 93 00 64 6O 60 00 00

© 7 Ready to load or capture Packets: 924 - Displayed: 924 (100.0%) Profile: Default

Figure 4.3. GEO Wireshark Capture

simple and readable here, but in a case where there are many traces captured, it becomes
difficult to read. Details such as vantage point, events, frames, frame count, encryption
levels, encryption level count, connection-level flow control evolution, stream-level flow
control, can be found in the glog stats.

Fig 4.11 shows a congestion tool, which is used to illustrate the data sent over the network
— including re-transmitted data, which is measured in bytes. It also shows the round trip
time taken by the sent data, which is measured in milliseconds. The color codes used in
this figure are used to also indicate the data lost during transmission, data acknowledged,
connection control flow control limit, and the sum of stream flow control limits.

Note that the data sent in bytes and round trip time in milliseconds are both plotted against
time which is in milliseconds too.

The qvis multiplexing tool in fig 4.12 illustrates the count of stream frames received, which
includes re-transmitted frames. It defines how the data sent over the network was split
on the QUIC streams, congestion control property of QUIC. Each stream in the network
are colored, but in this figure, there are less than five streams, so only the yellow color
is distinct. In a case where there are more than five streams, a waterfall can be used to
show streams activity, and understand when anomalies exist.

Packetization tool shown in fig 4.13 uses different colors to show how the QUIC packets
transmitted in the network are composed of QUIC and HTTP/3 frames. In the figure, the
different colors are layered and have the following interpretation:

* black and grey on the bottom row are used to indicate the QUIC packets

31

result__litt!:s_l?a!:lve__joioa.rtxt e = _

result_http3_native_300B.txt

connect:time_appconnect:time_pretransfer:time_starttransfer:time_total

1
1
1
:1
Hy |
o |
1
1.
1

.4
.4
.4
.4
.4
.4
.4
.4
.4
.4
.4

PlainText ~ Tab width: 8 ~ Ln1, Col1

Figure 4.4. Result of GEO Capture

 the next row in red and pink colors indicate the QUIC frame in the packet payloads

+ the next row would be in blue and light blue colors, which will show the HTTP/3
frames inisded the QUIC stream frame’s payload

» the last row which can be in different colors, will indicate which HTTP/3 frame be-
longs to whch stream.

The Stream IDs, HTTP/3, QUIC frames, QUIC packets are plotted against bytes received
or bytes sent.

In the sequence tool seen in fig 4.14 and fig 4.15, it is a diagram plotted vertically. This
sequence tool gives a good illustration on timing, how the data flows between client and
server. It begins with connection started, which is when the client has initiated the con-
nection establishment with the server. The tool shows inactive period between the client
and server, when there is a connection id change — an update occurs, the round trip
time taken, acknowledgments (ack), and when the communication between the client and
server ends, there is a connection close. This tool essentially makes use of logs of both
client and server.

32

quic-3008.pcapng

Eile Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
@DRARE @ »I-~EEQRQQE
ter ... <Ctrl-/> 1 -|©
Source Destination Protocol _Length __Info 2
13 1 QUIC 22744171a8a350c20a97b174deeb209, SCID=7c5a39ce276b6b4462bbf17717660eed4f5c9r4d, PKN: O, .|
20.026444451 130.230.113.10 130.230.113.47 1296 Initial, D c5a39ce276h6bad62bbf17717660eed4f5cfad, SCID=d1abddcb1941b6ef, PKN: O, CRYPTO, PADDING
30.026444602 130.230.113.10 130.230.113.47 1296 Handshake, DCID=7c5a39ce276b6b4462bbf17717660eed4f5cofdd, SCID=d14bddcb19a1beef
40.026444633 130.230.113.10 130.230.113.47 431 Initial, DCID=7c5a39ce276b6b4462bbf17717660eed4f5corad, SCID=d1dbddcb1941b6ef, PKN: 3, ACK _—
50.026986179 130.230.113.47 130.230.113.10 1244 Handshake, DCID=d14bddcb1941b6ef, SCID=7c5a39ce276b6ba462bbf17717660eedafscofad
60.027082982 130.230.113.47 130.230.113.10 94 Protected Payload (KPG), DCID=d1dbddcb1941b6ef —
70.027096117 130.230.113.47 130.230.113.10 76 Protected Payload (KPG), DCID=d14bddcb1941b6ef
80.027114470 130.230.113.47 130.230.113.10 76 Protected Payload 14bddcb1941b6ef [
90.027122967 130.230.113.47 130.230.113.10 214 Protected Payload ; 1abddcb1941b6ef
10 0.027187801 139.230.113.47 139.230.113.10 580 Protected Payload 5 14bddcb1941b6ef L
110.049521489 130.230.113.16 130.230.113.47 515 Protected Payload c5a39ce276b6b4462bbF17717660eedaf5cof ad
12 0.049521903 130.230.113.10 130.230.113.47 199 Protected Payload c5a39ce276b6b4462bb17717660eedafscofad
13 0.049853632 130.230.113.47 130.230.113.10 83 Protected Payload 5 14bddcb1941b6ef 1
14 0.071527028 130.230.113.10 130.230.113.47 90 Protected Payload ; c5a39ce276b6b4462bb17717660eedaf5cofad
150.071780781 139.230.113.47 139.230.113.10 76 Protected Payload —
16 0.071823469 130.230.113.47 139.230.113.10 718 Protected Payload
17 0.094483234 130.230.113.10 130.230.113.47 90 Protected Payload c5a39ce276b6b4462bbF17717660eedaf5cofad —
18 0.094483638 130.230.113.10 130.230.113.47 317 Protected Payload (KPO), DCID=7c5a39ce276b6b4462bbf17717660eedafScofad
19 0.094803816 130.230.113.47 139.230.113.10 75 Protected Payload (KPG), DCID=d14bddcb1941beef —
20 0.095430172 139.230.113.47 130.230.113.10 74 Protected Payload (KPG), DCID=d1dbddcb1941b6ef
210.115546186 130.230.113.10 130.230.113.47 317 Protected Payload (KPO), DCID=7c5a39ce276b6b4462bbf17717660eedaf5cofad —
22 0.115546519 130.230.113.10 .230.113. 88 Protected Payload (KP), DCID=7c5a39ce276b6ba462bbf17717660eed4f5cofad
©.115546581 130.230.113.10 .230.113. Protected Payload (KPO), DCID=7c5a39ce276b6ba462bbf17717660eedafscofad
0.115546639 130.230.113.10 Protected Payload (KPO), DCID=7c5a39ce276b6b4462bbf17717660eedaf5cofad —
.1155967 30.113.47
0.115635262 13 130.23 5 le |
0.711445252 3.26.235. Echo (ping) request 21 (reply in 30)
30 0.711497391 .230.113. 3.26.235.151 Echo (ping) reply (request in 29) |
310.731456121 54.158.126.51 130.230.113.47 ICMP 62 Echo (ping) request id=0x00b, seq=3534/52749, ttl=224 (reply in 32)
320.731475114 130.230.113.47 54.158.126.51 ICMP 52 Echo (ping) reply i 534/52749, ttl=64 (request in 31) -
331.120307409 130.230.113.47 13.230.113.10 QUIC 1244 Initial, DCID= , SCI 4b, PKN: ©, CRYPTO
341.147459019 130.230.113.10 130.230.113.47 QUIC 1296 Initial, DCII a2662edb, SCID=fb9adcfedoala7c7, PKN: O, CRYPTO, PADDING L
351.147459187 130.230.113.10 130.230.113.47 QUIC 1296 DCID=c3e33d 1a2662e4b, SCID=Fb9adcfedoala7c?
361.147459225 130.230.113.10 130.230.113.47 QUIC 431 Initial, SCID=f 1a7c7, PKN: 3, ACK |
371.148020282 130.230.113.47 13.230.113.10 QUIC 1244 Handshake, DCID=fb9adcfedoala7c7, SCID= a2662edb
38 1.148105825 130.230.113.47 130.230.113.10 QUIC 94 Protected Payload (KPG), DCID=fbgadcfedaia7c? L
391.148117271 130.230.113.47 130.230.113.10 QUIC 76 Protected Payload (KPG), DCID=fbgadcfedaiaZc?
40 1.148125368 130.230.113.47 130.230.113.10 QUIC 76 Protected Payload (KPG), DCID=fbgadcfedeala7c? L |
411.148133368 130.230.113.47 130.230.113.10 QUIC 214 Protected Payload (KP®), DCID=fb9adcfedoala7c?
421.148184092 130.230.113.47 130.230.113.10 QUIC 580 Protected Payload (KP@), DCID=fbacfedoala7c’ Lk
» Frame 1: 1244 bytes on wire (9952 bits), 1244 bytes captured (9952 bits) on interface any, id 6 |~ 00 04 00 61 00 86 3c 97 Oe 54 5e 63 60 00 08 00 < Thc -
» Linux cooked capture vi 45 00 04 cc 00 65 40 00 40 11 4d b6 82 €6 71 2f E.---e@ @M --q/
» Internet Protocol Version 4, Src: 130.230.113.47, Dst: 139.239.113.10 82 e6 71 0a do 67 01 bb 04 b8 ec cf cd 00 00 00 q
» User Datagram Protocol, Src Port: 53255, Dst Port: 443 01 10 a2 27 44 17 1a 8a 35 6c 20 a9 fb 17 4d ee ‘D 5 M .
e .| Frame (1244 bytes) | Decrypted QUIC (276 bytes)
O 7 quic3008.pcapna Packets: 531 - Displaved: 531 (100.0%) Profile: Default

Figure 4.5. LTE Wireshark Capture

result_r{tt?s_ljatlvg SI?DB:txt Save

result_http3_native_ 300B.ktxt README curlFormat result_http3_native_300B.kxt

tal

=]

[T

4]

Loading file “/home/gadmin/quic-experiments/LTE/results/result_http3_native_30... PlainText ~ Ln1, Col1

Figure 4.6. Result of LTE Capture

33

Welcome to qvis v0.1, the QUIC and HTTP/3 visualization toolsuite!

To be able (0 visualize something, you need (o oad some dala. \We have several options for thel.

Option 1 Load a file by URL

You can load glog, salog, netiog keys) and il
You can aiso load a json file that liss Several other fils o be fetched (for the format, see the pcap2alog
documontation. Ortry an exampio)

p oxam

1 youre looking for inspiration, quant has public gogs, as does sioquic.
QUIC Tracker provides pcap files for all s fests and has a convenfent infegrafion with qvis from s UL
Many of tho tosts in the QUIC Intorop Runnor also include glog and pcap output

Option 2 Upload a file

[crene tos o o et [oome] 23

Upload currently supports ql0g, salog, json, and nofiog iles. No data s ransfered o the sorver
ipport peap, peapng and qlr

Option 3 Load some premade demo files

Load example qlog fles.

This wil load & at you can visualize 1o get possible

Option 4 Load a massive demo file

This il load & single qlog a Use this to see q
perform on larger traces.

Option 5 Load a file by URL parameter

pass fles you want o load via URL parameters (o the qvis page.
This method supports the same formats as Opton 1

Format 1: 7list=x son
Format 2: 7fle=x log
Format 3. 2fle=x

asocrots2=ykeys

Figure 4.7. QUIC and HTTP/3 Visualization Toolsuite

(1 T SR R

-1 m

i e e B I)
B T T S T Sy AT =]

(TR

[N

U S N
[

1M

w
T

40
4
=4
4

[TV
=] ok

s
)

o
- 2

[I Vs s)
[T TSR)

1]
1

&

"glog_version": "draft-0z",
"glog_format™: "JSON",
"citle™: "W,

"description™: "7,
"summary™: {},

"traces": [

{

"vantage_point": {
"name": "TODO",
"type": "network",
"flow"™: "client™

1

"citle™: "Connection 1",

"description™: "7,

"configuration™: {
"time offset": "O",
"time units": "ms",
"original uris": [

"file:///srv/pcap2glog/examples/draft-01/spin bit.json"

1

by

"common_fields": {
"group_id": "1b51237Tb269288de",
"protocol type": "QUIC",
"reference_time": "1564682471.651507",
"time format": "relatiwve"

1
"events": [
{
"time": "O",
"name": "connectivity:connection started”,
"data": {
"ip wversion": "4",
"src ip": "€6.70.231.124",
"dst_ip": "51.15.3.7&",
"transport_protocol": "UDE",
"src_port™: "52740",
"dst_port": "4433",
"guic_ version": "Oxff000016&",
"src cid": "1b51237b269288de",
"dst_cid": "0fT72lelcéaas0420",
"trigger™: "line"
}
T
{
"time": "O",
"name": "transport:packet_sent",
"data": {
"header™: {
"yersion": "OxEfQ00001&",
"scid": "1b51237k2Z69288de",
"dcid": "0f7Zlelctaas0420",
"scil™: "3",
"dcil™: "s",
"packet_number”: "0,
"packet_type": "initial"™
te
"frames": [
i
"frame_type": "crypto",
"offset™: "O",
"length™: "278"
k.
i
"frame_type": "padding"
}
1.
"raw": {
"length™: 1251,
"payload length": 1224
b
"trigger™: "line"
}
be

"time": "93",
"name": "transport:packet_ received",
"data™: {

Figure 4.8. Sample Qlog Trace

34

DEMO_spin_bit.qlog (TMB)(1).qlog ()

File info
Aspect Value
Filename DEMO_spin_bit.glog { 1MB)(1).glog
qlog version draft-02
Trace count 1
Total event count 34
Trace 1 info
Vantage point TODO
network : with client perspective
Event count 34
Events Category Event type
connectivity connection_started
connection_id_updated
spin_bit_updated
connection_state_updated
transport packet_sent
packet_received
parameters_set
Frame count 52
Frames Frame type
crypto
padding

quis-injected FILLER (deal with
incorrectly guesstimated frame size)

ack
new_connection_id
stream
max_streams
max_data
max_stream_data

connection_close

Event count

Frame count

Now RN e R

Figure 4.9. Qlog Stats

% of total occurence

23.53

29.41

3235

mIIﬁImm

% of total occurence

30.77

EHEHHEI

35

Deca bytes)

RTTims)

spin_bit_updated

connection_state_updated

transport packet_sent

Frame count 52
Frames
Encryption level count 3

Encryption levels

Connection-level Flow Control
evolution
(MAX_DATA, initial_max_data)

Read as: viewpoint allows the
other side to send this much data
on the entire connection (all
streams combined)

packet_received

parameters_set

Frame type
crypto
padding

quis-injected FILLER (deal with
incorrectly guesstimated frame size)

ack
new_connection_id
stream
max_streams
max_data
max_stream_data

connection_close

Encryption level
initial
handshake

1RTT

Viewpoint
Local (network)

Remote (client)

Stream-level Flow Control No stream level flow control limits set

evolution
(MAX_STREAM_DATA,
initial_max_stream_data_*)

Read as: viewpoint allows the
other side to send this much data
on each individual stream

Frame count

O e

Packet count
3

3

15

Evolution (bytes)
32975

33389

10000017

10000051

Figure 4.10. Qlog Stats

DEMO_spin_bitalog (MB)1)clog ()
£ 1000 network (fow = chent) Connection 1

- e g i | T i

% of total occurence

ol | Dt sent nciuces etansmis)
= - Data acknowiodged
= Data lost

- Connection low control it

IR

Congesion o foyes)

e ()

= MINRTT o LS RTT smm S0lnod RTT

Tima (ms)

Figure 4.11. QVIS - Congestion Tool

36

Watertal

Multploxsd cata fow

Byerange por STREAM
rame.

DENO_spin_bitclog (1MB(1) gog ()
1 TODO notwork fow = clion) - Connoction 1 B

@ Show watoriall [Show byte ranges

DEMO_spin_bit.qlog (1MB)(1).qlog : TODO : network (flow = client) : Connection 1

for . which rerall,

Count of STREAM Trames recelved (rasardlessof sze, inclides resransmits)

Stream i0e
HrTer

Figure 4.12. QVIS - Multiplexing Tool

DEMO_spin_bi log {1ME)1)og ()
TODO - network (Tow = clent) - Gonection 1 R

QIC frames
QUIC packers

Stream 1Ds
WP

e recelvin size client: 655ax recetving size server: 6557

QUIC fames
QIC packets

DENO_spin bi log (1MBX(1) clog ()
L TODO : natwork (fow = clont): Connaction 1

Bytes sent

Figure 4.13. QVIS - Packetization Too

DEMO_spin b log (IMB)(1) g (.
. - GENERATED - sorvr (fow = unknown) : Simulatod

receiving size client: 653 2ax receving size server: 6352/

I

Connacton 1 Simulated, autogene

DEMO_spin_bit glog 1MBX1)clog
Petiork - fom cient’s viewpoinl

Tme mulipier: 1

‘GENERATED: DEMO_spin_bitdog (MB)(1)log

o CARTT:O [new connecton, (e

o RTT 0) e
o 1on

2000 <ARTT 2 2000

o [r—p—— e
o

Figure 4.14. QVIS - Sequence Tool

37

Figure 4.15. QVIS - Sequence Tool

38

39

5. CONCLUSION

This chapter will conclude the thesis work by highlighting and answering the research
questions presented in the introduction part — chapter 1. To do this, previous chapter will
be referenced and subsequent conclusions will be .

The first research question asked was "What is the current state of QUIC protocol?" This
question was answered in 2.3 In this section, it was established that QUIC was founded
in the last decade, but only standardized about two years ago, which makes QUIC a fairly
new protocol. QUIC is getting accepted by large organizations, which is a positive sign
towards its widespread.

The second research question of this thesis was "How does QUIC perform in networks,
and the feasibility of the tools used in inspecting QUIC?" In section 2.4 the proper-
ties of QUIC give a detailed description of the performance of QUIC. One of the ma-
jor reasons behind the development of QUIC was lower latency, due to emergence of
latency-sensitive applications and high demands in bandwidth, which was unsustainable
for HTTP. QUIC has been able to achieve lower latency with its one round trip time for
first time connection, and zero round trip time for subsequent connections. This round
trip time was shown in the wireshark capture in fig , With previous HTTP protocols, Head-
of-Line blocking was a problem, which QUIC eliminates by allowing endpoints that are
communicating to have multiple concurrent streams exist between them - multiplexing. In
line with stream multiplexing, forward error correction helps to swiftly recover lost pack-
ets. Congestion control is an extension of stream multiplexing, which allows QUIC traffic
congestion to be shared on streams provided from multiplexing.

One of the best properties of QUIC, which helps greatly in its performance is connection
migration. In this digital age where people are on the move and still want to have a
seamless Internet experience, connection migration will help connections remain alive, if
there happens to be any change of port or client IP.

The security of QUIC is another property that enhances the performance of QUIC, and
also answers the final question of the thesis "What security does QUIC protocol offer?" In
section 2.4.1, it tells us that QUIC’s security is built-in, it is an encrypted-by-default trans-
port protocol, which encrypts its packet header and payload, to prevent modification. The
handshake security provided by TLS v1.3 protects against handshake Denial of Service,

40

but the 0-RTT connection establishment can introduce replay attack to the protocol. IP
address spoofing, wire protocol, handshake costs and replay attacks were some of the
security issues of QUIC, and how to address them discussed in section ...

The tools used in inspecting QUIC were described in chapter 3, and for most of it, they
were very feasible. Wireshark is a a very popular protocol analyzer, which was used
in capturing QUIC traffic. SSLKEYLOGFILE, curl, Ubuntu 22.04, web browser, were all
easy to work with, it was just important to work with the most current version of tools to
be used.

Chapter 4 showed some demos of captured traffic gotten from the github of glog and
qvis, to give insight to how glog and qvis’ statistics and visualization will pan out. The
sequence, congestion, packetization and multiplexing tools were illustrated, along with
glog’s logging format.

In the security aspect of QUIC, this thesis only described few of the attacks that QUIC can
protect the average user from. It also explains how some of the properties which should
be advantageous, actually introduce some of the security flaws of QUIC. There are still
some attacks that QUIC is susceptible to, which QUIC has not being developed to protect
users of QUIC from.

This thesis has provided a good amount of research into QUIC, by establishing its prop-
erties, exploring its flaws and security, the tools used in capturing and inspecting, and
visualization. It shows that QUIC protocol is very promising, it will give its users better
experience, and this thesis is open to further and deeper research into QUIC.

In this study, the challenge encountered became a limitation to this study. HTTP/3 and
QUIC traffic captured with wireshark has the file format in .pcap, while glog and qvis
visualization tools do not support the .pcap format. This prevented the visualization of
the captured traffic during the experiment, in the result stage. Wireshark is a popular tool
used for network packet analysis, it will be important and necessary for its file format to
be supported by glog and qvis tools in the nearest future.

41

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Accreditly. The Differences Between HTTP 1.1, HTTP/2 and HTTP/3. Accessed
on 23-Jun-2023. 19 04 2023. URL: https://accreditly.io/articles/the - differences-
between-http-11-http2-and-http3.

Saleh Alawaiji. IETF QUIC v1 Design. Accessed on 22-Aug-2023. 2021. URL: https:
/’www.cse.wustl.edu/~jain/cse570-21/ftp/quic.pdf.

Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. “HTTP over UDP: an Ex-
perimental Investigation of QUIC”. In: Proceedings of the 30th Annual ACM Sym-
posium on Applied Computing. 2015, pp. 609—614.

Efstratios Chatzoglou et al. “Revisiting QUIC attacks: A comprehensive review on
QUIC security and a hands-on study”. In: International Journal of Information Se-
curity (2022), pp. 1-19.

Comptia. Comptia.org. URL: https://www.comptia.org/content/guides/what-is-a-
network-protocol.

Sarah Cook et al. “QUIC: Better for what and for whom?” In: 2017 IEEE Interna-
tional Conference on Communications (ICC). 2017, pp. 1-6. bol: 10.1109/ICC.
2017.7997281.

Yong Cui et al. “Innovating transport with QUIC: Design approaches and research
challenges”. In: IEEE Internet Computing 21.2 (2017), pp. 72—76.

Bruno Volpato Da Cunha et al. “Performance Benchmarking of the QUIC Transport
Protocol”. eng. In: Proceedings - IEEE Consumer Communications and Networking
Conference, CCNC. Vol. 2023-. 2023, pp. 206—212. ISBN: 9781665497343.
Jacobian Engineering. Jacobian Engineering. Accessed on 22-Aug-2023. 2021.
URL: https ://jacobianengineering.com/blog/2016/11/1543/#:~ :text=1P %
20Address%20Spoofing,token%20t0%20the%20client%20IP.

Alexander R Galloway. “Protocol”. In: Theory, Culture & Society 23.2-3 (2006),
pp. 317-320.

Alessandro Ghedini. The Road to QUIC. 28-Jun-2023. 2018. URL: https://blog.
cloudflare.com/http-3-from-root-to-tip/.

Geoff Huston. A quick look at QUIC. Accessed on 10-Jul-2023. 2019. URL: https:
//blog.apnic.net/2019/03/04/a-quick-look-at-quic/.

Dominik von KiunBberg and Benedikt Jaeger. “Debugging QUIC and HTTP/3 with
glog and qvis”. In: Network 25 (2021).

Ulf Lamping and Ed Warnicke. “Wireshark user’s guide”. In: Interface 4.6 (2004),

p. 1.

https://accreditly.io/articles/the-differences-between-http-11-http2-and-http3
https://accreditly.io/articles/the-differences-between-http-11-http2-and-http3
https://www.cse.wustl.edu/~jain/cse570-21/ftp/quic.pdf
https://www.cse.wustl.edu/~jain/cse570-21/ftp/quic.pdf
https://www.comptia.org/content/guides/what-is-a-network-protocol
https://www.comptia.org/content/guides/what-is-a-network-protocol
https://doi.org/10.1109/ICC.2017.7997281
https://doi.org/10.1109/ICC.2017.7997281
https://jacobianengineering.com/blog/2016/11/1543/#:~:text=IP%20Address%20Spoofing,token%20to%20the%20client%20IP
https://jacobianengineering.com/blog/2016/11/1543/#:~:text=IP%20Address%20Spoofing,token%20to%20the%20client%20IP
https://blog.cloudflare.com/http-3-from-root-to-tip/
https://blog.cloudflare.com/http-3-from-root-to-tip/
https://blog.apnic.net/2019/03/04/a-quick-look-at-quic/
https://blog.apnic.net/2019/03/04/a-quick-look-at-quic/

42

[15] Adam Langley et al. “The quic transport protocol: Design and internet-scale deploy-
ment”. In: Proceedings of the conference of the ACM special interest group on data
communication. 2017, pp. 183—196.

[16] Robert Lychev et al. “How secure and quick is QUIC? Provable security and perfor-
mance analyses”. In: 2015 IEEE Symposium on Security and Privacy. IEEE. 2015,
pp. 214-231.

[17] Robin Marx, Wim Lamotte, and Peter Quax. “Visualizing QUIC and HTTP/3 with
glog and qvis”. In: Proceedings of the SIGCOMM’20 Poster and Demo Sessions.
2020, pp. 42-43.

[18] Robin Marx et al. “Debugging QUIC and HTTP/3 with glog and qvis”. In: Proceed-
ings of the Applied Networking Research Workshop. 2020, pp. 58—66.

[19] Robin Marx et al. “Debugging QUIC with glog and QUICvis”. In: (2020). Accessed
on 22-Jul-2023.

[20] Robin Marx et al. Main logging schema for qlog. Internet-Draft draft-ietf-quic-glog-
main-schema-06. Work in Progress. Internet Engineering Task Force, July 2023.
50 pp. URL: https://datatracker.ietf.org/doc/draft-ietf-quic-glog-main-schema/06/.

[21] Mohamed Moulay, Fernando Diez Mufioz, and Vincenzo Mancuso. “On the Exper-
imental Assessment of QUIC and Congestion Control Schemes in Cellular Net-
works”. In: 2021 19th Mediterranean Communication and Computer Networking
Conference (MedComNet). 2021, pp. 1-8. DOI: 10.1109/MedComNet52149.2021.
9501271.

[22] Késsia Nepomuceno et al. “QUIC and TCP: A Performance Evaluation”. In: 2018
IEEE Symposium on Computers and Communications (ISCC). 2018, pp. 00045—
00051. pol: 10.1109/1SCC.2018.8538687.

[23] B. Nithya et al. “Performance analysis of pluggable congestion control in QUIC
protocol”. eng. In: AIP Conference Proceedings. Vol. 2424. 1. Melville: American
Institute of Physics, 2022.

[24] Tom Decker Robin Marx Alex Yu and Jeremy Lainé. qvis. Accessed on 10-Oct-
2023. 2019. URL: https://github.com/quiclog/qvis.

[25] Rakesh Seal. Looking Into QUIC Packets in your Network. 06 30, 2023. 2021. URL:
https://www.keysight.com/blogs/tech/nwvs/2021/07/17/looking-into-quic-packets-
in-your-network.

[26] Martin Thomson. Version-Independent Properties of QUIC. RFC 8999. May 2021.
DOI: 10.17487/RFC8999. URL: https://www.rfc-editor.org/info/rfc8999.

[27] P. Vaderna, E. Stromberg, and T. Elteto. “Modelling performance of HTTP/1.1”. In:
GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).
Vol. 7. 2003, 3969-3973 vol.7. DOI: 10.1109/GLOCOM.2003.1258974.

[28] Wireshark. Accessed on 10-Oct-2023. URL: https://www.wireshark.org/news/.

[29] John Yannakopoulos. “Hypertext transfer protocol: A short course”. In: University of
Crete. August (2003).

https://datatracker.ietf.org/doc/draft-ietf-quic-qlog-main-schema/06/
https://doi.org/10.1109/MedComNet52149.2021.9501271
https://doi.org/10.1109/MedComNet52149.2021.9501271
https://doi.org/10.1109/ISCC.2018.8538687
https://github.com/quiclog/qvis
https://www.keysight.com/blogs/tech/nwvs/2021/07/17/looking-into-quic-packets-in-your-network
https://www.keysight.com/blogs/tech/nwvs/2021/07/17/looking-into-quic-packets-in-your-network
https://doi.org/10.17487/RFC8999
https://www.rfc-editor.org/info/rfc8999
https://doi.org/10.1109/GLOCOM.2003.1258974
https://www.wireshark.org/news/

	Introduction
	Overview
	Research Questions
	Scope
	Methodology
	Structure of the Thesis

	Background
	HTTP
	Why QUIC?
	What is QUIC?
	Properties of QUIC
	Security
	Stream Multiplexing
	Lower Latency
	Congestion Control
	Flow Control
	Forward Error Correction
	Connection Migration

	QLOG and QVIS
	QLOG
	QVIS
	Sequence Tool
	Packetization Tool
	Congestion Tool
	Multiplexing Tool

	Related Works

	Design and Implementation
	Design and Implementation
	Experimental Setup
	Experiment Topology
	Software Tools
	QUIC Client and Server
	Setting up the Connection
	The Setups
	Setup A
	Setup B

	Traffic Conditions

	Results and Analysis
	Capture of the Different Traffic Conditions
	Baseline
	GEO Satellite
	LTE

	Visualization of Captured Traffic
	Diagrammatic Representation of the Visualization Tools

	Conclusion
	References

