

Nuutti Mikkonen

DFT IMPLEMENTATION FOR A LARGE
SOC

Master’s Thesis
Faculty of Information Technology and Communication Sciences

Examiners: Prof. Timo Hämäläinen
Arto Oinonen, M. Sc.

October 2023

ABSTRACT

Nuutti Mikkonen: DFT Implementation for a Large SoC
Master of Science Thesis
Tampere University
Master’s Degree Programme in Electrical Engineering
October 2023

Integrated circuit production is a complicated process with numerous possible points of failure.
Designing the tests and test structures that verify that the chip is produced as planned is an
important step in the physical design flow.

Among the commonly tested faults are static and dynamic faults in the standard cell logic and
various fault models in memory core area. Besides these DFT is also used to detect faults in the
PCBs connecting the chips.

This work plans and implements DFT structures for a large SoC as well as generates the tests
required. The initial targets set for test coverage are partly met.

Keywords: DFT, Scan, Scan Compression, OPCG, MBIST, JTAG

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

TIIVISTELMÄ

Nuutti Mikkonen: DFT toteutus suurelle moniprosessorijärjestelmäpiirille
Diplomityö
Tampereen yliopisto
Sähkötekniikan Diplomi-insinöörin tutkinto-ohjelma
Lokakuu 2023

Integroitujen piirien valmistaminen on monimutkainen prosessi useilla mahdollisilla epäonnis-
tumisen kohdilla. Testien ja testirakenteiden suunnittelu piirin valmistusprosessin varmistamiseksi
on tärkeä osa fyysistä suunnittelua.

Yleisesti testattujen vikojen joukossa on staattiset ja dynaamiset viat standardisoluissa sekä
eri tyypiset vikamallit muistien ytimen alueella. Näiden lisäksi DFT:tä käytetään myös tunnista-
maan vikoja piirejä yhdistävällä piirilevyllä.

Tässä työssä suunnitellaan ja toteutetaan DFT rakenteet suurelle moniprosessorijärjest-
elmäpiirille sekä generoidaan tarvittavat testit. Alkuperäisiin tavoitteisiin päästään osittain.

Avainsanat: DFT, skannaus, skannaus kompressio, OPCG, MBIST, JTAG

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

PREFACE

This thesis was written for Nokia as part of the SoC-Hub project. I would like to thank

everyone involved in the project, particularly those working in physical design, for making

this thesis possible.

I would also like to express my gratitude to the examiners of this work, Timo Hämäläinen

and Arto Oinonen, as well as my line manager at Nokia, Antti Hirvonen, for enabling this

opportunity.

Tampere, October 13, 2023

Nuutti Mikkonen

SISÄLLYSLUETTELO

1. INTRODUCTION .. 1

2. DESIGN FOR TEST.. 2

2.1 Fault types ... 3

2.1.1 Static ... 3
2.1.2 Bridge ... 4
2.1.3 Dynamic .. 4
2.1.4 Memory ... 5
2.1.5 PCB/Boundary .. 5

2.2 JTAG ... 6

2.3 Scan .. 12

2.3.1 Basic scan .. 12
2.3.2 Compression ... 16
2.3.3 Transition fault testing ... 18
2.3.4 Hierarchical test .. 20
2.3.5 IDDQ ... 23

2.4 MBIST .. 23

3. HEADSAIL .. 26

3.1 SysCtrlCPU .. 26

3.2 Subsystems ... 26

3.3 Physical design .. 27

3.4 DFT specification and requirements ... 29

4. HEADSAIL DFT IMPLEMENTATION .. 31

4.1 Boundary scan ... 31

4.2 Scan .. 32

4.3 MBIST .. 37

5. RESULTS ... 40

6. CONCLUSIONS .. 42

REFERENCES... 43

LIST OF SYMBOLS AND ABBREVIATIONS

AF Address Decoder Fault
AI Artificial Intelligence
ATE Automatic Tester Equipment
ATPG Automated Test Generation
AUXCKn Auxiliary Clock Number n
AXI Advanced eXtensible Interface
BIST Built-In Self-Test
BSDL Boundary Scan Description Language
C2C Chip-to-Chip
CF Coupling Fault
CFI Cell Functional Input
CFid Idempotent Coupling Fault
CFO Cell Functional Output
CFst State Coupling Fault
CODEC Compressor-Decompressor
CPU Central Processing Unit
CTI Cell Test Input
CTO Cell Test Output
DFT Design For Test
DRF Data Retention Fault
DUT Device Under Test
FF Flip-Flop
FV Formal Verification
HDL Hardware Description Language
HPC High-Performance Computing
ICL Instrument Connectivity Language
IDDQ Quiescent Current
IEEE Institute of Electrical and Electronics Engineers
IO Input-Output
JTAG An industry standard test interface
LBIST Logic Built-In Self-Test
LEC Logic Equivalence Checking
LOC Launch Off Capture
LOS Launch Off Shift
LSB Least Significant Bit
LSSD Level-Sensitive Scan Design
MBIST Memory Built-In Self-Test
NVM Non-Volatile Memory
OPCG On Product Clock Generation
PCB Printed Circuit Board
PDL Procedure Description Language
PLL Phase Locked Loop
PnR Place and Route
RTL Register Transfer Level
SAF Stuck-At Fault
SC Scan Clock
ScanDEF Scan Design Exchange Format
SD Scan Data
SEN Shift Enable
SI Scan In
SO Scan Out
SoC System-on-Chip

SOF Stuck-Open Fault
SysCtrlCPU System Control CPU
TAP Test Access Port
TCK Test Clock
TDI Test Data in
TDO Test Data out
TDR Test Data Register
TI Test Input
TMP Test Mode Persistence
TMS Test Mode Select
TO Test Output
TRST Test Reset
VHDL Very High-Speed Integrated Circuit HDL
WBY Wrapper Bypass
WIR Wrapper Instruction Register
WPP Wrapper Parallel Port
WRCK Wrapper Serial Clock
WSI Wrapper Serial Input
WSO Wrapper Serial Output
WSP Wrapper Serial Port

1

1. INTRODUCTION

As semiconductor node size decreases the manufacturing process gets harder to ac-

complish without defects. The number of possible faults is directly proportional to the

number of standard cells in a design, and with designs ranging from millions to hundreds

of millions of cells with a single fault potentially causing the chip to be inoperable, the

risk of not testing chips before using them in products is not acceptable. The issue is that

many faults are very laborious to detect if the design is synthesized from hardware de-

scription languages (HDL) that generally does not implement test structures in it.

Design for test (DFT) is the process of creating test structures and tests for a semicon-

ductor circuit in order to be able to identify faulty dies after manufacturing. Test genera-

tion in DFT is automated, allowing designers to create tests for any typical digital design

without needing to consider the testability when building the design.

The purpose of this thesis is to study how DFT can be utilized to improve testability of a

chip and to implement said strategies to a design. The design used for this work is Head-

sail, a heterogenous System-on-Chip with modern features designed as a collaboration

of multiple entities. The most important results to analyze after implementation are test

coverage of possible faults and the time it takes to apply these tests. Due to long lead-

time for the physical chips, applying the tests is not a part of this work.

The thesis is structured as such: Chapter 2 describes the types of faults to be tested for

and the structures needed to test for them. Headsail design and the flows used for it are

presented in chapter 3, along with the targets and requirements of its DFT. The specific

structures and strategies used for the implementation are described in chapter 4, with

the results of it being analyzed in chapter 5. Chapter 6 concludes the thesis with a sum-

mary of the work.

2

2. DESIGN FOR TEST

As chip design processes have gotten smaller, smaller defects have started to cause

observable faults in chips. On the other hand, chip area has been growing despite

smaller process nodes as computing requirements are increasing. Due to these factors

manufacturing a functioning circuit is ever harder and the manufacturer cannot guaran-

tee that the chips are as they were designed. The responsibility of designing the test

structures and tests falls on the chip designer.

Design For Test (DFT), sometimes Design For Testability or Design For Testing, is a

methology for designing a chip in such a way that it is possible to test its correctness

after manufacturing to ensure that it is suitable for operation. On very simple chips such

as the 7408 quad-AND-gate no special structures are needed as the chip is easily fully

testable by probing only its IOs. In this case each AND gate can be fully tested with 3

patterns on its inputs (11, 01 and 10) and they can all be tested in parallel meaning only

3 patterns are required.

Any chips more complicated than this get increasingly hard to tests only with functional

tests (without DFT insertion). For example, even on a simple processor testing would

require software that applies practically all possible values on all wires and uses them in

some way so that it would be possible to signal if something is not as expected. This

would require not only an absurd amount of time to create and verify that everything is

tested, but also the testing operation would likely be extremely long. [1]

Only standard cell based digital designs are considered here, but it is important to note

that analog parts should have a test plan as well. Due to their analog nature however a

pass/fail grade has to be carefully determined by the designer, whereas on digital side

determining whether a part is functional is simple and the tools can easily create the test

vectors.

The test vectors are created by software with a process called Automatic Test Pattern

Generation (ATPG). As the structures are industry standard or IEEE standard with a long

history the tools are quite capable of generating exhaustive yet minimal patterns to gain

the maximum coverage. These patterns are then applied to the physical chip on an Au-

tomated Tester Equipment (ATE).

This chapter describes the various aspects needed to create a robust testability plan.

3

2.1 Fault types

The main purpose of DFT is to be able to detect possible faults created in device manu-

facturing. This chapter describes the faults that can be tested with DFT on a standard

cell-based design as well as the ways that ATPG targets theses faults.

2.1.1 Static

Faults are modeled on the input and output pins of standard cells. A static fault is one

where one of the pins of the cells is stuck at either 1 or 0. Physically this means the pin

is shorted to either ground or power. [2] Figure 3 shows a stuck-at-fault detected with

IDDQ testing [3].

Figure 1. Non-defective (left) and defective circuit as seen on a microscope [3]

The ATPG tool creates a fault model of the standard cells which has all the possible

faults of it. These faults are then targeted so that if and only if the fault exists the observe

point (output) of the cell will have a different value than what is expected. Figure 4 shows

how an AND gate can be tested for all its faults. If the output C is not at the expected

value some pin is faulty. In general, it is not useful to know which of the faults is active

as the part will likely be rejected despite the type but by running all patterns the exact

fault can often be pinpointed.

Figure 2. AND gate testable static faults

For more complicated gates (more than 2 inputs) the required input patterns might be

more complicated than would be logically required, for example non-controlling inputs

might still need to be driven to a specific value as the physical structure of the cell might

cause specific faults to only be active with a seemingly redundant pattern. This is highly

4

specific to the used standard cell library and has to be taken into account when generat-

ing patterns. [2, 4]

2.1.2 Bridge

Bridge faults are a type of static fault where two adjacent nets are shorted together. The

testing process is similar to other static faults except the control targets the chosen nets

instead of cell pins. Testing for bridge faults requires a lot of effort from the designer on

choosing which net pairs should be tested for faults. Figure 5 shows the required patterns

to test a bridge fault between 2 nets. [2]

Figure 3. Testable faults between 2 wires

Note that the inputs of some of the cases are redundant. The outputs however have to

be measured on both nets to prove that no fault exists. Any single measured fault means

a bridge fault exists between the nets. [2]

2.1.3 Dynamic

Dynamic faults are faults that cause issues in dynamic operation but are not visible as

static faults. That means dynamic faults cause a slow transition on a net, but it will even-

tually reach the desired state. [5] These faults can be caused by a variety of reasons

such as impurities in materials or over- or under-etching of metals. Inductance to nearby

wires and high resistance shorts to power rails could also cause such faults. [4]

Delay defects cause a given transition to occur slower than expected. On an already

slow path this could lead to a functional failure on the device, but on a path with excess

slack the fault could initially be undetected. In some cases, they could lead to an early

life failure of the chip, for example an increased resistance wire could degrade into an

open through electromigration given enough time. [4, 5]

As there are a multitude of reasons leading to delay defects, so are there ways of mod-

eling and characterizing them. Choosing the way that faults are modeled and tested for

is a balance of computing resources, tester time and real-world accuracy. [6]

5

2.1.4 Memory

Miniaturization affects not only standard cells, but memories as well. On-chip memories

are often specifically created from 6 transistor (6T) SRAM cells, the density of which is

generally much higher than standard logic, meaning that faults are more likely to affect

the functionality. In addition, faults may affect neighboring cells. This is why there are

more fault models created for memories than standard logic.

Address decoder faults (AF) are faults affecting the address decoding logic of a memory,

that is they are not faults in the core array. Faults affecting the core can most often be

modeled as stuck-at faults (SAF), stuck-open faults (SOF), transition faults (TF), coupling

faults (CF) or data retention faults (DRF). Coupling faults are further separated to state

coupling faults (CFst), where the victim cell is forced to a value when the aggressor cell

contains a specific value, and idempotent coupling fault (CFid), where the victim is forced

to a value when the aggressor undergoes a transition. [7, 8]

As memories consume a large portion of space on modern chips and their fault density

is higher, to mitigate yield issues caused by faulty memories, some memories provide

additional mechanisms to allow for repairing them. This means extra rows, columns or

banks are added to the memory which can be used instead of the faulty parts of the

memory.

2.1.5 PCB/Boundary

Faults on a PCB may be open or shorted wires, caused by the PCB manufacturing. In

most cases however, a fault is produced as a product of the soldering process. Figure 6

illustrates an x-ray filmed short of two pins. [9, 10]

Figure 4. X-ray image of shorted pins on an BGA package [10]

6

2.2 JTAG

PCBs can be verified for faults with mechanical In-Circuit-Testing (ICT) by probing the

board. Large number of layers and Ball Grid Array (BGA) packages make this testing

harder to apply. Instead, optical or x-ray inspection may be utilized, however either option

requires time on specific testers which increases manufacturing costs. This chapter de-

scribes ways of testing the PCB without requiring expensive testers. [9, 11]

IEEE1149.1 is an IEEE (Institute of Electrical and Electronics Engineers) standard that

defines architectures and languages used to allow testing of PCBs, system interconnects

and the functionality of the chip itself. The standard is also known as the JTAG standard,

named after the initial group designing the standard, the Joint Test Action Group. [12]

The access to boundary scan is done through a Test Access Port (TAP). It is defined as

four mandatory ports and one optional one. The ports are test clock (TCK), test mode

select (TMS), test data in (TDI) and test data out (TDO), and the optional test reset

(TRST). All operations through the TAP are synchronous to the TCK except for the

TRST, which is an asynchronous active-low reset to set the control logic to a known

state. The input ports TDI and TMS are sampled on the rising edge of TCK and the output

port TDO is set on the falling edge of it. [12]

Multiple devices with JTAG can be connected in series to form a longer JTAG chain. This

is done by connecting the TDI and TDO pins to create a long register between them and

sharing the other signals between the devices. This way only one set of pins is needed

to control all the devices and ideally test the entire PCB. [12] Figure 7 illustrates a chain

of devices with internal structure of one. The left side is connected to the host driving the

interface.

7

Figure 5. JTAG chain of three devices. Parts with * optional

The logic connected to the TAP is called TAP controller. It implements a state machine

as shown in figure 8 to control the test circuitry within the chip. The state of the machine

is determined by the state of the TMS when sampled. The machine is reset either by

holding the TRST low or by holding the TMS high for five cycles of TCK. [12]

The TAP controller is used to load data to the instruction register (IR) and test data reg-

isters (TDR). The instruction register contains the current active instruction operation

code and the test data registers contain any data used for testing purposes. There are 2

mandatory data registers in bypass and boundary and there may be any number of op-

tional standard conforming or user specified registers. [12]

8

Figure 6. JTAG state machine. Numbers represent value of TMS required for transi-
tion [12]

When operating on any registers, be it instruction or test data, the register is placed

serially between the TDI and TDO pins serially, so that the least significant bit (LSB) is

closest to the output. The data is shifted in on the rising edge of TCK and out on the

falling edge. This way data can be moved both in and out of the chip in the same opera-

tion. [12]

The instruction register is loaded and updated in the Shift-IR and Update-IR instruction

respectively. The capture-IR will additionally load at least a 1 to the LSB and a 0 to

LSB+1. The purpose of this is fault isolation, so that it is always possible to shift out from

the instruction register with the data containing both logic values. Other bits in this state

can be set to user defined values. [12]

Test data registers are controlled similarly to the instruction register, shifting the value in

Shift-DR and updating in Update-DR. The register to operate on is selected with the

instruction. Capture-DR may capture a value internally in parallel to the register so that

data can be shifted out of the chip with this state. [12]

Bypass is one of the mandatory data registers. It is a single register with the purpose of

providing the shortest length through the data path. It is activated with an opcode of all

ones as well as with any opcode that is not used for other instructions. The other required

register is the boundary-scan register. It is constructed of boundary cells which are used

to test connectivity of the chip on the PCB. [12]

9

The purpose of a boundary cell is to be able to control an output and to read an input pin

of a chip without needing the functional logic to do this operation. The boundary cell is

inserted between the core side input or output pin of a pad cell and the functional logic

that it in normal operation drives. This way control to the pad can be bypassed and driven

directly from the JTAG TAP. Figure 9 illustrates a possible implementation of a boundary

cell. [12]

Figure 7. Example boundary-cell register design

If the cell in figure 9 is used as an output boundary cell, the cell functional input (CFI)

would be connected to what would normally drive the output pin of the pad and the cell

functional output (CFO) to the pad pin. The ShiftDR, Mode, ClockBSR and UpdateBSR

are controlled from the TAP controller so that in normal operation the boundary cell is

transparent and in test modes the value from CFI can be captured and a value can be

driven directly to the CFO. Scan in (SI) and scan out (SO) connect to other boundary

scan cells to form a shift register which is loaded in the Shift-DR state and captured in

Capture-DR. Note that the standard defines various types of boundary cells used for

different types of IOs. They may also for example drive the output enable pin of a pad to

allow setting the IO in tristate. [12]

There are 3 mandatory instructions for boundary scan. Their opcodes can be chosen

freely, except that an opcode of all ones is reserved for bypass. With the SAMPLE in-

struction values from input IOs and from chip logic outputs are loaded into the boundary

register in the Capture-DR state through the CFI input in figure 9. This way the pins of

the chip can be observed without affecting operation or needing physical probes. The

PRELOAD instruction loads values to the boundary cells to be used for other instructions.

The CFO is still fed directly from CFI and so normal operation is not affected. SAMPLE

and PRELOAD can be combined to a single opcode, so that with a single instruction the

inputs can be read, and values can be loaded in the registers. The last mandatory in-

struction EXTEST allows testing of chip connectivity and PCB. It sets the output of

boundary cells to the values in the boundary registers, typically set with PRELOAD. [12]

10

Besides the mandatory instructions, the standard defines various others which will be

briefly covered here. INTEST, IC_RESET and RUNBIST allow for testing of internal logic

on the chip. HIGHZ and CLAMP extend the capabilities of testing external interconnects.

IDCODE, ECIDCODE and USERCODE provide device identification means in case mul-

tiple instruments are included in a chain. INIT_SETUP, INIT_SETUP_CLAMP and

INIT_RUN are newer additions that enable initialization of programmable components,

for example pad cells, before application of test instructions. The user may define any

additional instructions required for use-case based testing as long as they don’t interfere

with the standard instructions. They may be defined as private, which tells the user that

the instructions are used for manufacturing tests and may be undocumented and poten-

tially harmful to the chip. [12]

To describe the interface and structure of JTAG in a chip, the standard defines a lan-

guage called Boundary Scan Description Language (BSDL). Based on VHDL, the lan-

guage describes the IO structure of the chip and how it is connected to the boundary

register. It also lists the opcodes of all instructions and all other test data registers and

how they can be accessed. [12]

The 2013 revision of IEEE1149.1 adds an optional component besides the TAP control-

ler in the form of a test mode persistence (TMP) controller. It allows keeping the chip in

test mode state, that is the state in which outputs of the boundary scan cells are driven

from the boundary register, even when instructions that normally would not cause this

behavior are active. This ensures safe use of on-chip test capabilities when the chip is

located on a board by preventing the IOs from being driven from possible uninitialized

states, for example when loading new values with PRELOAD. Three new instructions

are required if the TMP controller implemented; CLAMP_HOLD and CLAMP_RELEASE

to set the TMP controller in and out of the persistence state, and TMP_STATUS to read

the status of the controller. [12]

With faster communications becoming more common, the static testing provided by

standard boundary scan has become inadequate. IEEE1149.1 is complemented with

IEEE1149.6, which standardizes features for testing ac-coupled and differential digital

IOs with the help of new instructions and boundary cells. It provides simple and minimally

intrusive structures compliant with the original standard to allow testing of dynamic cir-

cuits. [13]

As chips have become more integrated with multiple chips in a single package and mul-

tiple debug interfaces in a chip, more non-standard IEEE1149.1-like interfaces have be-

come common. To combat the issues caused by this, such as difficulty in intellectual

11

property (IP) integration and interoperability problems with tools, IEEE1149.7 was cre-

ated to provide and standardize more advanced debugging structures. It enhances the

architecture of JTAG by providing a way to use a hierarchy of on-chip TAP controllers, a

method of power control and selection protocols so that other technologies may use

1149.7 TAPs. Pin efficiency is improved by supporting four and two pin TAPs with both

a star and series topology. Lastly it increases capability by defining test and functional

reset generation on chip as well as optimized scan transactions for test and debug [14]

A widespread use of embedded instrumentation, such as built-in self-test (BIST) engines,

device characterization and calibration controllers have emerged in chips. These instru-

ments use a variety of mechanisms and protocols for access. IEEE1687 aims in stand-

ardizing the access between the instruments and chip-level access mechanisms. This is

done by defining three things in the standard:

1. The hardware architecture for connecting a IEEE1149.1 TAP to embedded inst-
ruments

2. A hardware description language (HDL) used to document the components

3. A procedure description language to describe the operation of the instuments

The architecture described in the standard is quite unrestrictive to allow for various types

of interfaces to be connected within the network. It particularly mentions examples of

using a JTAG TAP and interfaces compliant with IEEE1500 as these are common inter-

faces used in industry, but other types may be used in the network as well when suitable

adapters are used. [15]

The instrument access network is described with Instrument Connectivity Language

(ICL) as defined in the standard. It documents the elements comprising the network and

the logical connectivity between them. The hierarchical structure is contained in the lan-

guage, but the operation of instruments and actual physical connections may be omitted,

as the purpose is to merely describe the network. [15]

The Standard also defines the Procedure Description Language (PDL). It is used to de-

fine a way of operating the instrument defined in an ICL file through its interface ports.

PDL consists of sequential statements that read or write to ports or registers within the

instrument. The purpose of ICL and PDL are that when a hierarchical block is included

in a larger design, the test patterns of the block can be retargeted to the top level. That

is, even if the interface used is proprietary, with the concepts of IEEE1687 the instru-

ments can be controlled with any interface from the top level, commonly with JTAG TAP.

Figure 10 illustrates a possible configuration where an instrument is connected to a TAP

controller through a 1687 network. [15]

12

Figure 8. Operation of an embedded instrument with IEEE1687 [15]

The instrument may be an IP that the designer does not have full visibility of. Despite

this, if it is provided with adequate PDL and ICL files the testing may be done without

knowing the exact functionality of the block.

Boundary scan can be used for testing multi-die package interconnects as well.

IEEE1838 defines ways to test 2.5D and 3D chips with the help of JTAG. [16]

2.3 Scan

The main reason for requiring specific structures for testing purposes is that by default,

a design will have very low controllability (1) and observability (2). This means that it is

difficult to set the state of the circuit such that fault can be excited (1) and that if it is

possible to activate the possible fault, it is hard to monitor whether the fault exists (2).

Without scan the only observe and control points are generally the primary inputs and

outputs (physical pins) of the chip. The purpose of scan is to extend these points to

internal nodes of the chip. [17]

2.3.1 Basic scan

Scan is likely the most common structure used for testing on-chip logic and has been in

use since at least 1978 [18]. The purpose of scan is to be able to control internal nodes

such that specific patterns can be applied to the device under test (DUT) to find possible

static, dynamic, bridge and possible other types of faults on the chip. [17]

The requirements for a chip to be compatible with scan is that is consists of standard

cells and is of a traditional structure composed of combinational logic and flip-flops. The

following types of circuits generally cannot be tested with scan.

13

• Asynchronous designs

• Latch-based designs

• Memories

• Analog blocks

The goal of scan is to connect all flops of the design to scan chains that can easily be

controlled from the primary inputs of the chip. To do this all the flops are replaced with

scan equivalent cells. There are 2 different types of scan flops, the muxed scan and level

sensitive-scan design (LSSD) flops. Figure 11 shows the conversion to muxed scan flop

and figure 12 the conversion to LSSD scan flop. Scan flop mapping may be done at any

point in synthesis, either separately or as part of general mapping. [4]

Figure 9. Muxed scan flop replacement

In muxed style scan a flop is replaced with one that has a mux added on the data input.

The select of this mux is driven by a signal called shift enable (SEN). While the shift

enable signal is at its inactive value, typically at 0, the flop acts as it did originally. When

the shift enable is active, however, the flop gets its data from an extra input called scan

data (SD) or scan in (SI). [4, 17]

The mux can be added as a separate component, but typically a standard cell library has

scan equivalent cells for all or most of its flops, so that the number of instances does not

change in this scan mapping process. A scan cell may as well have different clock po-

larities and set/reset inputs.

14

Figure 10. LSSD scan flop replacement

In LSSD style scan a flop is replaced with 2 single port latches and one dual port latch

as shown in figure 12. One scan data input and 2 scan clock inputs (SCx) are added to

create the same functionality as in muxed style. In normal operation both scan clocks

are in their inactive states in which case the flop acts as before scan replacement. In

scan operation the functional clock is held in its inactive state, which is the state that

does not let the dual port latch propagate its value from the functional data port, in the

case of figure 12 a logic 0. To move the data from the scan input to output the scan

clocks are pulsed one at a time, SC1 first. [4]

Like with muxed style, LSSD flops are generally included in the standard cell library as

replacements for non-scan flops and may include support for inverted clocks and set/re-

set functions. It is important to note that depending on the library either of the ports of

the dual port latch could have priority and one should be careful not to use both the

functional clock and the scan clocks at the same time.

LSSD style scan will not be elaborated further in this work, and all mentions of scan are

assumed to be of muxed style unless otherwise noted.

After flops have been mapped to scan equivalent ones, they can be connected to scan

chains. This is done by connecting the output of a flop to a scan in of another flop, and

so creating one or multiple long chains where the signal proceeds through the entire

chip. On the ends a physical scan in and out ports are connected to create one or multiple

shift registers containing ideally all of the flops in the design. The output of flops will still

feed into the functional logic along the newly created scan in connection, and functional

data inputs of any flops are not touched at all, so the original functionality does not

change while all relevant test signals are held at their inactive values. Figure 13 shows

the scan chain stitching process. [17]

15

Figure 11. Scan mapping and stitching

The clocks of all flops should be controllable during scan. They may have separate

clocks but working with a single clock is generally easier and possible due to low fre-

quencies compared to functional modes. Either way designers need to make sure that

all clocks can propagate to flops, possibly requiring some extra control over clock gates

and other logic on the clock path. Similarly resets should controllable at least to their

inactive states during scan, but usually to both states in order to test the reset logic.

Once the scan synthesis is done the design is ready for ATPG for test generation. The

scan process is as follows: At the start operation shift enable is set to its active value.

After that data is shifted in from the chips scan in pin or pins while pulsing the scan clock

or clocks, shifting the data further through the scan chains. Once all flops have received

their respective values, that is the clocks have been pulsed once for each flop in the

chain the actual testing of logic can be done. [17]

Shift enable is set to its inactive value and as it is typically not a timed signal, some extra

time is given for it to propagate. Then a single pulse is generated on the clocks. This way

all of the flops will latch to data which goes through the functional logic instead of the

scan chain. As it is possible to set any values on any flops with the scan shift operation,

it is easy to control which parts of the logic the data will activate and so possible to target

specific faults. [17]

16

After the scan capture the shift enable signal is set to its active value again and the data

that was captured can be shifted through the scan chain without any logic in between,

and as such unaltered. During the shift out the ATE will read the received data and com-

pare it to what is expected, that is to what a correctly functioning chip would produce.

[17]

2.3.2 Compression

As the size of chips increases, so does the number of flops in a design. This leads to

longer scan chains, which can to some extent be mitigated by using more chains in par-

allel. Eventually, however the required number of physical pins grows too large, and ei-

ther the package does not have what is needed, or the tester cannot contact every pin

at once.

To overcome this issue scan compression has been displacing standard compression

techniques. It addresses the problem of increasing test data volume and tester time while

keeping the test coverage at similar levels. [19, 20]

The purpose of compression is to bring the scan in and scan out points inside the chip,

so that the data can be generated internally from fewer inputs than there are scan chains.

The way the data is generated for the scan chains is called compression-decompression

(CODEC). It can be done either combinationally or sequentially where industry adoption

has shown that sequential CODECs are slightly better. [21, 22] Figure 14 shows a scan

network connected to a CODEC which performs a 7:3 compression, commonly referred

as 2.3X.

Figure 12. Compressor-decompressor scan network

17

The actual CODECs are usually created of XOR gates [21, 23]. The purpose of the de-

compressor is to spread the inputs so that each scan chain can have either 0 or 1 input

with as little dependency as possible with respect to the other scan chains, that is so that

there are as many as possible different combinations on the inputs of the other scan

chains. The compressor works in the opposite way and a good compressor generates

the greatest number of distinct outputs based on the inputs.

Naturally with combinational logic either part of the CODEC can only create as many

patterns as are possible given the number of scan IOs. For example, a 3:7 decompressor

can only create 23 combinations on its outputs, while to create any arbitrary bit-pattern

27 combinations are needed. This means that using compression scan will always yield

lower coverage since not all patterns can be applied to the DUT.

This problem can be mitigated by adding configurability to the CODEC, either so that the

combinational logic can be rearranged to form different states or by adding registers so

that the decompressor and compressor can use these registers as virtual Scan IOs. The

data to these registers is loaded over multiple clock cycles, so using this type of scheme

will increase tester time. [22]

The ratio of compression has to be carefully chosen so that test coverage does not get

affected too much. [22] achieves a static fault coverage of over 99% with compression

ratios of 50X and 230X. Generally, the larger the number of IOs the higher can the cov-

erage ratio be pushed. The downside of higher compression ratio might be increased

amount of test patterns as fewer faults can be tested in a single pattern. [22]

Another reason for lowered coverage besides the difficulty of generating required bit-

patterns is X-sources in the logic. X-source in this context means logic whose output

value cannot be determined. This could be memories or analog macros. If a flop in a

scan chain captures an X-value the output of the compression macro for that clock cycle

will be partly or entirely corrupted, thus losing actual measure data from the chains that

did not capture an X.

The way to combat X propagation is by adding mask logic on the ends of the scan chains,

before the compression macro. This mask logic can then set the X value to a known

value so that the data on other scan chains does not get affected by the X. The mask

can have either a fixed value (0 or 1) or it can be programmed. The mask will get only

get activated for a single clock cycle at a time so typically a separate physical pin needed

for its enable. [24]

18

A way of acknowledging the issue of lowered test coverage is by including a non-com-

pression scan along the compressed design. Figure 15 shows how a 2X compressor can

be bypassed in order to control the chains directly from IOs.

Figure 13. A way to bypass compression logic

The muxes and paths shown in red can be added to allow the design to be tested without

compression logic. The select of the muxes has to be controlled with a separate test

signal, either from a physical pin or generated internally.

The advantage of including the bypass logic is that if there are faults that cannot be

tested with compression the main compression patterns can be topped off with standard

scan vectors. In case the CODECs are incorrectly designed or faulty they can also be

bypassed to test the chip fully. The downside is that some extra logic and routing is

needed, however this is very minimal.

2.3.3 Transition fault testing

The method for testing dynamic faults is the same as that for static faults, that is scan

with the possibility of compression. Instead of a single pulse for capture however, for

dynamic tests multiple pulses have to be administered to receive a dynamic response

from the logic. [6]

The first of these pulses is called the launch and the second is the capture pulse. These

pulses are timed such that the difference between them is the period of the frequency

that is used to test the chip, typically the functional operation frequency. The initial value

of the circuit is set with scan so that the targeted fault can be activated with the launch

pulse and the response of that is then captured on the second pulse, and if the logic was

dynamically faulty the response will not correspond to what was expected. Figure 16

shows how an AND gate would be tested for slow-to-fall faults on its input. [6]

19

Figure 14. Testing the B-input of and AND gate for transition faults

The first value on the inputs shows the values loaded with scan which do not expose the

fault. The second value is what is set on the launch pulse and the last value is what

should be measured on the capture pulse. In this case, if the B-input is too slow to fall

the value captured on the output C will be 1 and the fault will be found.

The way the pulses are generated can be from either a primary input or with On-Product

Clock Generation (OPCG). It is hard to get a fast input clock from a pin so typically it

easiest to generate the clock for test internally with OPCG. With this method an internal

already existing or new clock generator is used to generate the required fast clock pulses

for the capture phase.

Scan shift is still done with a slower clock, so it does not need to be designed any differ-

ently from static scan. In fact, the only difference OPCG adds is the need for some clock

selection logic at the beginning of a clock tree, which is common for the entire design

and so should not affect timing in functional modes either. Figure 17 introduces an ab-

stracted clock design for OPCG scan.

Figure 15. OPCG selection logic

If the same clock generator can be used for OPCG as is used for functional modes, only

a single mux may be added on the clock path minimizing the impact on functional oper-

ation and timing closure. The selector logic will pass 2 clock cycles from the clock gen-

erator when so instructed by some test signal, typically controlled from a primary input,

or when the chip is in a functional mode.

20

One important aspect of designing transition fault testing is choosing how the data for

the launch cycle is generated. There are 2 main methods in Launch-off-shift (LOS) and

Launch-off-capture (LOC). The difference in these is whether the shift enable signal is

deasserted before or after the launch clock pulse. Figure 18 shows the timing of these

methods. [6, 25, 26]

Figure 16. Timing of shift enable in LOS and LOC schemes

Either style has its advantages and disadvantages. In LOC style the values of flops for

the launch cycle are captured through functional logic as the shift enable is not active

and with this style it might not be possible to create all the possible needed patterns

internally required to test all faults. In other words, LOC will have a lower coverage than

LOS. The disadvantage of LOS is however that the shift enable signal has to be timed

in such a way that its deassertion is propagated to the entire design between the fast

clock cycles. In large designs with fast clocks this could prove challenging to implement.

[3, 15, 16]

2.3.4 Hierarchical test

As chip size keeps increasing generating test vectors for it takes more time. Physical

design for chips is often split into parts so that the entire chip does not have to be imple-

mented at the same time. This helps parallelize the processing and reduces iteration

time, allowing faster time to market. DFT structure insertion is typically done in synthesis

so it would already gain benefits from hierarchical design of chips. ATPG without special

structures however would have to be run on a flat chip top, increasing runtime. IEEE1500

standard addresses this issue by defining specific interfaces to be inserted on a sepa-

rately synthesized block to allow APTG to be run on a subblock and then combined on

top level for the full patterns. [27, 28]

The way this is done is by isolating the blocks, or cores, so that all the interfaces between

hierarchies can be tested separately from the internal logic, allowing the internal tests to

be created targeting only the core and testing the interface along top level. Figure 19

21

illustrates how the interface is isolated inside the core by utilizing the Wrapper boundary

register (WBR).

Figure 17. Core with WBR inserted [27]

The purpose of the WBR is to be able to set the inputs of the core and to observe the

outputs of it independently of what they would be connected to without WBR. The wrap-

per cells connect serially to each other through the cell test input (CTI) and cell test output

(CTO) pins and the the internal values of the cells can be easily controlled and observed

on the module level test input (TI) and test output (TO) pins. With the help of some inter-

nal test signals discussed further in this chapter, the internal values of the cells can be

set through the CFI pin or the internal value can be set to drive the CFO output of the

cells. In functional operation the wrapper cells will be pass the value from the functional

input CFI to output CFO. [27] Figure 20 illustrates a possible implementation of a wrapper

cell to be used on the input side of the core.

Figure 18. Input bounding wrapper cell implementation

22

When testing the core, the INTEST signal will be high, which ensures the output of the

cell, connected to an input of the core, will receive its value from the internal register and

not from the CFI input, that is driven with logic outside the core. This way a known value

is always driven to the core, allowing testing of logic fed directly from the inputs. The

internal register is loaded during scan operation, when SE is high, so the value driven

can be changed for every pattern. An output bounding wrapper cell works similarly, with

the purpose of capturing a value of an output port in the internal register and then shifting

it out during scan. The boundary cell is clocked with the same clock that is used for scan.

[27]

When the top level of the chip is tested, the cores will be set to EXTEST mode. In this

mode the values to the input bounding cells will be captured from the functional inputs of

the cells, that is across hierarchy boundaries. The output bounding cells will conversely

drive their functional outputs from the internal registers. This way the hierarchical bound-

aries can be tested separately from the core. In both INTEST and EXTEST modes scan

data of the boundary register is shifted serially through the TI and TO pins. [27]

The 1500 standard also defines a means to generate test signals at core level as Wrap-

per Instruction Register (WIR) and the method to control it in Wrapper Serial Port (WSP).

This is useful in completely isolating the testing requirements inside the core so that top

level does not have to generate the test signals for all possible instatiations of the core

separately. Figure 21 shows the structure of WIR, with mandatory ports bolded. [27]

Figure 19. Structure of WIR

The WIR is controlled serially through the wrapper serial input (WSI) and wrapper serial

output (WSO) ports. It is clocked through the wrapper clock (WRCK) port, which may be

the same clock that is used for scan. WRSTN is an active low reset to reset the logic.

The UpdateWR, ShiftWR and CaptureWR signals control the flow of the data and updat-

ing the values of the signals. SelectWIR is used to activate or disable a WIR. A WIR

implementation may operate with multiple clocks, in which case the AUXCKn ports may

23

be used for this purpose. If the WSO is clocked on the falling edge of a clock, it is possible

to include an WSOR terminal which clocks the output on rising edge. [27]

The signals that control whether the core is in INTEST or EXTEST must be generated in

the WIR. The third mandatory instruction is BYPASS, which places a single register,

Wrapper Bypass (WBY), in the path between WSI and WSO(R). This instruction is active

when the wrapper is not used, for example during functional mode. Besides them, any

number of other test signals, controlling for example compression or OPCG can be in-

cluded in the WIR. [27]

The standard also defines that a Wrapper Parallel Port (WPP) may be included in a

wrapped design. This port can be used for any purpose and may use the WRCK,

AUXCKn and WRSTN ports. [27]

IEEE1500 only defines the structures previously described. It does not acknowledge how

they should be accessed, and thus the way they are used does not have to conform to

any standards according to IEEE1500. IEEE1687 addresses access to embedded in-

struments within a chip, which may be IEEE1500 compliant. This way the wrappers may

be connected to a IEEE1149.1 TAP with the help of ICL and PDL languages. [15]

2.3.5 IDDQ

Another method for testing a circuit while using scan chains but without ATPG is quies-

cent current (IDDQ) testing. With this method no specific faults are targeted, rather the

entire chip is evaluated as a whole. In IDDQ testing the chip is placed to a known state

through scan loading. Its leakage current is then measured and compared to what is

expected, which can be acquired from library characterization data, from simulations or

from measured data from other chips. If the current is greater than expected, it can be

assumed that a fault has taken place. [28, 29]

Even with IDDQ testing multiple patterns have to be applied to the chip in order to excite

the faults so they can be seen on the measurements. The time that a single pattern

requires is greater than with ATPG based tests, as the chip will require time for the cur-

rent to stabilize. Another issue is that the cutoff point between a good and a bad chip

must be chosen carefully and might not be clear in some cases. [4]

2.4 MBIST

Memories are generally tested by adding extra logic called memory built-in self-test

(MBIST). The logic is responsible for generating the test vector and reading the response

of the memory. No standard exists for MBIST and as such its architecture varies between

24

implementations. The main operating principle is the same; executing the pattern, typi-

cally a march pattern, named for its function of marching through the address space of

the memory, then comparing the data that was read back with what was written. Figure

22 illustrates a simplified view of a memory with MBIST added around it.

Figure 20. Example implementation of MBIST

March patterns are characterized by their signature. A signature consists of typically mul-

tiple passes through the address space, where a single pass may perform multiple op-

erations on the memory. The order in which the addresses are traversed is denoted with

either ⇑, ⇓ or ⇕ representing ascending, descending or don’t care order, respectively.

The operations during the pass are either reads or writes, marked with rx or wx, where x

can be either 0 or 1. The value 0 means that the value to read or write is the background

value and value 1 is the inverse of it. Backgrounds are addressed later, for now let’s use

a solid background, which would make r0 operation to mean to read a 0 on all bits of the

address. The signature

⇑ (w0, r0), ⇑ (w1, r1)

would mean that the address space of the memory is cycled through twice in ascending

order, so that each cycle will first write and then read, using the value 0 for the first pass

and 1 for the second. [30]

March patterns are often referenced with a time complexity as well as their signature.

The time signature denotes how long the operation will take as a function of the size of

the address space of the memory. The previous example would be a march 4N, as the

time required for each address is 4 clock cycles (2 writes and 2 reads). Several different

march algorithms have been proposed in literature, for detecting different types of faults.

One of the more common ones is March C-, the signature of which is

⇕ (w0), ⇑ (r0,w1), ⇑ (r1,w0), ⇓ (r0,w1), ⇓ (r1,w0), ⇕ (r0).

25

The complexity of March C- is 10N and it can detect SAF, TF, ADF, CFin and CFid faults.

Some more complex fault models, however, cannot be detected with this pattern. [31,

32]

Another thing to consider when choosing the MBIST algorithm is the background type.

The background denotes what is written to different bits of the address. The simplest

patterns are solid, where all bits of the word are the same value, and checkerboard,

where bits are alternating 1s and 0s. The background selection is heavily influenced by

the physical structure of the memory. It is important to note that some MBIST schemes

allow for running the tests on a bitwise basis, targeting single bits instead of words. In

this case a background is not used. [32, 33]

Besides testing the core array, MBIST logic should also test the peripherals of the

memory. This means the read and write enables, address decoders, write masks and

other possible logic outside the core. The address decoders and enables are tested

along the core, but things such write masks, write-through ports, power down modes and

retention modes are to be separately tested. March patterns don’t target these specifi-

cally but may be used for their verification.

26

3. HEADSAIL

Headsail is the third System-on-Chip (SoC) done as a collaboration of various companies

and institutions as part of SoC-Hub. It is comprised of 7 subsystems and a top level

connecting them as illustrated in Figure 1. While the functionality of the chip is not rele-

vant for DFT purposes, certain structures and physical partitioning which affect imple-

mentation are described in this chapter.

Figure 21. Headsail structure

Headsail is a good design to use for this work due to its heterogenous, hierarchical struc-

ture allowing various DFT structures, and as SoCs such as it are common in industry.

3.1 SysCtrlCPU

Possibly the most crucial part of the chip is its system control central processing unit

(CPU), as it controls resetting and clocking the various subsystems. In case it was not

functioning the entire chip could be inoperable. For logic testing this is not any more

important than any other part of the chip, but it being able to control clocks of other sub-

systems is important for memory testing. This will be further expanded in chapter 4.1.

3.2 Subsystems

As shown in figure 1, each subsystem is a separate hierarchy. This is not only logical,

but the chip is also physically partitioned, and each subsystem is implemented as a hard

macro. This helps bring down physical design effort, as changes in design often involve

27

only certain parts of the design and having to rerun full implementation for the full chip

would take a considerable time.

All subsystems communicate through an Advanced eXtensible Interface (AXI) intercon-

nect on the top level. This bus goes through hardened blocks called clock bridges so that

timing between top level and subsystems must be done only for the clock bridges. The

phase locked loops (PLL) which generate required clocks for each subsystem are con-

trolled through a common interface from system control processor on the top level. Be-

sides these common connections each subsystem might have some sidechannels such

as interrupts or debug interfaces towards top level. Important part to note is that there

are no signals which feed directly from subsystem to subsystem.

Figure 2 describes the architecture of the common subsystem clock control block. In

functional operation this allows good control of the PLL of each subsystem as well as a

backup of running the blocks with the slow reference clock. Controlling the clocks during

DFT is elaborated on in chapter 4.1.

Figure 22. Simplified view of subsystem clock control

3.3 Physical design

Headsail is synthesized from VHDL and SystemVerilog descriptions to a 22 nm standard

cell library. Total area for the whole chip is 25 mm², with a flip-flop (FF) count of 662k.

Most of the chip runs with a shared 0.9 V power rail but parts of the high-performance

computing subsystem (HPC) have their own supplies with level shifters inserted between

voltage domain crossings. Some parts of the design also have power gates to enable

low power operation. Both of these features are simple to control in DFT but have to be

acknowledged. This is further discussed in chapter 4.1.

Figure 23 illustrates the relevant steps in each tool of the used flow. All of the insertion

takes place in synthesis tool, but the place and route (PnR) tool may reorder scan chains

28

with the information in a Scan Design Exchange Format (ScanDEF) file to help minimize

wire length within scan chains. The synthesis tool also writes the required files for the

ATPG tool, namely the ICL, PDL and BSDL as well as descriptions for pin functionality.

These are used to generate the start-up sequences of tests, which set, for example, the

WIR bits to required values.

Figure 23. DFT flow in different tools

Most of the insertion is done before synthesis, with only scan chain creation and com-

pression insertion being after synthesis. This is as some of the inserted structures are

unmapped, thus requiring synthesis, but chain stitching not being possible before all flops

are mapped to scan flops, which is done in synthesis. A formal verification (FV) tool is

used to perform logic equivalence checking (LEC) to ensure the insertion does not affect

the functionality of designs.

The ATPG tool writes out generated vectors in a format that allows them to be simulated

with a logic simulator. There are certain things the ATPG tool assumes and does not

verify, such as PLL operation, so running a full simulation after test generation is neces-

sary.

To speed up test flows, the PnR tool can be ignored and the netlist from synthesis may

be used. It is important to note that if scan chain reordering is done, the vectors gener-

ated for a synthesis netlist will not be compatible with the final netlist, and even if the

chains retain their order, logic is optimized in PnR and as such all faults may not be

covered.

29

3.4 DFT specification and requirements

Before design work had started for the chip, it was decided that as much effort as possi-

ble would be put into the DFT implementation, regardless of what the design was going

to be. Limiting factors for the implementation are mostly in the size of the design and the

number of available IOs but rough estimates for both were available before DFT design

started. All DFT structures were implemented in synthesis tool except a small control

block for MBIST was implemented in RTL.

The number of dedicated pins allocated to DFT purposes was 10. Table 1 documents

how they were planned to be used. Note that no pins were allocated for scan IOs, as it

was known that the number of these would be high, so it was decided that functional pins

would be shared for scan purposes.

Table 1. Planned dedicated DFT pins

PIN FUNCTION

dft_jtag_tck JTAG TCK, scan clock
dft_jtag_tms JTAG TMS
dft_jtag_tdi JTAG TDI
dft_jtag_tdo JTAG TDO
dft_jtag_trst JTAG TRST
jtag_dft_disable Global DFT mode disable
scan_enable Global shift enable
mask_load Global mask data load enable
mask_enable Global mask enable
opcg_load Global OPCG data load enable

As the tester to be used was unknown during implementation, some assumptions had to

be made about it. The following things are required to test this chip:

1. Unlimited number of pins to connect to scan IOs

2. One clock synchronous to scan data with control over the timing between them

3. One asynchronous clock running at 30 MHz

The actual number of IOs used would be refined as test runs are done. No estimates for

it were initially made.

Synthesis is constrained such that data inputs are expected to be driven on the falling

edge of scan clock. Outputs are similarly clocked on the falling edge. Condition 2 should

be trivial for any tester but is necessary to make sure timing is not violated on any chips

IOs. The frequency was not defined for the scan clock but was expected to be between

10 and 50 MHz.

Number 3 is only required for delay testing. The asynchronous clock can possibly run at

different frequencies as well, but the used PLL is designed for this frequency and could

cause unexpected issues with other inputs. The frequency at which data is loaded

30

through scan inputs and shifted can be anything as long as it is synchronous to the JTAG

clock.

Soft targets of 95% static faults and 75% dynamic faults detected were set initially, based

on few test runs. Another requirement was minimal test time, but no actual value for this

was set. All memories were planned to be tested for common fault model types.

31

4. HEADSAIL DFT IMPLEMENTATION

This chapter describes how DFT was implemented on Headsail considering the require-

ments and targets.

4.1 Boundary scan

An 1149.1 compliant boundary scan was added to the chip. As many as pins as possible

were used for boundary testing. The pins that were not used include the required JTAG

pins, compliance pins, reset pin and pins that used a different IO voltage or were differ-

ential.

For JTAG a five-pin interface including TRST was used. Compliance pins include the

jtag_dft_disable pin used for disabling the DFT JTAG tap. This pin was not strictly nec-

essary as TRST could have filled any functions that it was used for, however since the

chip had room to add this signal it was done. In the end it only functioned only as a

second reset pin for the JTAG macro and could easily have been dropped.

Other compliance pins were scan pins, namely scan_enable, opcg_load, mask_load and

mask_enable. Technically only scan enable had to be a compliance pin but as

opcg_load, mask_load and mask_enable are tied to their compliance values on the PCB

anyways and thus cannot be tested they were also not used for boundary scan. The last

compliance pin was the global reset pin of the chip. This was not ideal as the reset pin

traces absolutely should be tested but there were certain control pins on pads that

needed to be driven to a specific value to have them function correctly. Ideally, they

would have been driven from the JTAG macro but due to time constraints reset was

added as a compliance value in its active state to make sure these configurations would

stay in correct values during test.

The SDRAM subsystem uses 1.2 V IOs which are a different design from standard IOs

used almost everywhere else. They had to specially designed and do not use the same

interfaces as the standard pads so again due to time constraints they were not included

in the boundary scan configuration. The same applies to pads used in C2C serial sub-

system, which used a different voltage and were differential.

Only the mandatory instructions were used as it was not seen necessary to add any of

the optional ones. SAMPLE and PRELOAD used different opcodes as extra safety in

case either one of them did not function properly. The instruction register length was 6

32

to accommodate for all planned instructions, but only 17 were used. The non-boundary

scan instructions were MBIST and IEEE1500 access instructions.

The boundary register was connected in physical order of pins in counterclockwise di-

rection. On a small chip like this it is not absolutely necessary but on larger chips it is

important in order to meet timing in the chain.

4.2 Scan

A single clock was used for shifting data. This was also the clock used for JTAG to min-

imize requirements for tester. Scan enable was similarly shared across the full chip. It

was not timed in any way so when generating ATPG vectors a relatively long time was

used for allowing it to propagate when toggling.

The design was hierarchically separated so utilizing hierarchical test in the form of

IEEE1500 and IEEE1687 was a natural choice. Parallel interface was not used as there

was no need for it. The serial interface was as defined in the standard, with the access

mechanism for WIR from top level through JTAG. The core isolation signals WINT and

WEXT were controlled from WIR.

To enable any scan modes in each of the blocks a scan mode test signal had to be

asserted to control clock muxing as well as to control some other functionality such as

pads and memories. This was initially considered to be shared across each subsystem

and only be controllable from top level either from JTAG or from a port. In the end it was

decided against this idea as requiring specific control for a port on a 1500 wrapped block,

while standard compliant, was considered unnecessary and would require extra work at

top level were the block reused or sold as an IP. As a result, the scan mode signal was

added to each block’s WIR.

For compression it was decided to use XOR for both compression and decompression

as it was the simplest to implement and verify. Other methods could have increased test

coverage, however since it was planned to use a non-compression test mode to top off

any missed faults, implementing more complicated compression mechanisms was not

seen necessary.

The length of compression channels chosen to be 300 flops based on early tests with a

small design. Knowing this and the estimated numbers of total flops and available IOs, it

was calculated that that the compression ratio could be around 40X in total, with some

smaller blocks as low as 15X and larger blocks with higher ratios. This estimate still had

some margin, as the number of IOs used for these calculations was on the low side.

Table 2 shows the final numbers. In the end the channels could have been shorter, but

33

this was an expected result as it was known that the early estimates would not have been

completely accurate. Note that the total compression ratio expresses what could have

been if compression was done on a flat design.

Table 2. Compression ratios

BLOCK # FFS SCAN PORT
PAIRS

COMPRESSION
RATIO

ETHERNET 85k 6 47
HPC 230k 14 55

AI 220k 12 61
C2C PARALLEL 7k 2 12

C2C SERIAL - - -
DDR 9k 2 15
DSP 11k 2 18
TOP 100k 12 28

TOTAL 662k 50 44

As there were analog macros and pads which would feed unknown values to scan chains

during scan capture, a compression mask was deemed necessary. A mask that sets

channel outputs to 0 when active was chosen, however not much thought was used in

choosing the appropriate mask type as it wasn’t expected to make much of a difference

in test coverage.

Mask load was an input to top level similarly to scan enable and was shared between

every subsystem. Scan clock was used for mask loading by gating it from chains during

mask load operation. Scan inputs doubled as mask chain inputs during this operation.

As opposed to initial plans, a separate mask enable was used for each subsystem, as

sharing a mask enable signal would increase tester time since an empty mask would

have to be loaded to each subsystem except for ones that used their mask on a specific

test cycle.

The IO subsystems were created such that they contained the IO pad cells that they

needed for operation. This meant that there were not enough pads on top level to fully

control the scan. This was easy to mitigate by using pads from the Ethernet and C2C

parallel subsystems, as shown in figure 24. Controls of the pads were overridden with

scan mode and outputs of any pads not used were turned off.

For clock bridges scan chains were built within, but compression was not added, as the

chains would be connected to their parent instance’s compression macros. Clock bridges

were always at the boundary of a core, and they were physically placed such that WBR

could not be added at their parent level. This meant that creating the wrapper boundary

chain was necessary for clock bridges.

34

Figure 24. Scan paths through a subsystem

Clock bridges were hard macros, but from 1500 point of view they were not considered

cores. As such, they did not have their dedicated WIRs, but would get their test signals

from their parent instances. This meant scan mode, scan enable, and the signals needed

for WBR control, namely WINT and WEXT.

The HPC subsystem was a bit different from any other subsystems as it had separately

synthesized cores inside. They were easily handled the same way as clock bridges, by

connecting the channels inside and bringing them to the subsystem’s top level where

they were connected to compression macros. None of the cores faced towards chip top

level so adding a WBR was unneeded.

Parts of HPC as well as AI were in their own power domains with power gating. Naturally

they were supposed to be tested, so making sure the gates were not blocking was nec-

essary. This was easily accomplished by ORing the control signals of the first gate chain

with the mode specific test signal and connecting all the chains is series. Figure 25 shows

how this was done. The buffers and inverters were part of the RTL to provide fixed points

for connections. Note inverted polarity of memory enable compared to switches. Isolation

was tested in static scan modes but not with OPCG, as these paths were untimed.

35

Figure 25. Power control during test modes

OPCG and delay tests were implemented as shown in figure 26. The OPCG macros

were inserted in synthesis tool. They were programmed with scan data inputs and scan

clock, such that the scan clock was gated from the rest of the design during programming

to make sure any scan data values were preserved. Figure 26 shows how this was done

in similar fashion to mask programming.

Since the PLL in each subsystem was identical, it was simple to control each of them in

the same way. WIR was chosen for this purpose as it was already used and was easy

to configure for different types of tests. The other option was to use a sideload chain for

them in the same way as the OPCG macros are programmed, but as a tool proprietary

method it is not as flexible and was quickly dismissed.

The required controls for the PLL were 3 different dividers and a loop control value to

select the range of the internal oscillator. In addition to these there were several enables

on the PLL, but since it was enough to tie all of them to 1, they were all controlled with a

single OPCG enable bit from the WIR, which was also used in certain other places to

control clocks and isolation.

To keep thing as simple as possible, the falling edge of scan enable was used as the

trigger for OPCG. The actual delay from falling edge to generating the test pulses was

chosen as 5 cycles of the fast clock as this was seen as a sufficiently long time to allow

36

the scan enable to propagate to the whole design. This value was hard coded in the

hardware and as such a relatively large value was used to make sure there would be no

issues.

Figure 26. Control of clocks in OPCG-inserted subsystems

Due to time constraints, not every subsystem had OPCG implemented. Many of the ones

that did implement it contained multiple clocks, either from IOs or divided from the PLL.

These were subsystem specific, but generally logic clocked with an IO clock or logic

clocked with a low frequency were not tested for transition faults.

This left the only things to be tested with OPCG the logic running with PLL and logic

running with a clock divided from the PLL with a relatively low division value. For the

divided clocks the options were either to use the already instantiated divider or to create

a new divider as part of the OPCG macro. The former was chosen as this was simpler

and would allow implicit transition testing of the divider, as it’s possible faults would be

detected as part of the tests. One important thing to notice is that the divider could not

be fed as usual, since the OPCG macro used for the PLL domain would block the clock

while testing the divided domain. For this reason, a mux would have to be inserted on

the input clock of the divider to make sure it would always have a running clock. This is

shown in figure 27.

37

Figure 27. Control of clock dividers during OPCG testing

Having the clock of the divider running meant that the counter value would be constantly

changing. In addition to this, the counter registers were always a part of scan chains as

they would be tested normally in static fault test modes. This meant that they would al-

ways be at completely unknown values. In general, this is not an issue, as the phase

difference of the original and divided clocks is not relevant. The only issue that could rise

from this is if the divider would be in an illegal state after scan shift. For example, if the

divider were programmed to divide by 3, it’s counter would normally reset at 2. However,

after scan, it could be at a value above 2. Synthesized counters work such that they

always roll over to 0 from their largest value, so eventually even an illegal value will get

to a legal state. The only issue arises when (1) the divider value is programmable (2),

the maximum value is very large and (3) the value used during test is very small. In such

case, the counter will take too long to reach a legal state, generating no clock pulses

during the test period. Even in this worst case the test period can be increased to mitigate

this problem, but importantly there were no such dividers in any design, so using the

existing dividers was seen as the best solution.

In the designs that used programmable dividers the divisor value was controlled from

WIR as shown in figure 27. In HPC some of the cores had their dedicated dividers from

which they were fed. The OPCG macros for these cores were inserted on HPC top level,

but they could as well have been inside the cores.

4.3 MBIST

The original target was to have all memories be testable. Due to time constraints MBIST

was only implemented in Ethernet and DLA subsystems and top level.

As with other DFT structures, MBIST logic was inserted in synthesis tool. The chosen

logic could be controlled either from the DFT JTAG macro or from system control CPU.

When using the JTAG access method clocks and reset must be controllable from top

38

level ports or from JTAG. Many of the structures created for scan were used for MBIST.

Resets only needed to be only controlled if there were memories which had their clocks

fed from a clock divider, so that the divider could be lifted out of reset. This was the case

in both of the subsystems. For PLL and divider control the existing test signals in WIR

were reused. When testing from sysctrlcpu the chip is in its functional mode and all clocks

and resets are controlled normally, MBIST does not change this. The MBIST logic re-

quires all the memories to use a single clock if they have separate read and write clocks.

For this reason, a mux was needed on some memories to ensure that both of the clocks

were fed from the same source. During scan however the memories should run with the

original clock and so control for the mux was also necessary in scan modes. This is

shown in figure 27.

Testplans were chosen so that the most common peripheral and core faults could be

tested, with the main core testing signature being

⇑ (𝑤0), ⇑ (𝑟0, 𝑟0, 𝑤0, 𝑟0, 𝑤1), ⇑ (𝑟1, 𝑟1,𝑤1, 𝑟1,𝑤0), ⇓ (𝑟0, 𝑟0,𝑤0, 𝑟0,𝑤1),

⇓ (𝑟1, 𝑟1,𝑤1, 𝑟1,𝑤0)

with a solid background. The patterns were hard programmed into the logic and so they

cannot be changed during runtime. This simplifies the software required for running the

tests.

The memories used had redundant resources which can be utilized if there are faults

within. For this purpose, they have a simple interface which can be controlled to repair a

certain number of faults. Normally the repair interface would be tied to its inactive value,

but when adding the MBIST logic it was possible to add control for this interface. There

are two ways of repairing the memories: soft and hard. Soft repair means that the repair

data is stored in flip-flops and thus erased every time the chip is reset. Hard repair re-

quires either fuses or non-volatile memories (NVM) so that the repair data is retained

whenever power is cycled off. There were no fuses or NVM available for this chip, so a

soft repair scheme was chosen.

If the chip is turned on in DFT mode, that is if the dft_jtag_disable is 0, MBIST can be

run through the DFT JTAG interface. To change the operation mode, dft_jtag_disable

has to be set to 0, and the chip has to go through reset. This means that MBIST repair

data cannot be set in JTAG mode and then carried over to functional operation. With

fuse or NVM repair data this would be possible. This is how repair would be typically

done in production chips, however as this was not an option the repair had to be able to

be done in functional mode. This was the main reason for adding the control from sys-

ctrlcpu. In a test chip this makes a lot of sense, especially when compared to fuses, as

39

they are one-time-programmable and if set incorrectly the chip or parts of it could become

inoperable.

Typical operation from SysCtrlCPU to repair Ethernet memories would be as follows (in

psudocode):

clk_rst_setup(ETH);

start_fault_accumulation(ETH);

for (i=0; i<NUM_TESTPLANS; i++) {

 run_testplan(ETH, i);

}

repair_memories(ETH);

for (i=0; i<NUM_TESTPLANS; i++) {

 ret = run_testplan(ETH, i);

 if (ret) {

 puts("Fault after repair")

 }
}

The fault data accumulation is a specific operation after which any tests that encounter

faults save them to an internal register which is then used with repair_memories(ETH)

to attempt to repair faults that were encountered. All testplans are run again in case any

memories had more faults than could be repaired.

It is important to note that repaired memories might run slower than unrepaired ones and

this could limit performance of them. Even if tests fail after repair, it is possible they will

pass with a lower frequency. Ethernet subsystem requires its memories to always run at

a set frequency so it was designed such that it will work even if repair is needed but AI

and top level memory performance might suffer from being repaired.

From the data that can be read back from MBIST logic it is possible to pinpoint which

memory has failed but not at which location. This was not seen to be worth the extra

logic that was required to implement the diagnostics.

40

5. RESULTS

No ATE was available for this project so the results are only hypothetical. However, if

the chips need to be tested the vectors are available. All tests were simulated to be

functional. In all other parts the structures allowed testing as planned, except for the AI

block, where a late RTL change caused issues in testability and as such it cannot be

considered in testing, and top level, where scan without compression could not be run.

The biggest challenge regarding DFT was the lack of time. Due to tight deadlines OPCG

could not be added to many of the blocks and as such dynamic faults are not covered

well. No optimization runs were done either, meaning the number of scan IOs was not

optimal and the number of test vectors varies a lot between blocks.

ATPG was run so that OPCG mode was done first to cover dynamic faults and a majority

of static faults. Tests were first created with compression and final vectors were added

without compression to bring coverage up. Table 3 shows the number of vectors in each

testmode for the different blocks.

Table 3. Number of tester cycles for each testmode

 DYNAMIC STATIC
 Compression Non-compres-

sion
Compression Non-compres-

sion

ETHERNET 7365 2623 598 977
HPC - - 19241 8706
AI - - - -
C2C PARALLEL - - 1600 2599
C2C SERIAL - - - -
DDR - - 1988 1558
DSP - - 1485 351
TOP 9368 - 4396 -

All subsystems would be run at the same time and top level would be run separately.

This means that the total number of tester cycles required is 7365 + 2623 + 19241 +

8706 + 9368 + 4396 = 51699. The length of chains is at most 300, meaning a single

vector takes 300 clock cycles and time required for capture. It is sufficient to estimate

the time of capture cycle as 3 shift clock cycles for both static and dynamic tests. At a

shift frequency of 20 MHz this would mean testing a single chip takes 47 seconds. Table

4 documents the coverage across the chip. Subsystems reach reasonable rates, but due

to non-compression scan not working on top level, especially dynamic fault testing does

41

not have great coverage. It is also important to note that these numbers include all pos-

sible faults, including those that are known to be untestable, such as unused pads or test

structures such as the JTAG macro.

Table 4. Coverage of logic faults in hierarchies

 DYNAMIC STATIC

ETHERNET 82.34 94.75
HPC - 95.50
AI - -
C2C PARALLEL - 91.65
C2C SERIAL - -
DDR - 93.62
DSP - 94.76
TOP 57.95 91.93

Initially, no limit on the number of IOs was set as no tester was designated for the pur-

pose. The number of pins needed to achieve the 47 second test time is 90. If the tester

cannot support this many pins, subsystems can be tested separately, bringing the mini-

mum of pins needed down to (scan_enable + JTAG + subsystem scan IOs), which would

allow a tester to completely test the chip without compression and OPCG at 19 pins, with

compression and OPCG (previous + mask_enable + mask_load + opcg_load + async.

clock) at 23 pins.

MBIST was inserted in the Ethernet and AI blocks as well as the top level. The coverage

of it is hard to analyze, especially without measured data but it should be sufficient to

test most of the faults, depending on which fault model is used. As with OPCG, tight

deadlines kept MBIST from being added to some blocks. The most important of these is

the HPC, as it contains a lot of memories but with AI and top covered most of the memory

area on the chip can be tested and repaired if needed. Note that unlike scan, MBIST can

be run as the interfaces connect to the SysCtrlCPU, but at the time of writing chips have

not been manufactured and cannot be tested on.

Boundary scan is the only part that was completed as planned. IOs of C2C serial were

not included in the boundary chain as this block was done completely without DFT and

SDRAM IOs were excluded due to different structure, excluding that all IOs were part of

the boundary chain. This is expected to help the PCB designers a lot if any issues arise.

42

6. CONCLUSIONS

The purpose of this thesis was to explore and implement a robust DFT strategy for a

modern SoC. The faults to be tested for were first expanded on in chapter 1. Common

strategies, conventions and standards were summarized in chapter 2. The used platform

and targets and requirements for it were presented in chapter 3 and lastly the implemen-

tation was described in chapter 4 with results of it in chapter 5.

The initial target was to be able to test at least 95% of static faults and 75% of dynamic

faults, as well as some types of faults present in memories. The targets were partly met,

with short timeline being the major obstacle. Without DFT the chips would have been

practically untestable, as the test would have to have been created using software, and

as such the work was successful. No tests were yet performed on a physical chip as they

were not available at the time of writing.

Only research left for this work is to apply the tests on the physical chips. Issues may still

be found this way, and the interesting part would be diagnosing faulty chips and possibly

even pinpointing faults that are present. Any of the strategies may be used in future chips

as well, possibly complemented with more exhaustive testing strategies, such as

IEEE1149.6 and Logic Built-In Self-Test (LBIST).

43

REFERENCES

[1] H. H. Butt, ASIC DFT techniques and benefits, Sixth Annual IEEE International
ASIC Conference and Exhibit, Rochester, NY, USA, 1993, pp. 46-53

[2] Modus guide 4: Faults, Cadence Design Systems

[3] J. Rearick, B. Eklow, K. Posse, A. Crouch and B. Bennetts, IJTAG (internal
JTAG): a step toward a DFT standard, IEEE International Conference on Test,
2005., Austin, TX, USA, 2005, pp. 815-823

[4] Modus guide 5: ATPG, Cadence Design Systems

[5] F. Zokaee, H. Sabaghian-Bidgoli, V. Janfaza, P. Behnam and Z. Navabi, A
novel SAT-based ATPG approach for transition delay faults, 2017 IEEE Interna-
tional High Level Design Validation and Test Workshop (HLDVT), Santa Cruz,
CA, USA, 2017, pp. 17-22

[6] J. Mahmod, S. Millican, U. Guin and V. Agrawal, Special Session: Delay Fault
Testing - Present and Future, 2019 IEEE 37th VLSI Test Symposium (VTS),
Monterey, CA, USA, 2019, pp. 1-10

[7] Von-Kyoung Kim and T. Chen, On comparing functional fault coverage and de-
fect coverage for memory testing, in IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 18, no. 11, pp. 1676-1683

[8] Jin-Fu Li, Kuo-Liang Cheng, Chih-Tsun Huang and Cheng-Wen Wu, March-
based RAM diagnosis algorithms for stuck-at and coupling faults, Proceedings
International Test Conference 2001 (Cat. No.01CH37260), Baltimore, MD, USA,
2001, pp. 758-767

[9] H. B. Shashidhara, S. Yellampalii and V. Goudanavar, Board level JTAG/bound-
ary scan test solution, International Conference on Circuits, Communication,
Control and Computing, Bangalore, India, 2014, pp. 73-76

[10] J. T. Sousa, T. Shen and P. Y. K. Cheung, Realistic fault extraction for boards,
Proceedings ED&TC European Design and Test Conference, Paris, France,
1996, p. 612

[11] G. Lakshmi Ch, V. U. Sankar and S. S. Yellampalli, A Reference Based Ap-
proach to Detect Short Faults in PCB, 2021 Fifth International Conference On
Intelligent Computing in Data Sciences (ICDS), Fez, Morocco, 2021, pp. 1-7

[12] IEEE Standard for Test Access Port and Boundary-Scan Architecture, IEEE Std
1149.1-2013 (Revision of IEEE Std 1149.1-2001), 13 May 2013, pp. 1-444

[13] IEEE Standard for Boundary-Scan Testing of Advanced Digital Networks, IEEE
Std 1149.6-2015 (Revision of IEEE Std 1149.6-2003), 18 March 2016, pp. 1-230

[14] IEEE Standard for Reduced-Pin and Enhanced-Functionality Test Access Port
and Boundary-Scan Architecture, IEEE Std 1149.7-2022 (Revision of IEEE Std
1149.7-2009), 14 Oct. 2022, pp.1-1048

44

[15] IEEE Standard for Access and Control of Instrumentation Embedded within a
Semiconductor Device, IEEE Std 1687-2014, 5 Dec. 2014, pp. 1-283

[16] IEEE Standard for Test Access Architecture for Three-Dimensional Stacked In-
tegrated Circuits, in IEEE Std 1838-2019, 13 March 2020, pp. 1-73

[17] A. H. Boyce, An introduction to digital testing, 1988 IEE Colloquium on Design
for Testability (Digest No. 1988/32), London, UK, 1988, pp. 1-3

[18] S. DasGupta, E. Eichelberger and T. Williams, "LSI chip design for testability,"
1978 IEEE International Solid-State Circuits Conference. Digest of Technical
Papers, San Francisco, CA, USA, 1978, pp. 216-217

[19] A. Chandra, S. Chebiyam and R. Kapur, A Case Study on Implementing Com-
pressed DFT Architecture, 2014 IEEE 23rd Asian Test Symposium, Hangzhou,
China, 2014, pp. 336-341

[20] K. J. Balakrishnan, Emerging Techniques for Test Data Compression, 14th
Asian Test Symposium (ATS'05), Calcutta, India, 2005, pp. 462-462

[21] S. Alampally, J. Abraham, R. A. Parekhji, R. Kapur and T. W. Williams, Evalua-
tion of Entropy Driven Compression Bounds on Industrial Designs, 2008 17th
Asian Test Symposium, Hokkaido, Japan, 2008, pp. 13-18

[22] S. Bahl et al., Unifying scan compression, 2014 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
Amsterdam, Netherlands, 2014, pp. 191-196

[23] J. Rajski, N. Tamarapalli and J. Tyszer, Automated synthesis of large phase
shifters for built-in self-test, Proceedings International Test Conference 1998
(IEEE Cat. No.98CH36270), Washington, DC, USA, 1998, pp. 1047-1056

[24] A. A. Bawa, M. T. Rab and N. A. Touba, Using partial masking in X-chains to in-
crease output compaction for an X-canceling MISR, 2012 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Sys-
tems (DFT), Austin, TX, USA, 2012, pp. 19-24

[25] J. Savir, Skewed-Load Transition Test: Part I, Calculus, Proceedings Interna-
tional Test Conference 1992, Baltimore, MD, USA, 1992, p. 705

[26] J. Savir and S. Patil, Broad-side delay test, in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 13, no. 8, pp. 1057-1064

[27] IEEE Standard Testability Method for Embedded Core-based Integrated Cir-
cuits, IEEE Std 1500-2022 (Revision of IEEE Std 1500-2005), 12 Oct. 2022,
pp.1-168

[28] J. Hirase, N. Shindou and K. Akahori, Scan chain diagnosis using IDDQ current
measurement, Proceedings Eighth Asian Test Symposium (ATS'99), Shanghai,
China, 1999, pp. 153-157

[29] R. Kawahara, O. Nakayama and T. Kurasawa, The effectiveness of IDDQ and
high voltage stress for burn-in elimination [CMOS production], Digest of Papers
1996 IEEE International Workshop on IDDQ Testing, Washington, DC, USA,
1996, pp. 9-13

45

[30] A. Sharma and V. Ravi, Built in self-test scheme for SRAM memories, 2016 In-
ternational Conference on Advances in Computing, Communications and Infor-
matics (ICACCI), Jaipur, India, 2016, pp. 1266-1270

[31] L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel and S. Borri, March iC-: an
improved version of March C- for ADOFs detection, 22nd IEEE VLSI Test Sym-
posium, 2004. Proceedings., Napa Valley, CA, USA, 2004, pp. 129-134

[32] A. Benso, S. Di Carlo, G. Di Natale and P. Prinetto, An optimal algorithm for the
automatic generation of March tests, Proceedings 2002 Design, Automation and
Test in Europe Conference and Exhibition, Paris, France, 2002, pp. 938-943

[33] S. Hamdioui, R. Wadsworth, J. Delos Reyes and A. J. van de Goor, Importance
of dynamic faults for new SRAM technologies, The Eighth IEEE European Test
Workshop, 2003. Proceedings., Maastricht, Netherlands, 2003, pp. 29-34

