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1. Introduction

Acoustic microfluidics—acoustofluidics—is a rapidly growing
field, where an acoustic source creates ultrasonic waves that
are used to contactlessly manipulate particles,[1–4] cells,[5–8] or
droplets[4,9,10] within microfluidic chips.[11] Many different appli-
cations have been demonstrated, including particle sorting,[1,12]

blood fractionation,[6,13] cell sorting,[6,14,15] cell patterning,[8,16–20]

and droplet microreactors,[9,17,21] among others.
The contactless nature of the acoustic force simplifies the

fabrication of the chip. In the case of bulk acoustic waves, the
chip itself can be a passive glass device, with the ultrasonic waves

produced by a piezoelectric transducer
attached to the chip.[11] In the case of sur-
face acoustic waves, the driving electrodes
can be located away from the channels. The
chip channels can be also closed, unlike in
manipulation involving tools, such as pip-
ettes[22,23] or needles,[24,25] that need to be
in direct or close contact with the manipu-
lated object. Acoustic manipulation is well-
suited for applications involving cells and
living organisms,[26,27] because the acoustic
force exerted on a particle scales with its
volume, preventing applying excessively
large forces on tiny particles.[28]

The early work in the field of acoustoflui-
dics focused on using simple static acoustic
fields, generated by a single transducer
excited at a single frequency.[15,29–33] The
range of manipulations that can be
achieved with such a field is fairly limited;
generally, the particles just migrate toward
the nodes of the standing wave acoustic
field.[1,9,34] More recently, methods based
on more complex fields[20,35–37] have been

put forward, including methods based on time-varying fields[38]

and fields from multiple transducers.[3,20,37] The challenge with
such methods is that they require accurate modeling of the
acoustic fields and calibration of the acoustic parameters, includ-
ing knowledge of the acoustic properties of the materials
involved. The experimentally observed field shapes often deviate
significantly from theoretical models,[39] and the properties of the
materials can change, e.g., the speed of sound and viscosity both
depend on the temperature.[40]

Therefore, recent works and our group have explored methods
based on machine learning to overcome the difficulty of using
first principles to predict particle motion in acoustic fields. In
Zhou et al.,[41] our coauthors reported a data-driven control
method for the 2D manipulation of particles on a flexural vibrat-
ing plate (Chladni plate) and demonstrated the manipulation of
single and multiple particles. The method was based on model-
ing the particle motion based on a large dataset, collected by
using machine vision to monitor the particle motion in response
to different frequencies (1–30 kHz). The dataset consisted
altogether of �390 000 data points. During manipulation, the
algorithm only varied frequency, because that determines the
overall shape of the Chladni pattern, and therefore the direction
of motion of the particles. The amplitude and duration of the
driving signal were kept constant for each frequency, as these
mostly determine the magnitude of particle displacement per
step, as was demonstrated in the article.
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Acoustic manipulation is a technique that uses sound waves to move particles,
droplets, or cells. Closed-loop control methods based on complex, time-varying
acoustic fields have been demonstrated, but usually require accurate models of
the acoustic fields or many training experiments for successful manipulation.
Herein, a new adaptive control method is proposed for the acoustic manipulation
of single and multiple particles inside microfluidic chips. The method is based on
online machine learning of the acoustic fields. Starting with no knowledge of the
fields, the controller can manipulate particles even on the first attempt, and its
performance improves in subsequent attempts, yet can still readapt if the models
are invalidated by a sudden change in system parameters. The controller can
generalize: it can use information learned from one task to improve its perfor-
mance in other tasks. Despite the machine-learning nature of the controller, the
internal models of the controller have a physical interpretation and correspond to
the experimentally observed acoustic fields. The online adaptiveness of the
controller should make it easier to use in practical applications, such as particle
and cell sorting, microassembly, labs-on-chips, and diagnostic devices, as the
method does not require extensive training or prior models.
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Despite a large amount of data, the method suffered from
having no adaptivity; any change in system parameters (e.g., a
change in how the plate was mounted to the transducer or addi-
tional damping on the plate) could cause discrepancies between
the system and the data-driven model, requiring an entirely new
dataset to be collected for the model. A model discrepancy often
caused the controller getting stuck, because it kept on choosing
frequencies solely based on the model, but the particles did not
move as the model predicted. Therefore, control methods with
online learning and adaptivity would still be needed.

Later, Latifi et al.[42] explored a control method based on
reinforcement learning, where neural networks were used to esti-
mate the Q-function, the expected reward for each action taken.
In their case, the Q-function is an estimate of howmany pixels or
micrometers a particle travels toward its targeted destination if a
particular frequency is actuated. The method was based on using
multiple training episodes, with each training episode consisting
of manually placing the particle at its starting point and then
using the controller to try to complete the manipulation task.
Here also, there was no adaptivity within each training episode;
the learning was done offline between the episodes. The control-
ler was also trained using a simulator, for which pre-existing
data-driven models of the particle motion were anyway needed.
With a single particle, the controller was not able to complete the
manipulation task typically for the first 10 episodes or so. For the
successful manipulation of three particles, 50 000 training epi-
sodes were done. Changing the target points or the manipulation
task required retraining of the controller, and the number of
training episodes is very large if all the experiments would have
been done on a real system without the existence of a simulator.

Raymond et al.[43] showed that deep-learning neural networks
can learn and predict acoustic field shapes from surface traveling
waves within chambers of various shapes. The network was
trained using a large data set, generated by simulating acoustic
field shapes in various chamber geometries. The predictions of
the network were validated both against experimental and simu-
lated results.

In our previous works, we reported reinforcement learning
methods for manipulating particles[1] and droplets[9] inside
closed-channel microfluidic chips with bulk acoustic waves.
The methods were derived from the family of multiarmed bandit
algorithms; specifically, the UCB-1 and ε-greedy algorithms.[44]

The algorithms start with no prior knowledge of the device
parameters (e.g., device dimensions, or models of the acoustic
fields), but are able to perform the assigned manipulation tasks
even on the first attempt, including: 1) particle and droplet trans-
port through a defined route; 2) manipulation of three particles
simultaneously; 3) merging multiple droplets; and 4) transport-
ing a particle to a defined outlet of the chip (particle sorting). The
algorithms were learning online how to manipulate the particles/
droplets and were able to adapt in sudden system changes during
the experiment. However, the problem with that method was the
lack of long-term memory; the algorithms did not have any inter-
nal model of the acoustic fields. The algorithms only learn how
the particles move locally and forget this by the time the particle
has traveled sufficiently far away from the current position.
Therefore, in every manipulation experiment, the controller tries
frequencies by trial and error, to find which frequency moves the
particles toward their current waypoint. Consequently, the

controller suffers from long manipulation times, and poor
path-following accuracy.

In this article, we develop the ideas of our previous multi-
armed bandit-based algorithms further, by incorporating a
long-term memory to them. The long-term memory is based
on a regression model of the acoustic field shapes, but instead
of using black box models like neural networks, we develop
our models based on physical insights of the acoustic waves
inside the chamber. Importantly, the controller is still fully learn-
ing and adapting online. The models are not based on data or
simulations obtained prior to the manipulation, and there are
no training episodes. Instead, model parameters are initialized
as zeros, and after every control step, the controller observes
how particle(s) move in response to a particular frequency and
updates its model parameters for that frequency, so that the mod-
els start converging toward the field shapes. We call the proposed
new controller the acoustic-model-based adaptive controller, or
AMA controller for short.

For each frequency, we use a regression model to estimate the
Gor’kov[45] potential for that frequency and assume that the par-
ticle motion is driven by the gradient of the Gor’kov potential.
The specific regression method is a sparse regression method,
with sinusoidal basis functions. This can be viewed as the regres-
sion of the 2D Fourier series coefficients of the Gor’kov potential.
The sparsity requirement is justified by the insight that even
though multiple modes of the chamber could be excited simul-
taneously, most of the time only a few modes near the driving
frequency or its harmonics should be dominant.

The controller proposed in this article has similarities to
model predictive controllers and reinforcement learning algo-
rithms: 1) the controller maintains a model to estimate how
the particles move if a particular action (frequency) is chosen,
given the current positions of the particles; 2) has a rule to update
the model after every control cycle, based on the observed
motions of the particles; and 3) balances exploration and exploi-
tation, exploiting the frequencies known to produce best results
while occasionally exploring alternatives by testing new
frequencies.

Using the experimental setup in Figure 1a, we show that the
proposed method can successfully manipulate single particles
without any prior knowledge of the acoustic fields, and the
manipulation is faster in subsequent repetitions. The controller
completes the first attempt of a single particle manipulation task
in �50min, while after five repetitions, the task took only �10
min. The same task takes �140min to complete with the ε-
greedy controller from our previous work. In addition, just by
performing a single training task with a single particle, the pro-
posed control method can generalize and shows improved per-
formance in a manipulation task it has never completed before.
Comparing the acoustic field models of the controller, obtained
from single particle manipulation experiments, to the experi-
mental patterns formed by many particles accumulating in static
acoustic fields (Chladni patterns), we see a clear correspondence
between the models of the controller and the Chladni patterns.
Despite the long-term memory, the controller remains still adap-
tive and can relearn all the acoustic field models even when the
models are invalidated, e.g., when we change the physical chip to
another chip design or when we artificially shift all the
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manipulation frequencies by 10%, both without explicitly telling
the controller about the change in the system.

In short, the advantages of the new control method are:
1) manipulations are generally successful even on the first try;
2) the time to complete the manipulation and how accurately
the particles follow the designated paths improve as the control-
ler accrues information about the acoustic field shapes inside the
chip; 3) the controller can generalize information learned from
one task toward completing other tasks; 4) the field models can
be validated by comparing them to acoustic field shapes obtained
using other means; 5) it still has the online learning nature of our
previous controller and can correct its models even after the
properties of the system have dramatically changed.

This paves the way toward the use of acoustic manipulation in
practical microfluidic applications, such as particle and cell sort-
ing, microassembly, labs-on-chips, and diagnostic devices, where
it is likely unfeasible to expect the user to conduct the large num-
ber of training experiments every time the chip or the chip
parameter has changed and where it is difficult to derive the
acoustic field shapes from first principles. The algorithm is also
suitably general that it should be in principle adaptable to other
acoustic manipulation setups, e.g., manipulation of particles on a
flexural vibrating plate,[41] which produces similar Chladni pat-
terns as bulk acoustic waves even though the boundary condi-
tions are different. The algorithm should be adaptable even to
multitransducer surface acoustic wave devices,[14] where instead
of controlling only the frequency of the signal, the algorithm
would explore different combinations of phases and relative
amplitudes of the signals used to drive the transducers. When
adapting the algorithm to other manipulation platforms, alterna-
tive regression models that correspond better to the physics of
the manipulation setup should be tested (e.g., models predicting

uniform displacement across the field for each combination of
parameters).

2. Control Algorithm

Details and pseudocode of the proposed acoustic-model-based
adaptive (AMA) controller are given in the Note, Supporting
Information; here we develop the main ideas behind the
algorithm.

2.1. Control Cycle

The basic control cycle is shown in Figure 1b. At the beginning of
each control cycle, the controller has the machine vision-detected
positions of the particles and must decide which frequency to
actuate next. The frequency is chosen from a discrete set A of
100 linearly spaced frequencies in the range of 65–700 kHz.
The choice between exploration and exploitation is made ran-
domly, similar to the ε-greedy algorithm[44]; with the probability
of ε, the frequency is chosen completely randomly, while other-
wise, the controller chooses the frequency that takes the particles
closest to their current targets, according to its internal acoustic
model.

In exploitation, the controller greedily chooses the frequency
which minimizes a cost function that embeds the manipulation
task (greedy choice means here we do not predict the particle
positions more than one control step into the future). The cost
function J is typically of the form

JðpÞ ¼
X
j

jjtj � pjjj (1)

Figure 1. a) Schematic diagram of the experimental setup. b) Flowchart of the control algorithm.
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where tj and pj are, respectively, the current target and the
current position of particle j, in 2D. When manipulating multiple
particles, to avoid clustering and agglomeration, a penalty was
added to the cost function when the distance between two
particles Δp was less than r. The penalty term was proportional
to ðjjΔpjj=rÞ�12 � 1, which increases sharply if two particles are
closer than r i.e., the cost function was of the formP

jjjtj � pjjj þ
P

i>jCð½jjpi � pjjj=r��12 � 1Þ, where C and r are
constants setting the strength and cut-off distance of the “repul-
sion” between the particles. When manipulating multiple par-
ticles simultaneously, we used r ¼ 1.5mm and C ¼ 1mm.

Using the models for each frequency, the chosen frequency a�

is found with

a� ¼ argmin
a∈A

Jðpþ daðpÞÞ (2)

where daðpÞ are the predicted particle displacements for the fre-
quency a, given their current positions. From now on, we will
drop all subscripts of a for brevity, but it should be kept in mind
that all the acoustic field models and corresponding predictions
of particle motions are always specific to a particular frequency a.

After choosing a frequency, the controller actuates the
frequency with a sinusoidal driving signal for a duration of
t= 0.5 s and a voltage ofUpiezo ¼ 25V. In our setup, the machine
vision algorithm takes 0.1 s to detect the particles from the cap-
tured image, so the actuation time was chosen to be short but still
significantly longer than the machine vision detection time, so
that the actuator would be driven and particles moving for most
of the time. The actuation voltage was chosen as a decent trade-off
between accuracy and manipulation time (see Results). The new
positions of the particles are then detected using machine vision
and the internal acoustic model of the controller is updated with
the new information of the particle displacements. The control
cycle is repeated until the manipulation task is finished.

2.2. Modeling the Acoustic Fields

The primary acoustic force F on the particle can be found with

F ¼ �∇U (3)

where U is the Gor’kov potential[45] of the acoustic field. Gor’kov
developed a closed-form solution for U, which depends on the
time-averaged squared pressure and velocity fields, and material
and particle size-dependent constants. Here, the closed-form
solution is unimportant, because we have no prior knowledge
of the acoustic field shapes, but we use data-driven regression
to directly model U.

Our particles are small and in a viscous liquid (water), so we
assume the particles reach the terminal velocity v during each
manipulation cycle, and that the acoustic force is perfectly
countered by the Stokes drag, so that

F � v (4)

We then assume that the actuation cycle is short, so that
displacements d of the particles are much shorter than the wave-
length. Therefore, the Gor’kov potential gradient can be consid-
ered constant within one actuation cycle and

d � tv (5)

Putting Equation (3)–(5) together, we have

d ¼ ∇U
�

(6)

where U
�

is the scaled Gor’kov potential (U
� � U, sign flipped for

brevity), multiplied by the factors of time, and drag, which are
independent of the frequency. Note also that magnitude of the
Gor’kov potential and drag depend on the particle size, but this
scaling is again the same for all frequencies.

We now assume that U
�
in Equation (6) can be approximated

by a finite 2D Fourier series

U
� ðpÞ ¼

X
ðm, nÞ∈M

cmne
iπ mpx

L þnpy

W

� �
(7)

where m and n are integer indices from the finite set M, cmn are
the Fourier coefficients, px,y are, respectively, the x and y compo-
nents of the position of particle p, and L andW are the chamber
length and width, L ¼ 7mm and W ¼ 6mm in our case. The
Fourier coefficients were constrained so that the regressed
Gor’kov potential remained always a real-valued function; in
practice, this was done by writing the Fourier transform in its
trigonometric form[46] with real-valued coefficients (see Note,
Supporting Information), but here the equations are given in
complex form for compactness. It is reasonable to assume that
cmn � 0 for frequencies much higher than the highest frequency
we ever use to actuate the chamber, so M can be chosen to
roughly cover the frequencies we use during manipulation.

The justification for using a Fourier series is that Equation (7)
has a clear relationship to the acoustic modes of a rectangular
chamber. The pressure fields P of standing wave modes inside
a hard-walled rectangular chamber are given by

Pm,nðx, yÞ � cos
πmx
L

� �
cos

πny
W

� �
(8)

where m and n are now the mode numbers. Note that the
Gor’kov potential depends on the time-averaged square of the
pressure field,[47] but the effect of squaring of the pressure is that
the wavelengths in the Gor’kov potential fields are essentially half
the wavelengths of the pressure fields. In practice, this detail is
unimportant to us, because we anyway find the Gor’kov potential
using a regression method. Also note that Equation (7) gives
functions that are periodic with a period of ½2L, 2W �.
Theoretically, with infinite Fourier series, we could have consid-
ered Fourier series with a period of ½L,W�. However, with finite
Fourier series, this would artificially force the function to be
continuous when wrapping around chamber walls, which might
not be true in practice, because our chambers are not ideal rec-
tangles and chamber boundaries are not infinitely hard. This is
why we considered functions with a period of ½2L, 2W �.

2.3. Adaptive Update of the Model

For each frequency, we collect a dataset of observed particle
displacements D and starting positions of the particles P, with
Pk denoting the row of the data and Px

k its x-component, and our

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2300058 2300058 (4 of 11) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


goal is to find the coefficients cmn in Equation (7). Combining the
Equation (6) and (7), we have for the x-direction

Dx
k ¼

iπm
L

X
m, nð Þ∈M

cmne
iπ

mPx
k

L þnPy
k

W

� �
þ e (9)

where the superscripts x and y denote the x and y components of a
vector and e is the modeling error. The equation for the y-direction
is similar. These equations give a regression problem of the form

d ¼ Xcþ e (10)

where d now has all the x and y displacements stacked into a col-
umn vector, c has all the coefficients cmn stacked into a column
vector, and X is a matrix of the explaining variables, calculated
using Equation (9) or its y-direction counterpart.

There could be many ways to solve the regression problem in
Equation (10), including the least square method[48] and Ridge
regression,[49] among others. Here, we use further physical
insights to guide us: even though the acoustic field might be
a superposition of multiple different modes, it is still reasonable
to assume that it is dominated only by few modes, near to the
actuation frequency or its harmonics. Therefore, most of the
coefficients cmn should be zeros. In other words, we want to find
a solution to (10) that is sparse. We do this by finding c with

minc
1
K
jjd� Xcjj22 þ λjjcjj1

� �
(11)

where K is the number of datapoints. Such a problem can be
solved efficiently with the LASSO algorithm.[50] The efficiency
is important here as the problem needs to be solved once every
control step. In the problem, λ is a parameter controlling
the sparsity of the solution; with λ ¼ 0, the problem is just a
classical least squares regression problem, while λ ! ∞ gives
cmn ¼ 0∀m, n.

In Equation (10), all observations regardless of their age are
given equal importance. However, because the acoustic proper-
ties of the system can change, we want to emphasize more recent
observations. This was done by weighting the observations by
a factor of γ�s, where γ is the forgetting factor, γ ∈ ð0, 1�, and
s is the number of times the same frequency has been actuated
since this observation. In the practical implementation, very old
data points with small weights can be discarded from the data, as
they do not significantly affect the results of the regression. This
avoids the memory requirements of the algorithm growing
infinitely.

3. Results and Discussion

3.1. Manipulation of a Single Particle

To test the proposed AMA controller in acoustofluidic manipu-
lation, we used a glass microfluidic chip with a piezoelectric
transducer attached to its backside. A schematic of our experi-
mental setup is shown in Figure 1a. The design of the chip is
similar as in our previous work[1] and the design of the chip
is shown in Figure S1, Supporting Information. The chip was
wet etched from a fused silica glass wafer. Inside the chip,

the manipulation takes place in a rectangular chamber, with inlet
and outlet channels for the fluid and the particles. Two different
chip designs were used, one with a single outlet to demonstrate
the basic manipulation, and one with three outlets, demonstrat-
ing applications in particle sorting, where the particle was guided
to one of the outlets. The chip was illuminated by an LED light
source and observed with a camera. The positions of the particles
were tracked by a machine vision algorithm.

To compare the AMA controller to the ε-greedy controller
from our previous work,[1,9] we performed a manipulation exper-
iment where both controllers were tasked to guide a polystyrene
particle (diameter: 70 μm, density: 1.05–1.06� g cm�3) through
a rectangular path, with the controller starting with no knowledge
of the acoustic field shapes. Polystyrene microparticles have a
positive acoustic contrast factor (Xue et al. calculated it as
0.58),[51] so they migrate toward the pressure nodes of the acous-
tic field. With the AMA controller, we repeated the rectangular
path for five consecutive times. All experiments were repeated
five times from the beginning. The results from these experi-
ments are summarized in Figure 2a–d. Even when the AMA con-
troller completed the task for the first time, it outperforms the ε-
greedy controller considerably, which is evident from the time it
took to complete the manipulation (Figure 2a,�50min for AMA,
�108min for ϵ-greedy) and can also be seen from the accuracy of
the manipulation (how closely the controller follows the planned
path, Figure 2b,d, see also Video S1 and Figure S2, Supporting
Information). The ε-greedy has no long-term memory, and it is
agnostic to the physics of the chamber, so repeating the task does
not yield better results. Meanwhile, during consecutive cycles,
the AMA controller learns to complete the task faster; the first
manipulation cycle took 35–60min, whereas the fifth manipula-
tion cycle took only 6–20min.

For each manipulation experiment, we calculate the manipu-
lation accuracy as follows: 1) For each position of the particle,
find the shortest distance of the position to the planned path
of the particle. 2) Calculate the median of these distances as a
single number representing the typical accuracy of the manipu-
lation. The manipulation accuracies for the data in Figure 2a are
shown in Figure S2, Supporting Information. The manipulation
accuracy improved during subsequent repetitions of a task. In
the two examples showed in Figure 2b,c, on the first cycle the
manipulation accuracy was 0.11mm, whereas on the fifth cycle
the manipulation accuracy was 0.04mm. Figure S2, Supporting
Information, shows that the manipulation accuracy for the AMA
controller during the first cycle (0.11mm) was comparable to the
manipulation accuracy of the ε-greedy controller (0.10mm), but
after five cycles, the manipulation accuracy of the AMA controller
was significantly better (0.04mm) than the manipulation
accuracy of the ε-greedy controller.

To further compare the performance of the AMA controller to
the ε-greedy controller, we redid the particle sorting experiments
as in our previous article.[1] With a chip with three outlets, we
sorted 30 particles, with 10 particles into each of these outlets.
Examples of the sorting experiments are shown in Figure S3,
Supporting Information. The average sorting time per particle
was 7.7 min, whereas in our previous article, ε-greedy controller
achieved sorting times in the range of 13–20min.

In sum, all these experiments show that the AMA controller
outperforms the ε-greedy controller, both in terms of
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manipulation time and accuracy, and can retain knowledge from
past experiments.

To show that the method is not limited to manipulating
specific objects, e.g., particles of specific material and diameter,
we tested manipulating 50 and 100 μm diameter polystyrene
particles in water, and �160 μm water droplets in hexadecane
oil. The manipulation used the same pretrained models as in
Figure 2e. The results are shown in Figure S4, Supporting
Information. The manipulation times and accuracies slightly var-
ied depending on the object being manipulated, but the manip-
ulation was always successful. With the droplet in particular, the
successful manipulation is notable, because the manipulation
medium was hexadecane instead of water, so the pretrained
models do not correspond well to the acoustic field shapes in
hexadecane.

Note that in the current experimental setup, the hard limit in
the size of the manipulated particles is the height of the chamber,
150 μm, which suggests that the droplet was already being
squeezed by the chamber lid and bottom. On the other end,
our imaging system and machine vision algorithm start losing

the tracking of the particles when they are smaller than
25 μm. These practical engineering limitations suggest that
closed-loop vision-based acoustofluidic manipulation setups
need to be designed somewhat to target a specific size range
of manipulated objects, but these kinds of limitations apply to
any vision-based closed-loop acoustofluidic manipulation and
are not particularly specific to the control algorithm proposed
in this article.

Both the manipulation time and manipulation accuracy are
affected by the actuation voltage (power). To show this, we tested
different voltages (15, 25, and 40 V) and completed the same
manipulation task as in Figure 2b. The results are shown in
Figure S5, Supporting Information. Higher voltages resulted
in faster manipulation (40 V: 40min vs 15 V: 83min), but poorer
accuracy (40 V: 0.12mm vs 15 V: 0.1 mm). 25 V was chosen as a
decent tradeoff between these two, but for practical applications,
voltage should be chosen based on the requirements of the
application.

To show that the controller can generalize its knowledge to
tasks that it has never done before, we first trained the controller

Figure 2. a) Manipulation times for the proposed AMA controller, compared to the ε-greedy controller from our previous work.[1] The task is to manipu-
late a single particle through a rectangular path. Notice the logarithmic scale on the y-axis. During subsequent repetitions of the task, the AMA controller
has built knowledge of acoustic field shapes and can better predict how the particle will move, resulting in shorter manipulation times. The images in
panels b-d correspond to the data points indicated in the Figure b–d) Examples of the manipulation paths from different experiments. Notice that
(b,c) exemplify the slowest manipulations with the AMA controller, while (d) exemplifies the fastest manipulation done with the ε-greedy controller;
comparing the median results would show the AMA controller outperforming ε-greedy controller even more. The manipulation times and accuracies
were 60min and 0.13mm (b), 15min and 0.08mm (c), 110min and 0.1 mm (d). e) A fully trained AMA controller completing a manipulation task it has
never done before (a complex path with four different sections). The manipulation accuracies were 0.05mm (T), 0.06mm (U), 0.05mm (N), and
0.04mm (I). f ) The AMA controller completes the same task as in e) without any training. The manipulation accuracies were 0.47mm (T),
0.09mm (U), 0.22mm (N), and 0.09 mm (I). All scale bars: 1 mm.
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using a generic manipulation task and then tested it on a
completely new manipulation task. The training task was
designed so that the particle visited many different points inside
the chamber, covering as much area as possible. To do this, we
used a space-filling curve[52] as the training path of the particle
(Figure S6, Supporting Information). After the training experi-
ment was completed, we used the trained model to manipulate
a particle along a path that the controller had never completed
before. Figure 2e,f show the results. As it can be seen from
the Figure 2e and Video S2, Supporting Information, the control-
ler was able to generalize to the new task, with the particle
following the path relatively well. Compare these results to the
results shown in Figure 2f, where the manipulation task was
completed without prior training experiments. With the trained
model, the manipulation took �20min to complete, whereas,
without any pretrained model, the manipulation took �150min
to complete. Taking these results together, it shows that the con-
troller has been able to generalize the knowledge it learned from
the training experiment to a task that it has never done before.

Finally, to show that the knowledge accrued by the controller
has a clear relation to the acoustic field shapes in the chamber, we

compared the regression models U
�
, learned during the training

experiments with the space-filling curves, to experimentally
obtained Chladni patterns. The Chladni patterns were obtained
by placing many particles inside the chamber and then driving
the actuator with a particular frequency for 2 s. Assuming the
primary acoustic force is the dominant force, the particles move
toward local minima of the Gor’kov potential, visualizing the
acoustic fields inside the chamber. The results are shown in
Figure 3, with more examples shown in Figure S7–S9,
Supporting Information. The frequencies shown in Figure 3
are among the ones that have been used many times by the con-
troller (Figure S7–S9, Supporting Information). Figure 3 shows a

clear correspondence between the model U
�
and the experimen-

tally observed Chladni patterns. This is somewhat striking, con-

sidering that U
�

was obtained only from single particle

manipulation data, instead of a population of particles. These

results show that the internal regression model U
�

of our
AMA controller has a physical interpretation: it approximates
the Gor’kov potential for that frequency.

Overall, these manipulation experiments show that the pro-
posed controller learns from the past experiments and develops
physically meaningful knowledge about the acoustic fields inside
the chip, but is also able to complete the manipulation tasks even
on the first try, albeit more slowly.

3.2. Adaptiveness of the Controller

To show that the AMA controller can adapt even to radical
changes in the system parameters, we designed an experiment
where a controller was first trained on a particular chip, as in
Figure 2e, and then we changed the manipulation system in dif-
ferent ways, without telling the controller explicitly about the
change. We changed the system in two ways: 1) by suddenly
increasing all manipulation frequencies by þ10%. The original
frequencies were 100 frequencies linearly spaced between 65 and
700 kHz and the new frequencies were 100 frequencies linearly
spaced between 71.5 and 770 kHz, but as an example, the con-
troller still uses the model developed for 65 for the 71.5 kHz. The
10% frequency shift is enough to make all the acoustic field mod-
els meaningless[9] and mimics sudden changes in the chamber,
such as a bubble entering the chamber or a large change in tem-
perature. 2) By physically changing the chip to a completely new
one, this time with three outlets instead of one. This emulates a
common use case, where a user disposes an old chip and replaces
it with a new one, possibly with slightly different shapes and
dimensions. We then completed two cycles of the square-shaped
manipulation path in the new conditions. All experiments were
repeated five times.

When the controller must relearn the models, the forgetting
factor γ can become important, with γ ¼ 1, there is no forgetting,
and controller adaptation is expected to be slower, whereas, with
γ < 1, the controller is expected to adapt faster. Therefore, we
also tested γ ¼ 1 and γ ¼ 0.99. The results are shown in Figure 4.

The data show that after the frequency shift (FREQ in
Figure 4), the manipulation took far longer to complete.
However, already in the second cycle, the controller performance
has significantly improved, and the manipulation times are again
comparable to what they were before the frequency shift. This
shows that even trained controllers can readapt to new conditions
in an online manner.

We hypothesized that a controller with a forgetting factor
would adapt faster to changes, i.e., that the adaption would be
faster with γ ¼ 0.99 compared to γ ¼ 1. However, the calculated
P-values are above 0.05, so the data did not support the hypothe-
sis. This also depends on how much data has been accumulated
before the frequency shift. Nevertheless, the advantage of γ < 1
is that very old data with insignificant weights can be safely dis-
carded, so in practice γ < 1 is still recommended because it guar-
antees that the memory requirements of the algorithm do not
increase indefinitely.

Note that if we stopped updating the model (Figure 1b) and
relied solely on the trained model, the controller always got stuck
sooner or later, even without any frequency shift. For example,

Figure 3. Experimental acoustic patterns of the acoustofluidic chamber
compared to the regression-based Gor’kov potential models for the same
frequencies. Scale bar is 1mm.
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we tested manipulating the particle along a rectangular-shaped
path with the trained model but without updating the model any-
more. After 8 min, the particle had not even reached the first way-
point (Figure S10, Supporting Information). This is because of
the greedy nature of the controller in exploitation: if the model of
the greedily chosen frequency has errors and predicts significant

motion toward the current waypoint, but results in no motion of
the particles, then the controller will keep on choosing the same
frequency over and over again.

When the chip was changed to a completely new one (CHIP in
Figure 4), but with the controller trained for the old chip, the
results were similar as with the frequency shift: the first cycle
with the new chip was significantly slower than with the original
chip. Nevertheless, already in the second cycle, the manipulation
times are in the same range as they were before changing
the chip.

In sum, these results highlight the importance of model adap-
tation during the experiments: the controller can adapt to
changes in system parameters and can slowly correct its models
during manipulation and regain its performance.

3.3. Manipulation of Multiple Particles

Finally, to show that the AMA controller is not limited to manip-
ulating a single particle but can be also applied in the manipula-
tion of multiple particles without retraining or changing the
controller, we assigned the controller a task to simultaneously
position four particles in the chamber to different locations
within the chamber. The controller was initialized with the
model obtained from the single particle training experiments.
The results are shown in Figure 5a and Video S3, Supporting
Information. We also performed an experiment where four par-
ticles were manipulated along complex paths simultaneously
within the chamber. The results are shown in Figure 5b. The
results in Figure 5a,b show that the AMA controller can position
multiple particles relatively accurately within the chamber,
although the path following accuracy is degraded compared to
the single particle manipulation. Altogether, these results
demonstrate that the AMA control algorithm is not limited to
manipulating a single particle.

Figure 4. Adaptiveness of the controller. CHIP= a different chip was
used, with a controller that was trained for the previous chip.
FREQ= all manipulation frequencies were increased by 10% from the fre-
quencies the controller was trained with. Cycle 1= first manipulation cycle
in the new conditions. Cycle 2= second consecutive manipulation cycle in
the new conditions. Note the logarithmic scale on the y-axis. The P-values
were calculated using the Welch’s unequal variances t-test.

Figure 5. Multiparticle manipulation. a) Four particles marked with blue symbols are guided to the waypoints marked with red. Each time the particles
reach the defined waypoints new waypoints are assigned. b) Path following experiment with four particles. The manipulation accuracies were: 0.04mm
(T), 0.13mm (U), 0.14 mm (N), and 0.06mm (I). Scale bar is 1 mm.
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4. Conclusion

In this work, we proposed the AMA controller—a controller with
an adaptive acoustic model—for manipulating particles inside
microfluidic chips using bulk acoustic waves from a single trans-
ducer. Simultaneous manipulation of up to four particles was
demonstrated. The controller uses similar approach as the
ϵ-greedy algorithms[1] for balancing exploration and exploitation,
but the novelty in our controller is that the exploitation is based
on a sparse regression model of the acoustic fields, learned for
each frequency in an online manner. The regression model ena-
bles the controller to retain knowledge from past experiments to
better manipulate particles in the future.

We have shown that during subsequent repetitions of a task,
the controller performance is increased, the manipulation times
are shorter, and the precision of the manipulation is better,
because the controller learns the acoustic field shapes.
Furthermore, after training, we have shown that the performance
of the controller improves even in tasks it has never done before,
because the controller learns the acoustic field shapes of the
chamber, not the specific actions required to complete a particu-
lar task. Despite this, the controller is still adaptive and can read-
just its model when it becomes invalid due to sudden changes in
the system parameters.

Compared to the ε-greedy control method we have reported
previously,[1,9] the new controller shows far better path following
precision and the manipulations are faster (e.g., �10min for
AMA and �108min for ϵ-greedy). The poor precision and long
manipulation times were the bottlenecks of applying the previ-
ous controller in practical applications of droplet microfluidics
and particle sorting.[53] Therefore, before acoustic manipulation
can become a routine practice, in applications such as lab on
chips or particle/cell sorters, improving the speed and the preci-
sion is critical. However, even if we now cut down the manipu-
lation times by one order of magnitude, whether this is yet
sufficient depends on the application. In droplet-based labs-
on-a-chips, one can envision devices with only a few droplets,
where each droplet contains assay reagents or samples, and there
are at most a few or perhaps tens of different chemical reactions
taking place. In such a device, manipulation times measured in
minutes might be sufficient, waiting tens of minutes for the
results of a diagnostic test could be entirely reasonable. But in
devices with thousands of particles or droplets, or even millions,
acoustic manipulation which takes several minutes per particle is
likely still too slow. However, in 1D, acoustic sorting with mil-
lions of cells into one of the outlets of a continuous flow device
has been demonstrated; the core idea of our machine-learning-
based algorithm can be adapted to optimize the performance of
such a sorter also in an online manner. Also, even in 2D, it
should be possible to parallelize the manipulations, i.e., have
multiple chambers, each with their own transducer and machine
vision system, to increase the throughput.

Compared to magnetic manipulation, the advantage of our
acoustic manipulation method is that it can manipulate also non-
magnetic materials, including most biological materials. This
makes it easier to apply acoustic manipulation in many different
in vitro bio-applications. However, for in vivo applications, the
nonspecificity of acoustic force can be also considered a disad-
vantage: magnetic fields affect only the magnetic objects inside

the body, having minimal effect on the tissues, whereas high-
power acoustic fields can cause heating of the tissues and soft
tissues damp ultrasound.

Compared to (di)electric manipulation, our method does not
require high voltages, which carry a risk of short circuits when
used in liquid environments. We also do not need patterning of
the electrodes inside the microfluidic chip, which simplifies the
chip fabrication. However, with carefully designed electrodes,
highly localized fields affecting only particles in the immediate
vicinity of an electrode have been demonstrated, which has
allowed sorting single particles or droplets at a high throughput,
e.g., sorting droplets at a rate of 1.6 kHz.[53] Our closed-loop
acoustic manipulation still needs to be sped up by five orders
of magnitude to reach that level of throughput.

Compared to the control algorithm report by Zhou et al.[41] and
other acoustic manipulation methods,[3,41–43] our algorithm does
not need simulated acoustic field shapes, large datasets to predict
particle motions, or a large number of training episodes on how
the particles move in response to different frequencies to be col-
lected prior the manipulation. In our previous article,[1] we
showed that the algorithm from Zhou et al.[41] was not able to
complete any manipulation tasks successfully in this acoustoflui-
dic chip, which was the main motivation for developing adaptive
algorithms that learn online. The reason for not being to
complete any manipulation was the same as in the current work;
here, when we turned off the adaptation (Figure S10, Supporting
Information), the controller will get stuck when it chooses a fre-
quency that it thinks will move the particles in a particular way,
but the frequency does not move the particles at all. In both algo-
rithms, such a model discrepancy will lead the controllers to keep
on choosing the same frequency repeatedly. Also, in the article of
Zhou et al.,[41] the data-driven models of the particle motion were
obtained by distributing the particles throughout the plate man-
ually using tweezers, which is not possible in a closed-channel
acoustofluidic chip that we used here. Comparing the sizes of
objects manipulated, Zhou et al. mostly manipulated 600 μm sol-
der balls, while wemanipulated spherical particles in the range of
50–100 μm, i.e., an order of magnitude smaller.

Finally, the advantage of the proposed AMA controller is that
its internal model is developed based on physical insights; it
models the Gor’kov potential for each frequency. This means that
the model has clear interpretability and can be compared to
experimentally observe acoustic field shapes, like we have done.
This contrasts with black-box models, such as neural net-
works,[42,54,55] which can be difficult to interpret and therefore
it is difficult to understand why the controller acts the way it does.
However, some caution in interpreting the models is in order:
any other phenomena transporting the particles, such as acoustic
streaming[56–58] or fluid flows,[59] will affect the modeling results.
In our case, our particles were relatively large, so the drag force
from acoustic streaming can be assumed to be insignificant, and
the pump was turned off to ensure that the fluid did not flow
during manipulation. But if these other phenomena are signifi-
cant, it may be necessary to fit models that include streaming and
flow effects and not only the primary acoustic force.

In the future, the algorithm could be extended in several ways.
For example, instead of using sinusoidal basis functions for the
regression, one could use other types of functions, e.g., piecewise
polynomials or mode shapes from numerical simulations. Such
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basis functions would likely work better with nonrectangular
chambers. Also, the assumption that the particle motion is only
driven by the primary acoustic force—the gradient of the Gor’kov
potential—means that we assume curl-free fields, whichmay not
be true if the particles were driven by external fluid flows[59] or
acoustic streaming.[56–58] To account for those effects, it would be
easy to have two separate regression models for each frequency,
one for the x-component and one for the y-component of the
particle displacement, with the expense of doubling the number
of parameters in the model.

5. Experimental Section

Design and Fabrication of Acoustofluidic Chips: The CAD diagrams of the
two chips are shown in the Figure S1, Supporting Information. The chips
were fabricated by Klearia, France and by wet etching of 1 mm thick fused
silica glass. In the middle of the chip, there was a rectangular chamber
(length: 7 mm, width: 6 mm, height: 0.15 mm), with one inlet and one out-
let channel for the first chip and three outlets for the second (Figure S1,
Supporting Information). A 1 mm thick fused silica glass lid was thermally
bonded to the chips. Fluidic connectors (Nanoport, IDEX Health &
Science, LLC) were adhesively bonded to the chips, and silicone tubes
were attached to the connectors.

Particle Manipulation Experiments: Schematic of the particle manipula-
tion setup is shown in Figure 1a. A piezoelectric transducer (NCE45,
Noliac, Denmark, 15mm� 15mm� 2mm) was adhesively bonded to
the backside of the chip. The transducer was driven by signals from an
arbitrary waveform generator (PCI-5412, National Instruments), amplified
by a 400W class AB RF amplifier (1400 L, Electronics & Innovation). The
chamber and particles were imaged by a microscope camera (Basler
acA2040-120uc, Germany, with 0.5�magnification), and the 2D positions
of the particles were recorded by a custom machine vision algorithm,
written in MATLAB. To improve particle visibility for the machine
vision to better track them, we illuminated the chamber with a 100W
LED panel.

For the manipulation experiments, we used polystyrene microparticles
(DBP50K/DBP70K, LAB261, Palo Alto, CA, USA, density: 1.05 g cm�3,
diameters: 50/70 μm and 90 938-10mL-F, Sigma-Aldrich, diameter:
100 μm). Polystyrene microparticles have a positive acoustic contrast fac-
tor.[60] We used blue-dyed particles so that the machine vision algorithm
could better detect the particles. Before the experiments, we diluted 1mL
of particle stock solution with 100mL of deionized water and mixed the
solution thoroughly. 1 vol% Triton X-100 surfactant was added to prevent
the particles from agglomerating due to their hydrophobic behavior. The
particles were pumped into the chamber with a syringe pump (Aladdin,
World Precision Instruments). For the manipulation experiments with
droplets, we used the flow-focusing device from our previous work[9] with
2.5 vol% sorbitan monooleate (Span 80, Sigma-Aldrich) in hexadecane oil
(Fisher Chemicals) as the continuous phase and blue-dyed deionized
water as the dispersed phase (droplets). The flow rates were
Qwater = 0.5 μLmin�1 and Qoil = 50 μLmin�1.

Unless otherwise noted, in our experiments, we used ε ¼ 0.1, γ ¼ 0.99,
λ ¼ 2� 10�4, H ¼ 500, M ¼ f1, : : : , 6g � f1, : : : , 6g, t ¼ 0.5 s, Upiezo ¼
25 V, and A was 100 frequencies linearly spaced in the range from 65 kHz
to 700 kHz. In every control cycle, the piezoelectric transducer was driven
by a sinusoidal signal with a duration of half a second. The duration of the
signal was chosen to ensure that there was enough time for the standing
waves to fully develop within the chamber, and so that it was significantly
longer than the time it took for the camera and machine vision algorithm
to detect particle locations (0.1 s).

When manipulating particles along paths, a waypoint along the path
was assigned as the current target of each particle. When a particle
reached within 100 μm of its current waypoint, a new waypoint was
assigned.

Chladni Patterns: To obtain the Chladni patterns in Figure 3, the
chamber was filled with many particles, and the transducer excited with
a particular frequency at a voltage of 67 V for a duration of t ¼ 2 s.
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Supporting Information is available from the Wiley Online Library or from
the author.
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