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In 1876 H. J. S. Smith defined an LCM matrix as follows: let 
S = {x1, x2, . . . , xn} be a set of positive integers with x1 <
x2 < · · · < xn. The LCM matrix [S] on the set S is the n × n
matrix with lcm(xi, xj) as its ij entry. During the last 30 years 
singularity of LCM matrices has interested many authors. In 
1992 Bourque and Ligh ended up conjecturing that if the GCD 
closedness of the set S (which means that gcd(xi, xj) ∈ S for 
all i, j ∈ {1, 2, . . . , n}), suffices to guarantee the invertibility 
of the matrix [S]. However, a few years later this conjecture 
was proven false first by Haukkanen et al. and then by Hong. 
It turned out that the conjecture holds only on GCD closed 
sets with at most 7 elements but not in general for larger sets. 
However, the given counterexamples did not give much insight 
on why does the conjecture fail exactly in the case when n =
8. This situation was later improved in a couple of articles, 
where a new lattice theoretic approach was introduced (the 
method is based on the fact that because the set S is assumed 
to be GCD closed, the structure (S, |) actually forms a meet 
semilattice). For example, it has been shown that in the case 
when the set S has 8 elements and the matrix [S] is singular, 
there is only one option for the semilattice structure of (S, |), 
namely the cube structure.
Since the cases n ≤ 8 have been thoroughly studied in various 
articles, the next natural step is to apply the methods to 
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the case n = 9. This was done by Altınışık and Altıntaş 
as they consider the different lattice structures of (S, |) with 
nine elements that can result in a singular LCM matrix [S]. 
However, their investigation leaves two open questions, and 
the main purpose of this presentation is to provide solutions 
to them. We shall also give a new lattice theoretic proof for 
a result referred to as Sun’s conjecture, which was originally 
proven by Hong via number theoretic approach.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

The concept of an LCM matrix, as well as the concept of a GCD matrix, was originally 
defined by H. J. S. Smith [12] in his seminal paper from the year 1876. Assuming the set 
S = {x1, x2, . . . , xn} to be a finite subset of Z+ with distinct elements, Smith defined the 
GCD matrix (S) of the set S to be the n × n matrix with gcd(xi, xj) as its ij element. 
Similarly, the LCM matrix [S] of the set S was defined to be the n × n matrix with 
lcm(xi, xj) as its ij element. Besides calculating determinant formulas for several GCD 
and LCM type matrices, Smith was also considered the invertibility of GCD and LCM 
matrices. For example, he showed that if the set S is factor closed (i.e. the implication 
(y | x for some x ∈ S) ⇒ y ∈ S holds for all y ∈ Z+), then both of the matrices (S) and 
[S] are invertible.

Surprisingly it took more than 110 years until LCM matrices got as get much attention 
in mathematical literature. Although GCD-type matrices had been studied in several 
papers over the years, it was not until 1992 that LCM matrices were reintroduced by 
Bourque and Ligh [2]. Among other things, they showed that it is actually quite easy to 
find singular LCM matrices by considering the LCM matrix of the four element set S =
{1, 2, 15, 42} (see [2, p. 68]). The authors then turned the attention to finding conditions 
less restricting than factor closedness of the set S that would suffice to guarantee the 
invertibility of the matrix [S]. They ended up conjecturing that the GCD-closedness of 
the set S suffices to guarantee the invertibility of [S].

In 1997 Haukkanen et al. [6] managed to find a GCD closed set S with 9 elements 
whose LCM matrix is singular, which disproved the Bourque-Ligh conjecture and showed 
that GCD closedness of the set S does not actually suffice to guarantee the invertibility of 
the matrix [S]. Two years later Hong [7] was able to find another similar counterexample 
in which there was only 8 elements in the set S. By using number theoretic methods Hong 
[10] also showed that the conjecture holds for GCD closed sets with at most 7 elements 
and that it does not hold in general for larger sets, which in some sense meant that the 
conjecture was solved completely. However, if we assume the set S is GCD closed, it also 
means that the structure (S, |) itself forms a meet semilattice, which makes it possible to 
study the conjecture from an entirely lattice theoretic point of view. In [11] Korkee et al. 
showed (via investigation of all possible semilattice structures with at most 7 elements) 
that the LCM matrix [S] is invertible for any GCD closed set S with |S| ≤ 7. In [4]

http://creativecommons.org/licenses/by/4.0/
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this same lattice theoretic approach is utilized to show that if the matrix [S] is singular 
and the set S is GCD closed with 8 elements, then (S, |) has unique, cube-like structure. 
These same methods were also adapted by Altınışık et al. in [1], where they study the 
singularity of the matrix [S] in the case when S is a GCD closed set with 9 elements. 
Finally, in 2020 Haukkanen et al. [5] refined the lattice theoretic method by defining 
a property that was in common for all meet semilattices with at most 8 elements that 
sufficed to guarantee the invertibility of the corresponding LCM matrix [S]. At the same 
time it also turned out that in many cases the lattice theoretic structure of (S, |) not 
only guarantees the invertibility but also completely determines the inertia of the matrix 
[S].

In the present article we continue utilizing our lattice theoretic method and find a 
couple of new ways to apply it. In Section 3 we reconsider the work done by Altınışık and 
Altıntaş in [1] from a slightly different perspective and we classify all possible 9 element 
semilattice structures for which there exists a gcd closed set of this type such that the 
corresponding LCM matrix is singular. In this context we also solve one open conjecture 
about this 9 element case raised in their paper. In Section 4 we turn our attention to 
another conjecture raised by Altınışık and Altıntaş and disprove it by presenting a couple 
of counterexamples. In Section 5 we give a novel lattice theoretic proof for a result known 
as Sun’s conjecture, and finally in Section 6 we give an example on how our method can 
give some useful information in the study of the so-called power LCM matrices as well.

2. Preliminaries

First we need to introduce a couple of notations and concepts developed in [5] and 
bring them to our lattice theoretic context. Let S = {x1, x2, . . . , xn} be a GCD closed 
set with xi � xj ⇒ i ≤ j. Let us denote

CS(x) = {y ∈ S
∣∣ y |x and for all z ∈ S : (y | z and z |x ⇒ y = z)}

and

meetclS(CS(x)) = {gcd(y1, y2, . . . , yk)
∣∣ k ∈ Z+ and y1, y2, . . . , yk ∈ CS(x)}.

In other words, CS(x) is the set of all elements of the set S that are covered by x in the 
meet semilattice (S, |) and meetclS(CS(x)) is the smallest GCD closed subset of S that 
contains all the elements of the set CS(x).

Definition 2.1 (cf. [5], Definition 2.2). An element x ∈ S generates a double-chain set 
in S if the set meetcl(CS(x)) \CS(x) can be expressed as a union of two disjoint sets A
and B that are chains in (S, |).

By the simple fact that gcd(xi, xj)lcm(xi, xj) = xixj we may decompose the matrix 
[S] as
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[S] = diag(x1, x2, . . . , xn)
(

1
gcd(xi, xj)

)
diag(x1, x2, . . . , xn).

Next we use Möbius inversion and define the function ΨS on S as

ΨS(xi) =
∑
xj | xi

μS(xj , xi)
xj

, (2.1)

where the Möbius function values μS(xj , xi) are defined by using the recursive formula

μS(xi, xi) = 1,

μS(xj , xi) = −
∑

xj≺xk�xi

μS(xk, xi) = −
∑

xj�xk≺xi

μS(xj , xk).

Now the matrix 
(

1
gcd(xi,xj)

)
may be written as

(
1

gcd(xi, xj)

)
= E diag(ΨS(x1),ΨS(x2), . . . ,ΨS(xn))ET ,

where E = (eij) is the 0, 1 incidence matrix of the set S with

eij =
{

1 if xj |xi,

0 otherwise.

Putting all together we have

[S] = ΔEΛETΔ = (ΔE)Λ(ΔE)T ,

where Δ = diag(x1, x2, . . . , xn) and Λ = diag(ΨS(x1), ΨS(x2), . . .ΨS(xn)).
Since the matrix ΔE is clearly invertible (triangular matrix with nonzero diagonal 

elements), the matrix [S] is invertible if and only if the matrix Λ is invertible. Moreover,

detΛ = ΨS(x1)ΨS(x2) · · ·ΨS(xn).

From this we easily obtain the following fundamental result.

Proposition 2.1. If the set S is GCD closed, then the LCM matrix [S] is invertible if and 
only if ΨS(xi) �= 0 for all i = 1, 2, . . . , n.

The following theorem is one of the key results of [5] and it plays a pivotal role in this 
article as well.

Theorem 2.1 (cf. [5], Theorem 4.1). Let S be a GCD closed set. If the element xi ∈ S

generates a double-chain set in S, then ΨS(xi) �= 0.
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The following result is important to keep in mind when one tries to construct a set S
whose LCM matrix [S] is singular.

Theorem 2.2. Suppose that the element xi ∈ S and that there is at least one element in 
CS(xi). If xi > lcm(CS(xi)), then ΨS(xi) �= 0.

Proof. Suppose that xi = a(lcm(CS(xi))), where a ∈ Z and a > 1. Then

ΨS(xi) =
∑

xj�xi

μS(xj , xi)
xj

= 1
lcm(CS(xi))

⎛
⎝ lcm(CS(xi))

xi
+

∑
xj≺xi

lcm(CS(xi))
xj

μS(xj , xi)

⎞
⎠

= 1
lcm(CS(xi))

(
1
a︸︷︷︸
/∈Z

+
∑

xj≺xi

lcm(CS(xi))
xj︸ ︷︷ ︸
∈Z

μS(xj , xi)︸ ︷︷ ︸
∈Z

)
�= 0. �

3. Solving the 9 element case completely

The method used by Altınışık and Altıntaş in [1] is based on constructing a GCD 
closed set S8 = {x1, x2, . . . , x8} for which the matrix [S8] is singular. They then go 
through all the different ways to insert a new positive integer a in the set so that the 
set S9 := S8 ∪ {a} would still remain GCD closed. If this turns out to be possible, 
the LCM matrix [S9] is also guaranteed to remain singular as it is similar to a matrix 
that has one of its leading principal minors equal to zero. Unfortunately, however, this 
method does not find the singular LCM matrices of order 9 whose every proper principal 
submatrix is nonsingular. This means that if we are interested in finding all possible 
semilattice structures with 9 elements that correspond to some singular LCM matrix 
[S], the method of Altınışık and Altıntaş only gives a partial solution and cannot find 
all of them.

There are 5994 different meet semilattice structures with 9 elements (in comparison 
to only 1078 meet semilattice structures with 8 elements and 37622 structures with 10 
elements). Since we are only interested in those structures that can be used to produce 
singular LCM matrices, Theorem 2.1 and Proposition 2.1 allow us to sieve out all the 
semilattice structures where every element generates a double-chain set. We are going 
to utilize program Sage in order to achieve this. Very slow but working way to generate 
all semilattices is
SLall = [MeetSemilattice(P) for P in Posets(9) if P.is_meet_semilattice()]
And then we select only those possessing an element e such that it covers at least three 
elements, and the subposet of the meet semilattice generated by those elements with 
generating elements removed has width greater than or equal to three:
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(a) 9A (b) 9B (c) 9C (d) 9D (e) 9E

(f) 9F (g) 9G (h) 9H (i) 9I (j) 9J

(k) 9K (l) 9L (m) 9M

Fig. 1. The 13 semilattice structures that need to be studied separately.

SLspecial = []
for SL in SLall:

for e in SL:
if len(SL.lower_covers(e)) >= 3:

elms = SL.lower_covers(e)
SL1 = SL.submeetsemilattice(elms)
P = SL1.subposet([e for e in SL1 if e not in elms])
if P.width() >= 3:

Lspecial.append(L)
break

This leaves us with 13 semilattice structures shown in Fig. 1 that we need to consider 
separately.

3.1. Inserting a new maximal element

Let us consider the first four structures 9A, 9B , 9C and 9D. These four structures 
can also be obtained by using the methods in [1], but by using a slightly more general 
approach to construct them.

• Start from an 8 element set S8 whose LCM matrix [S8] is singular. We may use, e.g., 
the set S8 = {1, 2, 3, 5, 66, 70, 255, 39270} illustrated in Fig. 2 (see also [5], Example 
5.3). The figure also displays the indexing of each element xi ∈ S8.
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x1 = 1

x2 = 2 x3 = 3 x4 = 5

x5 = 66 x6 = 70 x7 = 255

x8 = 39270

Fig. 2. An example of a GCD closed set with eight elements such that the corresponding LCM matrix is 
singular.

• Choose an integer a such that gcd(xi, a) = 1 for all xi ∈ S8. For example in the case 
of the above mentioned set we may choose a = 13.

• In the case 9A define x9 = ax1 and S9 = S8 ∪ {x9}.
• In the case 9B define x9 = ax4 and S9 = S8 ∪ {x9}.
• In the case 9C define x9 = ax7 and S9 = S8 ∪ {x9}.
• In the case 9D define x9 = ax8 and S9 = S8 ∪ {x9}.
• In any case we have μS8(xi, x8) = μS9(xi, x8) for all i = 1, 2, . . . , 8 and x9 � x8, which 

implies that μS8(x9, x8) = 0. Thus ΨS9(x8) = ΨS8(x8) = 0 and we may conclude 
that the matrix [S9] is singular.

3.2. Inserting a new minimum element

Let us now consider the semilattice structure 9E. This kind of approach was introduced 
by Hong [7] in 1999 as it enables one to construct a singular LCM matrix of arbitrary size 
n ≥ 9. Also the method used by Altınışık and Altıntaş finds this semilattice structure 
possible. As we did earlier, we are going to address this special case from our lattice 
theoretic point of view.

• Again we start from any 8 element set S8 for which the matrix [S8] is singular.
• Choose an arbitrary integer a > 1.
• Define x′

1 = a, x′
i+1 = axi for all i = 1, 2, . . . , 8 and S9 = {x′

1, x
′
2, . . . , x

′
8, x

′
9}

• We have μS8(xi, x8) = μS9(x′
i+1, x

′
9) for all i = 1, 2, . . . , 8 and μS9(x′

1, x
′
9) = 0, which 

implies that ΨS9(x9) = 1
aΨS8(x8) = 0. Hence the matrix [S9] is singular.

3.3. Inserting a new element between two comparable elements

Let us now focus on the semilattices 9F , 9G and 9H . The method of Altınışık and 
Altıntaş finds all three structures possible. We shall again provide a slightly more general 
solution.

• Start from any 8 element set S8 such that x1 = 1 and the matrix [S8] is singular.
• Index the elements so that x5 is an upper bound for x2 and x3.
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• It can be shown that lcm(x2, x3) | x5, but x5 > lcm(x2, x3), see e.g. [1, Theorem 2.4].
• Let us denote x5 = alcm(x2, x3), where a > 1.
• In many (possibly in all) known examples the number a turns out to be a prime 

number that does not divide either x2 or x3, which means that gcd(a, xi) = 1 for 
all xi ∈ S8 \ {x8}. In the unlikely event when it would not be possible to apply this 
method to the element x5 we can always try again with the elements x6 and x7 and 
redraw the lattice by putting either of these elements on the left side of the cube. In 
the example presented in Fig. 2 this method can be applied to any of the elements 
x5, x6 or x7 since we have x5 = 66 = 11 · lcm(2, 3), x6 = 70 = 7 · lcm(2, 5) and 
x7 = 255 = 17 · lcm(3, 5).

• In the case 9F define x′
1 = x1 = 1, x′

2 = a and x′
i = xi−1 for i = 3, 4, . . . , 8, 9. We 

have μS′(x′
2, x

′
9) = 0 and therefore ΨS9(x′

9) = ΨS8(x8) = 0 and thus [S9] is singular.
• In the case 9G define x′

i = xi for i = 1, 2, 3, 4, x′
5 = ax2 and x′

i = xi−1 for i = 6, 7, 8, 9. 
Also in this case μS9(x′

5, x
′
9) = 0 and furthermore ΨS9(x′

9) = ΨS8(x8) = 0 making 
the matrix [S9] is singular.

• In the case 9H define x′
i = xi for i = 1, 2, 3, 4, 6, 7, x′

5 = lcm(x2, x3), x′
8 = x5 =

alcm(x2, x3) and x′
9 = x8. Again μS9(x′

5, x
′
9) = 0, ΨS9(x′

9) = ΨS8(x8) = 0 and the 
matrix [S9] is singular.

3.4. Two irreducible cases

Let us now take the semilattices 9I and 9J into consideration.

• With the method used by Altınışık and Altıntaş it is impossible to obtain these two 
structures.

• Nevertheless, both of these structures are actually possible although they cannot be 
reduced to the 8 element case.

• In 1997 Haukkanen, Wang and Sillanpää [6] disproved the Bourque-Ligh conjecture 
by providing the counterexample S = {1, 2, 3, 4, 5, 6, 10, 45, 180}, which belongs to 
the class 9I .

• Also the structure 9J is possible, for example the set

S = {1, 5, 11, 17, 19, 748, 1463, 2907, 4476780}

is of this type and its LCM matrix is singular. This example is illustrated in Fig. 3. 
The singularity of the matrix [S9] follows from the calculation

ΨS9(x9) = 1
4476780 − 1

2907 − 1
1463 − 1

748 − 1
255 + 1

19 + 1
17 + 1

11 + 0
1 = 0.



JID:LAA AID:16406 /FLA [m1L; v1.338] P.9 (1-18)
M. Mattila et al. / Linear Algebra and its Applications ••• (••••) •••–••• 9
x1 = 1

x2 = 11 x3 = 17 x4 = 19

x6 = 748 x7 = 1463 x5 = 255

x8 = 2907

x9 = 4476780

Fig. 3. An example of a GCD closed set belonging to the category 9J such that the corresponding LCM 
matrix is singular.

3.5. One negative example of inserting a new element into the middle

We shall now focus on the structure 9K . It would essentially belong to the earlier 
category “inserting a new element between two comparable elements”, but there are 
good reasons why we should study it separately.

• Altınışık and Altıntaş attempted to find an example that would belong to this class, 
but they were not successful. They ended up conjecturing that this structure is not 
possible at all, see [1, Conjecture 4.1].

• Since μS9(x2, x9) = 0, there appears to be no difference between this and the corre-
sponding 8 element case.

• However, it turns out that the existence of the element x2 changes the situation quite 
drastically.

• Without loss of generality we may assume that x1 = 1 and that the elements x2 and 
x3 are named as shown in Fig. 4. Because we have x1 | x2 | x3, the element x3 cannot 
be a prime number. We have

ΨS9(x9) = 1
x9

− 1
x8

− 1
x7

− 1
x6︸ ︷︷ ︸

<0

+ 1
x5

+ 1
x4

+ 1
x3

− 1
x1︸ ︷︷ ︸

:=K<0

< 0,

since

K ≤ −1 + max
(

1
2 + 1

3 + 1
25 ,

1
4 + 1

3 + 1
5 ,

1
2 + 1

9 + 1
5

)
< 0.

This shows that the class 9K is not possible, which also solves the Conjecture 4.1 by 
Altınışık and Altıntaş (the fact that x3 cannot be a prime number also prevents the 
LCM matrix of the set S′

8 := S9 \ {x2} to be singular since the values ΨS9(x9) and 
ΨS′

8
(x′

8) are exactly the same).

3.6. Two more impossible cases

Finally, we are left with the structures 9L and 9M shown in Fig. 5.
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x3

x2

x1 = 1

x4 x5

x6 x7 x8

x9

Fig. 4. The structure 9K , where the different elements xi have been specified.

x2 x4

x6x5

x3

x7

x9

x8

x1

(l) 9L

x2 x4

x6x5

x3

x7

x9

x8

x1

(m) 9M

Fig. 5. Illustrations of the structures 9L and 9M , where the choices for different elements xi are also displayed.

• In both of these structures every element except for the maximum element x9 gen-
erates a double-chain set, which means that we only need to check the value of 
ΨS(x9).

• In both cases we have

ΨS(x9) = 1
x9

− 1
x8

− 1
x7

− 1
x6

− 1
x5

+ 1
x4

+ 1
x3

+ 1
x2

+ 0
x1

= 1
x9︸︷︷︸
>0

+
(

1
x4

− 1
x7

− 1
x8

)
︸ ︷︷ ︸

>0

+
(

1
x3

− 1
x6

)
︸ ︷︷ ︸

>0

+
(

1
x2

− 1
x5

)
︸ ︷︷ ︸

>0

> 0,

which implies that the matrix [S9] has to be nonsingular.

3.7. Some conclusions

We were able to completely solve the 9 element case and show that there are exactly 
10 possible semilattice structures that can be used to construct a GCD closed 9-element 
set whose LCM matrix is singular. Based on this investigation we can also say that if S
is a GCD closed set with 9 elements and the matrix [S] is singular, then the semilattice 
(S, |) has the cube as its subsemilattice. Altınışık and Altıntaş actually conjecture that 
this is the case with all sets S whose LCM matrix is singular, and we shall consider this 
conjecture in the next section. In theory it would now be possible to proceed to the next 
case and try to find all possible semilattice structures with 10 elements such that there 
is a corresponding set of positive integers whose LCM matrix is singular. However, as 
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x1 = 1

x2 = 23 x3 = 25 x4 = 13 x5 = 3
x6 = 41

x7 = 16675
x8 = 6877 x9 = 75 x10 = 533

x11 = 369

x12 = 2

x13 = 3679538850

Fig. 6. Illustrations of the three semilattice structure S13 of Example 4.1. The choices for different elements 
xi are also shown in the picture.

mentioned earlier there are 37622 meet semilattice structures with 10 elements and it 
turns out that there are 166 structures where at least one element does not generate 
a double-chain set within the structure. In other words, solving the 10 element case 
would require us to either do a huge amount of tedious calculations or to develop more 
sophisticated methods than we currently have at our disposal.

4. A couple of interesting examples with more than 9 elements

In many cases the 8 element cube semilattice can be found as a subsemilattice of the 
semilattice (S, |) when the LCM matrix is singular, and this may even happen in quite 
unexpected ways. We shall illustrate this with a couple of examples.

Example 4.1. Let us consider the GCD closed sets

S13 = {1, 2, 3, 13, 23, 25, 41, 75, 369, 533, 6877, 16675, 3679538850},
S14 = {1, 2, 3, 6, 7, 11, 13, 19, 56, 147, 209, 1859, 196859, 33105384312}

and

S16 = {1, 2, 3, 5, 7, 14, 20, 35, 54, 231, 255, 1820, 45738, 137445, 39308760, 3029801294520}.

The Hasse diagrams of these three semilattices and also the indexing of different elements 
xi in each case are shown in Figs. 6, 7 and 8.

The matrices [S13], [S14] and [S16] are all singular since we have

ΨS13(x13) = 1
3679538850 − 1

16675 − 1
6877 − 1

533 − 1
369 − 1

75 − 1
2

+ 1
41 + 1

25 + 1
23 + 1

13 + 1
3 + 0

1 = 0,
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x2 = 2
x3 = 3

x4 = 7 x5 = 11
x6 = 13

x7 = 19

x8 = 6
x9 = 56

x1 = 1

x10 = 147 x11 = 1859
x12 = 209

x13 = 196859

x14 = 33105384312

Fig. 7. Illustrations of the semilattice structure S14 considered in Example 4.1. The choices for different 
elements xi are also shown in the picture.

x2 = 2 x3 = 3 x4 = 5 x5 = 7

x6 = 54
x7 = 20

x8 = 255
x9 = 14

x1 = 1

x10 = 231
x11 = 35

x12 = 39308760 x13 = 45738 x14 = 1820 x15 = 137445

x16 = 3029801294520

Fig. 8. Illustration of the semilattice structure S16 of Example 4.1. The choices for different elements xi are 
also shown in the picture.

ΨS14(x14) = 1
33105384312 − 1

196859 − 1
1859 − 1

209 − 1
147 − 1

56 − 1
6

+ 1
19 + 1

13 + 1
11 + 1

7 + 1
3 + 1

2 − 1
1 = 0

and

ΨS16(x16) = 1
3029801294520 − 1

39308760 − 1
137445 − 1

45738 − 1
1820

+ 1 + 1 + 1 + 1 + 1 + 1 − 1 − 1 − 1 − 1 + 1 = 0.
255 231 54 35 20 14 7 5 3 2 1
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First we should observe that the set S13 does not have the 8 element cube semilattice 
as its subsemilattice. This implies that Conjecture 4.2 by Altınışık and Altıntaş [1] does 
not hold in general for GCD closed sets that have at least 13 elements (the conjecture 
remains still open in the cases when there are exactly 10, 11 or 12 elements in the set 
S). On the other hand, in the sets S14 and S16 there are actually two different cube-type 
subsemilattices. In S14 these two subsemilattices have the top and bottom elements in 
common whereas in S16 the two subsemilattices are totally disjoint. One can only say 
that when it comes to GCD closed sets whose LCM matrix is singular, the semilattice 
structure of (S, |) can sometimes take quite surprising forms.

5. Lattice theoretic approach to Sun’s conjecture

According to Hong [9], in January 1997 (just before the Bouque-Ligh conjecture was 
solved) professor Qi Sun at Sichuan University had a private conversation with Hong 
and conjectured that if S is a GCD closed set satisfying maxxi∈S{ω(xi)} ≤ 2, then the 
LCM matrix [S] is nonsingular (ω is the arithmetic function that counts the number of 
distinct prime divisors of the input element xi). In 2005 the conjecture was proven right 
by Hong in the above mentioned article. This number theoretic proof is quite technical 
and requires the use of several auxiliary results. We are now going to apply our lattice 
theoretic method once again and give a new proof which is rather short, visually intuitive 
and easy to understand.

Theorem 5.1 (Sun’s conjecture). Let S = {x1, x2, . . . , xn} be a GCD closed set, where 
every element xi ∈ S has at most two distinct prime divisors. Then the LCM matrix [S]
is invertible.

Proof. We only need to show that ΨS(xi) �= 0 for all xi ∈ S. For the element x1 we have 
ΨS(x1) = 1

x1
> 0. If xi covers exactly one element in S (namely xj), then we have

ΨS(xi) = 1
xi

− 1
xj

< 0

Suppose then that xi covers at least two elements in S. Because maxxi∈S{ω(xi)} ≤ 2, 
all the divisors of xi are of the form pkql, where p, q ∈ P . Let pa1qb1 , pa2qb2 , . . . , parqbr

be the elements that are covered by xi in S. Without the loss of generality we may 
assume that a1 < a2 < · · · < ar. Because the elements pakqbk are incomparable, we 
must now have b1 > b2 > · · · > br. Since S is GCD closed, for any k < l we have 
gcd(pakqbk , palqbl) = pakqbl ∈ S. It should be noted that there may exist also other 
elements of type paqb in S such that paqb | xi and we have either ak < a < ak+1 for some 
k ∈ {1, . . . , r−1}, bl+1 < b < bl for some l ∈ {1, . . . , r−1} or a < a1 and b < br. However, 
in these possible cases we have μS(paqb, xi) = 0 by [4, Lemma 3.2] and therefore these 
types of elements do not produce any nonzero terms to the function ΨS(xi) and also the 
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xi

pa1qb1 pa2qb2 pa3qb3 parqbrpar−1qbr−1

pa1qb2 pa2qb3 pa3qb4 par−1qbr

pa1qb3 pa2qb4

pa1qb4

Fig. 9. Illustration of the structure of the set meetcl(CS(xi)) ∪ {xi} that we use in the proof of Sun’s 
conjecture.

1

−1 −1 −1 −1 −1−1

1 1 1 1 1

0 0 0 0

0 0 0

0 0

0

Fig. 10. A figure that gives the Möbius function values μS(pakqbk , xi) for different elements pakqbk ∈
meetcl(CS(xi)) ∪ {xi}.

existence of such elements does not affect on the calculation of the values μS(pakqbl , xi), 
where k, l ∈ {1, . . . , r}.

The structure of meetcl(CS(xi)) ∪{xi} is illustrated in Fig. 9. We also need to calculate 
the values μS(pakqbk , xi) of the Möbius function on the set S, which is done in Fig. 10. 
We now obtain

ΨS(xi) =
∑
xk∈S

μS(xk, xi)
xk

= 1
xi

−
r∑

j=1

1
pajqbj

+
r−1∑
j=1

1
pajqbj+1

= 1
xi

+
(

1
pa1qb2

− 1
pa1qb1

− 1
pa2qb2

)
+

r−1∑(
1

paj−1qbj
− 1

pajqbj

)

j=3
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= 1
xi

+ 1
pa2qb1

(
pa2−a1qb1−b2 − pa2−a1 − qb1−b2

)︸ ︷︷ ︸
=pa2−a1 (qb1−b2−1)−qb1−b2>0

+
r−1∑
j=3

1
pajqbj

(
paj−aj−1 − 1

)︸ ︷︷ ︸
>0

> 0.

Thus our proof is complete. �
6. Extending the lattice theoretic method in order to study power LCM matrices

The LCM matrix of the set S with respect to the arithmetical function Nα, where 
Nα(n) = nα for all n ∈ Z+, is the n × n matrix [S]Nα with (lcm(xi, xj))α as its ij
entry. These type of matrices are known as power LCM matrices. If we wish to study 
the invertibility of the matrix [S]Nα under the assumption that the set S is GCD closed, 
we may use a similar approach as we did with the usual LCM matrices. By making use 
of the identity (gcd(xi, xj))α(lcm(xi, xj))α = xα

i x
α
j we may decompose the matrix [S]Nα

as

[S]Nα = diag(xα
1 , x

α
2 , . . . , x

α
n)

(
1

(gcd(xi, xj))α

)
diag(xα

1 , x
α
2 , . . . , x

α
n).

Next we use Möbius inversion in exactly the same way and define the function ΨS, 1
Nα

on S as

ΨS, 1
Nα

(xi) =
∑
xj | xi

μS(xj , xi)
xα
j

. (6.2)

It should be noted that for the special case α = 1 we have ΨS, 1
Nα

= ΨS .

Now the so-called reciprocal power GCD matrix 
(

1
(gcd(xi,xj))α

)
may be written as

(
1

(gcd(xi, xj))α

)
= E diag(ΨS, 1

Nα
(x1),ΨS, 1

Nα
(x2), . . . ,ΨS, 1

Nα
(xn))ET ,

where E = (eij) is the 0, 1 incidence matrix defined in Section 2. Thereby we obtain the 
factorization

[S]Nα = ΔαEΛETΔα = (ΔαE)Λ(ΔαE)T ,

where Δα = diag(xα
1 , x

α
2 , . . . , x

α
n) and

Λ = diag(ΨS, 1
Nα

(x1),ΨS, 1
Nα

(x2), . . .ΨS, 1
Nα

(xn)),

which leads us to the analogous conclusion that the power LCM matrix [S]Nα is invertible 
if and only if ΨS, 1

Nα
(xi) �= 0 for all i = 1, 2, . . . , n.

In 2002 Hong [8] raised the following conjecture concerning power LCM matrices.
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1

2

6

30p1p2 · · · pk−1 = xn

3

10

5

152p12p2· · ·2pk−1

−1

k

−1

1

1

−1

1

−1−1−1· · ·−1

Fig. 11. Illustration of the semilattice structure used in the proof of Theorem 6.1 and the Möbius function 
values μS(xi, xn) that are also needed in the calculation of the function ΨS, 1

Nα
(xn).

Conjecture 6.1 (cf. [8], Conjecture). If t is a given positive integer, then there exists a pos-
itive integer k(t) (depending only on t) such that the power LCM matrix [(lcm(xi, xj))t]
defined on any GCD closed set S = {x1, x2, . . . , xn} is nonsingular for all n ≤ k(t). But 
for any n ≥ k(t) + 1 there exists a GCD closed set S = {x1, x2, . . . , xn} such that the 
matrix [(lcm(xi, xj))t] is singular.

Known results for usual LCM matrices imply that k(t) ≥ 8 for all t ≥ 2, see [3]. The 
existence of k(t) appears to be a highly nontrivial problem. However, we can use the cube 
semilattice to prove the following result that is closely related to the above conjecture.

Theorem 6.1. If M ≥ 1 is an arbitrary real number, then there exists a GCD closed set 
S = {x1, x2, . . . , xn} and real number α0 such that α0 > M and the power LCM matrix 
[(lcm(xi, xj))α0 ] is singular.

Proof. Let k ≥ 2 be a positive integer such that ln k

ln 2 ≥ M . Let p1, p2, . . . , pk−1 be 

sufficiently large prime numbers (to be specified later). Let us consider the set

S = {1, 2, 3, 5, 6, 10, 15, 2p1, 2p2, . . . , 2pk−1, 30p1p2 · · · pk−1}

with n = k+7 elements. We obtain the following semilattice structure shown in Fig. 11. 
The corresponding Möbius function values μS(xi, xn) are also shown in the same figure.

Now we write

h(α) := ΨS, 1
Nα

(xn) =
n∑ μS(xi, xn)

xα

i=1 i
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= −1
1α + k

2α + 1
3α + 1

5α + −1
6α + −1

10α + −1
15α +

k−1∑
i=1

−1
(2pi)α

+ 1
xα
n

=

⎛
⎜⎜⎝ −1 + k

2α︸ ︷︷ ︸
≥0 when α≤ln k/ ln 2

⎞
⎟⎟⎠ + 1

30α (10α − 5α − 3α − 2α︸ ︷︷ ︸
≥0 when α≥1

)

+

⎛
⎜⎜⎜⎜⎝

1
5α −

k−1∑
i=1

1
(2pi)α︸ ︷︷ ︸

≥0 for suff. large pi

⎞
⎟⎟⎟⎟⎠ + 1

xα
n

.

We can see that h(α) > 0 for all 1 ≤ α ≤ ln k

ln 2 . In particular, since 1 ≤ M ≤ ln k
ln 2 , we 

have h(M) > 0.
On the other hand h(α) is a continuous function of α and we have

lim
α→∞

h(α) = −1 + lim
α→∞

n∑
i=2

μS(xi, xn)
xα
i︸ ︷︷ ︸

→0

= −1.

It now follows from Bolzano’s theorem that h(α0) = 0 for some α0 > M . �
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