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ABSTRACT

Tomi Nieminen: Sway reduction of forest machine grapple using input shaping
Master of Science Thesis
Tampere University
Automation Engineering
October 2023

Fluent operation of forest machine is challenging task and requires plenty of training. Thus,
development of partially or fully automated motions has become key interest. With automation,
cognitive load of operators can be reduced and productivity and efficiency increased. Also, for in-
experienced operators, the amount of training could be reduced. Furthermore, abrupt movements
that cause swaying are typical for inexperienced operators, which may limit their productivity.

Input shaping is an open-loop method that prevents unwanted swaying by modifying the com-
mand signal before feeding it to the system. The performance of input shaping relies on the
estimated values of natural frequency and damping ratio of the system. As a drawback, input
shaping delays part of the operator command for attenuation purpose.

In this thesis, input shaping was implemented to a control system of a real forest machine and
tested with slewing and crane tip near-far movements. The grapple model parameters, values of
natural frequency and damping ratio were determined from measurements of the grapple swaying.
According to measurements, grapple model was identified and input shaper designed to prevent
swaying in the modelled frequency.

According to the test results, input shaping was capable of reducing major part of the swaying.
However with slewing, it was noticed that performance is depending on how well actual velocity of
specific movement is following the command velocity. Yet, the reduction of swaying with slewing
movement was significant. With near-far movement, almost all of the swaying was attenuated.

Also, the effect of parameter uncertainty to swaying motion was tested by deviating the nominal
values of natural frequency and damping ratio. In cases where ±10% error in natural frequency or
five times smaller or higher damping ratio exists, input shaper was capable of reducing major part
of the swaying and only small deterioration in performance was detected. In addition, the effect
of grapple opening and rotation was tested causing only minor changes to the modelled natural
frequency and damping.
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TIIVISTELMÄ

Tomi Nieminen: Metsäkoneen kahmarin heilunnan vaimennus käyttäen input shaping -menetelmää
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Lokakuu 2023

Metsäkoneen sujuva käyttäminen on haastava tehtävä ja vaatii paljon harjoittelua. Tämän takia
osittain tai kokonaan automatisoidut liikkeet ovat kiinnostuksen kohde. Automaation avulla kuljetta-
jan kognitiivista kuormitusta pystytään vähentämään ja tuottavuutta ja tehokkuutta parantamaan.
Myös vaadittavan harjoittelun määrää pystytään kokemattomien kuljettajien tapauksessa pienen-
tämään. Kahmarin huojunta on yksi tekijä, joka rajoittaa työskentelyn tehokkuutta. Kokemattomilla
kuljettajilla huojuntaa aiheuttavat äkilliset liikkeet ovat tyypillisiä.

Input shaping on menetelmä, jolla järjestelmän värähtely pyritään estämään. Se perustuu mal-
linnettuihin systeemin ominaistaajuuteen ja vaimmennussuhteeseen. Haittapuolena input shaping
-menetelmä viivästää osaa kuljettajan antamasta ohjauskomennosta vaimentaakseen värähtelyä.

Tässä työssä input shaping -menetelmä toteutettiin metsäkoneen ohjausjärjestelmään ja sitä
testattiin nosturin kääntö- ja kärjen eteen—taakse-liikkeiden kanssa. Kahmarin ominaistaajuus ja
vaimennussuhde määriteltiin saatujen mittausten perusteella. Mittausten perusteella määritettiin
myös kahmarin mallin sekä input shaping -menetelmän parametrit.

Tulokset osoittivat, että input shaping -menetelmä vaimentaa kahmarin heilahtelun lähes koko-
naan. Kuitenkin kääntöliikkeen osalta huomattiin, että vaimennus riippuu siitä, kuinka hyvin järjes-
telmän nopeus seuraa kuljettajan ohjauskomentoa. Silti suurin osa kahmarin huojunnasta pystyt-
tiin vaimentamaan myös kääntöliikkeen tapauksessa. Kärjen eteen—taakse-liikkeen kanssa kah-
marin huojunta pystyttiin vaimentamaan pois lähes kokonaan.

Myös parametriepävarmuuden vaikutusta huojuntaan testattiin poikkeuttamalla ominaistaa-
juden ja vaimennussuhteen arvoja niiden nimellisarvoista. Tapauksissa, joissa esiintyi ±10 %
virhe ominaistaajuudessa ja 5 kertaa suurempi tai pienempi vaimennussuhde, input shaping -
menetelmä pystyi vaimentamaan suurimman osan kahmarin huojunnasta. Lisäksi kahmarin asen-
non vaikutus todettiin vaikuttavan vain vähän mallinnetuun ominaistaajuuteen ja vaimennussuh-
teeseen.

Avainsanat: input shaping, myötäkytkentä, metsäkone, huojunta, kahmari

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1. INTRODUCTION

In forest industry, forest as a working environment causes safety and productivity chal-

lenges due to working in various and difficult terrains and weather conditions. With au-

tomation and robotics, the productivity and safety of the workforce has been increased

in different fields of industry. Safety and productivity improvements are also possible in

forest industry with advances in automation and robotics. [1]

Furthermore, fluent operation of forestry machine requires plenty of training which has

introduced an interest towards partially or fully automated motions [2]. For an inexperi-

enced operator, smooth operation of the forestry crane is difficult task and joystick-based

control might lead to oscillations in hydraulic actuators, crane structure and unwanted

swaying motion of the grapple [3].

In construction sites, factories and harbours, boom cranes are widely used to move heavy

payloads. In boom cranes, fast motion commands lead to payload swaying problems

and slow settling, which make unloading difficult. Moreover, the swaying motion of the

payload decreases productivity, efficiency and safety. [4] Similar problems can be found

in forestry crane operation. With fast motion commands from the operator, the grapple

starts swaying which makes the operation of the boom more difficult. Also, a grapple that

sways excessively poses a higher safety risk.

In cut-to-length system, machines are generally divided into harvesters and forwarders.

The machine types differs from each other by the purpose they are used for. Whereas

harvesters are used to fell and process the trees, forwarder is picking up the the felled

trees and transporting them to predefined location. [2]

1.1 Control of cranes with freely hanging load

With hydraulic forestry crane, control strategies for sway reduction of grapple or tool is not

widely researched topic [5]. In [5], nonlinear model predictive control was implemented

and tested for sway reduction with forestry crane that has freely hanging tool attached to

its tip. In objective function, control effort, difference between measured and reference tip

position and velocity, tool swaying and extension length were minimized. With nonlinear

model predictive control, the sway angles of the tool was reduced by 64% in perpendicular
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direction and by 76 % in parallel direction. [5]

In [3], input shaping technique to attenuate swaying motion of the payload induced from

inner boom actuator was tested with laboratory down-sized forwarder crane. More specif-

ically, zero vibration input shaper was applied to valve currents to reduce the swaying

motion. The sway of the payload was not directly measured or observed and instead the

oscillations in torque of the inner boom joint, calculated from measured pressure, were

observed. However, significant reduction in the amplitude of oscillations in torque was

noticed. [3]

In [6], automated slewing motion of forestry crane was implemented while considering

the attenuation of the swaying of freely hanging grapple. Torque measurement of slewing

was used in generation of optimal trajectories for slewing angular position. With smooth

preplanned trajectories and feedback position control of angular position of slewing move-

ment, reduction in swaying motion was discovered. [6]

In addition to forestry cranes, overhead cranes are commonly used in factories to move

heavy objects. In overhead crane, trolley can be moved horizontally in two perpendicular

directions. The hanging load is attached with cable to trolley and can sway to both of the

movement directions. [7]

With overhead cranes, control strategy to achieve minimal residual vibration in minimal

control time has been investigated for long time [8]. Residual vibration has been atten-

uated with different open-loop methods that includes feedforward with notch [9],[10] and

low-pass filters [11] and input shaping [8].

In [8], modified input shaping control is studied to limit the sway angle of the payload

during movement and when end point is reached. Difference of the proposed and reg-

ular input shapers is how the sway angle during movement is taken into account. As

in regular input shaper, only the residual vibration is considered, the proposed modified

input shaper also presents a constraint that restricts the sway angle during movement to

be below certain value. This constraint is added to optimization problem from which the

pulse amplitudes and time locations of the pulses are solved for input shaper. With sim-

ulation results, it was found that the modified input shaper is more effective in reduction

of sway angle during movement but as a downfall, the movement time of the payload was

increased. [8]

In addition, an infinite impulse response (IIR) Butterworth low-pass filter with different

orders are studied with laboratory size overhead crane system [11]. The low-pass filters

are design to have cut-off frequency at 50% of the first mode of sway to extract input

energy around the natural frequencies. With 3rd, 6th and 9th order low-pass filters, it was

concluded that higher order filter provides more reduction of swaying motion. However,

the response becomes slower when the order of the filter is increased. [11]
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From filtering techniques, notch filter can be also used to extract the input energy around

the natural frequencies. With notch filters, one filter for every natural frequency is required

to extract the input energy. Individual notch filters are designed to have center cut-off

frequencies at natural frequencies of the system. [11] The notch filter is studied to provide

reduction in swaying motion with water tank load [9] and cubic load [10].

Rotary cranes are close to forestry cranes what comes to the mechanical structure. they

can be divided in two groups, boom cranes and tower cranes. The difference between

the crane types lies on how the load cable attachment point can be moved. Also, other

degrees of freedom includes the rotation of crane structure and hoisting and lowering of

the payload. [7]

With boom cranes, for example, model predictive control [12] and command shaping tech-

niques [4] have been studied to reduce swaying motion of the payload. Also, command

shaping technique has also been studied with tower cranes [13] and in addition, studies

has covered gain scheduling [14] and delayed position [15] feedback control methods for

reduction of swaying motion.

With both crane types, it was concluded that the load swaying motion was successfully

suppressed with input shaping [4], [13]. However, it was noticed with tower cranes that

input shaping causes a long lag to commands of operator [13]. This issue has been tried

to solve with reduced-modification (RM) input shaper where the main idea is to modify the

command signal as little as possible without swaying motion of load [16]. Also, different

type of input shapers were studied with different cranes. Instead of regular input shaper,

three impulse zero-vibration-derivation (ZVD) [4] and extrainsensitive (EI) [13] shapers

were studied to provide more robustness.

With boom cranes, also low-pass and band-stop filters were compared with input shap-

ing. Reduction in swaying motion was observed even with erroneous natural frequencies

with all three methods. However, it was concluded that input shaping provides the biggest

improvement to sway reduction when error in the natural frequency occurred. According

to this observation, input shaping is more robust method towards variation in natural fre-

quency. It was also noted that low-pass filter performs better than band-stop filter when

used as input filter. [4]

For open-loop sway control, also optimal trajectory planning is studied with rotary cranes.

To obtain suppression of swaying motion, combination of polynomial and cycloidal func-

tions was observed to be effective. It was also stated that the proposed method is rela-

tively simple but still effective to anti-sway control of tower crane. [17]

For hydraulic crane with hanging payload, control method to attenuate payload swaying

in parallel direction compared to crane structure has been proposed. The control method

utilizes kinematic functions for enabling control of the payload angle in parallel with po-
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sition and velocity feedforward controllers. The controller is then tested with simulation

and laboratory experiments. In both cases, the payload swaying motion is successfully

suppressed. [18]

From closed-loop methods, model predictive control (MPC) has been proven to be appli-

cable for combined anti-sway and reference tracking control of boom crane. In the studied

case, MPC method decides the control action based on reference tracking and sway re-

duction terms. The performance of the MPC is then tested with commercial boom crane

and stated as a potential control method for simultaneous reference tracking and sway

reduction. [12].

With tower crane, gain-scheduled state feedback control with payload mass and rope

length as scheduling parameters is studied for combined position and sway angle control.

The controller was designed to perform a point-to-point movement of payload without

large swaying motion. The gain-scheduled state feedback controller was validated with

simulations and experimental setup to reduce the load swaying movement when simulta-

neously moving the payload. [14]

Delayed position feedback control is also studied matter in sway reduction with human

operated tower crane. The proposed controller uses inherent time delays of the system

by selecting proper gain and delay combination. The research also states an advantage

compared to velocity feedback control. The same amount of damping is achievable with

smaller gain when using delayed position feedback control. The results of the study

shows a significant reduction in the swaying motion of the payload both in simulations

and in experiments. [15]

1.2 Methods, research questions and thesis structure

In this thesis, an input shaping technique for reducing the swaying motion of the grapple

is proposed. Input shaping is an open-loop control technique that has several drawbacks

compared to closed-loop control. Firstly, closed-loop control systems are robust to uncer-

tainties and parameter changes when properly designed. Secondly, closed-loop control

systems are capable of regulating the controlled output to its desired value despite ex-

ternal disturbances. Thirdly, closed-loop control systems are able to change the output

towards new desired values when set point is changed. However, closed-loop control has

some drawbacks compared to open-loop control. For example, it can cause instability or

oscillatory behaviour and increase the complexity of the system. They can also be sensi-

tive to measurement noise. Open-loop control, however, is generally easy to design, and

in most cases, the drawbacks of closed-loop control can be neglected. [19]

Input shaping is a control technique that can be used to reduce vibration in oscillatory

systems such as cranes and other flexible structures. For preventing the excitation of
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the oscillatory modes, input shaping technique used in this thesis requires estimates of

natural frequency and damping ratio. That is, oscillatory modes are modelled using char-

acteristics of second-order systems, and the reference input is modified such that residual

vibrations are attenuated to zero. Input shaper modifies the command signal by delaying

parts of the command signal such that the vibration caused by the first part of the signal

is cancelled with the remaining parts. [20] In this thesis, the proposed control method is

tested with a real forest machine.

The goal of this thesis is to use input shaping to prevent swaying motion of grapple. In

[3], zero-vibration input shaper was tested with forestry crane to effectively damp oscil-

lations induced from lifting cylinder movements. However, only lifting cylinder pressure

was measured and comparison was made based on it. This approach does not directly

address the reduction in grapple swaying, and therefore in this thesis, the swaying of

grapple is directly measured during tests. Furthermore, the study showed reduction only

in the pressure oscillations of lifting cylinder, with no observed improvement in the sway-

ing of grapple. In this thesis, the swaying of grapple is directly prevented using reduced

modification input shaper, presented in [16].

This thesis aims to answer the following research questions.

• To what extend can the grapple swaying be reduced with input shaping?

• How does changes in grapple orientation affect dampening ability of input shaping?

• How does parameter uncertainty of grapple affect the performance of input shap-

ing?

The research questions have been formulated considering that a permanent sensor,

which is capable of measuring the swaying motion, is unavailable in a real machine. How-

ever in this thesis, swaying of grapple has to be measured for identification and validation

purposes, and thus, a temporary sensor is attached to the physical grapple. The input

shaping compensator, however, is designed without measured information of the grapple

swaying.

The material in this thesis is organised in six chapters. Chapters 2 and 3 address general

concepts of modelling and control and the context of the research. In Chapter 4, the

model of grapple is presented and studied, and the proposed control method explained.

In the following Chapter 5, the testing procedure is discussed and the results from the

tests are shown. Finally, the thesis is concluded in Chapter 6.
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2. FUNDAMENTALS OF MODELLING AND CONTROL

In general, control systems can be divided into open-loop and closed-loop control sys-

tems. The main difference between the two structures is the existence of feedback loop.

Control actions of closed-loop systems are usually based on actuating error

e(t) = r(t)− y(t) (2.1)

where r is the reference and y is measured output. This is also called negative or 1DOF

(one-degree-of-freedom) error feedback system, where the control action is determined

based on control error e. In open-loop control system, control action is determined in

predefined way without feedback. [21] In figure 2.1, block diagrams of the open-loop and

closed-loop control systems are presented.

(a) Closed-loop control system (b) Open-loop control system

Figure 2.1. Block diagrams of closed and open-loop control systems (Modified from [22])

In control system design, it is essential to have a dynamic model in terms of knowledge

of the system characteristics. The system model represents dynamics of the system

in mathematical form, and it can be used to analyze the behaviour of the system and

to design a controller for it. In any modelling process, a compromise has to be made

between the accuracy and simplicity of the model. When dealing with system properties

that has generally minor effect to system behavior, the simplifications are reasonable.

Usually, it is desired to make a simple and low-order model of the system to begin with,

and more precise model can be then obtained if necessary. [21]

2.1 Classification of dynamic systems

In [19], a model of a system is described to be "a mathematical representation of a phys-

ical, biological or information system". With the model, it is possible to study behaviour of
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the system and to make prediction how the system will behave in specified circumstances.

The model of the system is not unambiguous and the same system can be presented in

multiple ways. The chosen model depends on the aspects of the system that are in scope

of interest and what questions are tried to answer with the model. [19]

A system can be classified according to its nature. Number of inputs and outputs classifies

the system into either single-input single-output (SISO), multi-input multi-output (MIMO),

multi-input and single-output (MISO) or single-input multi-ouput (SIMO) systems. Also,

classification into linear and non-linear systems can be made according to the principle

of additivity

y(u1 + u2) = y(u1) + y(u2) (2.2)

and the principle of homogeneity

y(k · u1) = k · y(u1) (2.3)

where u1 and u2 are inputs of the system, y is the output of the system and k is real-

valued constant parameter. [22]

The two principles in equations 2.2 and 2.3 form the principle of superposition

y(k1 · u1 + k2 · u2) = k1 · y(u1) + k2 · y(u2). (2.4)

The principle of superposition states that if two individual inputs are applied to the system,

the output of the system is the sum of individual outputs to those individual inputs. If the

system satisfies the principle of superposition, the system is said to be linear. [21]

In addition, time invariance is an important aspect when system is studied. In time invari-

ant system, the properties of the system do not change over time. In other words, if input

u(t) is applied to the system at a specific time, it results into output y(t). If the same input

is applied at later time u(t + a), the output of the system will be y(t + a). If the system

satisfies preconditions for both linearity and time invariance, the system is called linear

time invariant (LTI) system [19].

LTI systems has a useful property in which an arbitary input causes a response that is

fully characterized by the impulse response. LTI system’s response to any input u(t) is

y(t) =

∫︂ t

0

h(t− τ)u(τ) dτ, (2.5)

where h is the impulse response of the system. [19]

An important aspect, when studying control systems, is stability. An LTI system is bounded-

input bounded-output (BIBO) stable if and only if its response to bounded input is also

bounded. However, if the system response to bounded input is unbounded, the system
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is called unstable. The characterization between stable and unstable systems is called

absolute stability. If the system is stable, the degree of stability can be evaluated. This

evaluation is called relative stability. [23] To study absolute and relative stability of system,

there exists several methods that are discussed in subsection 2.3.

2.2 Common model types of dynamic systems

In control engineering, generally two practices exist when dynamic model of the system

is constructed. On the one hand, the mathematical model of a system can be formulated

with differential equations. This practice is possible when the physical characteristics of

the system are well known and simple enough to be constructed in a form of differential

equations. For example, in mechanical and electrical systems, this approach is usually

possible. On the other hand, the physical characteristics might be too complex to be

modelled with differential equations. An alternative approach uses some experimental

ways to study system output to a known input, which is known as system identification.

[24]

In [25], various methods for system identification from input and output data are explained.

For example, the convolution integral of equation 2.5 can be used to identify an arbitrary

response of LTI system from its impulse response. Also, if sinusoidal input

u(t) = A · sin(ωt) (2.6)

is applied to the LTI system, then its stationary response is given by

y(t) = A ·R(ω) · sin(ωt+ ϕ(ω)). (2.7)

In the equation 2.7, A is the amplitude and ω is the angular frequency of the sinusoidal

wave and R(ω) and ϕ(ω) corresponds to magnitude ratio of the sinusoidal components

between output and input and to the input and output phase difference, respectively. [25]

From the knowledge of R(ω) and ϕ(ω), frequency response of the system can be pre-

sented graphically using a Bode plot [19]. The Bode plot of a system is discussed more

precisely in subsection 2.3.

The presented identification methods can be classified as classical methods for system

identification. For classical identification methods, the result of identification is generally

frequency response of the system in graphical form. The downfall of these methods

occurs when studied system is not SISO system and more complex methods, for example

posteriori identification, needs to be used. [25]

If a time-invariant nonlinear input-output differential equation of the system can be found,
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then it is usually expressed using the following set of first-order differential equations

dx(t)
dt

= f(x(t),u(t))

y(t) = h(x(t),u(t)),
(2.8)

where x ∈ Rn is vector consisting state variables, u ∈ Rp is vector consisting control

signals and y ∈ Rq is vector consisting measured signals. The equation 2.8 is in general

form where functions f and h can be linear or nonlinear mappings of the state and control

variables to the output.

The state x of the dynamic system is the smallest number of state variables that deter-

mines the system behaviour for any given input. Advantage of state-space modelling is

the freedom to select the state variables. However, it is usually beneficial and conven-

tional to select state variables to be easily measurable. Also, the freedom to select the

state variables determines that the selection of state for specific system is not unique but

a choice of design of the control system. [24]

In the equation 2.8, the differential equation was presented in general form where the

mapping can be linear or nonlinear. Analysis and design of dynamic systems is much

simpler, if f and h are linear. In case where mapping functions are linear, the general

form of differential equation can be turned into linear state-space form of

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.9)

where x ∈ Rn, u ∈ Rp, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and D ∈ Rq×p are constant

matrices. The formed system is both linear and time-invariant and thus an LTI-system.

[19]

The nonlinear equation of 2.8 can be converted into linear state-space system using

linearization. The linearization procedure uses Taylor series to approximate the system

near given operating point of x and u. [21] If we consider an equilibrium point of x = x

and u = u for a system of equation 2.8, we can define a new state variables to be

δx = x − x,

δu = u − u,

δy = y − h(x,u).

(2.10)

The new state variables represents the perturbations near the equilibrium point. When

operating close to equilibrium point, the new state variables are close to zero. Thus,

higher-order terms of Taylor series can be neglected and only the first-order term taken

into account. [19]
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With the new state variables, the nonlinear system in equation 2.8 can be linearized. The

linear model is now

δẋ(t) = A · δx(t) + B · δu(t),

δy(t) = C · δx(t) + D · δu(t),
(2.11)

where

A =
∂f(x,u)

∂x
,B =

∂f(x,u)
∂u

,C =
∂h(x,u)

∂x
,D =

∂h(x,u)
∂u

. (2.12)

As stated before, the formed linear model approximates the nonlinear model near the

equilibrium point. If the system state is drifted far from the equilibrium, the linear model

may become inaccurate. [19]

The studied system of equations in 2.9 or in 2.11 is an LTI MIMO-system. In MIMO-

system, the response of one specific input to one specific output can be studied with

transfer function. In general, a single transfer function element Gn(s) is the relation be-

tween the Laplace transformations of one specific output yn(t) and one specific input

un(t) of MIMO-system

Gn(s) =
Yn(s)

Un(s)
. (2.13)

To obtain the complete transfer function from a state space model, Laplace transform

is applied to the linear state-space model matrices of equation 2.12. A unique transfer

function G(s) of the system is

G(s) = C(sI − A)−1B + D, (2.14)

where I is identity matrix with same size of A. [23]

Usually, the zeros and poles of the transfer function are an object of interest. As poles are

defined as the roots of the denominator of transfer function Gn(s) in equation 2.13, they

corresponds to the eigenvalues of the matrix A in state space model if there are not pole-

zero cancellations. Therefore, the poles and zeros of the system defines the intrinsic

dynamics of system. Then again, zeros are obtained from the roots of the numerator

of Gn(s) with SISO systems. As poles depends only on the dynamic matrix A, zeros

depends on all matrices A, B, C and D of the state space system. [19]

2.3 Dynamic behaviour of systems

Generally, it can be stated that the first step in system analysis is modeling. When a model

is formed, the system performance can be analyzed with various different methods. [21]

The methods can be generally divided into time domain and frequency domain methods.

Whereas in the time domain analysis, the response of system is studied with respect to

time, in frequency domain it is done with respect to frequency. [23]
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The performance analysis can be also categorized by the state of system in which the

analysis is made. Stable transient response is the part of system response before the

steady-state or stationary state is reached. During transient response, output of system

reflects the difference between initial state and steady-state of the system. Steady-state

response is the system response after the transient response is decayed. The shape

of transient response is only function of system dynamics, whereas the steady-state re-

sponse also depends on the input quantity. For periodic inputs, such as sinusoidal input,

stationary response is typically periodical, and for constant inputs, steady-state is also

constant. This requires that system is stable. Also, steady-state response is affected by

DC-gain (Direct Current) of the system which is also called zero frequency gain. DC-gain

can be pointed out from the steady-state output and magnitude of the constant input. The

total response of the system is sum of these two response components. [19], [24]

Before further analyzing the system behaviour, the stability of the system has to be ad-

dressed since some physical systems are unstable by their nature. However, it is essential

that the final control system is stable. [23]

As stated in subsection 2.1, an LTI system is stable if its response to bounded input

is bounded. The absolute stability can be studied from the poles or eigenvalues of the

LTI system. Poles are obtained from the roots of denominator of a SISO transfer function

whereas eigenvalues of the system are eigenvalues of the dynamics matrix A. For system

to be stable, necessary and sufficient condition is that the poles or eigenvalues of the

system have negative real parts. In other words, the poles have to be on the left-hand

side of the imaginary axis. Special case occurs when simple poles are at the imaginary

axis and the system is called marginally stable. In this case, the system response to

bounded input is sustained oscillation if the input is not sinusoidal with frequency equal to

the magnitude of the pole. If the pole located in the imaginary axis is not single pole but

multiple pole occurs, the system is unstable. [19], [23]

There are many tools to examine the behaviour of the system. During the stability anal-

ysis, pole-zero map might have been used since it graphically presents the locations of

poles that are on interest. The idea of pole-zero map is to plot poles and zeros of the

system in complex plane. General practice is to mark a place of pole with a cross and a

place of zero with a circle. From the locations of the poles and zeros, some characteristics

of the system can be obtained. [19] In figure 2.2, example pole-zero map is presented.
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Figure 2.2. Pole-zero map for example system with poles at -3 and −2± 1j and zeros at
-5 and 2 (modified from [19])

The locations of poles and zeros are easily seen in the pole-zero map. Especially from the

location of the poles, some characteristics of the system including tendency to oscillate

and speed of the response is easy to gather. Also, as stated before, stable system has

poles only on the left hand side of the imaginary axis which can be easily confirmed from

the pole-zero map. For stable poles, poles located on the real axis do not provoke oscil-

lation to the response that poles with non-zero imaginary part does. Also, the distance

from the real and imaginary axis gives some insight of the behaviour. The further the pole

is from the imaginary axis, the faster the response is. Similarly, as the distance increases

from the real axis, the frequency of the oscillation increases. Drawback of the pole-zero

map is that the multiplicity of poles and zeros can not be deduced. Also, the DC-gain nor

delay can not be determined from it. [23]

One way to study the system behaviour is from the frequency response point of view.

Frequency response G(jω) is attainable from the transfer function G(s) by selecting the

Laplace variable s from the positive imaginary axis. Frequency response gives knowl-

edge how system behaves when the frequency of the input changes. As presented in

equations 2.6 and 2.7, the frequency response of the system can be expressed with gain

or magnitude R(ω) and phase ϕ(ω) of the system. These are also obtainable from the

frequency response G(jω) of the system as follows: [19]

R(ω) = |G(jω)| (2.15)
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ϕ(ω) = arg(H(jω)). (2.16)

Frequency response is usually expressed in a form of Bode plot which consists of the

magnitude and phase of the system plotted as a function of frequency on a logarithmic

scale. In Bode plot, the gain of the system can be generally plotted in decibels and phase

in degrees. The conversion from absolute gain to decibel gain can be done by taking

base 10 logarithm of the absolute gain. [21]

RdB(ω) = 20log10(|G(jω)|) (2.17)

As an example, the Bode plot of

G(s) =
1

s2 + 0.9s+ 1
(2.18)

is presented in figure 2.3, with w = [0.1 100].

Figure 2.3. Bode plot of an example system

Generally, the Bode plot gives a quick overview of the dynamics of system. Usually, sev-

eral different frequency ranges can be obtained from the bode plot. For example ranges

where gain of the system is constant, decreasing and increasing are usually present.

From these frequency ranges can be then said that amplitude of sinusoidal input signal

on that specific frequency range remains constant, increases or decreases. [19]

From the amount of poles system has, some knowledge of the dynamic behaviour is

gained. Categorization to first order, second order and higher order systems is made
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from the knowledge of the amount of poles the system has. The first order and second

order system models can be used to approximate also higher order systems. [21], [23]

The system characteristics can be studied based on the transfer function. At first, the

main characteristics of a first order system is explained. The transfer functions of a stable

first order system without delay and zero is

G(s) =
K

τs+ 1
, K ̸= 0, τ > 0 (2.19)

where K is the DC-gain of the system and τ is the time constant. Time constant repre-

sents the time in which the systems response to step input has reached 63.2 % of the

final value. Thus, in case of first order system, the system’s reaction speed to change in

the input is concluded from the time constant. Gain of the system, despite the order of

the system, explains the steady-state behaviour of it. [21]

When the order of the system is two, the system in some cases have oscillatory behaviour

that first order system is not capable of having. The general form of a stable second order

system without delay and zero is

G(s) =
Kω2

n

s2 + 2ξωns+ ω2
n

, K ̸= 0, ωn > 0, ξ ≥ 0, (2.20)

where K is the gain of the system, ξ is the damping ratio of system and ωn is the natural

frequency of the system. As for the first order system, time constant was the only pa-

rameter to describe the transient response of system. With second order system, natural

frequency and damping ratio together defines the transient response. [23]

On one hand, damping ratio of second order system describes the tendency of system

to oscillate. In table 2.1, guideline how damping ratio affect the step response of second

order system is given. [21]

Table 2.1. Effect of damping ratio to step response of second order system

0 < ξ < 1 Underdamped Complex pole pair a± bj̇ Response has tendecy to oscillate

ξ = 1 Critically damped Double pole on real axis Fastest non-oscillatory response

ξ > 1 Overdamped Two simple poles on real axis Non-oscillatory response but slower than ξ = 1

On the other hand, natural frequency of the system describes the frequency in which

the system oscillates if there is no damping. Therefore, in case where damping exists,

damped natural frequency defines oscillation frequency in which the response tends to

oscillate. The damped natural frequency can be calculated from the natural frequency

and damping ratio as follows

ωd = ωn

√︁
1− ξ2, ξ ∈ [0, 1], (2.21)
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where ωd is the damped natural frequency. From the equation 2.21, it is noticeable that

increase in damping ratio will reduce the damped natural frequency. [21]

The first and second order systems can be utilized when the system order is greater than

two. In these cases, the first and second order transfer functions are used to model the

higher order system. For example, third order system written with second and first order

system is presented below. [21], [23]

G(s) =
K1K2ω

2
n

(s2 + 2ξωns+ ω2
n)(τs+ 1)

=
K1ω

2
n

(s2 + 2ξωns+ ω2
n)

· K2

τs+ 1
(2.22)

The response of the third order system in equation 2.22 can be then expressed from

the responses of the second and first order systems [21]. The figure 2.4 presents the

responses of first, second and third order systems to an unit step input.

Figure 2.4. Unit step responses of first, second and third order systems (modified from
[21])

Also, some roots of higher order system might affect the response more than the others.

These roots are called dominant roots. In such case, where dominant roots exists, order

of the system could be reduced by taking into account only the dynamics of dominating

roots without excessively deteriorating the accuracy of the model. [19] The effect of dom-

inating poles is presented in figure 2.5 where the dynamics of the second order pole pair

is dominating over the first order pole.
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Figure 2.5. Step responses of second and third order systems with dominant pole pair
(modified from [21])

The system models studied thus far have contained only poles. However, physical sys-

tems in some cases contains also zeros that are the roots of the numerator of the transfer

function. As poles are defined directly from the properties of the system, some zeros

depend on selection of inputs and outputs and how those are coupled to states. Because

of this, those zeros of system can be affected by change of sensors and actuators or by

introducing new ones. System can also have inherent zeros that can not be affected by

feedback, but may be affected by compensators. [19]

The location of zero defines how much it affects the response of system. Generally, zero

located closer to the dominant pole has more effect on the response than a zero that is

located further away from it and also from the imaginary axis. This case is applicable

when zero is located on the left hand side of the imaginary axis. [23]

If the zeros of the system are located on the right side of the imaginary axis, it is generally

referred as a non-minimum phase system. These type of systems have their own difficul-

ties when control is designed and such systems has some limitations in the performance

that can be achieved. For a minimum phase system, that has no zeros on the right-hand

side of imaginary axis and has no delay, the magnitude and phase-angle characteristics

has unique relation. If magnitude curve of the system is specified, there exists a uniquely

determined phase-angle curve. The unique relation works also other way around when

the system has no delay and the sign of the DC-gain is known. However, this is not seen

with non-minimum phase systems. The non-minimum phase zero also increases the

phase lag of the system which decreases stability margins and causes the step response
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to slow down. [21]

2.4 Feedforward control

Open-loop control system is presented in figure 2.1b where the two main components,

controller and controlled process, are drawn in a form of block diagram. The purpose of

the controller is to modify the command signal r that is desired process output and apply

the modified command signal, called control signal u, to the process. The process output

y will then in some accuracy follow the desired output. The drawback of the open-loop

control is that the controller does not measure the process output and therefore is not

capable of detecting changes in the process or its outputs. However, open-loop control is

really simple control system to design. [26]

In general, closed-loop control is needed in systems where external disturbances exist.

However, in some cases the output of the system is hard or impossible to measure or the

effect of disturbances is small. In these cases, open-loop control might be a valid option.

Also, open-loop control depends heavily on the knowledge of how the system behaves in

certain conditions. Therefore, model of the system needs to be accurate enough to design

proper open-loop controller. Open-loop controller is also easier to build from the point of

view of stability. Such problems as over-correcting errors with closed-loop controller, does

not exists with open-loop control. [21]

A proper combination of open-loop and closed-loop control is in many situations more

cost effective and is capable of giving satisfying performance of system [21]. A way

to combine open and closed-loop controllers is 2DOF (two-degree-of-freedom) control

structure, where feedforward and feedback controllers are used [19]. The control method

are emphasized in figure 2.6 in a block diagram form.

Figure 2.6. Feedforward control system with feedback loop (modified from [19])

In ideal conditions, where no disturbances and modelling error exists, feedforward con-

troller is able to perform the control without the feedback loop. In these conditions, the

control signal from those controllers has the desired response from the process and thus

the error between desired output and measured output is zero. Therefore, the feedback

loop is not needed. However, ideal conditions never exists and the purpose of feedback

loop is to sense the difference in desired output and measured output caused by distur-
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bances or inaccuracies in system model when feedforward controller is designed. [19]

Several ways to design the feedforward controller exist. The design depends on the

main purpose of the controller that can be, for example purely control, as explained in

previous paragraph or to cancel some unwanted behaviour from the system. For the

second task, one way to approach it is to design the controller to cancel undesirable stable

poles or zeros from the closed-loop system. Those might for example cause unwanted

oscillation on the output of the system. Also, the controller in the closed-loop might not be

able to affect these poles or zeros. This design method is generally stated as pole-zero

cancellation. [26] For either of the cases, it is essential to be able to model the system

[19].

2.5 Input shaping

In subsection 2.4, feedforward control was explained. Two different cases where the

controller was used to purely control or on pole-zero cancellation were addressed. Input

shaping could be included into pole-zero cancellation category since the main idea is to

cancel oscillation from response which are due to stable complex conjugate pole pair.

[27].

In a nutshell, input shaping is a control technique to reduce vibration in oscillatory system

such as cranes and flexible structures. Technique uses the knowledge of system natural

frequency and damping ratio to modify the input signal such that residual vibrations are

attenuated to zero. Input shaper modifies the command signal by delaying parts of the

command signal such that the vibration caused by the first part of the signal is cancelled

with the remaining parts. [20] Figure 2.7 illustrates the input shaping process for impulse

input where the initial command A is divided into two separate commands A1 and A2.

Whereas individual commands A, A1 and A2 will have oscillatory responses, in total

response of A1+A2 oscillations are cancelled with the provoked oscillations of individual

commands A1 and A2.
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Figure 2.7. Input shaped impulse response for arbitrary undamped oscillatory system
(modified from [20])

The main task in design of the input shaping algorithm is to determine the size of impulses

Ai and times ti when specific impulse is applied. Therefore, an optimization problem

presented in equation 2.23 is constructed for given value of n. [20]

min
A1,...,An,t1,...,tn

tn

s.t.
n∑︂

i=1

Ai = 1

ti+1 > ti, i = 1, ..., n− 1

V (ωn, ξ) =
ωn√︁
1− ξ2

e−ξωntn
√︁

C(ωn, ξ)2 + S(ωn, ξ)2 = 0

(2.23)

In the optimization problem, the last constraint relates to the residual vibration V (ω, ξ),

where [20]

C(ω, ξ) =
n∑︂

i=1

Aie
ξωnticos(ωnti

√︁
1− ξ2)

S(ω, ξ) =
n∑︂

i=1

Aie
ξωntisin(ωnti

√︁
1− ξ2).

(2.24)

The residual vibration V (ωn, ξ) expresses the percentage of the remaining residual vibra-

tion when the input shaping algorithm has been implemented. This assumption is valid

when the natural frequency of the system ωn and damping ratio ξ are precisely known.

Therefore, in real life applications, the residual vibrations are always not exactly zero.

The decreasing error between the modelled and actual natural frequencies will rapidly

increase the residual vibration. One way to increase robustness is to increase the num-

ber of applied impulses. Also, more robust input shaping algorithms has been developed.

The downfall of the increasing robustness is the increased time of the last applied impulse.

[28]
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The robustness of the input shaper can be increased by adding a robustness constraint

to optimization problem in 2.23 given by

∂V (ω, ξ)

∂ω
= 0. (2.25)

In the presented constraint, the derivative of residual vibration is forced to zero at mod-

elling frequencies. With robustness constraint, the shape of sensitivity curve can be af-

fected and more robust behaviour near the modelling frequency gained. Also, the sensi-

tivity of the input shaper can be adjusted by not setting the residual vibration to be zero

but allow it in certain acceptable level. [29]

As mentioned, the input shaping technique actually cancels the oscillatory poles of the

system with a corresponding zeros. The derivative constraint in equation 2.25 adds a

second zero exactly at the same place with the oscillatory pole which sets the higher-

order derivatives to zero [30]. Also, more robustness has been achieved by not setting

the pole exactly on the same place with the pole but in the neighbourhood. The downfall

of the additional robustness is the decrease in response time. However, if the system

model is not accurate and error in the modelled natural frequency occurs, the decrease

of the response time relative to attenuation of oscillations is acceptable. [28]

The optimization problem in 2.23 is able to cancel oscillations resulting from one natural

frequency. However, some systems have several natural frequencies and are called multi-

mode systems. The easiest way to design an input shaping algorithm for such systems is

to design independent input shaper for each mode of oscillation and combine the results in

series. This means that both of the resulting input shapers are used to filter the command

signal which however, increases the number of impulses. [28] More efficient way is to

add own residual vibration constraint V (ωni, ξi) for all modes to the design of same input

shaper [31].

The discussion so far has only addressed the case where the input is in a form of impulse.

However, in a real system such impulse shaped inputs are not generally used. One

advantage of input shaping is that even if the basic design considered only impulse input,

it can be used with any desired command to gain zero residual vibrations. Since the input

sequence does not cause any residual vibration, the convolution product of the original

sequence with desired command has the same property. [28]



21

3. GRAPPLE MODELLING, INSTRUMENTATION AND

CONTROL METHODS

As discussed in chapter 2, the essential part of the control design is to know basic char-

acteristics of the system. To gain the needed knowledge, system model is created. The

model is then used to study the system behaviour.

In case of forest machine grapple, the modelling is based on the mechanical structure

of it. Thus, differential equations to model and predict the behaviour of grapple can be

constructed. The differential equations are then studied and input shaping algorithm de-

signed based on the characteristics of the system.

3.1 Dynamic model of grapple

The basic structure, in addition to the grapple, includes link and rotation motor. Further on,

the construction of these three parts is referred simply as grapple. Grapple is presented

in figure 3.1.

Figure 3.1. Illustration of the forest machine grapple
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The grapple has three joints θ1, θ2 and θ3 around which it can rotate. The link has two

free joints θ1 and θ2 in both ends where the upper joint connects the whole grapple to the

tip of the crane as seen in figure 3.1. The rotation around these two joints is free and can

not be directly controlled. The third joint θ3 however, is controllable by hydraulic motor and

with it, the grapple orientation respect to the crane can be changed. Also, the grapple can

be opened and closed with two hydraulic cylinders inside the grapple.

The grapple can be simplified for modelling purpose. The main assumption in [32] is

that all mass of grapple is located at one point in end of two link parts. This will exclude

the rotational inertia from the dynamic equations but will simplify the model significantly.

However, the angular velocities of the grapple are low and thus, the rotational inertia is

neglected. [32] In the figure 3.2, the simplified grapple is illustrated.

Figure 3.2. Simplified grapple with its mass modelled as point mass

In the figure 3.2, l1 is the length between the first and second joint and l2 is the length from

second joint to the center of mass of the grapple part. At this point, the third rotational

degree of freedom θ3 is not point of interest since the swaying motion happens in the

freely rotating joints. However, how the orientation of grapple affects the swaying motion

will be studied during the testing procedure.

For the simplified grapple, Langrangian formulation can be applied to derive the dynamical

model of the system. Lagrangrian is "energy-based" approach to dynamics where the

torque of each joint in the system is

τi =
d

dt

∂L

∂ωi˙
− ∂L

∂ωi

(3.1)

where L is the difference between kinetic T and potential V energy called Lagrangian.

[32], [33]

L = T − V (3.2)

The equation 3.1 states that the Lagrangian and thus the kinetic and potential energy has
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to be modelled for the torque equations of the joints. In [32], the equation of kinetic and

potential energy are formed for the simplified grapple and joint torques τθ1 and τθ2 are

derived as follows:

τθ1 =ml3(l3θ̈1 + cos(θ1)ÿm + sin(θ1)(z̈m + g)

− 2l2sin(θ2)θ̇1θ̇2 − l2cos(θ1)sin(θ2)q1̈

− l3sin(θ1)cos(θ1)q1̇
2 − 2l2cos(θ1)cos(θ2)θ̇2q1̇)

(3.3)

τθ2 =ml2(l2θ̈2 − cos(θ2)ẍm − sin(θ1)sin(θ2)ÿm

+ cos(θ1)sin(θ2)(z̈m + g) + l3sin(θ2)θ̇
2

1

+ sin(θ1)(l1cos(θ2) + l2)q1̈ + sin(θ2)(l1 − l3cos
2(θ1))q1̇

2

+ 2l3cos(θ1)cos(θ2)θ̇1q1̇).

(3.4)

In the equations 3.3 and 3.4, l3 = l1 + l2cos(θ2), ẍm, ÿm and z̈m are the accelerations

of the tip of the crane in base coordinate system, q1 is the slewing angle, m is mass

of grapple and g is gravitational acceleration. In the figure 3.3, moving joints and base

coordinate system of the crane is expressed.

Figure 3.3. Joints and base coordinate system of the crane (modified from [5])

Swaying of the grapple is damped due to existing friction in the joints. In the equations

3.3 and 3.4, torques τθ1 and τθ2 are thus modelled as viscous friction:

τθ1 = −bθ1θ̇1

τθ2 = −bθ2θ̇2.
(3.5)

In equation 3.5, the torque caused by the friction is linearly dependant of the friction

coefficient bθn and the angular velocity of the joint θ̇n. [34] There exists several more

precise methods to model friction as the presented one. The advantage of the viscous

friction model is that only one parameter has to be identified for single joint. In this case,
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the simplicity of the model is prioritized over the preciseness. [32]

The dynamic model of sway angles of the grapple can be now formed by substituting the

friction equations 3.5 to the torque equation of the joints 3.3 and 3.4.

θ̈1 =f1(θ1, θ2, θ̇1, θ̇2, q̇1, q̈1, ẍm, ÿm, z̈m)

=
1

l3
(−cos(θ1)ÿm − sin(θ1)(z̈m + g)

+ 2l2sin(θ2)θ̇1θ̇2 + l2cos(θ1)sin(θ2)q1̈

+ l3sin(θ1)cos(θ1)q1̇
2 + 2l2cos(θ1)cos(θ2)θ̇2q1̇ −

b1
l3m

θ̇1)

(3.6)

θ̈2 =f2(θ1, θ2, θ̇1, θ̇2, q̇1, q̈1, ẍm, ÿm, z̈m)

=
1

l2
(cos(θ2)ẍm + sin(θ1)sin(θ2)ÿm

− cos(θ1)sin(θ2)(z̈m + g)− l3sin(θ2)θ̇
2

1

− sin(θ1)(l1cos(θ2) + l2)q1̈ − sin(θ2)(l1 − l3cos
2(θ1))q1̇

2

− 2l3cos(θ1)cos(θ2)θ̇1q1̇ −
b2
l2m

θ̇2)

(3.7)

The formed equations are nonlinear and linearization is needed. Also, accelerations ẍm,

ÿm and z̈m are expressed in cartesian base coordinate system (xm,ym,zm) (see figure

3.3) whereas crane is operated in cylindrical coordinate system (q1,x,z) presented in fig-

ure 3.4.

Figure 3.4. Crane tip position in cylindrical coordinate system (modified from [33])
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Accelerations in cartesian coordinate system can be expressed in cylindrical coordinates

as follows [5]:

ẍm = −sin(q1)(ẍ− xq̇21)− cos(q1)(xq̈1 + 2ẋq̇1)

ÿm = −cos(q1)(ẍ− xq̇21) + sin(q1)(xq̈1 + 2ẋq̇1)

z̈m = z̈.

(3.8)

Now the dynamical model of grapple is expressed in cylindrical coordinate system by

substituting equation 3.8 into dynamical model of the system in equations 3.6 and 3.7.

To have an LTI state-space model for the grapple, the dynamical equations has to be

linearized by utilizing the Taylor series presented in subsection 2.2. The linear differential

equations are presented in 3.9.

θ̈1 =a1θ1 + a2θ2 + a3θ̇1 + a4θ̇2 + a5q1 + a6q1̇ + a7q1̈ + a8x+ a9ẋ+ a10ẍ+ a11ż + a12z̈

θ̈2 =b1θ1 + b2θ2 + b3θ̇1 + b4θ̇2 + b5q1 + b6q1̇ + b7q1̈ + b8x+ b9ẋ+ b10ẍ+ b11ż + b12z̈

(3.9)

Equation 3.9 presents the linear model of grapple where

a1 =
∂f̄ 1

∂θ1
, a2 =

∂f̄ 1

∂θ2
, a3 =

∂f̄ 1

∂θ̇1
, a4 =

∂f̄ 1

∂θ̇2
, a5 =

∂f̄ 1

∂q1
, a6 =

∂f̄ 1

∂q̇1
,

a7 =
∂f̄ 1

∂q̈1
, a8 =

∂f̄ 1

∂x
, a9 =

∂f̄ 1

∂ẋ
, a10 =

∂f̄ 1

∂ẍ
, a11 =

∂f̄ 1

∂ż
, a12 =

∂f̄ 1

∂z̈

(3.10)

and

b1 =
∂f̄ 2

∂θ1
, b2 =

∂f̄ 2

∂θ2
, b3 =

∂f̄ 2

∂θ̇1
, b4 =

∂f̄ 2

∂θ̇2
, b5 =

∂f̄ 2

∂q1
, b6 =

∂f̄ 2

∂q̇1
,

b7 =
∂f̄ 2

∂q̈1
, b8 =

∂f̄ 2

∂x
, b9 =

∂f̄ 2

∂ẋ
, b10 =

∂f̄ 2

∂ẍ
, b11 =

∂f̄ 2

∂ż
, b12 =

∂f̄ 2

∂z̈
,

(3.11)

where f̄ 1 and f̄ 2 are f1 and f2 with equilibrium values. The crane is controlled with

velocity commands (q1̇,ẋ,ż) in the cylindrical coordinate system which is also the input of

the system u = [q1̇ ẋ ż]T . However, also the accelerations of the inputs exists in the

linear equation in 3.9. By proper selection of the state vector x, the input derivatives are

removed from the state space model. In 3.12, the states are presented.
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x1 =θ1

x2 =θ2

x3 =θ̇1 − a7q̇1 − a10ẋ− a12ż

x4 =θ̇2 − b7q̇1 − b10ẋ− b12ż

x5 =q

x6 =x

(3.12)

To be able to form state space model, equations for first derivatives of states are needed.

At first, the states in equation 3.12 are differentiated:

ẋ1 =θ̇1

ẋ2 =θ̇2

ẋ3 =θ̈1 − a7q̈1 − a10ẍ− a12z̈

ẋ4 =θ̈2 − b7q̈1 − b10ẍ− b12z̈

ẋ5 =q̇

ẋ6 =ẋ.

(3.13)

Now, the first order derivatives of the states can be expressed with other state variables

and system inputs by combining equations 3.9, 3.12 and 3.13.

ẋ1 =x3 + a7u1 + a10u2 + a12u3

ẋ2 =x4 + b7u1 + b10u2 + b12u3

ẋ3 =a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a8x6

(a3a7 + a4b7 + a6)u1 + (a3a10 + a4b10 + a9)u2 + (a3a12 + a4b12 + a11)u3

ẋ4 =b1x1 + b2x2 + b3x3 + b4x4 + b5x5 + b8x6

(b3a7 + b4b7 + b6)u1 + (b3a10 + b4b10 + b9)u2 + (b3a12 + b4b12 + b11)u3

ẋ5 =u1

ẋ6 =u2

(3.14)

Finally, the state space model of the grapple is

ẋ =Ax + Bu

y =Cx + Du,
(3.15)
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where state and input vectors of the system are

x =



x1

x2

x3

x4

x5

x6


and u =


u1

u2

u3

 , (3.16)

and state space model matrices are

A =



0 0 1 0 0 0

0 0 0 1 0 0

a1 a2 a3 a4 a5 a8

b1 b2 b3 b4 b5 b8

0 0 0 0 0 0

0 0 0 0 0 0


,

B =



a7 a10 a12

b7 b10 b12

a3a7 + a4b7 + a6 a3a10 + a4b10 + a9 a3a12 + a4b12 + a11

b3a7 + b4b7 + b6 b3a10 + b4b10 + b9 b3a12 + b4b12 + b11

1 0 0

0 1 0


,

C =

0 0 1 0 0 0

0 0 0 1 0 0

 and D =

a7 a10 a12

b7 b10 b12

 .

(3.17)

The angular velocities of grapple joints are selected as outputs of the system. The rea-

soning behind the selection will be further discussed in subsection 3.2. From the state

space model in 3.17, transfer function matrix can be obtained using 2.14. The uncertain

parameters l1, l2, b1, b2 and m are kept symbolic for further analysis of their effect to

system parameters. Transfer function matrix is

G(s) =

 0
1

l1+l2
s2

s2+
b1

m(l1+l2)
2 s+

g
l1+l2

0

− 3
l2
s2

s2+
b2
ml22

s+ g
l2

0 0

 . (3.18)
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From the transfer function matrix in 3.18, symbolic expression for natural frequency and

damping ratio in both swaying directions are as follows:

ωn1 =

√︃
g

l1 + l2
and ξ1 =

b1

2m
√
g
√
l1 + l2

3

ωn2 =

√︃
g

l2
and ξ2 =

b2

2m
√
g
√
l2

3 .

(3.19)

In 3.19, ωn1 and ωn2 denote natural frequencies and ξ1 and ξ2 damping ratios of paral-

lel and perpendicular swaying, respectively. Natural frequencies are depending only on

system parameters l1 and l2, whereas b1, b2 and m affects also the damping ratio.

3.2 Measurement system for grapple swaying

To study grapple behaviour in real forest machine, a measurement system is needed. The

measurement system attached to the real grapple is presented in figure 3.5.

Figure 3.5. Measurement system attached to real grapple

From figure 3.5 it can be seen that the measurement device is attached inside grapple

and thus, will restrain testing with load. However, the measurement system is designed

such that testing can be done with closed grapple. Also, it is noteworthy that attachment

of measurement device is done with cable ties. Thus, calibration of measurement device

is not precise and some variation in results might occur. Still, attachment is firm enough to

provide useful measurement data for validation purposes. For identification, the proposed

measurement device lack accuracy since it is not positioned exactly at the center of mass

point of the grapple.

The measurement system consists of Intel RealSense t265 tracking camera, Raspberry
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Pi 3B+ and powerbank. The tracking camera has two stereo cameras, IMU (Inertial Mea-

surement Unit) and inbuilt SLAM (Simultaneous Localization And Mapping) algorithm to

provide linear and angular position, velocity and acceleration data. When measurement

is started, measurement system iniatializes world coordinate system to current location.

All logged data is respect to that specific coordinate system. Figure 3.6 presents world

coordinate frame (x, y, z) and measurement system coordinate frame (x′, y′, z′) in case

where swaying happens in parallel angle θ1.

Figure 3.6. Measurement system coordinate frames in parallel swaying θ1

From figure 3.6 it can be seen that when the world frame is attached to grapple in steady

state, angular velocity of parallel swaying θ1 is measured as rotation around y-axis. Sim-

ilarly, angular velocity of perpendicular swaying is measured as rotation around x-axis.

However, this requires that when grapple is in steady state, which means no swaying is

detected, axes of world frame and measurement system coordinates frames has to be

aligned. Therefore, world frame has to be rotated along crane.

Rotation along the crane means that world frame of measurement system has to be

rotated along its z-axis. This can be done with a rotation matrix [33] given by

R(θ) =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 , (3.20)

where θ is angle how much coordinate frame is rotated. As the world frame is wanted to

rotate along the crane, following is gotten

θ(t) = q1(t)− q1(0), (3.21)
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where q1 is the slewing angle.

3.3 Experimental parameter identification of grapple

Nonlinear and linear models of grapple was formed in subsection 3.1. In this subsection,

the nonlinear equation parameters are identified from real grapple measurement data.

Furthermore, linear model is formed and characteristics of that studied. It is important to

notice that identified parameters has uncertainty due to the measurement device.

First, measured data from the real grapple is collected. Data is collected from two cases

where different inputs are applied to the system. In first case, tip velocity input ẋ is ap-

plied. In second case, slewing angular velocity input q1 is applied. The swaying angular

velocities are measured in both cases. Figure 3.7 presents velocity command and mea-

sured velocities for both test cases.

(a) Tip x command u2 (b) Slewing command u1

Figure 3.7. Velocity command and measured velocity for two separate test cases

In figures 3.8 and 3.9, measured swaying angular velocities for both test cases are pre-

sented.
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Figure 3.8. Measured swaying velocities for tip x velocity input (u2) in figure 3.7a

Figure 3.9. Measured swaying velocities for slewing angular velocity input (u1) in figure
3.7b

Tunable parameters in the model equations 3.6 and 3.7 are viscous friction coefficients b1
and b2 which were tuned with measurement data and nonlinear simulation model of the

grapple. The two lengths between joints are physical parameters of the grapple and thus

should be constant. However in actual grapple, l2 depends on the opening of the grapple.

Opening and closing the grapple change the center of mass of the grapple. As l2 denotes

the length from lower joint to center of mass, this length change a little. The identification

tests are done with partially open grapple seen in figure 3.1. All parameters of the model

are collected to table 3.1.
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Table 3.1. Parameters of the nonlinear grapple model

Length from first joint to second joint l1 0.24 m

Length from second joint to center of mass of grapple l2 0.66 m

Viscous friction coefficient of first joint b1 45 m·kg
s

Viscous friction coefficient of second joint b2 55 m·kg
s

Mass of grapple m 309.9 kg

Acceleration of gravity g 9.81m
s2

In figures 3.10 and 3.11, simulated angular velocities of swaying are compared with the

measured data from real grapple.

Figure 3.10. Simulated and measured swaying angular velocities for tip x velocity input
(u2) (l1 = 0.24m and l2 = 0.66m)

Figure 3.11. Simulated and measured swaying angular velocities for slewing velocity
input (u1) (l1 = 0.24m and l2 = 0.66m)

In measured data, natural frequencies in both swaying directions are close to each other.

However, the simulation model, based on model equations 3.6 and 3.7, gives natural fre-

quencies that differs from each other. The main difference is detected in parallel direction.
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Probable cause for this is that some physical aspect of the real grapple is not considered

in the model. One of these aspects that probably affects the swaying is two hydraulic

hoses attached to rotating motor of grapple. Figure 3.12 shows these two hoses.

Figure 3.12. Hoses that affect swaying in real grapple

However, if l1 = 0m is selected, the model gives same natural frequency for both swaying

directions. Table 3.2 collects natural frequencies from different cases where different

values are tested. The friction coefficients are kept constant.

Table 3.2. Experimental and simulated grapple swaying natural frequencies

Natural frequency Experimental
Simulated

l1 = 0.24m, l2 = 0.66m
Simulated

l1 = 0.05m, l2 = 0.9m

Parallel Swaying ( rad
s

) 3.26 3.77 3.29

Perpendicular Swaying ( rad
s

) 3.18 3.19 3.19

Selection l1 = 0.05m and l2 = 0.9m gives quite accurate natural frequency values from

simulation model. Also, simulated swaying angular velocities are close to measured ones.

Figures 3.13 and 3.14 presents these results.
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Figure 3.13. Simulated and measured swaying angular velocities for tip x velocity input
(u2) (l1 = 0.05m and l2 = 0.9m)

Figure 3.14. Simulated and measured swaying angular velocities for slewing input (u1)
(l1 = 0.05m and l2 = 0.9m)

However, as mentioned in subsection 3.2, calibration of the measurement device causes

some inaccuracies to results. Thus, the obtained results are indicative and can give an

approximation how good the grapple model is. For more precise results, more accurate

way to measure swaying has to be developed.

Improved model with tuned lengths l1 and l2 is used due to better simulation results. The

linear grapple model using experimentally determined parameter values is
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ẋ =



0 0 1 0 0 0

0 0 0 1 0 0

−10.33 0 −0.1966 0 0 0

0 −10.9 0 −0.1793 0 0

0 0 0 0 0 0

0 0 0 0 0 0


x +



0 1.053 0

−5.556 0 0

0 −0.207 0

0.9959 0 0

1 0 0

0 1 0


u

y =

0 0 1 0 0 0

0 0 0 1 0 0

 x +

 0 1.053 0

−5.556 0 0

u

(3.22)

when the linearization point is chosen as

θ1 = 0 deg, θ2 = 0 deg, θ̇1 = 0
deg

s
, θ̇2 = 0

deg

s
, q1 = 0 deg,

q̇1 = 0
deg

s
, q̈1 = 0

deg

s2
, x = 5 m, ẋ = 0

m

s
, ẍ = 0

m

s2
, ż = 0

m

s
,

z̈ = 0
m

s2

(3.23)

Matter of interest is dynamic characteristics of swaying. Thus, equation 3.18 can be

utilized to form the transfer function matrix:

G(s) =

 0 1.053s2

s2+0.1609s+10.33
0

−3.33s2

s2+0.2191s+10.9
0 0

 . (3.24)

From the transfer function matrix, it can be noticed that according to linear model, the sys-

tem is non-interacting and only tip x velocity input u2 causes swaying in parallel direction

and slewing velocity input u1 in perpendicular direction.

From real grapple measurements in figures 3.8 and 3.9, it can be seen that actually

slewing input u1 causes swaying also in perpendicular direction. This is something that

linear model approximation is not able to model. However, it is able to model the more

significant swaying direction also in that case. The tip z velocity input u3 is insignificant
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from the viewpoint of swaying. Thus, zero transfer functions from that specific input to

swaying angular velocities are justifiable.

The two nonzero transfer functions of the transfer function matrix are both second order

transfer functions with two zeros as follows.

Gu1y2 =
−3.33s2

s2 + 0.2191s+ 10.9
(3.25)

Gu2y1 =
1.053s2

s2 + 0.1609s+ 10.33
(3.26)

At first, the stability of the system has to be addressed. For second order system, it

adequate that all coefficients of the denominator polynomial have the same sign. As in

3.25 and 3.26, the coefficients are all positive, both of the systems are stable.

As stability has been studied, both of the transfer functions can be written into a form

G(s) =
Kω2

ns
2

s2 + 2ξωns+ ω2
n

(3.27)

where ξ and ωn denotes damping factor and natural frequency of second order system.

Table 3.3 collects all parameters of equation 3.27.

Table 3.3. Parameters of swaying transfer functions according equation 3.27

ξ ωn K

Gu1y2 0.0332 3.302 -0.306

Gu2y1 0.0250 3.214 0.1019

Natural frequencies of the systems from linear model are thus 3.302 rad
s

for parallel direc-

tion and 3.214 rad
s

for perpendicular direction. These values are undamped natural fre-

quency and thus, differ a little from the identified natural frequencies from the measured

data. Damped natural frequency can be calculated with equation 2.21. Also noticeable is

that swaying in both directions has a really low damping. System characteristics are also

visible from frequency response of the system that are presented in figure 3.15.
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Figure 3.15. Frequency response of grapple models

Gains of both systems are really low for low frequency inputs and zero for zero frequency

input because of the zero at the origin. Therefore, low frequency inputs do not affect

as high swaying of grapple as high frequency inputs. This is relatively intuitive as really

fast movement of crane will generate swaying with higher amplitude than slow movement.

Also, DC-gain of the system is zero and thus, steady-state response of the system will

eventually converge to zero. Intuitively, if the crane is stand still or moving on constant

velocity, without external disturbances swaying of the grapple will eventually stop.

Highest gain for both systems exists at the natural frequency. For parallel direction peak

gain is 26.5 dB at 3.21 rad
s

and for perpendicular 34.0 dB at 3.30 rad
s

. Also, the parallel

direction has slightly larger gain through whole frequency range. The Bode plot also

emphasizes the swaying phase seen in 3.14. With slewing movement, parallel swaying

has phase shift of 180 degrees compared to perpendicular swaying as seen also from

Bode in 3.15.

3.4 Feedforward control of forestry crane with input shaping

Input shaping method was introduced in detail in subsection 2.5. In this subsection, a

reduced modification (RM) shaper, presented in [16], is discussed for step input com-

mand. The main advantage of RM shaper is that the command is affected as little as

possible while at the same time swaying is supressed. Introduced RM shaper will be later

implemented and tested on the machine.

As mentioned in previous paragraph, RM shaper tries to minimize the difference between

original and input shaped command. The error is thus denoted by ϵ(t). Therefore, objec-
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tive function for RM shaper can be written as [16]

f =

∫︂ ∞

0

ϵ(t)2dt. (3.28)

The objective function is related to integral of squared error (ISE). The squaring ensures

the positivity of the objective function. In input shaping optimization problem, amplitudes

of impulses A1, ..., An and time locations t1, ..., tn when each impulse is applied, are

determined. Thus, the integral of the objective function in 3.28 can be simplified:

f =

∫︂ ∞

0

ϵ(t)2dt =
n−1∑︂
i=1

(ti+1 − ti)(1−
i∑︂

j=1

Aj)
2. (3.29)

This result is relatively easily understood from the graphical representation of original and

input shaped commands presented in figure 3.16.

Figure 3.16. Graphical presentation of error between original and input shaped command
(modified from [16])

In figure 3.16, command of three impulse input shaper is presented. The error between

the two commands is marked as grey area. Now, the error can be divided into areas of

two separate rectangles:

f =

∫︂ ∞

0

ϵ(t)2dt = (t2 − t1)(1− A1)
2 + (t3 − t2)(1− (A1 + A2))

2. (3.30)

The objective function in equation 3.29 is now the generalized version of the objective

function derived for three impulse case. Finally, the optimization problem, to determine

amplitudes of impulses A1, ..., An and time locations t1, ..., tn when each impulse is ap-

plied, is gotten by combining RM shaper objective function in equation 3.29 with the con-

straints of the regular input shaping problem of equation 3.31.
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min
A1,...,An,t1,...,tn

n−1∑︂
i=1

(ti+1 − ti)(1−
i∑︂

j=1

Aj)
2

s.t.

n∑︂
i=1

Ai = 1

ti+1 > ti, i = 1, ..., n− 1

V (ωn, ξ) =
ωn√︁
1− ξ2

e−ξωntn
√︁
C(ωn, ξ)2 + S(ωn, ξ)2 <= Vtol

(3.31)

The optimization problem is solved for both swaying directions individually for natural

frequency and damping ratio presented in table 3.3. Table 3.4 presents the results for

different pulse numbers n when Vtol ≈ 0. For pulse numbers 3 and 5, also results, when

5% residual vibration (Vtol <= 0.05) is accepted, are presented. Value of objective is

marked with f .

Table 3.4. Results of RM shaper optimization problem

Gu1y2 Gu2y1

n = 2
A = [0.526 0.474]

t = [0 0.98]
f = 0.2202

A = [0.5211 0.4789]
t = [0 0.95]
f = 0.2179

n = 3
A = [0.8105 -0.3452 0.5347]

t = [0 0.20 0.86]
f = 0.1959

A = [0.8275 -0.3581 0.5306]
t = [0 0.19 0.84]

f = 0.1887

n = 4
A = [0.7739 -0.3415 0.2177 0.35]

t = [0 0.23 0.70 0.89]
f = 0.1864

A = [0.7057 -0.1966 -0.1217 0.6125]
t = [0 0.25 0.55 0.82]

f = 0.1953

n = 5
A = [0.8567 -0.2737 -0.162 0.2642 0.3149]

t = [0 0.15 0.32 0.73 0.91]
f = 0.1879

A = [0.835 -0.2798 -0.137 0.2604 0.3214]
t = [0 0.17 0.34 0.70 0.89]

f = 0.1797

n = 3 (Vtol <= 0.05)
A = [0.8378 -0.3391 0.5013]

t = [0 0.19 0.86]
f = 0.1879

A = [0.8361 -0.3425 0.5065]
t = [0 0.18 0.83]

f = 0.1797

n = 5 (Vtol <= 0.05)
A = [0.894 -0.2206 -0.2006 0.2537 0.2734]

t = [0 0.13 0.27 0.75 0.91]
f = 0.1618

A = [0.893 -0.2225 -0.2022 0.2554 0.2762]
t = [0 0.12 0.26 0.73 0.89]

f = 0.1617

Overall, the difference between results for different swaying direction is small. Only no-

ticeable difference is that with four impulse shaper, third impulse is negative for parallel

motion and positive for perpendicular. Also, the duration of RM shaper is between 0.8s

and 1s in all cases. In general, value of objective function decreases when number of

impulses increases.

To test a robustness of RM shaper, error in natural frequency and damping ratio was

added to the optimization problem in 2.23. The applied error will depict a modelling error

or variation and thus, test results will show how robust specific RM shaper is. Table 3.5

presents resulting RM shapers when ±10% error is applied to natural frequencies.
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Table 3.5. Results of RM shaper optimization problem with ±10% error in natural fre-
quency

Vtol ≈ 0 Gu1y2 Gu2y1

n = 2 (+10% in ω)
A = [0.5176 0.4824]

t = [0 0.89]
f = 0.2071

A = [0.5167 0.4833]
t = [0 0.86]
f = 0.2009

n = 2 (-10% in ω)
A = [0.5212 0.4788]

t = [0 1.09]
f = 0.2499

A = [0.5212 0.4788]
t = [0 1.06]
f = 0.243

n = 4 (+10% in ω)
A = [0.7985 -0.3618 0.2556 0.3076]

t = [0 0.20 0.67 0.84]
f = 0.1734

A = [0.8173 -0.3721 0.2606 0.2943]
t = [0 0.18 0.67 0.81]

f = 0.1689

n = 4 (-10% in ω)
A = [0.8047 -0.3594 0.2532 0.3015]

t = [0 0.25 0.83 1.03]
f = 0.2062

A = [0.8246 -0.367 0.2597 0.2828]
t = [0 0.22 0.83 0.99]

f = 0.199

Vtol <= 0.05

n = 3 (+10% in ω)
A = [0.8389 -0.3369 0.498]

t = [0 0.17 0.78]
f = 0.1557

A = [0.8361 -0.3425 0.5065]
t = [0 0.17 0.76]

f = 0.1559

n = 3 (-10% in ω)
A = [0.8381 -0.3385 0.5004]

t = [0 0.21 0.96]
f = 0.1933

A = [0.8379 -0.339 0.512]
t = [0 0.21 0.93]

f = 0.1863

n = 5 (+10% in ω)
A = [0.8922 -0.2242 -0.2035 0.2569 0.2785]

t = [0.11 0.24 0.68 0.83]
f = 0.1534

A = [0.8921 -0.2245 -0.2038 0.2572 0.279]
t = [0 0.11 0.23 0.66 0.80]

f = 0.1491

n = 5 (-10% in ω)
A = [0.8935 -0.2217 -0.2015 0.2547 0.275]

t = [0 0.14 0.29 0.84 1.01]
f = 0.1849

A = [0.8933 -0.222 -0.2018 0.255 0.2755]
t = [0 0.14 0.29 0.81 0.99]

f = 0.1778

As was obtained in 3.19, natural frequencies are only depending on l1 and l2 of the

physical parameters of grapple. Therefore, the change needed in those parameters for

such ±10% variation can be obtained as follows

ωn2 =

√︃
g

l2
⇔ l2 =

g

ω2
n2

(3.32)

whereas

0.9ωn2 =

√︃
g

l2
⇔ l2 = 1.234

g

ω2
n2

(3.33)

and thus, 23.4% increase in l2 is needed for −10% variation in natural frequency. With

ωn1 , similar increase is needed for l1 + l2. For +10% variation, the change needed in

l2 or l1 + l2 is −17.4% which can be obtained by replacing 0.9 with 1.1 in 3.33. The

increase and decrease would require change in the physical dimensions of the grapple

as only l2 can be minorly affected by adding a load to grapple. The load will thus change

the location of the center of mass of the grapple and affect accordingly to l2. However,

with different grapple types, the presented changes of 23.4% and −17.4% are possible.

The effect of natural frequency to resulting RM shaper is clearly seen from table 3.5.

Higher natural frequency results in longer lasting RM shaper as smaller natural frequency.

However, size of impulses remains almost the same. Value of objective function increases
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when natural frequency decreases. Also, the decrease in objective function value is seen

when impulse number is increased. Second case is to add error to damping factor and

have natural frequency at constant value. Resulting RM shapers, when damping ratio is

increased to five times higher and smaller, is presented in table 3.6.

Table 3.6. Results of RM shaper optimization problem with 5 times larger or smaller
damping ratio

Vtol ≈ 0 Gu1y2 Gu2y1

n = 2 (5·ξ)
A = [0.6161 0.3839]

t = [0 0.99]
f = 0.1459

A = [0.6068 0.3932]
t = [0 0.96]
f = 0.1484

n = 2 (1
5
· ξ)

A = [0.5049 0.4951]
t = [0 0.98]
f = 0.2402

A = [0.506 0.494]
t = [0 0.95]
f = 0.2318

n = 4 (5·ξ)
A = [0.8611 -0.2969 0.2063 0.2295]

t = [0 0.24 0.80 0.94]
f = 0.1184

A = [0.8368 -0.2957 0.1994 0.2595]
t = [0 0.25 0.74 0.92]

f = 0.122

n = 4 (1
5
· ξ)

A = [0.8173 -0.3817 0.2701 0.2943]
t = [0 0.20 0.76 0.92]

f = 0.1989

A = [0.815 -0.3831 0.2711 0.297]
t = [0 0.18 0.74 0.89]

f = 0.2001

Vtol <= 0.05

n = 3 (5 ·ξ)
A = [0.8763 -0.2636 0.3874]

t = [0 0.22 0.89]
f = 0.1039

A = [0.8709 -0.274 0.403]
t = [0 0.21 0.86]

f = 0.1091

n = 3 (1
5
· ξ)

A = [0.8314 -0.3517 0.5203]
t = [0 0.18 0.86]

f = 0.1892

A = [0.8313 -0.352 0.5207]
t = [0 0.18 0.83]

f = 0.1814

n = 5 (5 ·ξ)
A = [0.9195 -0.1703 -0.1584 0.2132 0.196]

t = [0 0.15 0.30 0.80 0.95]
f = 0.099

A = [0.8165 -0.2474 -0.0819 0.194 0.3189]
t = [0 0.22 0.42 0.7 0.89]

f = 0.1375

n = 5 (1
5
· ξ)

A = [0.8889 -0.2307 -0.209 0.2629 0.2878]
t = [0 0.12 0.26 0.75 0.91]

f = 0.1798

A = [0.9231 -0.1586 -0.153 -0.1415 0.5299]
t = [0 0.08 0.16 0.25 0.82]

f = 0.1786

As only l1 and l2 parameters affect natural frequencies of the grapple, also b1, b2 and m

have effect on damping ratio. Damping ratio is directly proportional to damping coeffi-

cients b1 and b2 and inversely proportional to mass m. Increase in mass, for example log

in the grapple, will decrease damping ratio proportionally. For effect of l1 and l2, following

can be obtained

ξ2 =
b2

2m
√
g
√
l2

3 ⇔ l2 = (
b2

2m
√
gξ2

)
2
3 (3.34)

whereas

5ξ2 =
b2

2m
√
g
√
l2

3 ⇔ l2 = 2.92(
b2

2m
√
gξ2

)
2
3 (3.35)

and thus, for perpendicular swaying, l2 has to be almost triple. Similarly, with five times

smaller damping ratio, l2 has to be only 34% of its original value. With parallel swaying,

same reasoning is valid for sum l1+ l2. As discussed previously when error in natural fre-

quency occurred, the possible way to achieve such high changes would require change
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in a physical dimensions of the grapple. Thus, to achieve the presented change in damp-

ing ratio is physically meaningful by changing the damping coefficients or mass of the

grapple. However, only increase of mass is possible by adding logs. As mass is inverse

proportional to natural frequency, only five times smaller damping ratio can be achieved

with five times higher mass of the grapple. With damping coefficients, such five times

higher or smaller values could be possible and depends at least on the greasing of joints.

When damping ratio is changed, mainly magnitude of amplitudes of RM shaper change.

However, also time locations when the amplitudes do change but the change is smaller

as it was with error in natural frequency. Value of objective function is higher with smaller

damping ratios. To conclude the effect of error in RM shapers, it can be said that loca-

tion and size of amplitudes are connected to the model parameters. Also, the objective

function value depends on those and in addition, the number of amplitudes affects it.
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4. OBSERVATIONS AND RESULTS FROM MACHINE

TESTING

4.1 Machine test scenarios for input shaping

Test scenarios for input shaping can be divided into two separate cases. In first scenario,

slewing angular velocity command (u1) presented in figure 3.7b is applied. In second

scenario, similar velocity command is applied for tip x (u2) direction that is presented

in figure 3.7a. In both cases, a back-and-forth movement is done where positive and

negative pulses are applied with proper settling time of swaying in between. The pulses

are ramp up commands from zero to maximum velocity in specific direction and back to

zero.

At first, it is noticed that measured slewing angular velocity tends to oscillate. This can be

seen from figure 3.7a where especially when angular velocity is ramped to zero, the mea-

sured angular velocity oscillates around the zero. This movement causes some swaying

of grapple on top of the actual pulse command. Similar behaviour was also detected with

input shaping algorithm which can be seen in figure 4.1.

Figure 4.1. Slewing test scenario with 2 impulse RM shaper

How RM shaper modifies the ramp input is also presented in figure 4.1 in case where

two impulse RM shaper is used. Even though there exists oscillations in the measured

angular velocity, those are not as high as they was without RM shaper. However, they will
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still affect the swaying of grapple. Other important aspect to notice from the figure 4.1 is

that the resulting angular velocity of slewing is not able to follow the modified command

well. This is more evident when RM shaper that has negative impulses are used. Figure

4.2 presents the result for 4 impulse RM shaper.

Figure 4.2. Slewing test scenario with 4 impulse RM shaper

Negative impulse in RM shaper causes a small deceleration period to command which

the angular velocity is not able to follow. The capability of slewing to follow command is

one important aspect to discuss when perfomance of RM shaper is discussed.

For tip x velocity command, similar behaviour is not noticed and command is followed

relatively well. Figure 4.3 presents command and measured tip velocity when 4 impulse

RM shaper is used.

Figure 4.3. Tip x test scenario with 4 impulse RM shaper

Also, from figure 4.3 it can be seen that there are no oscillations in the velocity when the

movement is stopped.
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4.2 Effect of grapple orientation to swaying

Figure 3.1 shows that grapple has 3 degrees of freedom around which it can rotate. The

third angle θ3 is called rotation angle and is the only one that operator can control. In this

subsection, the effect of rotation of grapple to swaying is studied. Basically, two different

cases where grapple is orientated such that log in the grapple is parallel or perpendicular

to crane is studied. In addition, the effect of grapple opening (closed or open) to natural

frequency is studied.

First, the effect of grapple rotation in slewing test scenario is studied. Figure 4.4 presents

swaying in both direction when the grapple is oriented differently.

Figure 4.4. Comparison of swaying with grapple rotation such as log is parallel and
perpendicular to crane with slewing test scenario

In perpendicular direction, amplitude of swaying does not change but small increase in

swaying frequency is detectable. More significant changes are seen in parallel direction.

However, in slewing it is the minor swaying direction and thus, it has to be studied also in

tip x movement direction. Figure 4.5 presents the results for different grapple orientation

when tip x test scenario is applied.
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Figure 4.5. Comparison of swaying with grapple rotation such as log is parallel and
perpendicular to crane with tip x test scenario

Similar changes in natural frequency is also seen when tip x is the movement direction.

When grapple is turned 90 degrees to have log perpendicular to crane, natural frequency

of parallel swaying is decreased. However, the change is small as it was with perpendic-

ular swaying direction.

In addition to rotation of the grapple, also grapple opening can change the grapple ori-

entation. The test scenarios is done with closed, partly open and fully open grapples. In

all cases, the swaying is recorded. Figure 4.6 presents the effects of grapple opening to

swaying.

Figure 4.6. Effect of grapple opening to swaying with slew test scenario



47

As was noticed with rotated grapple, the main difference is seen in natural frequency of

swaying. Between partly and fully open grapples there is no significant difference but

closed grapple has higher natural frequency as the open grapple. In parallel swaying with

closed grapple, also high starting peak is noticed. Similar high peak is however not seen

in figure 4.7 where results for tip x test scenario is presented.

Figure 4.7. Effect of grapple opening to swaying with tip x test scenario

In parallel swaying when moving tip in x direction, only minor difference in natural frequen-

cies is detected. As an conclusion from all tests related to grapple orientation can be said

that the effects are minor and are mostly affecting the natural frequency when grapple is

swaying freely. During transient, the behaviour of differently oriented grapples is similar.

4.3 Test scenario results for slewing movement

This subsection presents the results for RM shapers in tables 3.4, 3.5 and 3.6 that are de-

signed to filter slewing command. The test scenario was presented in subsection 4.1. The

resulting filtered positive part of the command is presented in figure 4.8 for RM shapers

in table 3.4.
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Figure 4.8. Unmodified slewing test scenario command and filtered commands with RM
shapers

In figure 4.8, only the positive part of the velocity command is presented. As the original

negative command is similar as the positive command, same command shape is seen

also with the negative velocities. Excluding the 2 impulse RM shaper, all of the commands

are close to each other. All of these commands causes a quick deceleration bump in the

middle of acceleration. With 2 impulses, this is not possible and thus, the command

has flat constant velocity phase in the middle of acceleration period. It is noticeable that

with impulse number higher than 2, the command is slightly faster than with 2 impulses.

Allthough, the difference is only approximately hundred milliseconds.

Test scenario with the RM shaper commands of figure 4.8 is then applied on the machine.

Figure 4.9 shows the resulted swaying of grapple.

Figure 4.9. Comparison between swaying on test sequence without input shaping and
with different RM shapers
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All of the designed RM shapers are capable of reducing most of the swaying. At this

point, the lack of slewing velocity to follow the command (see figures 4.1 and 4.2) has to

be remembered. To be able to get full attenuation of swaying, the velocity has to follow

the filtered command perfectly. Even with the presented performance of slewing, all of

the RM shapers reduce most of the swaying. Also, the oscillations in the velocity when

movement is stopped, causes some swaying (see figures 4.1 and 4.2). In addition to

swaying angular velocities, it is important to address measured position and velocity of

slewing which are presented in figure 4.10.

Figure 4.10. Comparison between slewing angle and angular velocity without and with
input shaping

The figure 4.10 presents results only without RM shaper and with 2 and 4 impulse RM

shapers to have easier comparison between the results. Between different tests, some

fluctuation around starting point of 30 degrees exists. These fluctuation are neglected

and the starting angle is set to 30 degrees for all tests. Noticeable is how similar the

measured velocities are with 2 and 4 impulse RM shapers. Also, the delay of RM shaper

is seen in the velocity. In slewing angle, travelled distance with and without input shaper

are close to each other. However with input shaping, it takes longer time to reach the final

position.

In addition, RM shapers were designed using erroneous natural frequency and damping

ratio. Test scenario is also applied for these to study the robustness of RM shapers. As

was noticed in subsection 4.2, the orientation of the grapple affects natural frequency of

swaying. Therefore, it is important that RM shapers can tolerate some error in the natural

frequency to reduce the swaying also in these situations. Also, the grapple is used to

pick up logs which will change the center of the mass of grapple. Due to the current

measurement system, tests with log was not possible. However, the change in center of

the mass will affect the natural frequency and damping of the grapple.

At first, results with +10% error in natural frequency is presented in figure 4.11. To be
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able to better compare the difference with and without error, swaying with 2 impulse RM

shaper without error is presented in the following figures.

Figure 4.11. Test scenario for slewing with table 3.5 input shapers that has +10% error
in natural frequency

Also, -10% error in natural frequency is tested and results presented in figure 4.12.

Figure 4.12. Test scenario for slewing with table 3.5 input shapers that has -10% error in
natural frequency

The tested RM shapers with error in natural frequency are presented in table 3.5. In

both cases, reduction in swaying is significant and ±10% error seems to not affect the

performance of RM shapers. Also in both cases, all of the designed RM shapers perform

equally well.
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Second case is to add error in to damping factor. With the orientation of the grapple,

damping of the grapple remained mostly the same in all cases. However, in previously

mentioned case where log is in the grapple, the situation might change. Therefore, it is

also important to test the robustness towards erroneous damping ratio. Figures 4.13 and

4.14 shows the results where 5 times higher and smaller damping ratio is used in the RM

shaper design. Resulting RM shapers are presented in table 3.6

Figure 4.13. Test scenario for slewing with table 3.6 input shapers that has 5 times larger
damping ratio

Figure 4.14. Test scenario for slewing with table 3.6 input shapers that has 5 times
smaller damping ratio

In both cases, the results are close to each other and swaying is reduced significantly.

The results are also close to what is gotten without error in damping ratio. Therefore, with
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5 times higher or smaller natural frequency, the RM shaper is capable of reducing the

swaying.

4.4 Test scenario results for tip near-far movement

In subsection 4.3, test scenario was applied for slewing and the resulting swaying for

RM shaper with and without error presented. Similarly, this subsection presents the test

scenario results for tip x movement. At first, figure 4.15 presents results without RM

shaper and with RM shapers that has different amount of impulses.

Figure 4.15. Comparison between swaying on test sequence without input shaping and
with different RM shapers

As good reduction of swaying was seen with filtered slewing angular velocity input, with

tip x almost all of the swaying is attenuated. Only some swaying is observed during

transient when crane is either accelerated or decelerated which is due to the first part of

RM shaper command. The caused swaying is then attenuated with the remaining parts of

the RM shaper. In subsection 2.5, this was explained to be the main idea of input shaping.

The effect input shaping has on position and velocity in x-direction is presented in figure

4.16.



53

Figure 4.16. Comparison between position and velocity of tip in x-direction without and
with input shaping

The starting position of tip in x-direction is set to four meters measured from the base

of the crane. Between different tests, small fluctuation in starting positions exist. For

comparison purposes, starting points are set equally to four meters and the fluctuation

neglected. The delay of RM shaper is clearly seen in resulting velocity of the tip. In

position, the tip travels close to equal distance with and without RM shaper. However with

RM shaping, this takes a longer time equal to the delay of RM shaper.

As effect of error in the design parameters of RM shaper was investigated with slewing,

similarly ±10% error in natural frequency and five times higher and smaller damping ratio

are tested with tip x also. The tested RM shapers are presented in tables 3.5 and 3.6.

Figures 4.17 and 4.18 presents the results with erroneous natural frequency.

Figure 4.17. Test scenario for Tip x with table 3.5 input shapers that has +10% error in
natural frequency
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Figure 4.18. Test scenario for Tip x with table 3.5 input shapers that has -10% error in
natural frequency

For tip x, performance of RM shaper deteriorate when error is added to natural frequency.

However, major of the swaying is still attenuated. With positive error, negative command

impulse (tip is moved towards the base) causes higher swaying than with negative error.

In addition, also increased and decreased damping ratio is studied with tip x test scenario.

Results are shown in figures 4.19 and 4.20

Figure 4.19. Test scenario for Tip x with table 3.6 input shapers that has 5 times larger
damping ratio
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Figure 4.20. Test scenario for Tip x with table 3.6 input shapers that has 5 times smaller
damping ratio

Compared to error in natural frequency, swaying is increased equal amount when damp-

ing is 5 times higher. With decreased damping however, no significant difference is de-

tected. As a conclusion, in all cases where error is applied, RM shaper is attenuating

major of the swaying.
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5. CONCLUSION AND OUTLOOK

In this thesis, input shaping method was used to prevent swaying of forest machine grap-

ple. More precisely, reduced modification (RM) shaper was implemented and tested with

real forest machine. Inexperienced operator easily excite swaying in the grapple which

mostly decrease productivity and efficiency but also safety. Therefore, controlling the

crane without excessive swaying is important.

During the thesis, the aim was to answer the following research questions.

• To what extend can the grapple swaying be reduced with input shaping?

• How does changes in grapple orientation affect dampening ability of input shaping?

• How does parameter uncertainty of grapple affect the performance of input shap-

ing?

Test results showed that input shaping can be used to prevent grapple swaying. In tested

movement directions of tip near-far and slewing, major part of swaying was attenuated.

Especially in near-far movement, almost all of the swaying caused by movement of tip was

successfully attenuated with input shaping. With slewing, deterioration in performance of

input shaping was caused by the incapability of actual slewing angular velocity to follow

quick changes in command. Despite of that, attenuation of swaying was still significant.

Input shaping method is based on knowledge of the system natural frequency and damp-

ing ratio. Therefore, parameter uncertainties were point of interest. From the dynamic

model of the grapple, physical parameters affecting the swaying are the two lengths l1

and l2 between grapple joints and center of mass of grapple (see figures 3.1 and 3.2),

friction coefficients of grapple joints, and mass of the grapple. These parameters can

be affected by changing the grapple orientation (opening and rotation) or increasing the

mass. Due to the implemented measurement system, testing with a log as additional

weight was not possible. Therefore, only changes in grapple orientation was tested. It

was discovered that grapple orientation has only minor effect on natural frequency of

swaying.

Parameter uncertainty was also studied by introducing an error in modelled natural fre-

quency and damping ratio. Optimization problem of input shaping was then solved for

the erroneous parameters. With natural frequency, ±10% error was tested with both
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movement directions and results showed that compared to error free case, the swaying

increased only a little. With slewing, the changes were smaller due to performance issues

mentioned previously. With near-far movement, the swaying was increased but still ma-

jor part is attenuated. In conclusion, the performance was not excessively deteriorated,

when ±10% error in natural frequency occurred.

In second case, five times smaller and higher damping ratio was tested. Also in this case,

swaying was increased only a little but the error in the damping ratio was considerably

large. Therefore, since the performance of input shaper remained satisfactory, the damp-

ing ratio do not have as high role as natural frequency in the optimization problem of input

shaping.

However, input shaping method has especially one major drawback. The main idea of

input shaping is to delay parts of command signal which purpose is to cancel out the

swaying. Therefore, a delay to the command is introduced that operator observes during

the crane operation. Even though, the purpose of reduced modification (RM) shaper

was to minimize the modification made to original command, it is easily observed by the

operator. Also, the optimization problem of input shaping uses the system parameters to

determine the amount of delay. Thus with input shaping, the amount of delay remains

close to a constant and can be affected only slightly.

During the thesis, also dynamical model of the grapple was formed. However due to the

measurement system, uncertainty in identified parameters exist. In future, more accurate

measurement system should be implement to further refine the grapple model. Based on

the grapple model, estimator based feedback control for sway reduction could be imple-

mented. With anti-sway feedback control, it could be possible to reduce the modification

that input shaping does to control signal. However, this would require a implementation

of a new measurement system and controller.

During this thesis, operator aspect was not addressed. For future considerations, next

obvious step could be to test input shaping with operators that have different experience

levels. The results with traditional crane control without input shaping could be then com-

pared with the ones gotten with crane control with input shaping. The hypothesis here is

that for inexperienced operators, the input shaping might be useful when learning efficient

way of operating the crane. For inexperienced operators, input shaping could reduce the

cognitive load since they do not need to worry about excessive swaying of grapple. For

experienced operators, however, there probably is no need for sway reduction algorithm

since they are already familiar how to operate the crane fluently. Besides that, the delay

introduced to the command is unwanted and probably makes the crane movements feel

sluggish for the experienced operators. Still, the effect of input shaping to productivity

between different experience level operators could be thing to consider in future.

Operator aspect studies would require picking up logs and moving them to and from
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load space. During the thesis, additional weight that log adds to grapple was not tested

due to restrictions of the measurement system. However, the additional weight probably

deteriorates the performance of input shaping. Testing with load would be then one key

aspect to see if the designed input shaper is capable of reducing the swaying also when

the grapple is not empty. Also, the place where log is grabbed, will affect the center of

mass of the grapple. Thus, there remains plenty of different scenarios to consider with

load.

Another potential application for sway reduction algorithm is with automated movements

of crane. With automated movements, the grapple swaying is detrimental since there does

not exist any measurements from which the control system could detect the swaying.

Therefore, input shaping could be used to prevent the swaying. Also with automated

movements, there does not exist similar issues with the delayed command as does with

human operator.
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