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Abstract: Conventional microscopy systems have limited

depth of field, which often necessitates depth scanning

techniques hindered by light scattering. Various techniques

have been developed to address this challenge, but they

have limited extended depth of field (EDOF) capabilities. To

overcome this challenge, this study proposes an end-to-end

optimization framework for building a computational EDOF

microscope that combines a 4f microscopy optical setup

incorporating learned optics at the Fourier plane and a post-

processing deblurring neural network. Utilizing the end-to-

end differentiable model, we present a systematic design

methodology for computational EDOF microscopy based on

the specific visualization requirements of the sample under

examination. In particular, we demonstrate that the meta-

surface optics provides key advantages for extreme EDOF

imaging conditions, where the extended DOF range is well

beyond what is demonstrated in state of the art, achieving

superior EDOF performance.
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1 Introduction

A conventional imaging system can produce sharp images

for objects within the depth of field (DOF), which is the

range around the focused depth of the scene. The DOF cov-

erage is inversely proportional to the numerical aperture

(NA), i.e., a smaller NA leads to a larger DOF. Although

specific applications may require smaller DOFs, a larger

DOF is often preferable to obtain sharp images of objects

at varying depths. In particular, microscopy requires high

NA objectives to capture precise details surrounding the

focused depth of an object. However, due to the shallowDOF

of high NA imaging systems, microscopic imaging systems

often use depth scanning techniques to cover the entire

depth range of interest, typicallymuch larger than the imag-

ing system DOF [1]. Depth scanning techniques are often

insufficient due to the light scattering from objects outside

the intended image plane, resulting in artifacts or severe

noise. Acquiring cross-sectional data using this approach

requires sweeping a focused point across the entire sam-

ple, which inherently imposes temporal limitations on the

frame rate and prevents snapshot acquisition. To address

these challenges, various techniques have been developed,

such as decoupled illumination and detection in light-sheet

microscopy [2], dynamic remote focusing [3, 4], and spa-

tial and spectral multiplexing [5, 6]. Despite their poten-

tial advantages, these methods often necessitate a special-

ized and intricate optical configuration, which may render

them both costly and difficult to implement in microscopy

applications. In addition, computational approaches such as

Fourier ptychographic microscopy demonstrated extended

depth of field (EDOF) imaging capabilities [7]. However,

this method relies on image reconstruction that assumes

a thin sample illuminated by oblique plane waves, ren-

dering it unsuitable for clinical fluorescence imaging

applications.

The integration of wavefront encoding with computa-

tional reconstruction methods offers a cost-effective and

efficient approach to improve EDOF imaging performance.

Specifically, computational reconstructionmethods, such as
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deep learning-based approaches and iterative optimization

algorithms, have demonstrated substantial advancements

in enhancing the EDOF imaging performance by effec-

tively mitigating defocus blur, noise, and artifacts [8–12].

These methods leverage the optimization of both optical

components and the reconstruction algorithm, enabling the

system to enhance the EDOF performance effectively. End-

to-end optimization frameworks, which jointly optimize the

optical design and the associated reconstruction algorithms,

have emerged as a powerful tool for addressing the EDOF

challenge. This approach allows the system to learn and

adapt to specific imaging requirements, thereby improving

overall performance and enabling better control over trade-

offs in resolution, noise, and depth range [8]. Wavefront

coding involves the use of a phase element, such as a diffrac-

tive optical element (DOE) or a free-form refractive lens,

placed at the aperture plane [13–19]. The main objective of

EDOFwavefront coding is to achieve a depth-invariant point

spread function (PSF) while preserving information at all

spatial frequencies. The research presented in [10] employs

DOEs to realize EDOFmicroscopy across 200 μmDOF range,

a methodology closely aligned with our study. However,

DOEwavefront coding displays restricted EDOF capabilities,

a limitation that may be attributed to constraints within

the space-bandwidth product (SBP). This factor determines

the information content captured by the imaging system. A

detailed comparison with such method, called DeepDOF, is

elaborated in Section 3.

In comparison, metasurfaces, which are ultra-thin

meta-optics composed of subwavelength nano-antennas,

offer increased design flexibility and a superior SBP com-

pared to DOEs [20, 21]. These structures facilitate pre-

cise control over phase, amplitude, and polarization of

light at the nanoscale, allowing almost arbitrary modifi-

cation of the complex optical functions on a thin, planar

device. The advantages of metasurfaces can be attributed

to the rich modal characteristics of meta-optical scatterers,

enabling multifunctional capabilities beyond traditional

DOEs, encompassing polarization, frequency, and angle

multiplexing [22–25]. Consequently, metasurfaces exhibit

a greater potential for addressing the EDOF microscopy

challenge more effectively than conventional DOEs, with

researchers having already leveraged their benefits in var-

ious applications such as flat optics for imaging [26, 27],

polarization control [28], and holography [29]. Despite the

promising potential of meta-optics, current metasurface

imaging methodologies demonstrate limited EDOF imaging

capabilities. The EDOF range for any given imaging system

can be quantified using the defocus coefficient, wherein a

larger EDOF corresponds to a higher defocus coefficient.

Details regarding these defocus coefficients and their rela-

tionship with the depth of field range and optical parame-

ters are comprehensively covered in Section 2.1. Currently,

most methods are designed to accommodate systems with

a maximum defocus coefficient limited to around 75, with

some usingmechanical displacement as a strategy to extend

imaging capability [30–32]. Although the narrow defocus

ranges may be adequate for certain applications, it is com-

paratively limited in broader scientific and industrial con-

texts. As such, there remains a need for more flexible

and versatile imaging solutions that can accommodate a

broader depth range without sacrificing image quality. In

contrast, the study in [33], addresses a problem charac-

terized by a maximum defocus coefficient comparable to

ours, valued at around 245. However, the demonstrated

image quality is considerably lower compared to the results

achieved in our research. It is worth noting that other

metasurface-based imaging implementations exist, which

are capable of encoding spatial, spectral, and polarization

information while maintaining satisfactory imaging per-

formance [34, 35]. Moreover, computational metasurface

designs that yield a large field-of-view for full-color meta-

surface operation, without significant degradation of imag-

ing performance, have been reported [21].

In this study, we propose an end-to-end optimization

framework designed for acquiring high-resolution images

across an extensive DOF range within a microscopy system.

The optics and post-processing algorithm are modeled as

parts of the end-to-end differentiable computational image

acquisition system, allowing for simultaneously optimiz-

ing both components. Our computational EDOF microscope

employs a hybrid approach that combines a 4f microscopy

optical setup with a learned wavefront modulating optical

element at the Fourier plane. We explore metasurfaces and

(conventional) DOEs for implementing such novel design

modulation. The encoded image acquired at the sensor is

post-processed by a convolutional neural network (CNN)

that implements deblurring to achieve an EDOF image of

the specimen. The optimization procedure involves tuning

of critical parameters within two primary components of

the system: the optical component, characterized by the

phase modulation function, and the image reconstruction

component, realized through the deblurring convolutional

neural network (D-CNN). This process is facilitated by an

end-to-end learning methodology that utilizes a dataset of

sharp images to steer the optimization. This methodology

emphasizes the importance of carefully outlining sampling

requirements for various depth-of-field targets in order to

achieve optimal imaging results. As a result, our system-

atic design methodology significantly outperforms existing
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state-of-the-art EDOF imaging techniques in terms of image

quality and depth range.

2 Methods

The EDOF microscopy problem addresses the difficulty of captur-

ing high-resolution images across an extensive DOF range within

a microscopy system. The objective of resolving this problem is to

improve the imaging performance of the system by expanding its DOF,

allowing the acquisition of sharp images over a larger depth rangewith-

out necessitating mechanical focus adjustments. Figure 1 presents the

proposed 4f system designed to address the EDOFmicroscopy problem,

which consists of an optical module, a sensor, and a subsequent deblur-

ringmodule for post-processing. The optical module employs a 4f imag-

ing configuration that incorporates a phase codingmask at the aperture

position. This mask, an optical element crafted to modulate incident

light, introduces phase shifts across various regions through a trans-

parent material with spatially varying geometry. The purpose of using

a phase coding mask is to manipulate the optical wavefront, enabling

a specific PSF or other desired properties within the optical system.

In addressing this problem, the 4f system components remain fixed

while optimizing the EDOFmicroscopy imaging system by learning the

spatial distribution of the phase coding mask and the D-CNN weights

for the targeted DOF ranges. Consequently, the objective is to achieve a

defocus-invariant PSF within the optical system, resulting in improved

EDOF microscopy imaging performance.

Figure 2 depicts the proposed end-to-end learning procedure for

the EDOF microscopy problem. This process accepts two inputs as

high-resolution image patches and the predetermined depth range. The

architecture of the framework consists of two main components: an

optical layer and a D-CNN layer. During the training phase, the sensor

image is generated through the optical layer, which involves simulating

the image acquisition process based on depth value and the input

image. The resulting sensor image is then fed into the D-CNN, which

estimates the sharp, deblurred image as its output. The backpropaga-

tion algorithm is used to update the spatial phase distribution of the

phase coding mask and the weights of the D-CNN at each iteration of

the learning procedure, thus optimizing the parameters of the EDOF

microscope in an end-to-endmanner. The optimized phase codingmask

is realized as a meta-optic element (metalens) or DOE, depending on

the spatial phase distribution and sampling. After training is completed

for the targeted DOF range, the defocus-invariant optical element and

D-CNNmodel are obtained in the 4f system computational EDOFmicro-

scopemodel (Figure 2). Further details regarding the optical andD-CNN

layers are provided below.

Figure 1: A 4f system computational EDOF microscope model that

combines the optical module, sensor, and D-CNN.

2.1 Optical layer

The optical layer is a computational module that operates based on

the principles of wave optics and performs sensor image formation.

In the following, we discuss sensor image formation by employing

wave optics in particular and characterize the parameters of the EDOF

microscope for the targeted DOF range for a 4f shift-invariant imaging

system as illustrated in Figure 1. Here, the specimen is illuminated by

a monochromatic, spatially incoherent light source. The spatial coor-

dinates in the Fourier and sensor planes are denoted as (x1, y1) and

(x2, y2), respectively. A transparent biological specimen in the system

can be represented as a stack of 2D images corresponding to a fixed

scene depth where a slice of such a stack corresponds to Iz(x2, y2) at

the scene depth z. The contribution of such a slice to the sensor image,

Is
z
(x2, y2), is determined by convolution with the depth-dependent PSF,

hz(x2, y2):

Is
z
(x2, y2) = Iz(x2, y2) ∗ hz(x2, y2). (1)

The final image captured at the sensor, Is(x2, y2), is then deter-

mined by integrating Is
z
(x2, y2) over all depth values possible in the

scene, considering

Is(x2, y2) = ∫ Is
z
(x2, y2) dz+ 𝜂s, (2)

where 𝜂s is a sensor noise. In our simulations, we consider the noise as

a zero-mean Gaussian model with 𝜂s ≈ N
(
0, 𝜎2

s

)
, where 𝜎s represents

the standard deviation of the Gaussian noise. It is important to note

that while we have assumed Gaussian noise for our experiments, the

proposed method can be easily adapted to handle other noise models,

such as Poisson distributed noise, by adjusting the noise assumption

within the optimization process. Considering Eqs. 1 and 2, the recovery

of a sharp image directly depends on hz(x2, y2). The PSF on the sensor

plane can be modeled using Fourier optics as the square of the Fourier

transform of the generalized pupil function:

hz(x2, y2) = |F{P(x1, y1)}|2, (3)

where F{.} denotes the Fourier transform operator, and P(x1, y1) is

the pupil function, which describes the relative amplitude and phase

changes of the wavefront at the Fourier plane:

P(x1, y1) = A(x1, y1)e
i𝜙(x1 ,y1). (4)

The pupil can be modulated using a phase coding mask introduc-

ing a phase term 𝜙
M (x1, y1) to enhance the defocus invariance of the

PSF in the targeted DOF range. The resultant phase term becomes:

𝜙z(x1, y1) = 𝜙
DF
z
(x1, y1)+ 𝜙

M (x1, y1). (5)

The defocus aberration due to the mismatch between in-focus

depth z0 and the actual depth z of a scene point is

𝜙
DF
z
(x1, y1) = 𝜓z

x2
1
+ y2

1

r2
, (6)

where 𝜓z = 𝜋

𝜆

(
1

z
− 1

z0

)
r2 is the defocus coefficient and r is the radius

of the pupil. To represent all spatial frequencies kx, ky supported by the

objective lens on the pupil plane, the pupil size must be chosen using

r ≥ f1
k

√
k2
x
+ k2

y
, (7)

where f1 is the focal length of the tube lens, and k is the wave number.

The frequency support of the PSF, in particular, determines the recon-

struction quality. To avoid aliasing due to undersampling of the defo-

cused pupil function, which would otherwise result in a miscalculated
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Figure 2: Overall representation of the end-to-end learning framework for joint optimization of the phase coding mask and the D-CNN. The end-to-end

framework consists of an optical layer that simulates image formation for the learned optics, and the deblurring layer employs U-Net architecture to

reconstruct in-focus images within the desired DOF range. The optical element can be realized via a metalens, parametrized by the radius map, or a

DOE, parametrized by the height map. The choice of representation relies upon the maximumΔs calculated for the intended depth range.

PSF, the minimum sampling rate of the simulated phase coding mask

must be determined. The sampling rate Δs for a given depth range

should satisfy [11]

Δs ≤ r𝜋

8𝜓max

, (8)

where 𝜓max = max
(|𝜓z− |, |𝜓z+ |), the maximum defocus value within

the scene. At the same time, we use such a relation as a guide in

choosing the search space for the phase modulation function of the

optical element, matching its degree of freedom with the complexity

of the EDOF imaging problem at hand. This is observed to have a

significant help in the end-to-end learning process, i.e., its convergence

to the optimal solution. The optimized optical element can be realized

as a metalens or DOE according to the calculated maximum Δs for
the targeted depth range. The metalens and DOE are parameterized

by a radius map and a height map, respectively, details of which are

provided in the following sections.

During training, the optical element is optimized to minimize

the impact of the defocus phase and ensure depth-invariant PSFs

through the utilization of learned phase coding mask elements. For

each iteration within the forward pass, this optimization is achieved

by calculating Eq. (3) and optimizing the 𝜙
M
(x1, y1) phase modulation

term. For both the DOE and the metalens, the amplitude A(x1, y1) of

the pupil function is kept constant within the aperture diameter and

is modeled as a circular function. The camera parameters f1, r, and

Δs are predefined as optical parameters. r andΔs is calculated for the
selected objective lens and targeted depth range using Eqs. (7) and (8),

respectively.

For the DOE design, the phase modulation can be controlled

through unit cell height. Specifically, the phase shift is given by the

equation:

𝜙
M (x1, y1) = k(n− 1)h(x1, y1), (9)

where n denotes the refractive index of the DOE material which is

1.5, specifically at the design wavelength of 550 nm within the green

spectrum. The DOE is assumed to be lossless; therefore the amplitude

is kept fixed as the circular function within the aperture diameter.

For the metalens design, phase accumulation is achieved through

the waveguiding effect [36], whereby the height of the nanopillars is

selected to provide 2𝜋 phase coverage across a range of radii. While

the smallest possible diameter is primarily limited by fabrication con-

straints, the largest diameter is 50 nm smaller thanΔs, as set by Eq. (8).
To ensure high efficiency, the nanopillar height Δh is optimized at the
550 nm design wavelength. The phase and transmission responses are

simulated via a finite-difference time-domain (FDTD) analysis, which

involves varying the radius of the gallium nitride (GaN) nanopillar on a

sapphire glass substrate. As depicted in Figure 3(a), the analysis results

in full phase coverage (0–2𝜋) with high transmission (overall greater

than 83 %) for 550 nm.

Irrespective of the desired target phase, designing a metalens

involves converting a spatial phase profile into a corresponding spatial

radius distribution. A resulting𝜙M (x1, y1) phase profile, generated from

the end-to-end framework, is illustrated in Figure 3(b). This profile is

then translated into the full metalens, taking into account the simu-

lated phase and radius response. This approach enables the design

of highly precise and effective metalens that meets the desired phase

requirements.

2.2 Deblurring CNN

The D-CNN module shown in Figure 2 utilizes the sensor output (Is)

from the optical layer as its input. Although many network architec-

tures exist for this problem, we chose the well-known U-Net [37] as it

is widely used in biomedical imaging for image reconstruction [10, 38,

39]. In short, the U-Net implementation has an encoder and decoder

architecture with 23 convolution layers and 32 to 512 feature channels.

At each step of the encoder stage, the input underwent two 3× 3 convo-

lution layers, a rectified linear unit (ReLU), and batch normalization

(BN). Subsequently, the feature map is downscaled by a 2 × 2 max-

pooling operation. Likewise, following two 3 × 3 convolution layers

that incorporated ReLU and BN at each iteration of the decoder, a 2 ×
2 transposed convolution operator upsampled the feature map. At the

final layer, a 1× 1 convolution is used tomap each 32-component feature

vector to the desired number of classes, which is 1 in the current case.

Moreover, a hyperbolic tangent (tanh) activation is utilized to map the

output to the range of [−1, 1]. The residual image is then incorporated
by addition to the sensor output. The Clamp layer further processes the

resulting image to constrain the data from 0 to 1.
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Figure 3: Design and simulation of EDOF imaging metalenses. The metalenses are made up of GaN nanopillars with a refractive index of 2.42, where

the thickness (Δh), sampling (Δs), and radius (Δr) are the design parameters. (a) Simulation of the nanopillars’ transmission amplitude and phase
response via FDTD. (b) Illustration of the full metalens design, transforming the spatial phase profile into a spatial radius (of nanopillar) distribution

with respect to the target phase.

For memory efficiency, U-Net takes input as 256× 256 blurry pixel

images corresponding to different depths and outputs the enhanced

images at each iteration. It should be noted that to avoid border dis-

tortions during convolution with the PSF, the patched image and PSF

are convolved and subsequently cropped to 256× 256 after convolution.

Once the network is trained, it can process imageswith dimensions that

are multiples of 16 in width and height.

2.3 End-to-end learning

The end-to-end framework is trained via an image dataset provided

by [10]. The dataset consists of a diverse array of microscopic fluores-

cent images of proflavin-stained oral cancer resections, histopathology

images of healthy and cancerous tissues from the Cancer Genome

Atlas (TCGA), and natural images from the National Digital Science and

Technology Research Institute’s (INRIA) Holiday dataset. This diverse

selection ensures a broad range of feature scales within the dataset.

The dataset contains a total of 1800 grayscale images, 1000 × 1000

pixels each, and includes 600 images of each type. The images are

randomly assigned to training, validation, and testing datasets, with

1500, 150, and 150 images, respectively. During training, the images are

randomly cropped and enhanced with rotation, flipping, and bright-

ness adjustments for data augmentation. Throughout the training and

validation stages, at each iteration, a random image patch is selected

from the corresponding dataset and assigned to M depth positions

zi ∈ (z1,… , zM ) that are uniformly distributed (in diopters) within the

boundaries of the targeted scene depth, as illustrated in Figure 2. Dur-

ing a forward pass, the loss function corresponding to each depth is

computed and subsequently summed and averaged over the number

of selected depths. The calculation of the loss function for each depth

involves sequentially processing the image patches assigned to the

chosen zi. In this study, we limited m to five depth positions to reduce

the computational complexity. Upon experimentation, an increase in

the number of depth positions did not yield a significant improvement

in imaging performance.

The loss function used in the framework is the root mean squared

error (RMSE) calculated for each depth and each pixel of the recon-

structed image stack, compared to the respective pixel in the ground-

truth image, with the results subsequently averaged across the number

of depths:

LRMSE =
1

M

M∑
i=1

1√
N
‖I − IR‖2, (10)

where N is the number of pixels. As the input experiences blurring at

varying defocus values throughout the depth, the framework intrin-

sically adapted the optics to achieve a defocus-insensitive PSF. Conse-

quently, no explicit cost function is required to maintain PSF similarity

within the designated depth range.

The PyTorch package is used to implement the framework, and

stochastic gradient descent with the Adam optimizer [40] is employed

for optimization. The learning rates for theAdamoptimizer are selected

empirically as 1e− 7 for the optical layer and 1e− 4 for the D-CNN.

During end-to-end framework training, a two-step training process is

used, where the initial step is training the U-Net with fixed optics. After

the convergence, joint training of the optical rendering and D-CNN is

performed to achieve optimal performance. Regarding computational

requirements, we used two Tesla P100-PCIE-12GB GPUs for training.

Depending on the complexity of the problem, which is dictated by

the number of required parameters, the training duration varies. The

most parameter-intensive problem necessitated a training period of

approximately 148 h and 33 min,whereas the least demanding scenario

required a comparatively shorter duration of around 6 h and 41 min.

3 Results

Our design is aimed to mitigate the trade-off between DOF

and spatial resolution for varying target DOFs by experi-

menting with different objective lenses within the 4f imag-

ing setup, as illustrated in Figure 1. This trade-off is mathe-

matically expressed as follows:

DOF ∝ 𝜆

NA2
∝ resolution2

𝜆
. (11)

This demonstrates that the spatial resolution is higher

for a shallowerDOF range; therefore, a shallowerDOF range

optimization problem is comparatively less challenging to
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solve. The complexity of the problem, however, is affiliated

with the selected lenses and the desired DOF range. It is

quantified and expressed using the defocus coefficient (𝜓 z)

and presented alongside the system parameters for differ-

ent simulations in Table 1.

Table 1 demonstrates that solving the EDOF problem

for a higher NA lens system is considerably more challeng-

ing task, where the sampling requirements, determined by

Eq. (8), become more demanding due to the broader band-

width of the defocused pupil function, necessitating finer

sampling for accurate results. Such a case, thus, advocates

the metalens to address the underlying stricter sampling

requirement. Conversely, for the same EDOF range, using a

low NA lens-based system with a learned DOE can yield a

satisfactory solution. However, it should be noted that the

final magnification would be significantly lower in such a

system. Therefore, the lens selection should be based on the

requirements of the sample to be visualized. To the best of

our knowledge, certain biological specimens, such as the

developing embryo, exhibit a diameter that increases from

approximately 200 μmtonearly 3 mm [41]. As such,we have

selected to target DOF ranges of 200 μm, 2 mm, and 3 mm for

our study.

To further support the results, we compare the pro-

posed algorithmwith two existingmethods. Initially, a cubic

mask is adopted as the conventional method for DOF exten-

sion [13], which modulates the phase as

𝜙
M (x1, y1) = mod

[
𝛼

N3

(
x3
1
+ y3

1

)
, 2𝜋

]
, |x| < N

2
, |y| < N

2
,

(12)

where 𝛼 determines the number of 2𝜋 transitions. In this

case, a fixed cubic phasemask is combinedwith a U-Net and

subsequently trained to perform deblurring for all EDOF

targets. To select an appropriate mask for each DOF range,

the modulation transfer function (MTF) is evaluated across

five different depths by tuning𝛼, to be insensitive to defocus

and represent all spatial frequencies. 𝛼 values of 6𝜋, 200𝜋,

Table 1: Test results and calculated system parameters for the selected

lenses.

Objective lens NA DOF r (mm) 𝚫s(𝛍m) PSNR SSIM 𝝍max

RMS4X-PFa 0.13 ±100 μm 3.72 740 38.19 0.98 0.97

RMS4X-PF 0.13 ±1 mm 3.72 73 30.11 0.88 9.877

RMS20X-PF 0.40 ±100 μm 2.87 38 29.95 0.90 14.69

Mitutoyo50X 0.42 ±100 μm 1.07 20 30.84 0.88 10.48

Mitutoyo50Xa 0.42 ±1 mm 1.07 1.54 29.28 0.89 136.24

Mitutoyo50Xa 0.42 ±1.5 mm 1.07 0.858 27.98 0.89 245.54

aUsed as the optimized design for the targeted DOF range.

and 360𝜋 are selected for the DOF ranges of 200 μm, 2 mm,
and 3 mm, respectively.

Additionally, the DeepDOF algorithm proposed by Jin

et al. [10] is adopted as a more recent advanced EDOF

method based on the end-to-end learning framework and

Zernike basis (Zn) representation. Notably, the paper does

not provide a relationship between the choice of thenumber

of Zernike polynomials and the EDOF range. To align the

optical setup parameters with our methodology and ascer-

tain the appropriate number of parameters (n) for each

depth range, we calculated the Fourier transform of the Zn
and found the bandwidth of the resultant signal. Consider-

ing the Nyquist theorem, we calculated the sampling rate

for the Zn. Based on these calculations, we selected the first

11, 1100, and 2000 Zn for DOF targets of 200 μm, 2 mm, and
3 mm, respectively.

We present a quantitative analysis of the proposed

method in comparison with existing approaches by ana-

lyzing the performance metrics, specifically peak signal-

to-noise ratios (PSNRs) and structural similarities (SSIMs).

For each test setup, the PSNR and SSIM values are derived

and depicted in Figure 4. Additionally, the mean PSNR and

SSIM values are calculated for all images within the 150 test

images of the dataset and presented in Table 2. To calculate

the average values, we assign each test image to predeter-

mined depths, uniformly distributed throughout the scene

depth range. Subsequently, the PSNR and SSIM values are

averaged.

As demonstrated in Table 2, the proposed method out-

performs existing approaches in terms of PSNR and SSIM

values, both for the sample image shown in Figure 4 and

the mean values across the entire test dataset. In particular,

the D-CNN alone, as inferred from the fixed Cubic mask and

U-Net simulations, is inadequate. Upon increasing the target

DOF, the image becomes excessively blurry at the sensor

level, and the U-Net cannot recover the images effectively.

Comparable results are visible in the DeepDOF approach,

which is linked to the sub-sampling of the frequency domain

that arises from using the Zernike basis representation. It

is important to acknowledge that [10] is optimized using 55

Zernike basis, for a target DOF of 200 μm. The starred result
in Table 2 displays the outcomes obtained when employing

55 Zernike basis. In this case, we retain the same setup

parameters as in our other simulations, only modifying the

number of Zernike basis utilized to represent the height

map in the method, resulting in a higher sampling than

necessary. The results demonstrate that increasing the sam-

pling does not improve the performance, thus confirming

that our calculated setup parameters sufficiently address
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Figure 4: Simulated performance of a cubic-mask-enabled computational 4f system, DeepDOF model, computational EDOF microscope, optimized for

various target depths. For all DOFs, our method shows superior performance.

the system complexity. Additionally, in our U-Net implemen-

tation, different from [10], we adapted a modified U-Net

architecture for the deblurring layer. The main difference

resides in the final layer of our U-Net architecture, where

we incorporated the residual image and applied the clamp

function, enhancing both the accuracy and efficiency of the

deblurring process.

An alternative method for evaluating EDOF perfor-

mance involves examining the characteristics of MTFs

across various depths, with MTFs representing the mag-

nitudes of the Fourier transforms corresponding to their

associated PSFs [12]. To facilitate efficient depth-agnostic

deblurring throughout the whole depth range of interest,

MTF pass-bands should be as wide as possible to recover

features at various spatial frequencies while maintaining

a high degree of similarity among themselves. Figure 5

presents the final metasurface designs for the 3 mm DOF

scenario, as well as the MTFs at three distinct depths. The

depth dependency of the MTFs in the proposed method is

decreased compared to both the DeepDOF and Fixed cubic

cases. TheMTFs of the proposedmethoddisplay greater sim-

ilarity among themselves and avoid crossing zero, ensur-

ing the preservation of information during recovery. This

similarity is attributed to depth-agnostic deblurring assist-

ing MTFs to remain consistent across all targeted depths.

To compare the frequency support of each method, we

defined a threshold of 0.1 and examined theMTFmagnitude

across the frequency spectrum and depths, which formally
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Table 2: Quantitative analysis of methods for EDOF problem. It should

be noted that all the methods are simulated using the same system

parameters that are computed for each DOF range. Refer to Table 1 for

system parameters.

Framework configuration DOF PSNR SSIM

Fixed cubic+ U-Net ±100 μm 34.99 0.92

±1 mm 23.6 0.62

±1.5 mm 21.86 0.58

DeepDOF [10] ±100 μm 28.90, 28.85a 0.80, 0.81a

±1 mm 20.67 0.55

±1.5 mm 21.14 0.58

Our method ±100 μm 38.19 0.98

±1 mm 29.28 0.89

±1.5 mm 27.98 0.89

aUsed first 55 Zernike polynomials.

determines the maximum spatial resolution transmitted

through the optics. The MTFs of the proposed method

resulted in broadband coverage across the entire spectrum,

illustrating that even at higher spatial frequencies, MTFs do

not approach zero. This finding corresponds to the clear

visibility of small structures. Conversely, at lower spatial

frequencies, theMTF is closer to 1, representing the ability to

clearly visualize large structures. Indeed, as demonstrated

in the other methods, all MTFs can clearly visualize large

structures, but for smaller structures, quality is inadequate.

3.1 Fabrication error analysis

The robustness of the proposed EDOF microscope model is

tested considering various levels of inaccuracies for the pos-

sible fabrication errors of metasurface and DOE. In particu-

lar, the effects of such fabrication inaccuracies are modeled

by introducing random Gaussian-distributed noise with a

standard deviation 𝜎r, to the optimized optical elements,

as the radius and DOE height error during the test stage.

The tested metasurface radius deviation levels are 𝜎r =
5 nm, 12 nm, while the DOE height deviation is assumed as

𝜎h = 30 nm, 50 nm. Figure 6 presents the outcomes for the

various EDOF configurations. As it can be inferred from the

figure, the post-processing method performs adequately for

lower fabrication error levels but exhibits limited robust-

ness in the presence of higher error margins, leading to a

noticeable reduction in image quality, particularly at the

boundaries of the targeted EDOF. The robustness of the

algorithm can be increased by incorporating fabrication

error boundaries during training or retraining the D-CNN

following the fabrication of optical components. Addition-

ally, the implementation of advanced denoising algorithms

can contribute to the enhancement of the results.

Figure 5: The optimized metalens radius maps, as well as the MTFs at three distinct depths, are presented for the existing and proposed methods,

encompassing the maximum defocus values within the 3 mm DOF scene and the in-focus depth.
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Figure 6: Reconstruction results for increasing radius and height-map

fabrication error levels.

4 Future work and conclusion

In conclusion, we implemented an end-to-end optimiza-

tion framework that effectively addresses the physical

limitations inherent in the 4f system EDOF microscope.

Our approach offers two primary advantages over existing

methods. Firstly, the incorporation of metasurface optics

within our system has facilitated the achievement of the

most extensive EDOF range reported in the literature thus

far. In extremeEDOF scenarios, specificallywhen employing

a higher NA lens, meta-optics offer a distinct advantage due

to their increased design flexibility and superior SBP. Sec-

ondly, our method effectively minimizes defocus by system-

atically incorporating relevant optical system parameters

throughout the optimization process. The results obtained

from our simulations demonstrate that our proposed tech-

nique outperforms the current state-of-the-art methods in

EDOFmicroscopy imaging, delivering consistently high per-

formance across a broad range of EDOF values.

In future work, we aim to investigate the co-design

of optics and post-processing for broadband EDOF imag-

ing. Moreover, we aim to explore the application of our

approach in addressing the challenges associated with light

fieldmicroscopy. Our next objective is fabricating a selected

metasurface, followed by a comprehensive evaluation of its

performance within the context of the 4f system setup. We

believe that these research directions will contribute signif-

icantly to the ongoing advancement of microscopy imaging,

ultimately leading to more sophisticated and versatile opti-

cal systems.
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