

Debajit Saha

EVALUATION OF OPEN-SOURCE EDA
TOOL “EDA PLAYGROUND”

Faculty of Information Technology
and Communication Sciences

Master of Science Thesis
October 2023

i

ABSTRACT

Debajit Saha: Evaluation of Open-Source EDA Tool “EDA Playground”.

Master of Science Thesis

Tampere University

Master’s Degree Programme in Electrical Engineering

Major: Electronics

October 2023
Examiners: Prof. Dr. Jari Nurmi, Dr. Hesam Zolfaghari

With the advancement of Information Technology, the design, verification, and manufacturing of

Integrated circuits have been challenging and time consuming. Unlike the software domain, Elec-

tronic Design Automation (EDA) tools are mostly commercially available, and access is limited to

the students. An open-source EDA tool might help the students to initialize the learning process.

This thesis showcases an open-source EDA platform, EDA Playground, where users can practice

their hardware description language (HDL) codes, create a testbench to simulate their designs

and synthesize their code.

The thesis shows how EDA Playground provides its users with the ability to write code in various

HDLs, enabling them to evaluate their designs using a range of both commercial and freely avail-

able simulators. Additionally, it also shows how the platform helps in identifying and resolving

design failures through the utilization of waveform viewing tool, EPwave, developed my EDA

Playground and logs. It is also highlighted how users have the ability to employ commercial syn-

thesizers in order to combine their codes, thereby facilitating the assessment of device utilization

and circuit diagram.

Another notable objective of the thesis is to highlight the application of EDA Playground to the

incorporate of UVM 1.2. A step-by-step UVM testbench of a simple SystemVerilog adder was

developed and simulated as a part of the thesis. Prospective users have the opportunity to gain

knowledge about this methodology by accessing educational resources, which encompass vari-

ous tools and examples provided for their advantage.

The thesis provides an extensive array of use cases that showcase the varied functionalities pro-

vided by EDA Playground. This thesis extensively employs and evaluates the diverse resources

offered on EDA Playground to determine their usefulness.

Keywords: Hardware Description Language (HDL), Electronic Design Automation (EDA), Uni-

versal Verification Methodology (UVM), SystemVerilog, VHDL, EDA Playground.

ii

PREFACE

This thesis was done as a part of the master’s degree in electrical engineering for Tampere Uni-
versity.

First, I would like to thank my supervisor Prof. Dr. Jari Nurmi for constant suggestions and guid-
ance during the thesis. I would also like to express my gratitude to Dr. Hesam Zolfaghari for his
important feedbacks. I extend special thanks to Arto Oinonen of Tampere University whose mas-
ter’s thesis was of great help towards planning the use cases using SystemVerilog and UVM.

Finally, I would like to express my deepest gratitude to my parents and my wife for constantly
pushing and motivating me to achieve my goal.

Tampere, 2nd October 2023

Debajit Saha

iii

CONTENTS

1. INTRODUCTION .. 1

1.1 Motivation and scope behind the thesis.. 3

1.2 Thesis Outline .. 3

2. LITERATURE REVIEW ... 5

2.1 Digital Systems .. 5

2.1.1 Embedded Systems .. 5
2.1.2 Digital Signal Processor .. 6
2.1.3 System on Chip (SoC) .. 7

2.2 Digital System Design Flow .. 10

2.2.1 Specification ... 11
2.2.2 Modeling ... 11
2.2.3 Hardware Design .. 12
2.2.4 Verification .. 12
2.2.5 Synthesis .. 12
2.2.6 Prototyping.. 12
2.2.7 Physical design ... 13
2.2.8 Floorplanning .. 13

2.3 Hardware Description Language .. 14

2.3.1 Verilog HDL .. 15
2.3.2 VHDL .. 16
2.3.3 SystemVerilog ... 17

2.4 Electronic Design Automation .. 18

3. SYSTEMVERILOG ... 21

3.1 SystemVerilog Design and Verification Building Blocks 21

3.1.1 Design Elements ... 21
3.1.2 Modules .. 21
3.1.3 Programs .. 22
3.1.4 Interfaces .. 22
3.1.5 Checkers .. 22
3.1.6 Primitives .. 23
3.1.7 Packages .. 23
3.1.8 Configurations ... 23

3.2 SystemVerilog Hierarchy Overview .. 23

3.3 SystemVerilog for verification ... 24

4. UNIVERSAL VERIFICATION METHODOLOGY ... 26

4.1 UVM Testbench Basics .. 26

4.2 UVM Building Block.. 26

4.2.1 Objects and Components .. 27
4.2.2 UVM Phasing .. 29

4.3 UVM Architecture ... 30

4.3.1 UVM Environment ... 31
4.3.2 UVM Tests .. 32

5. OVERVIEW OF EDA PLAYGROUND ... 34

iv

5.1 Application of EDA Playground .. 34

5.2 User Interface .. 34

5.3 Languages and Libraries .. 35

5.4 Tools and Simulators ... 36

5.4.1 Commercial Simulators ... 36
5.4.2 Synthesis Tools .. 36

5.5 EPWave ... 37

5.6 USE CASE 1: Design and Simulation With VHDL 38

5.7 USE CASE 2: UVM Verification of SV Design 39

5.8 Other Features ... 44

6. CONCLUSION .. 45

REFERENCES... 46

v

LIST OF FIGURES

Figure 1. Design Gap Vs Verification Gap[3] ... 2
Figure 2. A Basic Model of SoC [10]. .. 7
Figure 3. A simple digital system design flow [15]. .. 11
Figure 4. UVM base class hierarchy [16] ... 28
Figure 5. UVM component class hierarchy[16] .. 29
Figure 6. UVM Phases [16] ... 29
Figure 7. Block Diagram of UVM Architecture [27] . .. 31
Figure 8. User Interface of EDA Playground ... 35
Figure 9. Tools and Simulators in EDA Playground ... 36
Figure 10. Waveform Viewer EPWave .. 37
Figure 11. Waveform for 4to1 MUX ... 38
Figure 12. Routing Diagram for 4to1 MUX generated by Aldec SyntHESer 39
Figure 13. UVM architecture for the use case 2 .. 40
Figure 14. Log from the UVM test run. .. 43
Figure 15. Yosys simplified implementation diagram after synthesis for the

adder subtractor ... 43

vi

LIST OF SYMBOLS AND ABBREVIATIONS

AI Artificial Intelligence

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CAD Computer Aided Design

CLB Combinational Logic Blocks

CPU Central Processing Unit

DRC Design Rule Check

DSP Digital Signal Processor/Processing

DUT Device Under Test

EDA Electronic Design Automation

ESL Electronic System Level

FPGA Field Programmable Gate Array

GPU Graphical Processing Unit

HDL Hardware Description Language

IC Integrated Circuit

IP Intellectual Property

IOB Input/Output Block

IT Information Technology

LUT Look-Up Table

LVS Layout Vs. Schematic

ML Machine Learning

PCB Printed Circuit Board

PLD Programmable Logic Device

RAM Random Access Memory

RTL Register Transfer Level

SoC System on Chip

TLM Transaction Level Modeling

UDP User Defined Primitive

UVM Universal Verification Methodology

VHDL Very High-Speed Integrated Circuit Hardware Description Language

VIP Verification IP

VLSI Very Large-Scale Integration

1

1. INTRODUCTION

The field of information technology (IT) is centered around advanced technologies re-

lated to digital information and communication. The information technology sector has

experienced significant growth in recent years, making it the industry with the highest

rate of expansion. As globalization continues to shrink the world, the demand for en-

hanced communication devices and methods becomes increasingly crucial in the busi-

ness realm. One of the crucial attributes of IT is its escalating requirement for exceed-

ingly robust processing capabilities and extensive bandwidth to effectively manage time-

sensitive applications, such as video streaming. These circumstances forced the devel-

opment of accelerated and progressively more effective products to facilitate enhanced

telecommunications capabilities. The increasing demand in the contemporary world is

driving numerous countries to make substantial investments in the design of Very Large

Scale Integration (VLSI) systems[1].

The process of manufacturing VLSI systems on chips is a complex undertaking that in-

volves several key activities. These activities include the design of VLSI systems using

electronic design automation (EDA) tools, functional and formal verification, the utiliza-

tion of computer aided design (CAD) in the development and manufacturing of VLSI

chips, the involvement of foundries in the entire process from the silicon wafer to the final

packaging and testing of integrated circuits (ICs). Along with utilizing EDA tools, the dig-

ital system design steps require significant capital investment. On the other hand, the

design steps require a significant amount of knowledge and experience.

Due to the proliferation and rapid expansion of applications, the demand for VLSI system

application designers has surpassed that of professionals specializing in chip technol-

ogy, making it a challenging and intriguing field[2].

The escalation in design complexity imposes a significant load on digital system engi-

neers, resulting in a design activity that surpasses the threshold of optimal productivity.

Figure 1 illustrates a depiction of design and verification gaps commonly referred to as

the disparities between effort needed and productivity of the system.

2

Figure 1. Design Gap Vs Verification Gap[3]

The study conducted by Wilson Research Group in 2014 revealed that while the design

gap has been reduced due to an increase in design reuse, the same level of maturity

has not been achieved in verification reuse. Consequently, it is anticipated that the

growth of the design gap will decelerate, whereas the verification gap will persist in its

expansion. It has been observed that the proportion of time dedicated to verification in

application specific integrated circuit (ASIC) projects has been increasing significantly

[3].

Significantly, there has been a consistent increase in the number of projects in which the

duration of verification activities accounts for more than 70% of the total project time, as

observed in each iteration of the study [1]. The difficulties encountered during verification

are a result of the complicated design features, verification techniques, and methodology

employed. Common complex design characteristics include embedded memories and

multiple clocks.

Another type of verification challenge occurs while implementing Nanometer ICs. The

implementation of ICs at the nanometer scale presents notable concerns related to sig-

nal integrity (SI), which must be thoroughly examined to prevent potential malfunctions

in chip functionality. The aforementioned factors include reduced feature size, minimized

3

in wire spacing, decreased power supply voltages, and a shrinkage of threshold voltages.

As each successive process technology is developed, there is a progressive increase in

the number of wire levels that are densely packed in close proximity. Consequently, there

is a significant increase in the proportion of total wire capacitance that is attributed to

lateral coupling. Therefore, this phenomenon is linked to a substantial rise in on-chip

crosstalk noise. Another issue encountered in nanometer designs is an increase of clock

frequencies accompanied by accelerated on-chip slew rates. Higher slew rates result in

an amplified generation of switching noise and a corresponding elevation in instantane-

ous power consumption. In nanometer process technology, designs that satisfy physical

verification criteria, such as design rule checking (DRC) and layout vs. schematic (LVS),

may exhibit unexpected functional behavior due to the presence of above mentioned ad-

ditional electrical side effects. This phenomenon becomes particularly pronounced at 90

nanometers and below [4]. Prominent EDA vendors are offering an extensive array of

verification tools to tackle these issues. Cadence’s “Physical Verification System”, Sie-

mens’s “Calibre nmDRC”, and Synopsys’ “IC Validator” are examples of such tools [5].

1.1 Motivation and scope behind the thesis

As the design gap and verification gap increases with time, experts in the field of manu-

facturing VLSI chips are leading to saturation. This might impact in productivity and pro-

longed time to market.

This thesis provides an overview of an EDA platform, “EDA Playground” which will allow

students without access to EDA tools through universities to make themselves ac-

quainted and competent through practicing hobby projects. It was originally developed

by Victor Lyuboslavsky as a part of Victor EDA, which was later acquired by Doulos in

2019. Users can edit, simulate, observe waveforms, synthesize, and share their Hard-

ware Description Language (HDL) code using the free web tool EDA Playground. Its

objective is to speed up design and testbench development learning through more con-

venient code exchange and more straightforward access to simulators and libraries. EDA

Playground was created especially for quick prototypes and examples.

1.2 Thesis Outline

The thesis is divided into 6 parts. Chapter 2 explains different types of Digital systems,

the basic System on Chip (SoC) design flow and implementation styles of digital systems

with both ASICs or Field Programmable Gate Arrays (FPGA)s. Then the Hardware De-

scription Languages, which are used for design and verification are described in brief.

Lastly, Electronic Design Automation (EDA) tools and flow are highlighted. Chapter 3

4

introduces the SystemVerilog language and its constructs for both the design and verifi-

cation. The purpose of this chapter is to explain the basic concepts which can be tried

out in EDA playground. Chapter 4 provides an approach for understanding Universal

Verification Methodology (UVM). UVM is necessary for implementing the verification

tasks in EDA Playground. To broaden the perspective and highlight the opportunities

offered by integrating UVM in the verification process, a few examples of advanced con-

cepts are also provided.

The EDA playground platform and its various applications are demonstrated in Chapter

5. There are two different kinds of design and simulation shown in this chapter. The first

example is a design and simulation in VHDL. The second one is an advanced verification

method known as UVM simulation and verification of a SystemVerilog design.

Lastly, chapter 6 concludes the thesis with discussion and suggesting future work.

5

2. LITERATURE REVIEW

This section presents the literature review from the related studies which helped to

achieve the objective of this thesis. Firstly, different types of Digital systems are dis-

cussed where design and verification are applied using the EDA tools in modern digital

world. The basic SoC design flow is explained in details and implementation styles per-

taining to both ASICs or Field Programmable Gate Arrays (FPGA)s are discussed. Then

the Hardware Description Languages, which are used for design and verification are

described in brief. Lastly, EDA tools and flow are highlighted.

2.1 Digital Systems

A Digital System refers to a collection of devices that have been specifically designed to

process, store and transfer digitally represented data or physical quantities that are rep-

resented in a digital format. In this context, digital implies that the quantities have only

discrete values, as opposed to continuous ones. In the realm of digital circuitry, signals

are commonly expressed through discrete states or logic levels. Digital signals are char-

acterized by their non-continuous nature, as they undergo discrete changes in individual

steps. Digital systems play a significant role in various domains such as computation and

data processing, control systems, communications, and measurement. There is a wide

range of digital systems which are frequently used in our day-to-day life[6].

2.1.1 Embedded Systems

An embedded system refers to a specially designed computer system that is typically

integrated within a larger system. A computational engine is formed by integrating soft-

ware as well as hardware elements, which collectively enable the execution of a specific

task. Embedded systems can only be used for certain tasks, while regular computers

such as personal computers (PC) can be used for many different purposes. Embedded

systems often have to work in reactive and time-constrained situations, examples can

be airbags or Anti-lock Braking System (ABS) of a car. An embedded system can be

roughly divided into two parts: the hardware and the software. Hardware provides the

speed and reliability needed for the functionality (and other system properties, like secu-

rity) and ensures lower power consumption. The software provides features and flexibil-

ity.

6

A conventional embedded system receives input from sensors to perceive the surround-

ing environment, and subsequently uses actuators to manipulate and control the said

environment. Embedded systems are required to meet performance standards that align

with the surrounding environment, the reason why Embedded systems are commonly

called as reactive systems. A reactive system needs the utilization of both hardware and

software elements in tandem. The issue is further complicated because these external

events can exhibit either periodicity and predictability, or aperiodicity and unpredictability.

In the context of scheduling events in an embedded system, it is imperative to consider

both periodic and aperiodic events, while ensuring that the system's performance is guar-

anteed even under the worst-case execution rates [7].

The important characteristics of embedded system are:

 Embedded systems receive a set of analog signals through sensors from the

environment such as pressure, temperature, vibration, etc. and then using the

specific algorithms, to control the actuators or display in some format.

 Embedded systems continuously process information which involves the mean-

ingful manipulation of data obtained from sensors, which may include tasks such

as data compression/decompression and side impact detection.

 Embedded systems are developed for specific tasks, for example, airbag deploy-

ment, digital still cameras, and cell phones. Embedded systems can also be spe-

cifically engineered to handle the execution of control rules, Finite State Machines

(FSMs), and signal processing algorithms. In addition to their primary functions,

embedded systems are required to possess the capability to identify and respond

suitably to malfunctions occurring within their internal computational infrastruc-

ture, as well as in the external systems with which they interact.

2.1.2 Digital Signal Processor

Digital Signal Processors (DSPs) are specialized electronic devices that perform math-

ematical operations on digitized real-world signals, such as voice, audio, video, temper-

ature, pressure, or position. Analog devices in practical applications can detect various

types of signals, like sound, light, temperature, and pressure. These signals carry analog

information that needs analysis and conversion. Analog-to-Digital converters are utilized

to transform real-world analog signals into a digital representation consisting of binary

digits, namely 1's and 0's. At this point, the DSP assumes control by acquiring the digit-

ized data and conducting subsequent processing. Subsequently, the digitized infor-

mation is utilized in practical applications. In case an analog signal is necessary, a digital

7

to analog signal is used to convert the digitized data to an analog signal. All these phe-

nomena transpire at exceedingly rapid rate.

Due to its programmability, a DSP possesses the capability to be used across a diverse

range of applications. Individuals have the option to develop their own software or utilize

software available in the market to design a DSP solution for a specific application [8].

2.1.3 System on Chip (SoC)

A system on a chip (SoC) refers to an integrated circuit that integrates multiple compo-

nents of a computer system onto a single chip. A SoC invariably comprises a central

processing unit (CPU), although it may additionally incorporate components such as sys-

tem memory, peripheral controllers (e.g., for Universal Serial Bus (USB) and storage),

and more sophisticated peripherals like graphical processing units (GPUs), specialized

neural network circuitry, radio modems (for Bluetooth or Wi-Fi), among others [9].

The SoC architecture differs from the conventional PC architecture, which consists of a

central processing unit (CPU) chip along with distinct controller chips, a graphical pro-

cessing unit (GPU), and random-access memory (RAM) which can be substituted, en-

hanced, or interchanged as required. The utilization of SoCs results in the reduction of

computer size, enhancement of processing speed, cost reduction, and decreased power

consumption [9].

Figure 2. A Basic Model of SoC [10].

8

Figure 2 depicts some of the fundamental components of a SoC system. These consist

of a few heterogeneous processors linked to one or more memory components with in-

terconnects, maybe with an array of programmable logic. The SoC frequently includes

analog circuitry for handling sensor data and analog-to-digital conversion, as well as to

facilitate wireless data transfer [10].

The popular SoC designs are implemented either in ASICs or in FPGAs depending on

the requirements, volume, cost, and time to market.

2.1.3.1 Field Programmable Gate Array (FPGA)

FPGAs are programmable logic devices where the programming can be done by the end

user. A configuration file, also known as bit file, is uploaded to an FPGA to program it

[11] . This configuration file contains data to execute a specific function FPGAs mostly

depends on Static Random-Access Memory (SRAM) and integrate memory and Look-

Up Tables (LUTs) in order to implement the logic blocks.

FPGAs exhibit distinct characteristics that set them apart from other Programmable Logic

Devices (PLDs), typically offering the most complex logic capacity among their counter-

parts. An FPGA is composed of a collection of Complex Logic Blocks (CLBs), which are

encapsulated by programmable Input/Output Blocks (IOBs) and interconnected through

a programmable interconnection network. The IOBs play a crucial role in managing the

connection between the pins of the input-output package and the internal signal lines.

On the other hand, the programmable interconnect resources serve the purpose of es-

tablishing the necessary pathways to link the inputs and outputs of CLBs and IOBs to

their respective networks. The implementation of combinational logic in logic cells can

be implemented through physical means such as a small memory LUT or a combination

of multiplexers and gates. An LUT is a memory array where the memory address lines

serve as inputs to the logic block, while the output of the memory functions as the output

of the lookup table.

An FPGA may have tens of thousands of logic blocks that can be set up in different ways,

and even more flip-flops. The activation of the user's logic function is achieved by tog-

gling the switches in the grid that correspond to the logic function of each logic cell. Then,

to make the desired circuit, these simple blocks are put together to make more compli-

cated functionalities.

The benefits of FPGAs are that they are flexible, reprogrammable, and are cost-efficient.

For example, the reprogrammable nature of the product allows designers and manufac-

turers to modify its design or distribute updates after distribution. Many designers often

9

use this feature to make prototypes based on FPGAs so that the design can be fully

debugged, tested, and updated before they are sent to mass production. Even though

the one-time costs are low and they have reduced manufacturing time, some of an

FPGA's resources, for example speed or power consumption are compromised [12].

Also, comparing the cost of production to the number of units made shows that using

FPGAs is more expensive than using ASICs as the number of units made goes up [2].

Also, almost all FPGAs lack analog blocks. So, in case there is a need of using mixed

signals in FPGAs, unique analog blocks must be added to FPGA systems. Most of the

time, these functions need to be added by external integrated circuits (IC)s, which makes

the product even larger and more expensive [11].

2.1.3.2 Application Specific Integrated Circuit (ASIC)

An application-specific integrated circuit (ASIC) refers to an IC that has been specifically

designed and tailored to fulfill a particular task or application. ASIC designs are custom-

ized at the initial stages of the design process in order to cater to specific requirements.

(ASICs) have the capability of utilizing pipelining and massively parallel processing,

thereby yielding designs that are both faster and more cost-effective. ASIC designs are

considered appropriate when there is an anticipation of high-volume production [1].

Due to their semi- or fully custom nature, ASICs face substantial development costs,

often amounting to millions of dollars, throughout the design and implementation phases.

Furthermore, it should be noted that once ASICs are manufactured, they lack the capa-

bility to be reprogrammed. This means that changes to the design cost additional money.

Even though ASICs have relatively high one-time costs, these costs associated with

ASICs are justified because,

 ASICs have higher density, which enables the integration of complex functional-

ities into a single chip, which in turn, allows the size, power, and cost to decrease.

 The customizability of ASICs enables accurate consideration of transistor count,

minimizing resource wastage in the design process.

 When producing substantial quantities of designs tailored for a specific purpose,

ASICs emerge as the optimal choice[13].

The difference between ASICs and FPGAs is summarized in the following table:

10

 Difference Between ASIC and FPGAs while implementing SoCs.

Differentiating Parameters ASIC FPGA

Time to Market Slow Fast

Design Flow Complex Simple

NRE High Low

Power Consumption Low High

Performance High Medium

Unit Size Low Medium

Unit Cost Low High

2.2 Digital System Design Flow

The primary stages of the System-on-Chip design flow, in accordance with the product's

life cycle, include Exploration, Development, and Production [10]. The initial stage of

decision-making involves establishing and examining the requirements in relation to the

existing technologies, scheduling constraints, and financial considerations. The develop-

ment process covers both the design of hardware and software components, as well as

the verification and integration of these components. Once chip samples that meet the

required standards have been obtained and the software has been stabilized, mass pro-

duction can commence. The nature of the work is iterative; however, it requires the strict

sequential execution of numerous tasks within each phase [10] [14] .

11

Figure 3. A simple digital system design flow [15].

2.2.1 Specification

The initial stage of digital design involves establishing a set of system specifications.

Specifications can be determined either by the consumer of a particular product or by a

governing entity that establishes functional criteria for a dependable and effective design,

covering aspects such as power, area, and performance, among others.

2.2.2 Modeling

The development phase of SoC design begin with the process of modeling. The primary

objective of modeling is to enable informed decision-making, as the overall flow is com-

plex and extensive in nature. This step also allows to check the feasibility and practicality

of the specification, given that significant alterations at a later stage can incur substantial

costs. During this phase, the system requirements are established and examined using

abstract system models in C, Matlab or SystemC, that can be executed, simulated, and

analyzed. The system includes a substantial entity comprising the architecture, modules,

and interfaces for both hardware and software components. The implementation of var-

ious components of the abstract system model can be generated, such as the automated

generation of Verilog HDL code from the IP-XACT models [14].

12

2.2.3 Hardware Design

The next stage involves the extensive hardware design process. One of the most crucial

aspects in the field of digital hardware design involves the utilization of HDL code at the

register transfer level (RTL) abstraction, commonly referred to as RTL design. Moreover,

scripts are utilized to create and manipulate the codebase, as well as to integrate intel-

lectual property (IP) blocks sourced from third-party vendors. The RTL design method-

ology exhibits a greater resemblance to software programming rather than circuit design

within the context of mixed signal design. When mixed signal designs are done, imple-

mentation of both analog and digital designs can be done parallelly[15].

2.2.4 Verification

Verification is a crucial procedure aimed at ensuring that the SoC design aligns with its

specified requirements. Typically, this process is executed through simulations. SoC

verification can take up to 70% of the time of the entire flow because the design needs

to be bug free. It can be costly if bugs are reported in the manufacturing phase [3]. Both

functional and formal verification techniques are employed during the flow. One of the

popular verification methodologies used widely in the industry is the Universal Verifica-

tion Methodology (UVM) standard [16], which acts as the foundational framework, along-

side the System Verilog language.

2.2.5 Synthesis

Synthesis is the process that translates RTL designs into technology-dependent netlists

that are tailored to a specific technology, while also optimizing them according to a pre-

determined set of constraints. Synthesis is mostly an automated process where the input

to the EDA is behavioral RTL design and a set of constraints and the output is a gate

level netlist which is optimized for either speed, area or power depending on the require-

ments [2] [12].

2.2.6 Prototyping

The term prototyping refers to the process of conducting physical tests on the chip. Dur-

ing this step, the RTL description of the chip is synthesized to an FPGA which subse-

quently serves as an emulator for the chip. The primary emphasis lies on functionality,

as the timing and clock speeds vary significantly between the final SoC and FPGA [1].

13

2.2.7 Physical design

Physical design refers to the process of generating the transistor layout on the silicon

die. The input of this process consists of a netlist obtained during the synthesis phase,

and its purpose is to generate the placement and routing of the transistors. During the

process of place and route, the EDA tool is responsible for determining the optimal layout

and interconnection of logic elements within the targeted FPGA device. This is done

while ensuring compliance with any specified user-defined settings or constraints. The

EDA tool automatically chooses suitable resources, interconnection paths, and pin loca-

tions as its default behavior. When users allocate logic to particular device resources,

the EDA tool attempts to fulfill those requirements by matching them accordingly. Sub-

sequently, the tool proceeds to fit and optimize any remaining design logic that is not

subject to constraints. In the event that the EDA tool is unable to fit the design within the

target device, it will cease the compilation process and generate an error message. In

case of an ASIC, the typical perspective of a designer is limited to the observation of

standard cells. A standard cell consists of gates, registers, memories, interconnects, and

other components. The individual transistors are exposed to the designer only in case of

a full-custom design [14].

2.2.8 Floorplanning

Floorplanning is a crucial step of the hierarchical design methodology. The circuit blocks

are assembled into the chip optimizing it for the metrics such as area and wire length,

which directly affects the cost. The circuit blocks may exhibit either flexible or rigid con-

figurations in terms of their physical shapes. Placement refers to the procedure of allo-

cating circuit components within a designated region on a chip. The problem at hand can

be characterized as a constrained floorplanning problem involving rigid blocks that ex-

hibit certain similarities in their dimensions. Following the placement stage, the routing

process is responsible for determining the specific routes for conductors that facilitate

the transmission of electrical signals on the chip layout. These routes are designed to

interconnect all terminals that possess electrical equivalence. Following the routing

stage, a series of physical verification procedures, including design rule checking

(DRC), performance checking, and reliability checking, are conducted to ensure compli-

ance with design rules and specifications in terms of geometric patterns, circuit timing,

and electrical effects [15].

14

2.3 Hardware Description Language

A hardware description language (HDL) is a language used for the purpose of specifying

the behavior or structure of ICs in the realm of digital circuits. HDLs are further used for

the purpose of circuit stimulation and verification. There exists a wide range of HDLs,

among which VHDL and Verilog have emerged as the most widely adopted and preva-

lent options. The majority of the CAD tools currently available in the market provide sup-

port for these HDLs. VHDL is an acronym that stands for "very high-speed integrated-

circuit hardware description language." Both VHDL and Verilog are recognized as official

IEEE (Institute of Electrical and Electronics Engineers) standards. Additional high-level

description languages (HDLs) include Java HDL (JHDL) and proprietary HDLs, such as

Active-HDL developed by Cypress Semiconductor Corporation [12].

HDLs are commonly used for the programming of systems based on PLDs and FPGAs.

Intel and AMD(Xilinx) corporations offer free restricted editions (intended for educational

purposes) of CAD software and tools, facilitating the programming of FPGA-based de-

velopment boards. The CAD tools have a range of essential components, such as a

schematic editor, a VHDL/Verilog editor, compilers, libraries, design simulators, and a

variety of utility tools.

HDLs differ from conventional computer programming languages as it encompasses

several distinctive language components. These include vector-shaped wire nets and

registers, as well as non-blocking assignments within the process.

HDLs have been developed to address various requirements within the design process.

 It allows a system’s hierarchy, that is how a system is split into subsystems and

how these subsystems are interconnected.

 It supports the ability to define the functionality of a system by employing com-

monly used programming language constructs.

 It allows the simulation of a system's design prior to its production, thereby ena-

bling designers to efficiently evaluate different options and verify accuracy with-

out the need for costly and time-consuming hardware prototyping.

 Thus, this approach enables the synthesis of a comprehensive design structure

from a higher-level specification, thereby enabling designers to focus on strategic

design choices and minimizing time-to-market.

15

2.3.1 Verilog HDL

Verilog HDL is a hardware description language used for the textual representation of

the structure and behavior of digital system hardware. The representation of logical cir-

cuit diagrams, logical expressions, and the logical functions executed by digital logic

systems can be achieved through this language. The development of the language took

place during the mid-1980s by Gateway Design Automation, a company that was sub-

sequently acquired by Cadence in 1989. It is a IEEE standard[17].

The primary objective of Verilog is to serve as a hardware description language that

shares a fundamental syntax resemblance with the C programming language. The ex-

tensive use of the C language in various domains during the early stages of Verilog de-

sign leads to the inclusion of several language elements from C. A hardware description

language that bears resemblance to the C language has the potential to facilitate the

learning and acceptance process for circuit designers. Typically, designers proficient in

the C programming language will likely acquire proficiency in the Verilog hardware de-

scription language at an accelerated pace [17].

2.3.1.1 Verilog Constructs

The fundamental structural component that Verilog uses to describe hardware is a mod-

ule. The design and development of complex electronic circuits primarily involves the

interconnection and integration of modules. The inclusion of modules is simplified by the

utilization of the keywords "module" and "endmodule". The Verilog module has resem-

blance to the function found in the C programming language. Module is capable of de-

fining both input and output ports. This module has the capability of calling other modules

through instantiation, and it can also be called by instances of other modules. The mod-

ule has the capability to incorporate both combinational logic and process timing[18].

//Verilog Code for design
module fulladder (input [3:0] a,
 input [3:0] b,
 input c_in,
 output c_out,
 output [3:0] sum);
 always @ (a or b or c_in) begin
 {c_out, sum} = a + b + c_in;
 end
endmodule

Program 1. Example of simple adder design with Verilog

16

Program 1 above illustrates the design of a 4-bit full adder using Verilog HDL. The code

was modeled using the continuous assignment operator always block with a sensitivity

list that includes all inputs. An always block is executed whenever any of the inputs in

the list changes their values.

Designers have the ability to set up a top-level module for the purpose of testing, wherein

they call the module through the use of instances. The module at the highest level is

commonly known as the "Testbench". To enhance the functional verification of the cir-

cuit's logic, it is essential that the test code covers a comprehensive range of statements,

branches, conditions, paths, triggers, and state machine states within the system. Veri-

fication engineers are required to generate a sufficient amount of input within the testing

platform. The process involves stimulating and establishing a connection with the module

being tested, followed by evaluating the performance of the module's output against ex-

pected outcomes. Verilog offers a specialized data structure designed for efficient verifi-

cation, which can be validated through the use of random testing. This method is partic-

ularly valuable in the intricate process of verifying integrated circuit designs. In order to

properly invoke a module, it is essential to establish the port connections in the sequence

specified by the module declaration. The top-level verification module does not require

calls by external entities; thus, it lacks both input and output ports.

2.3.2 VHDL

Very High Speed Integrated Circuit (VHSIC) hardware description language or VHDL is

one of the powerful languages for describing electronic systems. It was invented by the

USA’s department of defense in 1983 and later it was standardized by IEEE in 1987.

VHDL has been developed to address various requirements within the design process.

2.3.2.1 VHDL Constructs

A VHDL system in a .vhd file is described in 2 parts; the entity and the architecture. Inside

the entity, the interfaces (the input and the outputs) of the system is described. The sys-

tem behavior is described in the architecture. The package defines the functionality of

VHDL, which includes operators, signal types, and functions. The packages are orga-

nized into a library. The standard package defined by IEEE includes the fundamental set

of functionalities for VHDL. This standard package is then encompassed within a library

called IEEE. The inclusion of libraries and packages in a VHDL file is typically specified

at the beginning, prior to the declaration of the entity and architecture. The inclusion of

17

other packages allows for the incorporation of supplementary features into VHDL. How-

ever, it is important to note that all packages are built upon the fundamental functionality

outlined in the standard package[19].

library ieee; //Library declaration
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity adder_1_bit is //Entity declaration.
 port(

 -- Inputs //Declaring inputs
 A : in std_logic;
 B : in std_logic;
 Cin : in std_logic;
 -- Outputs //Declaring outputs
 SUM : out std_logic;
 C_out : out std_logic
);

end entity adder_1_bit;

architecture rtl of adder_1_bit is//Describing Architecture
begin
 process(A,B,Cin) is
 begin
 SUM <= (A xor B xor Cin);

 C_out <= ((A xor B) and Cin) or (A and B);
 end process;
end architecture;

Program 2. Example of simple adder design with Verilog

Program 2 shows the VHDL code for designing a simple 1-bit adder. After the library

declarations, entity is described where all the inputs and outputs are defined. In the ar-

chitecture of adder_1_bit, the transfer function of the inputs to the outputs are written in

the form of RTL code.

2.3.3 SystemVerilog

SystemVerilog is a Hardware Description Language (HDL), which is developed by Ac-

cellera as an extension of Verilog HDL in 2004, which is used to design, specification

and verification language in semiconductor and system design industries.

Being a unified language, SystemVerilog can be used for abstract and detailed design

specification, assertions specification, testbench verification, both on manual and auto-

matic methodologies and in coverage of the design[20]. SystemVerilog Assertions are a

form of verification code that assesses the conformity of a design to a given specification.

They serve to confirm the intended behavior of the design and provide a corresponding

18

message as feedback. If the design does not demonstrate the specified behavior, the

assertion will fail, suggesting a flaw in the design's behavior.

It was originally developed as an extension to the IEEE 1364-2005 standard for the Ver-

ilog design language, however the two standards were combined into a single language

in 2009. The primary objective of the initial SystemVerilog extensions was to offer verifi-

cation engineers with enhanced tools operating at a higher level of abstraction, thereby

enhancing productivity, reusability, and readability. In addition, there was various design

specification techniques, including the introduction of novel data types, the utilization of

packages, the expansion of port declarations, and the implementation of interfaces [21].

SystemVerilog constructs will be discussed in chapter 3 in details.

2.4 Electronic Design Automation

Electronic design automation (EDA) plays a pivotal role in driving technological advance-

ments aimed at enhancing the quality of human life and facilitating daily usage. In the

context of an electronic system modeled at the electronic system level (ESL), the process

of EDA serves to automate the design and testing procedures. This involves verifying

the accuracy of the ESL design in relation to the electronic system specifications, guiding

the ESL design through multiple synthesis and verification stages, and ultimately con-

ducting tests on the manufactured electronic system to ensure compliance with the elec-

tronic system's specifications and quality standards. The electronic system may also

manifest as a printed circuit board (PCB) or an (IC. The integrated circuit has the capa-

bility to function as a SoC, an ASIC, or an FPGA [22].

EDA is a collection of hardware, software and services tool used in the entire manufac-

turing process of the semiconductor devices. The aim of these tools is to define, plan,

design, implement, verify and subsequently manufacturing of the semiconductor devices

or ICs. The advancement of EDA tools helps the IC manufacturers in increased produc-

tivity and gives many other advantages, such as,

 EDA tools are capable to handle this increased complexity.

 Helps in shortened time to market to maintain a competitive advantage.

 With the help of EDA tools, power consumption of ICs can be reduced. Also, the

performance and space can be optimized with respect to the requirements.

 Incorporating with Artificial Intelligence/Machine Learning (AI/ML) tools, EDAs

are currently used in design, simulation, verification, and emulation [23] [24].

19

EDAs are mainly a very complex and sophisticated domain of software where the Market

share of the tools are distributed among the following aspects of design and manufac-

turing tools.

Before implementing a proposed circuit, simulation tools simulate its behavior based on

its description. Typically, this description is written in a standard hardware description

language, such as Verilog or VHDL. Simulation tools mimic the behavior of circuit ele-

ments in varying degrees of detail and execute a variety of operations to predict the

circuit's behavior. The required level of detail is determined by the type of circuit being

designed and its intended application. When processing a large quantity of input data,

hardware approaches such as emulation and rapid prototyping are considered. This oc-

curs when the operating system of a processor must be evaluated against real-world

scenarios, such as video processing. Without a hardware-assisted strategy, the runtime

for these cases can be challenging.

The purpose of design tools is to take a proposed circuit function and generate the set

of circuit elements needed to realize that function from the required description. Choos-

ing and connecting the appropriate circuit parts to provide the intended function may be

a logical procedure throughout this assembly. One such example is logic synthesis. It

can also be a physical procedure involving the placement and routing of geometric forms

on silicon to create the circuit, which in general is known as place and route. It can also

take the form of a designer-guided interactive procedure which is referred to as custom

layout [24] .

Verification tools check if the final chip design is physically or logically implemented cor-

rectly and can provide the expected performance. There exist numerous processes that

can be employed in this context. The process of physical verification involves the exam-

ination of interconnected geometries to ascertain whether their placement conforms to

the manufacturing requirements of the fabrication facility. The complexity of these re-

quirements has significantly increased, encompassing a multitude of rules that can ex-

ceed a quantity of 10,000. Verification can also be achieved by conducting a comparison

between the implemented circuit and the original description, in order to ascertain that

the former accurately represents the desired function. The process referred to as Layout

vs. Schematic, or LVS, serves as an illustrative example of this phenomenon. Simulation

technology can be employed in the functional verification process of a chip to assess the

conformity of its actual behavior with the anticipated behavior. The effectiveness of these

approaches is constrained by the extent to which the input stimulus is comprehensive.

An alternative method involves algorithmically validating the performance of the circuit,

20

eliminating the requirement for input stimulus. The aforementioned methodology is com-

monly referred to as equivalence checking and is a fundamental component within the

field of formal verification [21].

21

3. SYSTEMVERILOG

As mentioned earlier, SystemVerilog can be used for abstract and detailed design spec-

ification, assertions specification, testbench verification, both on manual and automatic

methodologies and in coverage of the design. The basic understanding of the constructs

of System Verilog will be discussed in this chapter.

3.1 SystemVerilog Design and Verification Building Blocks

3.1.1 Design Elements

Design elements are the fundamental components used to model and construct a design

or verification environment. These building blocks hold the declarations and procedural

code that will be discussed in later sections of this thesis. The design elements in System

Verilog are module, program, interface, checker, package, primitive and configura-

tion[20].

3.1.2 Modules

The fundamental unit in SystemVerilog is the module. A module is encapsulated by the

keywords module and endmodule. Modules are predominantly used for representing de-

sign blocks. They can also be used as containers for verification code and facilitate the

interconnections between verification blocks and design blocks. Modules might contain

the constructs like port definitions, data and constant declarations, class definitions, pro-

cedural blocks etc.

Procedural statements include behavioral code, in which programming statements such

as if-else, case, or for loop structures are used to define the desired functionality. The

statements typically consist of a sequential block that is bounded by the keywords

"begin" and "end". Within this block, the statements are executed in a sequential manner,

following the specified order. As a result, all the statements within the procedure function

act syntactically as a single assignment. There exist two fundamental categories of pro-

cedures: initial and always. The initial procedures are executed only once and are typi-

cally used for the purpose of initializing variables. Always procedures define combina-

tional and sequential logic, which is executed in response to events specified in the sen-

sitivity list. The sensitivity list is declared by utilizing the character @[20].

22

3.1.3 Programs

The program construct is provided for replicating the testbench environment and is en-

closed between the keywords program and endprogram. The primary use of the program

construct is to define specific simulation execution semantics. On top of that, it acts as a

distinct separator between the design and the testbench components. Also, by utilizing

the clocking blocks, the program construct allows a race-free form of collaboration be-

tween the design and the testbench, thereby enabling the utilization of cycle- and trans-

action-level abstractions.

The program block acts in three distinct ways. Firstly, it serves as a starting point for the

implementation of testbenches. Secondly, it allows to incorporate data, tasks, and func-

tions throughout the program. Lastly, it provides a syntactic context for specifying sched-

uling within a reactive region set.

A program block may include data declarations, class definitions, subroutine definitions,

object instances and initial or concluding procedures. It should not contain always, pro-

cedure, primitive, module or interface instances [25].

3.1.4 Interfaces

The interface construct, which is defined by the keywords interface...endinterface, serves

as a container for facilitating communication between design blocks, as well as between

design and verification blocks. This enables a seamless transition from an abstract sys-

tem-level design to progressively more detailed representations, such as register-trans-

fer and structural views of the design. The interface construct enables design reuse by

encapsulating the communication between blocks.

Interfaces are basically a set of nets or variables. The interface can be connected to the

interface ports of other instantiated modules, interfaces, and programs after being in-

stantiated in a design[26].

3.1.5 Checkers

The checker is a representation of a verification block that includes assertions and mod-

eling code. Checkers are designed to be used as building blocks for generating abstract

auxiliary models used in formal verification or as verification library modules. It is defined

within the keywords checker…endchecker.

23

3.1.6 Primitives

Low-level logic gates and switches are modeled using the primitive building block. Nu-

merous primitive types are included by default in SystemVerilog. User-defined primitives

(UDPs) are a way for designers to extend the built-in primitives. The words primi-

tive...endprimitive are followed by a UDP. Gate-level models, often known as timing-

accurate digital circuits, can be modeled using the built-in and UDP components.

3.1.7 Packages

Modules, interfaces, programs, and checkers serve the purpose of establishing a local-

ized name space for declarations. Identifiers that are declared within a module, interface,

program, or checker are considered to be local to the respective scope in which they are

declared. As such, these identifiers do not have any impact on or create conflicts with

declarations made in other building blocks. Packages offer a designated area for declar-

ing variables, functions, and other elements that can be accessed and utilized by other

components within a system. Package declarations have the ability to be imported into

various building blocks, such as other packages.

3.1.8 Configurations

SystemVerilog offers the possibility to define design configurations, which allow for the

specification of the binding details between module instances and specific SystemVeri-

log source code. Configurations make use of libraries. A library is a compilation of various

components such as modules, interfaces, programs, checkers, primitives, packages,

and other configurations.

The files inside the library map serve the purpose of specifying the source code location

for the cells that are contained within the libraries. The designation of the library map

files is commonly indicated as invocation options for simulators or other software tools

that parse SystemVerilog source code.

3.2 SystemVerilog Hierarchy Overview

A SystemVerilog hierarchy is constructed using the fundamental building blocks of mod-

ules, programs, interfaces, checkers, and primitives. One building block instantiating an-

other building block results in hierarchy. A new level of hierarchy is generated when a

module contains an instance of another module, interface, program, or checker. Con-

nections to the ports of the instantiated module, interface, program, or checker are the

main means of communication between levels of hierarchy.

24

The following is an example of a design utilizing a simple two levels of hierarchy. Module

top_design holds an instance of module mux2to1, which allows to create two levels of

hierarchy.

module top_design; //Module with no ports
 logic in1, in2 , select; //Variable declarations
 wire out1; //Net Declarations
 //Module Instance
 mux2to1 m1(.a(in1), .b(in2), .sel(select), .y(out1);
endmodule: top_design

module mux2to1 (input wire a, b, sel,
 output logic y); // combined port and type declaration

 // netlist using built-in primitive instances
 not g1 (sel_n, sel);
 and g2 (a_s, a, sel_n);
 and g3 (b_s, b, sel);
 or g4 (y, a_s, b_s);
endmodule: mux2to1

Program 3. Example of design hierarchy in SystemVerilog

3.3 SystemVerilog for verification

SystemVerilog allows object-oriented programming for verification purposes on a higher

level of abstraction. The object-oriented properties in SystemVerilog adhere closely to

the principles of object-oriented programming, making the structure familiar to designers

with prior experience in languages such as C++, Java, or other object-oriented program-

ming languages. One of the primary advantages of object-oriented testbench design is

the ability for the designer to declare intricate data types and integrate them with routines

that manipulate the data. Instead of directly manipulating bits in the Device Under Test

(DUT), these routines can be utilized to execute even intricate transactions without the

need to consider the state of every bit during each clock cycle[26].

The primary component for constructing a high-level testbench in SystemVerilog is the

class. The class combines data and routines within a unified code block. Routines in

SystemVerilog can either be tasks or functions. Functions have return types. Functions

possess the ability to accept input and produce output values, and they are executed

without impeding the progression of the simulation time. From a simulation standpoint,

functions promptly return their computed value. On the other hand, Tasks do not have a

return value, but they are capable of blocking the simulation time during execution, thus

25

possessing a temporal aspect. Tasks have the ability to include delays in order to syn-

chronize the processing with a specific point in time, a signal value, or another event.

Classes are instantiated as objects. An object possesses both a type and a name, and

its instantiation involves the initial creation of a variable of the class's type to serve as an

object handle. Subsequently, the object is created and assigned to the variable through

the utilization of the constructor function, commonly referred to as "new". The extends

keyword allows for the derivation of new classes from existing base classes. The prop-

erties and methods that are explicitly stated in the base class can be accessed using the

keyword "super". Child classes can also override the methods declared in base class.

class transaction;

 // Class properties
 bit [31:0] data;
 int id;

 //Class methods
 task update(bit [31:0] m_data, int m_id);
 data = m_data;
 id = m_id;
 endtask

 function void print(transaction tr);
 $display("Value of data = %0h and id = %0h", tr.data, tr.id);

endfunction

 endclass

 module tb_top;
 initial begin

 transaction tr; //variable of class data_type or class handle
 tr = new(); // memory is allotted for a variable or object.

 tr.update(5, 9);
 tr.print(tr);
 end
 endmodule

Program 4. Example of a SystemVerilog class with routines.

Program 4 shows an example of SystemVerilog class called transaction. The class con-

tains a task and function with return type void. Both the task and function can be ac-

cessed through the handle defined in the tb_top module.

26

4. UNIVERSAL VERIFICATION METHODOLOGY

The Universal Verification Methodology (UVM) is an industry standard that enables re-

use of verification environments and verification IP (VIP), which in turns helps in faster

development and verification of a product. It is researched, developed, and standardized

by Accellera, an association of EDA tool vendors and users such as Mentor Graphics,

Cadence, Intel, AMD and Synopsys.

UVM is a System Verilog based verification methodology that is defined as a set of clas-

ses which uses System Verilog syntax and semantics. By offering an Application Pro-

gramming Interface (API) framework that can be used across various projects, UVM's

main goal is to assist businesses in creating modular, reusable, and scalable testbench

structures [27].

4.1 UVM Testbench Basics

The UVM has a layered, object-oriented methodology to testbench development, making

it possible to act as a "separation of concerns" among team members. To improve

productivity and facilitate reuse, each component in a UVM testbench serves a specific

purpose and has a well-defined interface to the rest of the testbench. When these com-

ponents are combined to form a testbench, the result is a modular, reusable verification

environment that allows the test writer to focus on the transaction level, depending on

the functionality that needs to be verified, while the testbench architect dedicate them-

selves on how the test communicates with the Design Under Test (DUT)[16].

4.2 UVM Building Block

A UVM testbench's structure is made up of relatively small but simple components that

are arranged hierarchically. The UVM environment is kept separated from the test. The

tests contain information about how to test the DUT whereas the environment describes

the connection of the DUT to the testbench.

The advantage of dividing the testbench into small components is that it simplifies

testbench design and reuse. Reuse can be both horizontal and vertical, which means

that, in addition to using the same components in different testbenches, it is also possible

to combine the verification environments for different blocks to create subsystems, which

can then be further combined to implement system level testing.

27

As UVM testbench is developed from dynamic objects, which has no existence in the

memory before they are being created. That is why, for launching the simulation, it is

necessary to have a static component [16]. This static component in UVM is a top-level

System Verilog module which consists of pin connections to DUT and initiates the test,

sets up the environment, and executes a series of transactions to the DUT.

The UVM testbench file hierarchy utilizes SystemVerilog packages. Packages are struc-

tural elements that unite associated declarations and definitions within a unified

namespace, serving as a consistent compilation unit for the simulator. In order to gain

access to the namespace and the base definitions, it is necessary to import the package.

The use of packages enables the testbench developer to effectively structure the code

and maintain consistent references to types and classes.

A package file should have all the class definition files that go with it. For a simple UVM

testbench, all the definitions could be in a single package. For a large system-level

testbench, however, the declarations could be split between multiple packages, with a

separate package for each bus interface and a number of packages for different types

of test sequences that contain all the declarations for running different tests [16]. Instead

of declaring all of the classes directly in the package file, Mentor Graphics' coding stand-

ards define that each class should be declared in its own file, and all of the declaration

files should be added to the package using a SystemVerilog include directive. With the

include command, the compiler needs to put the whole contents of a source file inside

another file. Only the include instructions for class declaration files should be in the pack-

age.

4.2.1 Objects and Components

The object acts as the basic component in a UVM testbench, with all objects derived

from the uvm_object base class [27]. The primary function of the uvm_object base class

is to establish the standard methods for fundamental operations, such as creation and

printing, that are commonly used by every objects. Additionally, it highlights interfaces

for identifying instances, for example, unique id. The fundamental objects in this context

are data packages that are transmitted to the DUT. These packages are instantiated as

sequences of packages, which are then used to generate test input.

28

Figure 4. UVM base class hierarchy [16]

Figure 4 presents a hierarchical representation of the fundamental UVM classes. The

uvm_object class is enhanced with a reporting interface to create the uvm_report_object

class. The uvm_report_object class is then expanded to include the uvm_component

class, which introduces the notion of hierarchy and the necessary properties for the cre-

ation and connection of components. The uvm_component class is expanded to include

base classes for user-implementable components, as depicted in the figure. In addition,

the uvm_object is further expanded upon in the context of transactions and sequence

items, which collectively constitute a sequence of items that are subsequently transmit-

ted to the DUT. The user has the ability to create the highlighted classes.

Given that all base classes for individual components are derived from the uvm_compo-

nent, which includes all shared properties, the implementation of these classes is rela-

tively straightforward. The hierarchical tree of the typical UVM components is depicted

in Figure 5. The testbench designer has the ability to differentiate between components

by inheriting them from their respective base class. This approach ensures that the com-

ponents will inherit and utilize all the characteristics of the base class. Certain foundation

classes, like uvm_monitor, serve as empty containers that do not introduce any addi-

tional functionality to classes derived from uvm_component. However, it is possible that

functionality could be incorporated in subsequent versions of UVM.

29

Figure 5. UVM component class hierarchy[16]

4.2.2 UVM Phasing

Figure 6. UVM Phases [16]

30

The process of simulating UVM consists of distinct phases. The chronological order of

the UVM phases is depicted in Figure 6. There are a total of 21 simulation phases, which

can be classified into three separate categories. At the start of the simulation, the build

time phases are responsible for constructing the test environment. This is achieved by

using the factory to build components, establishing connections between the Transaction

Level Modeling(TLM) channels, and configuring all the components through the config-

uration database. The various stages of the build process do not require any simulation

time.

The run-time phases are initiated, and the simulation time is used after the test environ-

ment has been built. The actual simulation in which the test case is executed for the DUT

is carried out during the run-time stages. When a test is terminated, simulation time is no

longer used, and cleanup phases gather and report the test case's results [25].

4.3 UVM Architecture

A Universal Verification Methodology (UVM) testbench's architectural framework is made

up of user-defined components that derive from base classes offered by the UVM library.

Every element of the testbench hierarchy has a given name and a parent. These com-

ponents are created sequentially from top to bottom during the build phase using the

UVM factory. Figure 7 shows a block level UVM testbench in illustrated form. The

UVM environment in figure 7 is used in many tests. The agents communicate between

the two bus interfaces present in the sample scenario, together with elements that track

test coverage and carry out functional checks on the DUT.

A simple UVM testbench was developed as a use case as part of this thesis. So, Under-

standing the UVM architecture is a crucial objective. In the following section, the differ-

ence between UVM tests and UVM environment is highlighted.

31

Figure 7. Block Diagram of UVM Architecture [27] .

4.3.1 UVM Environment

The environment refers to the structural framework of the testbench, that includes its

physical architecture. The instantiation of components occurs in a hierarchical manner,

with the possibility of multiple sublevel environments being contained within a single en-

vironment. In the context of system level testbenches, it is common to have a single top-

level environment that creates multiple instances of environments for each individual

block within the design. The use of identical block level environments can be employed

for conducting block level testing prior to integration. The process of constructing a sys-

tem-level testbench by utilizing block-level environments is commonly known as vertical

reuse.

The environment consists of multiple agents that interact with the DUT, as well as sub-

scribers who utilize the data supplied by these agents. The agent, as shown in figure 7,

instantiate the components that control the stimulus flow, provide the DUT with input

data, and track the signals as they travel between the testbench and the DUT. There is

typically one agent for each interface that the DUT is connected to. The configuration

database determines whether an agent will play an active or passive role: an active agent

supplies stimulation data for the DUT, whilst a passive agent just keeps track of the

transfers [27].

The typical components instantiated within the agent include a sequencer, driver, and

monitor (As depicted in Figure 7). The sequencer works as a liaison that retrieves se-

quence objects from a list and regulates the progression of the sequence. The se-

quences are transmitted in the form of TLM transactions. The driver is responsible for

32

receiving the TLM transactions from the sequencer and transmitting them to the DUT.

Consequently, the driver converts the high-level transaction sequences into low-level

activity within the DUT.

A monitor tracks the operations occurring within the DUT interface and samples its be-

havior. The pin-level activity within the DUT is transformed into TLM transactions and

then transmitted for analysis. The monitor includes an analysis port that facilitates the

transmission of TLM data to the testbench. In case of a passive agent, the sequencer

and driver functionalities are disabled, leaving only the monitor operational. The infor-

mation transmitted from the monitor undergoes analysis by subscribers that utilize anal-

ysis exports, establishing a connection to the analysis port within the monitor. Typically,

these subscribers are located outside the agent within the environment. However, in

more intricate designs, they may also be instantiated within the agent itself.

The coverage collector is a subscriber responsible for collecting data on functional cov-

erage. It accomplishes this by collecting and examining all the transactions transmitted

by the monitor and using this data to update counters within covergroups. Covergroups

define the particular signals and conditions to be observed as coverpoints. The counter

values associated with each coverpoint provide real-time insights into functional cover-

age, indicating both tested and untested scenarios.

The scoreboard is a vital component of the UVM that is responsible for evaluating the

correct functionality of the Design Under Test DUT. The process involves the specifica-

tion of a reference model and the subsequent comparison of the output generated by the

DUT with the reference. In basic designs, the declaration of the reference model and

comparator can be consolidated within a solitary component. However, it is also feasible

to employ distinct components or even use an external model of the Device Under Test

DUT as the reference [16].

4.3.2 UVM Tests

The test acts as the top-level component within a UVM testbench. The test is responsible

for managing the construction and configuring the test environment, determining the se-

quence of stimuli to be used during the test, and directing the simulation process. Multiple

tests can be conducted within a shared environment, each applying distinct sequences

and configurations. It is a common practice to create a base test class that initializes the

testing environment and performs the required configuration. Subsequently, this base

test class is extended to include various test cases for the DUT.

33

Sequences are collections of objects that are transmitted to the sequencer within the

agent. The sequencer methodically processes each item. The layering of sequences al-

lows for the description of complex transactions involving multiple layers. A sequence at

a higher level of abstraction has the ability to control transactions and command to se-

quences operating at a lower level that are closer to the hardware. In order to facilitate

randomized testing, it is possible to assign variables in sequences to be randomized.

Constraints can be implemented in order to restrict the randomization process to a par-

ticular range of values or to establish distributions that ensure a signal is predominantly

set at a high level, approximately 95% of the time, while being set at a low level for the

remaining duration [27].

34

5. OVERVIEW OF EDA PLAYGROUND

EDA Playground is an open-source web-browser based integrated development envi-

ronment (IDE) that allows the electronic design and simulation of various HDLs such as

SystemVerilog, Verilog, VHDL, and C++/SystemC. The primary objective of this initiative

is to accelerate the learning of design and testbench development skills by facilitating

code sharing and enhancing accessibility to simulators and libraries.

It was originally developed by Victor Lyuboslavsky as a part of Victor EDA, which was

later acquired by Doulos in 2019.

The objective of this chapter is to demonstrate the extent of usability of EDA playground

by applying design, simulation, verification, and synthesis with VHDL and SystemVerilog.

The work was mainly focused on two parts. Firstly, a simple VHDL design was created

in the platform and a VHDL testbench was simulated using different simulators. Sec-

ondly, a simple SystemVerilog design was implemented, and the design was simulated

using simulators and verified using the UVM. The focus of the latter work was to show-

case the feasibility of implementing a complete UVM flow utilizing the EDA Playground

platform.

5.1 Application of EDA Playground

EDA Playground has the potential to be used for various applications. Primarily, this

platform can serve as an introductory educational tool or for the purpose of prototyping,

as it offers support for design and testbench in multiple programming languages, as well

as a diverse range of simulators. Additionally, it provides support for various verification

frameworks such as UVM, SVUnit, Verilog, or Python, which are frequently used by en-

gineers. Moreover, numerous engineers have reported that it has been used as an as-

sessment tool for evaluating the coding and debugging abilities of interview candidates.

5.2 User Interface

EDA Playground has a straightforward user interface. To access the application, users

can direct their browsers to the domain address: https://www.edaplayground.com/. Us-

ers can continue to the interface without logging in, but it is recommended to register and

log in as it allows some additional features like sharing code and saving workspace.

https://www.edaplayground.com/

35

Figure 8 illustrates the interface of EDA Playground. it shows the presence of two win-

dows. The window located on the right side is designated for design purposes, while the

window situated on the left side is intended for testbench functions. The user has the

capability to include a maximum of ten files using the "+" icon, which is accessible in both

the design and testbench windows. Located on the far-left side of the interface, one can

find the selection panel which includes language options, tools and simulators, exam-

ples, as well as community sharing features. The log can be found in the lower section

of the screen. The profile and saved playground options are in the upper right corner of

the interface.

After the completion of the design and testbench, the user is required to choose the

preferred simulator and initiate the execution process by selecting the run button. The

user interface includes checkboxes that allow for the opening of EPWave (a tool used

for visualizing waveforms) and for visualizing the netlist generated after synthesis. Once

these boxes are selected, the waveform and netlist will be displayed in a new tab.

Figure 8. User Interface of EDA Playground

5.3 Languages and Libraries

EDA Playground allows users to design and test with several languages, which include:

VHDL, SystemVerilog, C++/SystemC, python, perl, and others. It also allows users to

use methodologies like UVM 1.2 and OVM 2.1.2.

36

5.4 Tools and Simulators

Within the user interface (UI) of the EDA Playground, there exists a variety of simulation

tools situated on the left-hand side. These tools include both commercial and open-

source simulators, providing users with a diverse range of options for their EDA needs.

Individuals have the ability to choose simulation tools based on their specific require-

ments. In addition to the aforementioned tools, a limited number of synthesis tools are

also accessible for users who wish to assess the designed design's utilization. In addition

to simulators and synthesizers, there are also available compilers for C++ and Python

programming languages. All simulators within the EDA Playground are integrated with

EPWave, a debugging tool that enables users to visualize waveforms.

5.4.1 Commercial Simulators

The available commercial simulators on this platform include Aldec Riviera Pro 2022.04,

Cadence Xcelium 20.09, Mentor Questa 2021.3, and Synopsys VCS 2021.09. Each sim-

ulator possesses distinct advantages, allowing users to choose the most suitable option

based on their individual requirements.

5.4.2 Synthesis Tools

Commercial synthesis tools that can be used with EDA Playground include Mentor Pre-

cision 2021.1 and Aldec SyntHESer 2022.05. Along with these, this EDA platform also

incorporates opensource synthesis tools like Yosys 0.9.0 and VTR 7.0. There is no target

platform for these synthesis tools as these are all generic and available for educational

purposes.

Figure 9. Tools and Simulators in EDA Playground

37

5.5 EPWave

EPwave is a designated wave viewing tool developed by Doulos which is incorporated

with EDA Playground. During the course of this thesis, designs were created with VHDL,

Verilog and SystemVerilog. All the designs’ testbenches were visualized with the help of

EPWave. It will open up in the web browser automatically after the simulation is com-

pleted if the “Open EPWave after run” checkbox is clicked. It was also ensured that the

testbench code incorporated suitable function calls for the purpose of generating a file

with a *.vcd extension.

initial begin
 // Dump waves

 $dumpfile(“dump.vcd”);
 $dumpvars(0, tb_top);
end

Program 5. Code for dumping filename and variables

Figure 10. Waveform Viewer EPWave

Signals can be added to the waveform using the “Get Signals” button, as shown in Figure

10, and then appending the signals one after another. The Radix is only limited to Binary

and Hexadecimal and can be selected through the use of the “Radix” button. Users can

zoom in or out, move forward or backward with the help of buttons at the top of the

screen. This allows for easier debug of the design. The signal path is visible in a window

at the side of the buttons. It is also possible to share wave through EPWave.

While EPWave offers a convenient solution for viewing webform, it does have certain

limitations in terms of its interface. The current interface lacks the functionality to enable

simultaneous selection of multiple signals for the purpose of dragging and dropping them

for alignments. In order to align the signals, it was necessary to first select the appropri-

ate option, followed by using of the up and down buttons. In the event of deletions, they

had to be performed on an individual basis. One additional constraint of EPWave relates

to the absence of flexibility in selecting the decimal Radix.

38

5.6 USE CASE 1: Design and Simulation With VHDL

The usability of EDA Playground was started with a simple VHDL adder design. In the

design pane, a simple VHDL code for adder was written and in the testbench pane, code

for the testbench was written.

For this specific design, selection of library was not required. Then the top entity name

was specified, which in this case was the testbench entity name. For this run, all of the

simulators were used individually, and they provided more or less the same output. As

mentioned earlier, EPWave opened automatically, and the waveform was analysed for

the correctness of the design.

The Mentor Precision 2021.1 and Aldec SyntHESer 2022.05. were then used for synthe-

sis. Both required specific files with .do extensions that were customized for the required

synthesis tools. Along with the gate level netlists, Aldec SyntHESer 2022.05 was able to

produce critical route diagrams. It was clear that this particular architecture required 2

LUTs, 5 wires, 5 wire bits, and 2 cells. Mentor Precision 2021.1, on the other hand, was

able to create the netlist. Due to the compact size of the design, there were few differ-

ences and similar device usage. Yosys and VTR does not support VHDL, so these steps

were not proceeded with.

Next a 4 bit 4-to-1 MUX was designed, and the similar steps were followed.

Figure 11 shows the correctness of the design behaviour of adder using EDA Play-

ground.

Figure 11. Waveform for 4to1 MUX

Figure 12 shows the critical route diagram for the 4to1 MUX. As per the report generated,

it was utilizing 6 wires, 22 wire bits and 4 cells. The number of technology primitive was

4 LUTs.

The codes for the design and testbench of 4-to-1 MUX, and the simplified netlists are

recorded in the Appendix A.

39

Figure 12. Routing Diagram for 4to1 MUX generated by Aldec SyntHESer

5.7 USE CASE 2: UVM Verification of SV Design

For the next case, an adder/subtractor was designed using SystemVerilog. The main

purpose of this experiment was to try and verify this design using UVM. For this reason,

Design Language was selected to SystemVerilog from the left-hand side pane. UVM 1.2

was selected as verification methodology.

The architecture of this use case replicates in figure 13.

The design of the test environment started with declaring the interface which will aid in

communicating to the DUT and the test environment components.

40

Figure 13. UVM architecture for the use case 2

Then, a sequence_item, extending from uvm_sequence_item was defined. Se-

quence_item defines the transaction object which the driver needs to drive. These ob-

jects were declared as random variables. Also, the objects were constrained and printed

from the sequence_item. These sequence_item transaction objects act as the funda-

mental entity within the environment, facilitating the initiation of new transactions and the

capture of transactions from the DUT. After that, a base_sequence was designed which

was extending from a parameterized uvm_sequence. The parameter for uvm_sequence

was the sequence_item. After that, a basic sequencer was designed extending from the

uvm_sequencer. The sequence generates stimuli and transmits them to the driver

through a sequencer, whereas the sequencer acts as a connector between the sequence

and the driver.

After the sequencer was placed, a driver class extending from the uvm_driver was cre-

ated. In the build phase of this class, the interface was connected to the driver through

the configuration database. The example code is as follows in program 5:

if(!uvm_config_db#(virtual add_if) :: get(this, "", "vif", vif))
 `uvm_fatal(get_type_name(), "Not set at top level");

Program 6. Getting the virtual interface through configuration database

41

In the run phase, the driver requested to get the sequence_item objects through the

sequence_item_port and then ran it to the virtual interface to the DUT. The example code

is as follows:

// Driver to the DUT
seq_item_port.get_next_item(req);
vif.input1 <= req.input1;
vif.input 2 <= req.input2;
vif.add_sub <= req.add_sub;
seq_item_port.item_done();

Program 7. Getting sequence item objects and driving the DUT through virtual inter-
face

After the driver class, a monitor class was created. At the beginning of the monitor class

an uvm_analysis_port was defined. The monitor was connected to the virtual interface

through the configuration database, similarly as it was shown in program 5. But now the

virtual interface objects are passing the data to the monitor sequence items. The monitor

items are then written into the analysis port. The example code is as follows:

class add_sub_monitor extends uvm_monitor;
//define analysis port

uvm_analysis_port #(add_sub_seq_item) item_collect_port;
.
.
.
//inside run phase
//getting sequence item objects
mon_item.add_sub = vif.add_sub;
mon_item.ip1 = vif.ip1;
mon_item.ip2 = vif.ip2;
@(posedge vif.clk);
mon_item.out = vif.out;
//writing analysis port
item_collect_port.write(mon_item);

endclass

Program 8. Getting virtual interface objects and writing them to analysis port

The writing of the sequence objects was necessary so that the scoreboard can fetch it

through the analysis import. Next, the scoreboard class was created, and the analysis

import was defined. The sequence items obtained through the analysis import was stored

in a queue. In the run phase of the scoreboard, a reference function to the DUT was

created and using the objects from the sequence item, the expected value and the actual

value was compared. In case of a mismatch, a UVM_ERROR was generated.

Before the scoreboard, an agent class was created so that the driver, monitor and se-

quencer instances can be hold in a container. In the connect phase of the agent stage,

42

the connection of the driver and the sequencer was made through seq_item_port of

driver instance and seq_item_import of sequencer instance.

As the scoreboard and agent was in place, it was necessary to connect the monitor

analysis port to scoreboard analysis export, which was yet to be made. Thus, the env

class was created and in the connect phase of env class, the connection was made.

Program 8 shows the driver-sequencer and monitor-scoreboard connections.

//Example of connection between driver and sequencer in agent class
drv.seq_item_port.connect(seqr.seq_item_export);
//Example of connection between monitor and scoreboard in env class
agt.mon.item_collect_port.connect(sb.item_collect_export);

Program 9. Example of TLM analysis port/export

Then a base test was created which would start the sequence from its run_phase. It was

also possible to control the number of transactions we needed to verify the DUT.

Lastly, the testbench top file was written. It included the uvm_macros, and all the classes

mentioned before. In this module, the clock and reset were initialized. The DUT was

connected to the interface and configuration database was set, as shown in program 10.

Once all the classes were in place, the base test was called to run. Lastly, the variables

were dumped for the waves to be viewed. Then using all the simulators, one by one, the

test was allowed to run. The logs and waveforms showed that the DUT and the test was

working as expected.

// set interface in config_db
uvm_config_db#(virtual add_if)::set(uvm_root::get(), "*", "vif", vif);

Program 10. Setting the virtual interface through configuration database

43

Figure 14. Log from the UVM test run.

Finally, for the use this use case, all the synthesis tools were used to get simplified netlist.

A Yosys diagram after the synthesis is shown in figure 15. Yosys is a tool designed for

the purpose of conducting logical synthesis and generating a netlist. It uses ABC: A Sys-

tem for Sequential Synthesis and Verification for the purpose of synthesizing a sample

cell library. This tool shows the simplified implementation diagram after the synthesis.

Yosys in EDA Playground exclusively processes code within the Design pane. The code

contained within the Testbench pane will not be executed. The selections of UVM/OVM

methodology and libraries are also disregarded.

Figure 15. Yosys simplified implementation diagram after synthesis for the ad-
der subtractor

44

5.8 Other Features

Apart from the features mentioned above, EDA Playground allow users to save and

share their code in their respective accounts. If the code is shared as published, it will be

visible in the example tab where users can access all the examples available. Users can

also copy a published code in their own workspace and edit if is necessary. For a public

code, anyone with the link can open the code.

Also, there is an EDA Playground community where users can ask questions, collabo-

rate, and provide solutions.

45

6. CONCLUSION

Designing a digital system is complex and involves multiple stages. Among these stages,

modelling, designing, and verifying a chip takes about half the time of the entire process.

On the other hand, verification cannot keep up with the design growth, and design cannot

keep up with the technology growth due to lack of competent manpower in the field of

digital system design.

The absence of proficient personnel in this domain can be attributed to two primary fac-

tors: the accessibility of open-source software programming tools and the absence of

open-source EDA tools. Students worldwide who lack access to EDA tools via their ed-

ucational institutions have the opportunity to independently acquire knowledge in pro-

gramming languages such as C++, Python, Java, or other similar platforms that are read-

ily accessible. EDA Playground offers a solution in this regard.

The objective of the thesis was to showcase the open-source EDA platform, EDA Play-

ground. EDA Playground provides a wide range of languages, tools and resources that

can be used for the digital design and aspire digital engineers.

As it was seen in the previous chapter, EDA Playground allows users to code in multiple

HDLs, allow them to test the design using multiple commercial and free simulators, and

helps them debug the failures in design using EPwave and logs. Users can synthesize

their codes using commercial synthesizers to check for device utilization and circuit dia-

gram.

Another significant application of EDA Playground involves the integration of UVM 1.2.

Prospective users can acquire knowledge about this methodology through educational

resources, including tools and examples that are made available for their benefit. The

ability for users to copy a sample workspace into their own workspace significantly facil-

itates the process of modifying and comprehending specific sections of the code, thereby

promoting critical thinking.

The thesis presents a comprehensive range of use cases that demonstrate the diverse

functionalities offered by EDA Playground. Throughout the course of this thesis, the var-

ious resources available on EDA Playground were utilized and assessed for their func-

tionality. Despite certain limitations, the platform is a powerful tool designed to enhance

the capabilities of digital system engineers.

46

REFERENCES

[1] S. Ramachandran, Digital VLSI systems design: a design manual for implementation of
projects on FPGAs and ASICs using Verilog. Springer Science & Business Media, 2007.

[2] S. Bhunia and M. Tehranipoor, “Chapter 2 - A Quick Overview of Electronic Hardware,” in
Hardware Security, S. Bhunia and M. Tehranipoor, Eds., Morgan Kaufmann, 2019, pp. 23–
45. doi: 10.1016/B978-0-12-812477-2.00007-1.

[3] H. D. Foster, “Trends in functional verification: a 2014 industry study,” Proceedings of the
52nd Annual Design Automation Conference. Association for Computing Machinery, San
Francisco, California, p. Article 48, 2015. [Online]. Available:
https://doi.org/10.1145/2744769.2744921

[4] D. Rittman, “Nanometer Physical Verification,” Jul. 2011.
[5] A. Anzaldua Jr., “Why Physical Verification Is Only Getting Tougher With Advanced Nodes,”

Apr. 14, 2021. https://www.allaboutcircuits.com/news/why-physical-verification-is-only-get-
ting-tougher-with-advanced-nodes/ (accessed Aug. 21, 2023).

[6] D. Abdulkareem, “Introductory Concepts: Fundamentals of Digital Systems.” College of En-
gineering/ Dept. of Computer Engineering, University of Baghdad. Accessed: Aug. 08, 2023.
[Online]. Available: https://coeng.uobaghdad.edu.iq/wp-content/uploads/sites/3/2021/09/

[7] R. Oshana, “Chapter 2 - Overview of Real-time and Embedded Systems,” in DSP for Em-
bedded and Real-Time Systems, R. Oshana, Ed., Oxford: Newnes, 2012, pp. 15–27. doi:
10.1016/B978-0-12-386535-9.00002-0.

[8] “A Beginner’s Guide to Digital Signal Processing (DSP).” https://www.analog.com/en/de-
sign-center/landing-pages/001/beginners-guide-to-dsp.html (accessed Aug. 08, 2023).

[9] G. Martin and H. Chang, “System-on-Chip design,” in ASICON 2001. 2001 4th International
Conference on ASIC Proceedings (Cat. No.01TH8549), Oct. 2001, pp. 12–17. doi:
10.1109/ICASIC.2001.982487.

[10] M. J. Flynn and W. Luk, Computer system design: system-on-chip. John Wiley & Sons,
2011.

[11] C. M. Maxfield, “Chapter 2 - FPGA Architectures,” in FPGAs: Instant Access, C. M. Maxfield,
Ed., Burlington: Newnes, 2008, pp. 13–48. doi: 10.1016/B978-0-7506-8974-8.00002-8.

[12] M. Ferdjallah, Introduction to digital systems : modeling, synthesis, and simulation using
VHDL, 1st edition. Hoboken, New Jersey: Wiley, 2011.

[13] C. M. Maxfield, “Chapter 17 - Application-Specific Integrated Circuits (ASICs),” in Bebop to
the Boolean Boogie (Third Edition), C. M. Maxfield, Ed., Boston: Newnes, 2009, pp. 235–
249. doi: 10.1016/B978-1-85617-507-4.00017-6.

[14] S. Lammi, “How to become a System-on-Chip design expert?,” Aug. 30, 2022.
https://blogs.tuni.fi/cs/teaching/how-to-become-a-system-on-chip-design-expert/

[15] Harry. J.M. Veendrick, Nanometer CMOS ICs From Basics to ASICs, 2nd ed. 2017. Cham:
Springer International Publishing, 2017. doi: 10.1007/978-3-319-47597-4.

[16] M. Horn, H. van der Schoot, G. Allan, and M. Peryer, “Universal Verification Methodology
UVM Cookbook.” Siemens Digital Industries Software. [Online]. Available: https://verifica-
tionacademy.com/cookbook

[17] Samir Palnitkar, Verilog® HDL: A Guide to Digital Design and Synthesis, Second Edition.
Pearson, 2003.

[18] J. Cavanagh, Verilog HDL design examples, First edition. Boca Raton, FL: CRC Press,
2017. doi: 10.1201/b22315.

[19] H. Kaeslin, Top-down digital VLSI design : from architectures to gate-level circuits and
FPGAS, 1st edition. Place of publication not identified: Morgan Kaufmann is an imprint of
Elsevier, 2015.

[20] “IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verifica-
tion Language,” IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012), pp. 1–1315, Feb.
2018, doi: 10.1109/IEEESTD.2018.8299595.

[21] J. Bergeron, Writing testbenches using SystemVerilog. Springer Science & Business Media,
2007.

[22] L.-T. Wang, Y.-W. Chang, and K.-T. (Tim) Cheng, Eds., “The Morgan Kaufmann Series in
Systems on Silicon,” in Electronic Design Automation, Boston: Morgan Kaufmann, 2009, p.
iii. doi: 10.1016/B978-0-12-374364-0.50001-1.

47

[23] “Electronic Design Automation (EDA).” https://www.cadence.com/en_US/home/ex-
plore/what-is-electronic-design-automation.html (accessed Jul. 09, 2023).

[24] “What is EDA (Electronic Design Automation)?” https://www.synopsys.com/glossary/what-
is-electronic-design-automation.html

[25] A. Oinonen, “Implementation of SystemVerilog and UVM Training,” 2017.
[26] C. Spear, SystemVerilog for Verification: A Guide to Learning the Testbench Language

Features, 2. Aufl. New York, NY: Springer-Verlag, 2008.
[27] “Universal Verification Methodology (UVM) 1.2 User’s Guide.” Accellera Systems Initiative

(Accellera), Oct. 08, 2015. [Online]. Available: https://www.accellera.org/images/down-
loads/standards/uvm/uvm_users_guide_1.2.pdf

vii

APPENDIX A: DESIGN AND TESTBENCH CODES
FOR 4-TO-1 MUX IN VHDL

//Design of 4 bit 4-to-1 MUX
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity T15_Mux is
port(
 -- Inputs
 Sig1 : in unsigned(3 downto 0);
 Sig2 : in unsigned(3 downto 0);
 Sig3 : in unsigned(3 downto 0);
 Sig4 : in unsigned(3 downto 0);

 Sel : in unsigned(1 downto 0);

 -- Outputs
 Output : out unsigned(3 downto 0));
end entity;

architecture rtl of T15_Mux is
begin
 process(Sel, Sig1, Sig2, Sig3, Sig4) is
 begin
 case Sel is

 when "00" =>
 Output <= Sig1;
 when "01" =>
 Output <= Sig2;
 when "10" =>
 Output <= Sig3;
 when "11" =>
 Output <= Sig4;
 when others => -- 'U', 'X', '-', etc.
 Output <= (others => 'X');
 case;

 end process;
end architecture;

Program 11. Design of 4 bit 4-to-1 MUX

viii

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity T15_PortMapTb is
end entity;

architecture sim of T15_PortMapTb is
 signal Sig1 : unsigned(7 downto 0) := x"AA";
 signal Sig2 : unsigned(7 downto 0) := x"BB";
 signal Sig3 : unsigned(7 downto 0) := x"CC";
 signal Sig4 : unsigned(7 downto 0) := x"DD";

 signal Sel : unsigned(1 downto 0) := (others => '0');

 signal Output : unsigned(7 downto 0);

 begin

 -- An instance of T15_Mux with architecture rtl
 i_Mux1 : entity work.T15_Mux(rtl) port map(
 Sel => Sel,
 Sig1 => Sig1,
 Sig2 => Sig2,
 Sig3 => Sig3,
 Sig4 => Sig4,
 Output => Output);

 -- Testbench process
 process is
 begin
 wait for 10 ns;
 Sel <= Sel + 1;
 wait for 10 ns;
 Sel <= Sel + 1;
 wait for 10 ns;
 Sel <= Sel + 1;
 wait for 10 ns;
 Sel <= Sel + 1;
 wait for 10 ns;
 Sel <= "UU";
 wait;
 end process;
end architecture;

Program 12. Testbench for simulation of 4 bit 4-to-1 MUX

ix

// Verilog description for cell T15_Mux,
// Tue Aug 22 04:20:34 2023
//
// Precision RTL Synthesis, 64-bit 2021.2.0.8//

module T15_Mux (Sig1, Sig2, Sig3, Sig4, Sel, Output) ;

input [7:0]Sig1 ;
input [7:0]Sig2 ;
input [7:0]Sig3 ;
input [7:0]Sig4 ;
input [1:0]Sel ;
output [7:0]Output ;

wire [7:0]Sig1_int;
wire [7:0]Sig2_int;
wire [7:0]Sig3_int;
wire [7:0]Sig4_int;
wire [1:0]Sel_int;
wire nx5780z1, nx6777z1, nx7774z1, nx8771z1, nx9768z1, nx10765z1,

nx11762z1,
nx12759z1;

OBUF \Output_obuf(0) (.O (Output[0]), .I (nx12759z1)) ;
OBUF \Output_obuf(1) (.O (Output[1]), .I (nx11762z1)) ;
OBUF \Output_obuf(2) (.O (Output[2]), .I (nx10765z1)) ;
OBUF \Output_obuf(3) (.O (Output[3]), .I (nx9768z1)) ;
OBUF \Output_obuf(4) (.O (Output[4]), .I (nx8771z1)) ;
OBUF \Output_obuf(5) (.O (Output[5]), .I (nx7774z1)) ;
OBUF \Output_obuf(6) (.O (Output[6]), .I (nx6777z1)) ;
OBUF \Output_obuf(7) (.O (Output[7]), .I (nx5780z1)) ;
IBUF \Sel_ibuf(0) (.O (Sel_int[0]), .I (Sel[0])) ;
IBUF \Sel_ibuf(1) (.O (Sel_int[1]), .I (Sel[1])) ;
IBUF \Sig4_ibuf(0) (.O (Sig4_int[0]), .I (Sig4[0])) ;
IBUF \Sig4_ibuf(1) (.O (Sig4_int[1]), .I (Sig4[1])) ;
IBUF \Sig4_ibuf(2) (.O (Sig4_int[2]), .I (Sig4[2])) ;
IBUF \Sig4_ibuf(3) (.O (Sig4_int[3]), .I (Sig4[3])) ;
IBUF \Sig4_ibuf(4) (.O (Sig4_int[4]), .I (Sig4[4])) ;
IBUF \Sig4_ibuf(5) (.O (Sig4_int[5]), .I (Sig4[5])) ;
IBUF \Sig4_ibuf(6) (.O (Sig4_int[6]), .I (Sig4[6])) ;
IBUF \Sig4_ibuf(7) (.O (Sig4_int[7]), .I (Sig4[7])) ;
IBUF \Sig3_ibuf(0) (.O (Sig3_int[0]), .I (Sig3[0])) ;
IBUF \Sig3_ibuf(1) (.O (Sig3_int[1]), .I (Sig3[1])) ;
IBUF \Sig3_ibuf(2) (.O (Sig3_int[2]), .I (Sig3[2])) ;
IBUF \Sig3_ibuf(3) (.O (Sig3_int[3]), .I (Sig3[3])) ;
IBUF \Sig3_ibuf(4) (.O (Sig3_int[4]), .I (Sig3[4])) ;
IBUF \Sig3_ibuf(5) (.O (Sig3_int[5]), .I (Sig3[5])) ;
IBUF \Sig3_ibuf(6) (.O (Sig3_int[6]), .I (Sig3[6])) ;
IBUF \Sig3_ibuf(7) (.O (Sig3_int[7]), .I (Sig3[7])) ;
IBUF \Sig2_ibuf(0) (.O (Sig2_int[0]), .I (Sig2[0])) ;
IBUF \Sig2_ibuf(1) (.O (Sig2_int[1]), .I (Sig2[1])) ;
IBUF \Sig2_ibuf(2) (.O (Sig2_int[2]), .I (Sig2[2])) ;
IBUF \Sig2_ibuf(3) (.O (Sig2_int[3]), .I (Sig2[3])) ;
IBUF \Sig2_ibuf(4) (.O (Sig2_int[4]), .I (Sig2[4])) ;
IBUF \Sig2_ibuf(5) (.O (Sig2_int[5]), .I (Sig2[5])) ;
IBUF \Sig2_ibuf(6) (.O (Sig2_int[6]), .I (Sig2[6])) ;

x

IBUF \Sig2_ibuf(7) (.O (Sig2_int[7]), .I (Sig2[7])) ;
IBUF \Sig1_ibuf(0) (.O (Sig1_int[0]), .I (Sig1[0])) ;
IBUF \Sig1_ibuf(1) (.O (Sig1_int[1]), .I (Sig1[1])) ;
IBUF \Sig1_ibuf(2) (.O (Sig1_int[2]), .I (Sig1[2])) ;
IBUF \Sig1_ibuf(3) (.O (Sig1_int[3]), .I (Sig1[3])) ;
IBUF \Sig1_ibuf(4) (.O (Sig1_int[4]), .I (Sig1[4])) ;
IBUF \Sig1_ibuf(5) (.O (Sig1_int[5]), .I (Sig1[5])) ;
IBUF \Sig1_ibuf(6) (.O (Sig1_int[6]), .I (Sig1[6])) ;
IBUF \Sig1_ibuf(7) (.O (Sig1_int[7]), .I (Sig1[7])) ;
LUT6 ix5780z45004 (.O (nx5780z1), .I0 (Sig1_int[7]), .I1 (Sig2_int[7]),

.I2 (
Sig3_int[7]), .I3 (Sig4_int[7]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ;
defparam ix5780z45004.INIT = 64'hFF00CCCCF0F0AAAA;
LUT6 ix6777z45004 (.O (nx6777z1), .I0 (Sig1_int[6]), .I1 (Sig2_int[6]),

.I2 (
Sig3_int[6]), .I3 (Sig4_int[6]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ;
defparam ix6777z45004.INIT = 64'hFF00CCCCF0F0AAAA;
LUT6 ix7774z45004 (.O (nx7774z1), .I0 (Sig1_int[5]), .I1 (Sig2_int[5]),

.I2 (
Sig3_int[5]), .I3 (Sig4_int[5]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ;
defparam ix7774z45004.INIT = 64'hFF00CCCCF0F0AAAA;
LUT6 ix8771z45004 (.O (nx8771z1), .I0 (Sig1_int[4]), .I1 (Sig2_int[4]),

.I2 (
Sig3_int[4]), .I3 (Sig4_int[4]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ;
defparam ix8771z45004.INIT = 64'hFF00CCCCF0F0AAAA;
LUT6 ix9768z45004 (.O (nx9768z1), .I0 (Sig1_int[3]), .I1 (Sig2_int[3]),

.I2 (
Sig3_int[3]), .I3 (Sig4_int[3]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ;
defparam ix9768z45004.INIT = 64'hFF00CCCCF0F0AAAA;
LUT6 ix10765z45004 (.O (nx10765z1), .I0 (Sig1_int[2]), .I1 (Sig2_int[2]),

.I2 (
Sig3_int[2]), .I3 (Sig4_int[2]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ;
defparam ix10765z45004.INIT = 64'hFF00CCCCF0F0AAAA;
LUT6 ix11762z45004 (.O (nx11762z1), .I0 (Sig1_int[1]), .I1 (Sig2_int[1]),

.I2 (
Sig3_int[1]), .I3 (Sig4_int[1]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ;
defparam ix11762z45004.INIT = 64'hFF00CCCCF0F0AAAA;
LUT6 ix12759z45004 (.O (nx12759z1), .I0 (Sig1_int[0]), .I1 (Sig2_int[0]),

.I2 (
Sig3_int[0]), .I3 (Sig4_int[0]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ;
defparam ix12759z45004.INIT = 64'hFF00CCCCF0F0AAAA;

endmodule

Program 13. Simplified Netlist generated through Mentor Precision 2021.1 for 4-to-1
MUX

xi

APPENDIX B: SV AND UVM IMPLEMENTATION
CODES FOR ADDER-SUBTRACTOR

// Simple adder/subtractor module
module Adder_Subtractor(

 input clk,
 input reset,
 input [7:0] a_in,
 input [7:0] b_in,
 // if this is 1, add; else subtract
 input add_sub,
 output reg [8:0] result

);

 always @ (posedge clk or posedge reset)
 if (reset)
 result <=0;
 else
 begin
 if (add_sub)
 result <= a_in + b_in;
 else
 result <= a_in - b_in;

 end
endmodule

Program 14. SystemVerilog Design of Adder-Subtractor

//---------------------------------------
// TB_TOP file
//---------------------------------------
`include "uvm_macros.svh"
package my_pkg;
 import uvm_pkg::*;
 `include "add_sub_seq_item.sv"
 `include "add_sub_base_seq.sv"
 `include "add_sub_sequencer.sv"
 `include "add_sub_driver.sv"
 `include "add_sub_monitor.sv"
 `include "add_sub_agent.sv"
 `include "scoreboard.sv"
 `include "add_sub_env.sv"
 `include "base_test.sv"
endpackage: my_pkg

`include "interface.sv"

module tb_top;
 import uvm_pkg::*;
 import my_pkg::*;
 bit clk;
 bit reset;
 always #2 clk = ~clk;

 initial begin
 reset = 1;

xii

 #5;
 reset = 0;
 end

 add_if vif(clk, reset);

Adder_Subtractor DUT(
 .clk(vif.clk),
 .reset(vif.reset),
 .a_in(vif.ip1),
 .b_in(vif.ip2),
 .add_sub(vif.add_sub),
 .result(vif.out)
);

initial begin
 // set interface in config_db
 uvm_config_db#(virtual add_if)::set(uvm_root::get(), "*", "vif", vif);
end

 initial begin
 run_test("base_test");
 end

 initial begin
 // Dump waves
 $dumpvars(0, tb_top);
 end
endmodule

Program 15. Top file of the testbench for adder-subtractor

//---------------------------------------
// Interface for the adder/subtractor DUT
//---------------------------------------
interface add_if(input clk, input reset);
 logic [7:0] ip1;
 logic [7:0] ip2;
 logic add_sub;
 logic [8:0] out;
endinterface: add_if

Program 16. Virtual Interface for Adder-Subtractor

//---------------------------------------
// Sequence Item
//---------------------------------------
class add_sub_seq_item extends uvm_sequence_item;
 rand bit [7:0] ip1, ip2;
 rand bit add_sub;
 bit reset;
 bit [8:0] out;

 function new(string name = "add_sub_seq_item");
 super.new(name);
 endfunction

 `uvm_object_utils_begin(add_sub_seq_item)

xiii

 `uvm_field_int(ip1,UVM_ALL_ON)
 `uvm_field_int(ip2,UVM_ALL_ON)
 `uvm_field_int(add_sub,UVM_ALL_ON)
 `uvm_object_utils_end

 constraint ip_c {ip1 < 100; ip2 < 100;}
endclass

Program 17. Adder Subtractor sequence item

//---------------------------------------
// Sequence
//---------------------------------------
class add_sub_base_seq extends uvm_sequence#(add_sub_seq_item);
 add_sub_seq_item req;
 `uvm_object_utils(add_sub_base_seq)

 function new (string name = "add_sub_base_seq");
 super.new(name);
 endfunction

 task body();
 `uvm_info(get_type_name(), "Base seq: Inside Body", UVM_LOW);
 `uvm_do(req);
 endtask
endclass

Program 18. Adder Subtractor base sequence

//---------------------------------------
// Sequencer
//---------------------------------------
class add_sub_sequencer extends uvm_sequencer#(add_sub_seq_item);
 `uvm_component_utils(add_sub_sequencer)

 function new(string name = "add_sub_sequencer", uvm_component parent =
null);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 endfunction
endclass

Program 19. Adder-Subtractor sequencer

//---------------------------------------
// Monitor
//---------------------------------------
class add_sub_monitor extends uvm_monitor;
 virtual add_if vif;
 uvm_analysis_port #(add_sub_seq_item) item_collect_port;
 add_sub_seq_item mon_item;
 `uvm_component_utils(add_sub_monitor)

 function new(string name = "add_sub_monitor", uvm_component parent = null);
 super.new(name, parent);
 item_collect_port = new("item_collect_port", this);

xiv

 mon_item = new();
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 if(!uvm_config_db#(virtual add_if) :: get(this, "", "vif", vif))
 `uvm_fatal(get_type_name(), "Not set at top level");
 endfunction

 task run_phase (uvm_phase phase);
 forever begin
 wait(!vif.reset);
 @(posedge vif.clk);
 mon_item.add_sub = vif.add_sub;
 mon_item.ip1 = vif.ip1;
 mon_item.ip2 = vif.ip2;
 `uvm_info(get_type_name, $sformatf("ip1 = %0d, ip2 = %0d, add_sub
=%0d", mon_item.ip1, mon_item.ip2, mon_item.add_sub), UVM_HIGH);
 @(posedge vif.clk);
 mon_item.out = vif.out;
 item_collect_port.write(mon_item);
 end
 endtask
endclass

Program 20. Adder-Subtractor monitor

//---------------------------------------
// Driver
//---------------------------------------
class add_sub_driver extends uvm_driver#(add_sub_seq_item);
 virtual add_if vif;
 `uvm_component_utils(add_sub_driver)

 function new(string name = "add_sub_driver", uvm_component parent = null);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 if(!uvm_config_db#(virtual add_if) :: get(this, "", "vif", vif))
 `uvm_fatal(get_type_name(), "Not set at top level");
 endfunction

 task run_phase (uvm_phase phase);
 forever begin
 // Driver to the DUT
 seq_item_port.get_next_item(req);
 `uvm_info(get_type_name, $sformatf("ip1 = %0d, ip2 = %0d, add_sub
=%0d", req.ip1, req.ip2, req.add_sub), UVM_LOW);
 vif.ip1 <= req.ip1;
 vif.ip2 <= req.ip2;
 vif.add_sub <= req.add_sub;
 seq_item_port.item_done();
 end
 endtask
endclass

Program 21. Adder-Subtractor driver

xv

//---------------------------------------
// Agent
//---------------------------------------
class add_sub_agent extends uvm_agent;
 `uvm_component_utils(add_sub_agent)
 add_sub_driver drv;
 add_sub_sequencer seqr;
 add_sub_monitor mon;

 function new(string name = "add_sub_agent", uvm_component parent = null);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);

 if(get_is_active == UVM_ACTIVE) begin
 drv = add_sub_driver::type_id::create("drv", this);
 seqr = add_sub_sequencer::type_id::create("seqr", this);
 end
 mon = add_sub_monitor::type_id::create("mon", this);

endfunction

function void connect_phase(uvm_phase phase);

 if(get_is_active == UVM_ACTIVE) begin
 drv.seq_item_port.connect(seqr.seq_item_export);
 end
 endfunction
endclass

Program 22. Adder-Subtractor agent

//---------------------------------------
// Scoreboard
//---------------------------------------
class scoreboard extends uvm_scoreboard;
 uvm_analysis_imp #(add_sub_seq_item, scoreboard) item_collect_export;
 add_sub_seq_item item_q[$];
 `uvm_component_utils(scoreboard)

 function new(string name = "scoreboard", uvm_component parent = null);
 super.new(name, parent);
 item_collect_export = new("item_collect_export", this);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 endfunction

 function void write(add_sub_seq_item req);
 item_q.push_back(req);
 endfunction

 task run_phase (uvm_phase phase);
 add_sub_seq_item sb_item;
 forever begin
 wait(item_q.size > 0);

xvi

 if(item_q.size > 0) begin
 sb_item = item_q.pop_front();
 $display("--");
 if(sb_item.add_sub == 1) begin
 if(sb_item.ip1 + sb_item.ip2 == sb_item.out) begin
 `uvm_info(get_type_name, $sformatf("Matched: ip1 = %0d, ip2 =
%0d, out = %0d", sb_item.ip1, sb_item.ip2, sb_item.out),UVM_MEDIUM);
 end
 else begin
 `uvm_error(get_name, $sformatf("NOT matched: ip1 = %0d, ip2 =
%0d, out = %0d", sb_item.ip1, sb_item.ip2, sb_item.out));
 end
 end else begin
 if(sb_item.ip1 - sb_item.ip2 == sb_item.out) begin
 `uvm_info(get_type_name, $sformatf("Matched: ip1 = %0d, ip2 =
%0d, out = %0d", sb_item.ip1, sb_item.ip2, sb_item.out),UVM_MEDIUM);

 end
 else begin
 `uvm_error(get_name, $sformatf("NOT matched: ip1 = %0d, ip2 =

%0d, out = %0d", sb_item.ip1, sb_item.ip2, sb_item.out));
 end
 end
 $display("--");
 end
 end

 endtask

endclass

Program 23. Adder-Subtractor scoreboard

//---------------------------------------
// Environment
//---------------------------------------
class add_sub_env extends uvm_env;
 `uvm_component_utils(add_sub_env)
 add_sub_agent agt;
 scoreboard sb;

 function new(string name = "add_sub_env", uvm_component parent = null);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 agt = add_sub_agent::type_id::create("agt", this);
 sb = scoreboard::type_id::create("sb", this);
 endfunction

 function void connect_phase(uvm_phase phase);
 agt.mon.item_collect_port.connect(sb.item_collect_export);
 endfunction
endclass

Program 24. Adder-Subtractor environment

xvii

//---------------------------------------
// Base Test
//---------------------------------------
class base_test extends uvm_test;
 add_sub_env env_o;
 add_sub_base_seq bseq;
 `uvm_component_utils(base_test)

 function new(string name = "base_test", uvm_component parent = null);
 super.new(name, parent);
 endfunction

 function void build_phase(uvm_phase phase);
 super.build_phase(phase);
 env_o = add_sub_env::type_id::create("env_o", this);
 endfunction

 task run_phase(uvm_phase phase);
 phase.raise_objection(this);
 bseq = add_sub_base_seq::type_id::create("bseq");

 repeat(10) begin
 #10;
 bseq.start(env_o.agt.seqr);
 end

 phase.drop_objection(this);
 `uvm_info(get_type_name, "End of testcase", UVM_LOW);
 endtask
endclass

Program 25. Adder-Subtractor base test

	1. Introduction
	1.1 Motivation and scope behind the thesis
	1.2 Thesis Outline

	2. Literature Review
	2.1 Digital Systems
	2.1.1 Embedded Systems
	2.1.2 Digital Signal Processor
	2.1.3 System on Chip (SoC)
	2.1.3.1 Field Programmable Gate Array (FPGA)
	2.1.3.2 Application Specific Integrated Circuit (ASIC)

	2.2 Digital System Design Flow
	2.2.1 Specification
	2.2.2 Modeling
	2.2.3 Hardware Design
	2.2.4 Verification
	2.2.5 Synthesis
	2.2.6 Prototyping
	2.2.7 Physical design
	2.2.8 Floorplanning

	2.3 Hardware Description Language
	2.3.1 Verilog HDL
	2.3.1.1 Verilog Constructs

	2.3.2 VHDL
	2.3.2.1 VHDL Constructs

	2.3.3 SystemVerilog

	2.4 Electronic Design Automation

	3. SYSTEMVERILOG
	3.1 SystemVerilog Design and Verification Building Blocks
	3.1.1 Design Elements
	3.1.2 Modules
	3.1.3 Programs
	3.1.4 Interfaces
	3.1.5 Checkers
	3.1.6 Primitives
	3.1.7 Packages
	3.1.8 Configurations

	3.2 SystemVerilog Hierarchy Overview
	3.3 SystemVerilog for verification

	4. UNIVERSAL VERIFICATION METHODOLOGY
	4.1 UVM Testbench Basics
	4.2 UVM Building Block
	4.2.1 Objects and Components
	4.2.2 UVM Phasing

	4.3 UVM Architecture
	4.3.1 UVM Environment
	4.3.2 UVM Tests

	5. OVERVIEW of EDA PLAYGROUND
	5.1 Application of EDA Playground
	5.2 User Interface
	5.3 Languages and Libraries
	5.4 Tools and Simulators
	5.4.1 Commercial Simulators
	5.4.2 Synthesis Tools

	5.5 EPWave
	5.6 USE CASE 1: Design and Simulation With VHDL
	5.7 USE CASE 2: UVM Verification of SV Design
	5.8 Other Features

	6. CONCLUSION
	References

