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ABSTRACT 
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With the advancement of Information Technology, the design, verification, and manufacturing of 

Integrated circuits have been challenging and time consuming. Unlike the software domain, Elec-

tronic Design Automation (EDA) tools are mostly commercially available, and access is limited to 

the students. An open-source EDA tool might help the students to initialize the learning process. 

This thesis showcases an open-source EDA platform, EDA Playground, where users can practice 

their hardware description language (HDL) codes, create a testbench to simulate their designs 

and synthesize their code.  

 

The thesis shows how EDA Playground provides its users with the ability to write code in various 

HDLs, enabling them to evaluate their designs using a range of both commercial and freely avail-

able simulators. Additionally, it also shows how the platform helps in identifying and resolving 

design failures through the utilization of waveform viewing tool, EPwave, developed my EDA 

Playground and logs. It is also highlighted how users have the ability to employ commercial syn-

thesizers in order to combine their codes, thereby facilitating the assessment of device utilization 

and circuit diagram. 

 

Another notable objective of the thesis is to highlight the application of EDA Playground to the 

incorporate of UVM 1.2. A step-by-step UVM testbench of a simple SystemVerilog adder was 

developed and simulated as a part of the thesis.   Prospective users have the opportunity to gain 

knowledge about this methodology by accessing educational resources, which encompass vari-

ous tools and examples provided for their advantage. 

 

The thesis provides an extensive array of use cases that showcase the varied functionalities pro-

vided by EDA Playground. This thesis extensively employs and evaluates the diverse resources 

offered on EDA Playground to determine their usefulness. 

 

Keywords: Hardware Description Language (HDL), Electronic Design Automation (EDA), Uni-

versal Verification Methodology (UVM), SystemVerilog, VHDL, EDA Playground.   
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1. INTRODUCTION 

The field of information technology (IT) is centered around advanced technologies re-

lated to digital information and communication. The information technology sector has 

experienced significant growth in recent years, making it the industry with the highest 

rate of expansion. As globalization continues to shrink the world, the demand for en-

hanced communication devices and methods becomes increasingly crucial in the busi-

ness realm. One of the crucial attributes of IT is its escalating requirement for exceed-

ingly robust processing capabilities and extensive bandwidth to effectively manage time-

sensitive applications, such as video streaming. These circumstances forced the devel-

opment of accelerated and progressively more effective products to facilitate enhanced 

telecommunications capabilities. The increasing demand in the contemporary world is 

driving numerous countries to make substantial investments in the design of Very Large 

Scale Integration (VLSI) systems[1].  

The process of manufacturing VLSI systems on chips is a complex undertaking that in-

volves several key activities. These activities include the design of VLSI systems using 

electronic design automation (EDA) tools, functional and formal verification, the utiliza-

tion of computer aided design (CAD) in the development and manufacturing of VLSI 

chips, the involvement of foundries in the entire process from the silicon wafer to the final 

packaging and testing of integrated circuits (ICs). Along with utilizing EDA tools, the dig-

ital system design steps require significant capital investment. On the other hand, the 

design steps require a significant amount of knowledge and experience. 

Due to the proliferation and rapid expansion of applications, the demand for VLSI system 

application designers has surpassed that of professionals specializing in chip technol-

ogy, making it a challenging and intriguing field[2].  

The escalation in design complexity imposes a significant load on digital system engi-

neers, resulting in a design activity that surpasses the threshold of optimal productivity. 

Figure 1 illustrates a depiction of design and verification gaps commonly referred to as 

the disparities between effort needed and productivity of the system. 
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Figure 1. Design Gap Vs Verification Gap[3] 

 

The study conducted by Wilson Research Group in 2014 revealed that while the design 

gap has been reduced due to an increase in design reuse, the same level of maturity 

has not been achieved in verification reuse. Consequently, it is anticipated that the 

growth of the design gap will decelerate, whereas the verification gap will persist in its 

expansion. It has been observed that the proportion of time dedicated to verification in 

application specific integrated circuit (ASIC) projects has been increasing significantly 

[3].  

Significantly, there has been a consistent increase in the number of projects in which the 

duration of verification activities accounts for more than 70% of the total project time, as 

observed in each iteration of the study [1]. The difficulties encountered during verification 

are a result of the complicated design features, verification techniques, and methodology 

employed. Common complex design characteristics include embedded memories and 

multiple clocks. 

Another type of verification challenge occurs while implementing Nanometer ICs. The 

implementation of ICs at the nanometer scale presents notable concerns related to sig-

nal integrity (SI), which must be thoroughly examined to prevent potential malfunctions 

in chip functionality. The aforementioned factors include reduced feature size, minimized 
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in wire spacing, decreased power supply voltages, and a shrinkage of threshold voltages. 

As each successive process technology is developed, there is a progressive increase in 

the number of wire levels that are densely packed in close proximity. Consequently, there 

is a significant increase in the proportion of total wire capacitance that is attributed to 

lateral coupling. Therefore, this phenomenon is linked to a substantial rise in on-chip 

crosstalk noise. Another issue encountered in nanometer designs is an increase of clock 

frequencies accompanied by accelerated on-chip slew rates. Higher slew rates result in 

an amplified generation of switching noise and a corresponding elevation in instantane-

ous power consumption. In nanometer process technology, designs that satisfy physical 

verification criteria, such as design rule checking (DRC) and layout vs. schematic (LVS), 

may exhibit unexpected functional behavior due to the presence of above mentioned ad-

ditional electrical side effects. This phenomenon becomes particularly pronounced at 90 

nanometers and below [4]. Prominent EDA vendors are offering an extensive array of 

verification tools to tackle these issues. Cadence’s “Physical Verification System”, Sie-

mens’s “Calibre nmDRC”, and Synopsys’ “IC Validator” are examples of such tools [5].  

1.1 Motivation and scope behind the thesis 

As the design gap and verification gap increases with time, experts in the field of manu-

facturing VLSI chips are leading to saturation. This might impact in productivity and pro-

longed time to market.  

This thesis provides an overview of an EDA platform, “EDA Playground” which will allow 

students without access to EDA tools through universities to make themselves ac-

quainted and competent through practicing hobby projects. It was originally developed 

by Victor Lyuboslavsky as a part of Victor EDA, which was later acquired by Doulos in 

2019. Users can edit, simulate, observe waveforms, synthesize, and share their Hard-

ware Description Language (HDL) code using the free web tool EDA Playground. Its 

objective is to speed up design and testbench development learning through more con-

venient code exchange and more straightforward access to simulators and libraries. EDA 

Playground was created especially for quick prototypes and examples. 

1.2 Thesis Outline 

The thesis is divided into 6 parts. Chapter 2 explains different types of Digital systems, 

the basic System on Chip (SoC) design flow and implementation styles of digital systems 

with both ASICs or Field Programmable Gate Arrays (FPGA)s. Then the Hardware De-

scription Languages, which are used for design and verification are described in brief. 

Lastly, Electronic Design Automation (EDA) tools and flow are highlighted. Chapter 3 
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introduces the SystemVerilog language and its constructs for both the design and verifi-

cation. The purpose of this chapter is to explain the basic concepts which can be tried 

out in EDA playground. Chapter 4 provides an approach for understanding Universal 

Verification Methodology (UVM). UVM is necessary for implementing the verification 

tasks in EDA Playground. To broaden the perspective and highlight the opportunities 

offered by integrating UVM in the verification process, a few examples of advanced con-

cepts are also provided. 

The EDA playground platform and its various applications are demonstrated in Chapter 

5. There are two different kinds of design and simulation shown in this chapter. The first 

example is a design and simulation in VHDL. The second one is an advanced verification 

method known as UVM simulation and verification of a SystemVerilog design. 

Lastly, chapter 6 concludes the thesis with discussion and suggesting future work.  
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2. LITERATURE REVIEW 

This section presents the literature review from the related studies which helped to 

achieve the objective of this thesis. Firstly, different types of Digital systems are dis-

cussed where design and verification are applied using the EDA tools in modern digital 

world. The basic SoC design flow is explained in details and implementation styles per-

taining to both ASICs or Field Programmable Gate Arrays (FPGA)s are discussed. Then 

the Hardware Description Languages, which are used for design and verification are 

described in brief. Lastly, EDA tools and flow are highlighted.  

2.1  Digital Systems 

A Digital System refers to a collection of devices that have been specifically designed to 

process, store and transfer digitally represented data or physical quantities that are rep-

resented in a digital format. In this context, digital implies that the quantities have only 

discrete values, as opposed to continuous ones.  In the realm of digital circuitry, signals 

are commonly expressed through discrete states or logic levels. Digital signals are char-

acterized by their non-continuous nature, as they undergo discrete changes in individual 

steps. Digital systems play a significant role in various domains such as computation and 

data processing, control systems, communications, and measurement. There is a wide 

range of digital systems which are frequently used in our day-to-day life[6].  

2.1.1 Embedded Systems 

An embedded system refers to a specially designed computer system that is typically 

integrated within a larger system. A computational engine is formed by integrating soft-

ware as well as hardware elements, which collectively enable the execution of a specific 

task. Embedded systems can only be used for certain tasks, while regular computers 

such as personal computers (PC) can be used for many different purposes. Embedded 

systems often have to work in reactive and time-constrained situations, examples can 

be airbags or Anti-lock Braking System (ABS) of a car. An embedded system can be 

roughly divided into two parts: the hardware and the software. Hardware provides the 

speed and reliability needed for the functionality (and other system properties, like secu-

rity) and ensures lower power consumption. The software provides features and flexibil-

ity. 
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A conventional embedded system receives input from sensors to perceive the surround-

ing environment, and subsequently uses actuators to manipulate and control the said 

environment. Embedded systems are required to meet performance standards that align 

with the surrounding environment, the reason why Embedded systems are commonly 

called as reactive systems. A reactive system needs the utilization of both hardware and 

software elements in tandem. The issue is further complicated because these external 

events can exhibit either periodicity and predictability, or aperiodicity and unpredictability. 

In the context of scheduling events in an embedded system, it is imperative to consider 

both periodic and aperiodic events, while ensuring that the system's performance is guar-

anteed even under the worst-case execution rates [7]. 

The important characteristics of embedded system are: 

 Embedded systems receive a set of analog signals through sensors from the 

environment such as pressure, temperature, vibration, etc. and then using the 

specific algorithms, to control the actuators or display in some format.  

 Embedded systems continuously process information which involves the mean-

ingful manipulation of data obtained from sensors, which may include tasks such 

as data compression/decompression and side impact detection. 

 Embedded systems are developed for specific tasks, for example, airbag deploy-

ment, digital still cameras, and cell phones. Embedded systems can also be spe-

cifically engineered to handle the execution of control rules, Finite State Machines 

(FSMs), and signal processing algorithms. In addition to their primary functions, 

embedded systems are required to possess the capability to identify and respond 

suitably to malfunctions occurring within their internal computational infrastruc-

ture, as well as in the external systems with which they interact. 

2.1.2 Digital Signal Processor 

Digital Signal Processors (DSPs) are specialized electronic devices that perform math-

ematical operations on digitized real-world signals, such as voice, audio, video, temper-

ature, pressure, or position. Analog devices in practical applications can detect various 

types of signals, like sound, light, temperature, and pressure. These signals carry analog 

information that needs analysis and conversion. Analog-to-Digital converters are utilized 

to transform real-world analog signals into a digital representation consisting of binary 

digits, namely 1's and 0's. At this point, the DSP assumes control by acquiring the digit-

ized data and conducting subsequent processing. Subsequently, the digitized infor-

mation is utilized in practical applications. In case an analog signal is necessary, a digital 
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to analog signal is used to convert the digitized data to an analog signal. All these phe-

nomena transpire at exceedingly rapid rate. 

Due to its programmability, a DSP possesses the capability to be used across a diverse 

range of applications. Individuals have the option to develop their own software or utilize 

software available in the market to design a DSP solution for a specific application [8]. 

2.1.3 System on Chip (SoC) 

A system on a chip (SoC) refers to an integrated circuit that integrates multiple compo-

nents of a computer system onto a single chip. A SoC invariably comprises a central 

processing unit (CPU), although it may additionally incorporate components such as sys-

tem memory, peripheral controllers (e.g., for Universal Serial Bus (USB) and storage), 

and more sophisticated peripherals like graphical processing units (GPUs), specialized 

neural network circuitry, radio modems (for Bluetooth or Wi-Fi), among others [9]. 

The SoC architecture differs from the conventional PC architecture, which consists of a 

central processing unit (CPU) chip along with distinct controller chips, a graphical pro-

cessing unit (GPU), and random-access memory (RAM) which can be substituted, en-

hanced, or interchanged as required. The utilization of SoCs results in the reduction of 

computer size, enhancement of processing speed, cost reduction, and decreased power 

consumption [9].  

 

Figure 2. A Basic Model of SoC [10]. 
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Figure 2 depicts some of the fundamental components of a SoC system. These consist 

of a few heterogeneous processors linked to one or more memory components with in-

terconnects, maybe with an array of programmable logic. The SoC frequently includes 

analog circuitry for handling sensor data and analog-to-digital conversion, as well as to 

facilitate wireless data transfer [10]. 

The popular SoC designs are implemented either in ASICs or in FPGAs depending on 

the requirements, volume, cost, and time to market. 

2.1.3.1  Field Programmable Gate Array (FPGA) 

FPGAs are programmable logic devices where the programming can be done by the end 

user. A configuration file, also known as bit file, is uploaded to an FPGA to program it 

[11] . This configuration file contains data to execute a specific function FPGAs mostly 

depends on Static Random-Access Memory (SRAM) and integrate memory and Look-

Up Tables (LUTs) in order to implement the logic blocks. 

FPGAs exhibit distinct characteristics that set them apart from other Programmable Logic 

Devices (PLDs), typically offering the most complex logic capacity among their counter-

parts. An FPGA is composed of a collection of Complex Logic Blocks (CLBs), which are 

encapsulated by programmable Input/Output Blocks (IOBs) and interconnected through 

a programmable interconnection network. The IOBs play a crucial role in managing the 

connection between the pins of the input-output package and the internal signal lines. 

On the other hand, the programmable interconnect resources serve the purpose of es-

tablishing the necessary pathways to link the inputs and outputs of CLBs and IOBs to 

their respective networks. The implementation of combinational logic in logic cells can 

be implemented through physical means such as a small memory LUT or a combination 

of multiplexers and gates. An LUT is a memory array where the memory address lines 

serve as inputs to the logic block, while the output of the memory functions as the output 

of the lookup table. 

An FPGA may have tens of thousands of logic blocks that can be set up in different ways, 

and even more flip-flops. The activation of the user's logic function is achieved by tog-

gling the switches in the grid that correspond to the logic function of each logic cell. Then, 

to make the desired circuit, these simple blocks are put together to make more compli-

cated functionalities. 

The benefits of FPGAs are that they are flexible, reprogrammable, and are cost-efficient. 

For example, the reprogrammable nature of the product allows designers and manufac-

turers to modify its design or distribute updates after distribution. Many designers often 
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use this feature to make prototypes based on FPGAs so that the design can be fully 

debugged, tested, and updated before they are sent to mass production. Even though 

the one-time costs are low and they have reduced manufacturing time, some of an 

FPGA's resources, for example speed or power consumption  are compromised [12].  

Also, comparing the cost of production to the number of units made shows that using 

FPGAs is more expensive than using ASICs as the number of units made goes up [2]. 

Also, almost all FPGAs lack analog blocks. So, in case there is a need of using mixed 

signals in FPGAs, unique analog blocks must be added to FPGA systems. Most of the 

time, these functions need to be added by external integrated circuits (IC)s, which makes 

the product even larger and more expensive [11]. 

2.1.3.2  Application Specific Integrated Circuit (ASIC) 

An application-specific integrated circuit (ASIC) refers to an IC that has been specifically 

designed and tailored to fulfill a particular task or application. ASIC designs are custom-

ized at the initial stages of the design process in order to cater to specific requirements. 

(ASICs) have the capability of utilizing pipelining and massively parallel processing, 

thereby yielding designs that are both faster and more cost-effective. ASIC designs are 

considered appropriate when there is an anticipation of high-volume production [1]. 

Due to their semi- or fully custom nature, ASICs face substantial development costs, 

often amounting to millions of dollars, throughout the design and implementation phases. 

Furthermore, it should be noted that once ASICs are manufactured, they lack the capa-

bility to be reprogrammed. This means that changes to the design cost additional money. 

Even though ASICs have relatively high one-time costs, these costs associated with 

ASICs are justified because, 

 ASICs have higher density, which enables the integration of complex functional-

ities into a single chip, which in turn, allows the size, power, and cost to decrease.  

 The customizability of ASICs enables accurate consideration of transistor count, 

minimizing resource wastage in the design process. 

 When producing substantial quantities of designs tailored for a specific purpose, 

ASICs emerge as the optimal choice[13]. 

 

The difference between ASICs and FPGAs is summarized in the following table: 
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 Difference Between ASIC and FPGAs while implementing SoCs. 

 

Differentiating Parameters ASIC FPGA 

Time to Market Slow Fast 

Design Flow Complex Simple 

NRE High Low 

Power Consumption Low High 

Performance High Medium 

Unit Size Low Medium 

Unit Cost Low High 

 

2.2 Digital System Design Flow 

The primary stages of the System-on-Chip design flow, in accordance with the product's 

life cycle, include Exploration, Development, and Production [10]. The initial stage of 

decision-making involves establishing and examining the requirements in relation to the 

existing technologies, scheduling constraints, and financial considerations. The develop-

ment process covers both the design of hardware and software components, as well as 

the verification and integration of these components. Once chip samples that meet the 

required standards have been obtained and the software has been stabilized, mass pro-

duction can commence. The nature of the work is iterative; however, it requires the strict 

sequential execution of numerous tasks within each phase [10] [14] . 
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Figure 3.  A simple digital system design flow [15]. 

2.2.1 Specification 

The initial stage of digital design involves establishing a set of system specifications. 

Specifications can be determined either by the consumer of a particular product or by a 

governing entity that establishes functional criteria for a dependable and effective design, 

covering aspects such as power, area, and performance, among others. 

2.2.2 Modeling  

The development phase of SoC design begin with the process of modeling. The primary 

objective of modeling is to enable informed decision-making, as the overall flow is com-

plex and extensive in nature. This step also allows to check the feasibility and practicality 

of the specification, given that significant alterations at a later stage can incur substantial 

costs. During this phase, the system requirements are established and examined using 

abstract system models in C, Matlab or SystemC, that can be executed, simulated, and 

analyzed. The system includes a substantial entity comprising the architecture, modules, 

and interfaces for both hardware and software components. The implementation of var-

ious components of the abstract system model can be generated, such as the automated 

generation of Verilog HDL code from the IP-XACT models [14]. 
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2.2.3 Hardware Design  

The next stage involves the extensive hardware design process. One of the most crucial 

aspects in the field of digital hardware design involves the utilization of HDL code at the 

register transfer level (RTL) abstraction, commonly referred to as RTL design. Moreover, 

scripts are utilized to create and manipulate the codebase, as well as to integrate intel-

lectual property (IP) blocks sourced from third-party vendors.  The RTL design method-

ology exhibits a greater resemblance to software programming rather than circuit design 

within the context of mixed signal design. When mixed signal designs are done, imple-

mentation of both analog and digital designs can be done parallelly[15]. 

2.2.4 Verification  

Verification is a crucial procedure aimed at ensuring that the SoC design aligns with its 

specified requirements. Typically, this process is executed through simulations.  SoC 

verification can take up to 70% of the time of the entire flow because the design needs 

to be bug free. It can be costly if bugs are reported in the manufacturing phase [3]. Both 

functional and formal verification techniques are employed during the flow. One of the 

popular verification methodologies used widely in the industry is the Universal Verifica-

tion Methodology (UVM) standard [16], which acts as the foundational framework, along-

side the System Verilog language. 

2.2.5 Synthesis 

Synthesis is the process that translates RTL designs into technology-dependent netlists 

that are tailored to a specific technology, while also optimizing them according to a pre-

determined set of constraints. Synthesis is mostly an automated process where the input 

to the EDA is behavioral RTL design and a set of constraints and the output is a gate 

level netlist which is optimized for either speed, area or power depending on the require-

ments [2] [12].  

2.2.6 Prototyping  

The term prototyping refers to the process of conducting physical tests on the chip. Dur-

ing this step, the RTL description of the chip is synthesized to an FPGA which subse-

quently serves as an emulator for the chip. The primary emphasis lies on functionality, 

as the timing and clock speeds vary significantly between the final SoC and FPGA [1]. 
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2.2.7 Physical design  

Physical design refers to the process of generating the transistor layout on the silicon 

die. The input of this process consists of a netlist obtained during the synthesis phase, 

and its purpose is to generate the placement and routing of the transistors. During the 

process of place and route, the EDA tool is responsible for determining the optimal layout 

and interconnection of logic elements within the targeted FPGA device. This is done 

while ensuring compliance with any specified user-defined settings or constraints. The 

EDA tool automatically chooses suitable resources, interconnection paths, and pin loca-

tions as its default behavior. When users allocate logic to particular device resources, 

the EDA tool attempts to fulfill those requirements by matching them accordingly. Sub-

sequently, the tool proceeds to fit and optimize any remaining design logic that is not 

subject to constraints. In the event that the EDA tool is unable to fit the design within the 

target device, it will cease the compilation process and generate an error message. In 

case of an ASIC, the typical perspective of a designer is limited to the observation of 

standard cells. A standard cell consists of gates, registers, memories, interconnects, and 

other components. The individual transistors are exposed to the designer only in case of 

a full-custom design [14]. 

2.2.8 Floorplanning  

Floorplanning is a crucial step of the hierarchical design methodology. The circuit blocks 

are assembled into the chip optimizing it for the metrics such as area and wire length, 

which directly affects the cost. The circuit blocks may exhibit either flexible or rigid con-

figurations in terms of their physical shapes. Placement refers to the procedure of allo-

cating circuit components within a designated region on a chip. The problem at hand can 

be characterized as a constrained floorplanning problem involving rigid blocks that ex-

hibit certain similarities in their dimensions. Following the placement stage, the routing 

process is responsible for determining the specific routes for conductors that facilitate 

the transmission of electrical signals on the chip layout. These routes are designed to 

interconnect all terminals that possess electrical equivalence. Following the routing 

stage, a series of physical verification procedures, including design rule checking 

(DRC), performance checking, and reliability checking, are conducted to ensure compli-

ance with design rules and specifications in terms of geometric patterns, circuit timing, 

and electrical effects [15]. 
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2.3 Hardware Description Language 

A hardware description language (HDL) is a language used for the purpose of specifying 

the behavior or structure of ICs in the realm of digital circuits. HDLs are further used for 

the purpose of circuit stimulation and verification. There exists a wide range of HDLs, 

among which VHDL and Verilog have emerged as the most widely adopted and preva-

lent options. The majority of the CAD tools currently available in the market provide sup-

port for these HDLs. VHDL is an acronym that stands for "very high-speed integrated-

circuit hardware description language." Both VHDL and Verilog are recognized as official 

IEEE (Institute of Electrical and Electronics Engineers) standards. Additional high-level 

description languages (HDLs) include Java HDL (JHDL) and proprietary HDLs, such as 

Active-HDL developed by Cypress Semiconductor Corporation [12]. 

HDLs are commonly used for the programming of systems based on PLDs and FPGAs. 

Intel and AMD(Xilinx) corporations offer free restricted editions (intended for educational 

purposes) of CAD software and tools, facilitating the programming of FPGA-based de-

velopment boards. The CAD tools have a range of essential components, such as a 

schematic editor, a VHDL/Verilog editor, compilers, libraries, design simulators, and a 

variety of utility tools. 

HDLs differ from conventional computer programming languages as it encompasses 

several distinctive language components. These include vector-shaped wire nets and 

registers, as well as non-blocking assignments within the process. 

HDLs have been developed to address various requirements within the design process. 

 It allows a system’s hierarchy, that is how a system is split into subsystems and 

how these subsystems are interconnected.  

 It supports the ability to define the functionality of a system by employing com-

monly used programming language constructs. 

 It allows the simulation of a system's design prior to its production, thereby ena-

bling designers to efficiently evaluate different options and verify accuracy with-

out the need for costly and time-consuming hardware prototyping. 

 Thus, this approach enables the synthesis of a comprehensive design structure 

from a higher-level specification, thereby enabling designers to focus on strategic 

design choices and minimizing time-to-market. 
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2.3.1 Verilog HDL 

Verilog HDL is a hardware description language used for the textual representation of 

the structure and behavior of digital system hardware. The representation of logical cir-

cuit diagrams, logical expressions, and the logical functions executed by digital logic 

systems can be achieved through this language. The development of the language took 

place during the mid-1980s by Gateway Design Automation, a company that was sub-

sequently acquired by Cadence in 1989. It is a IEEE standard[17]. 

The primary objective of Verilog is to serve as a hardware description language that 

shares a fundamental syntax resemblance with the C programming language. The ex-

tensive use of the C language in various domains during the early stages of Verilog de-

sign leads to the inclusion of several language elements from C. A hardware description 

language that bears resemblance to the C language has the potential to facilitate the 

learning and acceptance process for circuit designers. Typically, designers proficient in 

the C programming language will likely acquire proficiency in the Verilog hardware de-

scription language at an accelerated pace [17]. 

2.3.1.1  Verilog Constructs 

The fundamental structural component that Verilog uses to describe hardware is a mod-

ule. The design and development of complex electronic circuits primarily involves the 

interconnection and integration of modules. The inclusion of modules is simplified by the 

utilization of the keywords "module" and "endmodule". The Verilog module has resem-

blance to the function found in the C programming language. Module is capable of de-

fining both input and output ports. This module has the capability of calling other modules 

through instantiation, and it can also be called by instances of other modules. The mod-

ule has the capability to incorporate both combinational logic and process timing[18]. 

 

//Verilog Code for design 
module fulladder (input [3:0] a,   
                  input [3:0] b,   
                  input c_in,   
                  output c_out,   
                  output [3:0] sum);   
  always @ (a or b or c_in) begin   
     {c_out, sum} = a + b + c_in; 
  end    
endmodule 

 

Program 1. Example of simple adder design with Verilog  

 



16 
 

Program 1 above illustrates the design of a 4-bit full adder using Verilog HDL. The code 

was modeled using the continuous assignment operator always block with a sensitivity 

list that includes all inputs. An always block is executed whenever any of the inputs in 

the list changes their values.   

Designers have the ability to set up a top-level module for the purpose of testing, wherein 

they call the module through the use of instances. The module at the highest level is 

commonly known as the "Testbench". To enhance the functional verification of the cir-

cuit's logic, it is essential that the test code covers a comprehensive range of statements, 

branches, conditions, paths, triggers, and state machine states within the system. Veri-

fication engineers are required to generate a sufficient amount of input within the testing 

platform. The process involves stimulating and establishing a connection with the module 

being tested, followed by evaluating the performance of the module's output against ex-

pected outcomes. Verilog offers a specialized data structure designed for efficient verifi-

cation, which can be validated through the use of random testing. This method is partic-

ularly valuable in the intricate process of verifying integrated circuit designs. In order to 

properly invoke a module, it is essential to establish the port connections in the sequence 

specified by the module declaration. The top-level verification module does not require 

calls by external entities; thus, it lacks both input and output ports. 

2.3.2 VHDL 

Very High Speed Integrated Circuit (VHSIC) hardware description language or VHDL is 

one of the powerful languages for describing electronic systems. It was invented by the 

USA’s department of defense in 1983 and later it was standardized by IEEE in 1987. 

VHDL has been developed to address various requirements within the design process. 

2.3.2.1  VHDL Constructs 

A VHDL system in a .vhd file is described in 2 parts; the entity and the architecture. Inside 

the entity, the interfaces (the input and the outputs) of the system is described. The sys-

tem behavior is described in the architecture. The package defines the functionality of 

VHDL, which includes operators, signal types, and functions. The packages are orga-

nized into a library. The standard package defined by IEEE includes the fundamental set 

of functionalities for VHDL. This standard package is then encompassed within a library 

called IEEE. The inclusion of libraries and packages in a VHDL file is typically specified 

at the beginning, prior to the declaration of the entity and architecture. The inclusion of 
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other packages allows for the incorporation of supplementary features into VHDL. How-

ever, it is important to note that all packages are built upon the fundamental functionality 

outlined in the standard package[19]. 

library ieee;                  //Library declaration 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity adder_1_bit is          //Entity declaration. 
  port( 

    -- Inputs               //Declaring inputs 
    A : in std_logic; 
    B : in std_logic; 
    Cin : in std_logic; 
    -- Outputs              //Declaring outputs 
    SUM : out std_logic; 
    C_out : out std_logic 
    ); 

end entity adder_1_bit; 
 

architecture rtl of adder_1_bit is//Describing Architecture 
begin 
    process(A,B,Cin) is 
    begin 
        SUM   <= (A xor B xor Cin); 

      C_out <= ((A xor B) and Cin) or (A and B); 
    end process; 
end architecture; 

Program 2. Example of simple adder design with Verilog 

 

Program 2 shows the VHDL code for designing a simple 1-bit adder. After the library 

declarations, entity is described where all the inputs and outputs are defined. In the ar-

chitecture of adder_1_bit, the transfer function of the inputs to the outputs are written in 

the form of RTL code.   

2.3.3 SystemVerilog 

SystemVerilog is a Hardware Description Language (HDL), which is developed by Ac-

cellera as an extension of Verilog HDL in 2004, which is used to design, specification 

and verification language in semiconductor and system design industries. 

Being a unified language, SystemVerilog can be used for abstract and detailed design 

specification, assertions specification, testbench verification, both on manual and auto-

matic methodologies and in coverage of the design[20]. SystemVerilog Assertions are a 

form of verification code that assesses the conformity of a design to a given specification. 

They serve to confirm the intended behavior of the design and provide a corresponding 
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message as feedback. If the design does not demonstrate the specified behavior, the 

assertion will fail, suggesting a flaw in the design's behavior. 

It was originally developed as an extension to the IEEE 1364-2005 standard for the Ver-

ilog design language, however the two standards were combined into a single language 

in 2009. The primary objective of the initial SystemVerilog extensions was to offer verifi-

cation engineers with enhanced tools operating at a higher level of abstraction, thereby 

enhancing productivity, reusability, and readability. In addition, there was various design 

specification techniques, including the introduction of novel data types, the utilization of 

packages, the expansion of port declarations, and the implementation of interfaces [21]. 

SystemVerilog constructs will be discussed in chapter 3 in details. 

2.4 Electronic Design Automation 

Electronic design automation (EDA) plays a pivotal role in driving technological advance-

ments aimed at enhancing the quality of human life and facilitating daily usage. In the 

context of an electronic system modeled at the electronic system level (ESL), the process 

of EDA serves to automate the design and testing procedures. This involves verifying 

the accuracy of the ESL design in relation to the electronic system specifications, guiding 

the ESL design through multiple synthesis and verification stages, and ultimately con-

ducting tests on the manufactured electronic system to ensure compliance with the elec-

tronic system's specifications and quality standards. The electronic system may also 

manifest as a printed circuit board (PCB) or an (IC. The integrated circuit has the capa-

bility to function as a SoC, an ASIC, or an FPGA [22].  

EDA is a collection of hardware, software and services tool used in the entire manufac-

turing process of the semiconductor devices. The aim of these tools is to define, plan, 

design, implement, verify and subsequently manufacturing of the semiconductor devices 

or ICs. The advancement of EDA tools helps the IC manufacturers in increased produc-

tivity and gives many other advantages, such as, 

 EDA tools are capable to handle this increased complexity.  

 Helps in shortened time to market to maintain a competitive advantage.  

 With the help of EDA tools, power consumption of ICs can be reduced. Also, the 

performance and space can be optimized with respect to the requirements.  

 Incorporating with Artificial Intelligence/Machine Learning (AI/ML) tools, EDAs 

are currently used in design, simulation, verification, and emulation [23] [24].  
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EDAs are mainly a very complex and sophisticated domain of software where the Market 

share of the tools are distributed among the following aspects of design and manufac-

turing tools. 

Before implementing a proposed circuit, simulation tools simulate its behavior based on 

its description. Typically, this description is written in a standard hardware description 

language, such as Verilog or VHDL.  Simulation tools mimic the behavior of circuit ele-

ments in varying degrees of detail and execute a variety of operations to predict the 

circuit's behavior. The required level of detail is determined by the type of circuit being 

designed and its intended application. When processing a large quantity of input data, 

hardware approaches such as emulation and rapid prototyping are considered. This oc-

curs when the operating system of a processor must be evaluated against real-world 

scenarios, such as video processing. Without a hardware-assisted strategy, the runtime 

for these cases can be challenging. 

The purpose of design tools is to take a proposed circuit function and generate the set 

of circuit elements needed to realize that function from the required description. Choos-

ing and connecting the appropriate circuit parts to provide the intended function may be 

a logical procedure throughout this assembly. One such example is logic synthesis. It 

can also be a physical procedure involving the placement and routing of geometric forms 

on silicon to create the circuit, which in general is known as place and route. It can also 

take the form of a designer-guided interactive procedure which is referred to as custom 

layout [24] . 

Verification tools check if the final chip design is physically or logically implemented cor-

rectly and can provide the expected performance. There exist numerous processes that 

can be employed in this context. The process of physical verification involves the exam-

ination of interconnected geometries to ascertain whether their placement conforms to 

the manufacturing requirements of the fabrication facility. The complexity of these re-

quirements has significantly increased, encompassing a multitude of rules that can ex-

ceed a quantity of 10,000. Verification can also be achieved by conducting a comparison 

between the implemented circuit and the original description, in order to ascertain that 

the former accurately represents the desired function. The process referred to as Layout 

vs. Schematic, or LVS, serves as an illustrative example of this phenomenon. Simulation 

technology can be employed in the functional verification process of a chip to assess the 

conformity of its actual behavior with the anticipated behavior. The effectiveness of these 

approaches is constrained by the extent to which the input stimulus is comprehensive. 

An alternative method involves algorithmically validating the performance of the circuit, 
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eliminating the requirement for input stimulus. The aforementioned methodology is com-

monly referred to as equivalence checking and is a fundamental component within the 

field of formal verification [21]. 
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3. SYSTEMVERILOG 

As mentioned earlier, SystemVerilog can be used for abstract and detailed design spec-

ification, assertions specification, testbench verification, both on manual and automatic 

methodologies and in coverage of the design. The basic understanding of the constructs 

of System Verilog will be discussed in this chapter.   

3.1 SystemVerilog Design and Verification Building Blocks 

3.1.1 Design Elements 

Design elements are the fundamental components used to model and construct a design 

or verification environment. These building blocks hold the declarations and procedural 

code that will be discussed in later sections of this thesis. The design elements in System 

Verilog are module, program, interface, checker, package, primitive and configura-

tion[20]. 

3.1.2 Modules  

The fundamental unit in SystemVerilog is the module. A module is encapsulated by the 

keywords module and endmodule. Modules are predominantly used for representing de-

sign blocks. They can also be used as containers for verification code and facilitate the 

interconnections between verification blocks and design blocks. Modules might contain 

the constructs like port definitions, data and constant declarations, class definitions, pro-

cedural blocks etc.  

Procedural statements include behavioral code, in which programming statements such 

as if-else, case, or for loop structures are used to define the desired functionality. The 

statements typically consist of a sequential block that is bounded by the keywords 

"begin" and "end". Within this block, the statements are executed in a sequential manner, 

following the specified order. As a result, all the statements within the procedure function 

act syntactically as a single assignment. There exist two fundamental categories of pro-

cedures: initial and always. The initial procedures are executed only once and are typi-

cally used for the purpose of initializing variables. Always procedures define combina-

tional and sequential logic, which is executed in response to events specified in the sen-

sitivity list. The sensitivity list is declared by utilizing the character @[20]. 
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3.1.3 Programs 

The program construct is provided for replicating the testbench environment and is en-

closed between the keywords program and endprogram. The primary use of the program 

construct is to define specific simulation execution semantics. On top of that, it acts as a 

distinct separator between the design and the testbench components. Also, by utilizing 

the clocking blocks, the program construct allows a race-free form of collaboration be-

tween the design and the testbench, thereby enabling the utilization of cycle- and trans-

action-level abstractions. 

The program block acts in three distinct ways. Firstly, it serves as a starting point for the 

implementation of testbenches. Secondly, it allows to incorporate data, tasks, and func-

tions throughout the program. Lastly, it provides a syntactic context for specifying sched-

uling within a reactive region set.  

A program block may include data declarations, class definitions, subroutine definitions, 

object instances and initial or concluding procedures. It should not contain always, pro-

cedure, primitive, module or interface instances [25]. 

3.1.4 Interfaces 

The interface construct, which is defined by the keywords interface...endinterface, serves 

as a container for facilitating communication between design blocks, as well as between 

design and verification blocks. This enables a seamless transition from an abstract sys-

tem-level design to progressively more detailed representations, such as register-trans-

fer and structural views of the design. The interface construct enables design reuse by 

encapsulating the communication between blocks. 

Interfaces are basically a set of nets or variables. The interface can be connected to the 

interface ports of other instantiated modules, interfaces, and programs after being in-

stantiated in a design[26]. 

3.1.5 Checkers 

The checker is a representation of a verification block that includes assertions and mod-

eling code. Checkers are designed to be used as building blocks for generating abstract 

auxiliary models used in formal verification or as verification library modules. It is defined 

within the keywords checker…endchecker.  
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3.1.6 Primitives 

Low-level logic gates and switches are modeled using the primitive building block. Nu-

merous primitive types are included by default in SystemVerilog. User-defined primitives 

(UDPs) are a way for designers to extend the built-in primitives. The words primi-

tive...endprimitive are followed by a UDP. Gate-level models, often known as timing-

accurate digital circuits, can be modeled using the built-in and UDP components. 

3.1.7 Packages 

Modules, interfaces, programs, and checkers serve the purpose of establishing a local-

ized name space for declarations. Identifiers that are declared within a module, interface, 

program, or checker are considered to be local to the respective scope in which they are 

declared. As such, these identifiers do not have any impact on or create conflicts with 

declarations made in other building blocks. Packages offer a designated area for declar-

ing variables, functions, and other elements that can be accessed and utilized by other 

components within a system. Package declarations have the ability to be imported into 

various building blocks, such as other packages. 

3.1.8 Configurations 

SystemVerilog offers the possibility to define design configurations, which allow for the 

specification of the binding details between module instances and specific SystemVeri-

log source code. Configurations make use of libraries. A library is a compilation of various 

components such as modules, interfaces, programs, checkers, primitives, packages, 

and other configurations. 

The files inside the library map serve the purpose of specifying the source code location 

for the cells that are contained within the libraries. The designation of the library map 

files is commonly indicated as invocation options for simulators or other software tools 

that parse SystemVerilog source code. 

3.2 SystemVerilog Hierarchy Overview 

A SystemVerilog hierarchy is constructed using the fundamental building blocks of mod-

ules, programs, interfaces, checkers, and primitives. One building block instantiating an-

other building block results in hierarchy. A new level of hierarchy is generated when a 

module contains an instance of another module, interface, program, or checker. Con-

nections to the ports of the instantiated module, interface, program, or checker are the 

main means of communication between levels of hierarchy. 
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The following is an example of a design utilizing a simple two levels of hierarchy. Module 

top_design holds an instance of module mux2to1, which allows to create two levels of 

hierarchy.  

 
module top_design;          //Module with no ports 
  logic in1, in2 , select;  //Variable declarations 
  wire out1;                //Net Declarations 
  //Module Instance 
  mux2to1 m1(.a(in1), .b(in2), .sel(select), .y(out1); 
endmodule: top_design 

   
 

module mux2to1 (input wire a, b, sel,  
                output logic y); // combined port and type declaration 

 
  // netlist using built-in primitive instances 
  not g1 (sel_n, sel); 
  and g2 (a_s, a, sel_n); 
  and g3 (b_s, b, sel); 
  or g4 (y, a_s, b_s); 
endmodule: mux2to1 

Program 3. Example of design hierarchy in SystemVerilog 

 

3.3 SystemVerilog for verification 

SystemVerilog allows object-oriented programming for verification purposes on a higher 

level of abstraction. The object-oriented properties in SystemVerilog adhere closely to 

the principles of object-oriented programming, making the structure familiar to designers 

with prior experience in languages such as C++, Java, or other object-oriented program-

ming languages. One of the primary advantages of object-oriented testbench design is 

the ability for the designer to declare intricate data types and integrate them with routines 

that manipulate the data. Instead of directly manipulating bits in the Device Under Test 

(DUT), these routines can be utilized to execute even intricate transactions without the 

need to consider the state of every bit during each clock cycle[26]. 

The primary component for constructing a high-level testbench in SystemVerilog is the 

class. The class combines data and routines within a unified code block. Routines in 

SystemVerilog can either be tasks or functions. Functions have return types. Functions 

possess the ability to accept input and produce output values, and they are executed 

without impeding the progression of the simulation time. From a simulation standpoint, 

functions promptly return their computed value. On the other hand, Tasks do not have a 

return value, but they are capable of blocking the simulation time during execution, thus 
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possessing a temporal aspect. Tasks have the ability to include delays in order to syn-

chronize the processing with a specific point in time, a signal value, or another event. 

Classes are instantiated as objects. An object possesses both a type and a name, and 

its instantiation involves the initial creation of a variable of the class's type to serve as an 

object handle. Subsequently, the object is created and assigned to the variable through 

the utilization of the constructor function, commonly referred to as "new". The extends 

keyword allows for the derivation of new classes from existing base classes. The prop-

erties and methods that are explicitly stated in the base class can be accessed using the 

keyword "super". Child classes can also override the methods declared in base class. 

 

class transaction; 
 
  // Class properties 
  bit [31:0] data; 
  int id; 
 
  //Class methods   
  task update(bit [31:0] m_data, int m_id); 
    data = m_data; 
    id = m_id; 
  endtask 

   
  function void print(transaction tr); 
    $display("Value of data = %0h and id = %0h", tr.data, tr.id); 

endfunction 
 

 endclass 
 

 module tb_top; 
   initial begin 

     transaction tr;    //variable of class data_type or class handle 
     tr = new();        // memory is allotted for a variable or object. 

     tr.update(5, 9); 
     tr.print(tr); 
   end 
 endmodule 

Program 4. Example of a SystemVerilog class with routines.  

 

Program 4 shows an example of SystemVerilog class called transaction. The class con-

tains a task and function with return type void. Both the task and function can be ac-

cessed through the handle defined in the tb_top module.  
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4. UNIVERSAL VERIFICATION METHODOLOGY 

The Universal Verification Methodology (UVM) is an industry standard that enables re-

use of verification environments and verification IP (VIP), which in turns helps in faster 

development and verification of a product. It is researched, developed, and standardized 

by Accellera, an association of EDA tool vendors and users such as Mentor Graphics, 

Cadence, Intel, AMD and Synopsys.  

UVM is a System Verilog based verification methodology that is defined as a set of clas-

ses which uses System Verilog syntax and semantics. By offering an Application Pro-

gramming Interface (API) framework that can be used across various projects, UVM's 

main goal is to assist businesses in creating modular, reusable, and scalable testbench 

structures [27]. 

4.1 UVM Testbench Basics 

The UVM has a layered, object-oriented methodology to testbench development, making 

it possible to act as a "separation of concerns" among team members. To improve 

productivity and facilitate reuse, each component in a UVM testbench serves a specific 

purpose and has a well-defined interface to the rest of the testbench. When these com-

ponents are combined to form a testbench, the result is a modular, reusable verification 

environment that allows the test writer to focus on the transaction level, depending on 

the functionality that needs to be verified, while the testbench architect dedicate them-

selves on how the test communicates with the Design Under Test (DUT)[16]. 

4.2 UVM Building Block 

A UVM testbench's structure is made up of relatively small but simple components that 

are arranged hierarchically. The UVM environment is kept separated from the test. The 

tests contain information about how to test the DUT whereas the environment describes 

the connection of the DUT to the testbench. 

The advantage of dividing the testbench into small components is that it simplifies 

testbench design and reuse. Reuse can be both horizontal and vertical, which means 

that, in addition to using the same components in different testbenches, it is also possible 

to combine the verification environments for different blocks to create subsystems, which 

can then be further combined to implement system level testing. 
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As UVM testbench is developed from dynamic objects, which has no existence in the 

memory before they are being created. That is why, for launching the simulation, it is 

necessary to have a static component [16]. This static component in UVM is a top-level 

System Verilog module which consists of pin connections to DUT and initiates the test, 

sets up the environment, and executes a series of transactions to the DUT. 

The UVM testbench file hierarchy utilizes SystemVerilog packages. Packages are struc-

tural elements that unite associated declarations and definitions within a unified 

namespace, serving as a consistent compilation unit for the simulator. In order to gain 

access to the namespace and the base definitions, it is necessary to import the package. 

The use of packages enables the testbench developer to effectively structure the code 

and maintain consistent references to types and classes. 

A package file should have all the class definition files that go with it. For a simple UVM 

testbench, all the definitions could be in a single package. For a large system-level 

testbench, however, the declarations could be split between multiple packages, with a 

separate package for each bus interface and a number of packages for different types 

of test sequences that contain all the declarations for running different tests [16]. Instead 

of declaring all of the classes directly in the package file, Mentor Graphics' coding stand-

ards define that each class should be declared in its own file, and all of the declaration 

files should be added to the package using a SystemVerilog include directive. With the 

include command, the compiler needs to put the whole contents of a source file inside 

another file. Only the include instructions for class declaration files should be in the pack-

age. 

4.2.1 Objects and Components 

The object acts as the basic component in a UVM testbench, with all objects derived 

from the uvm_object base class [27]. The primary function of the uvm_object base class 

is to establish the standard methods for fundamental operations, such as creation and 

printing, that are commonly used by every objects. Additionally, it highlights interfaces 

for identifying instances, for example, unique id. The fundamental objects in this context 

are data packages that are transmitted to the DUT. These packages are instantiated as 

sequences of packages, which are then used to generate test input. 
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Figure 4. UVM base class hierarchy [16] 

Figure 4 presents a hierarchical representation of the fundamental UVM classes. The 

uvm_object class is enhanced with a reporting interface to create the uvm_report_object 

class. The uvm_report_object class is then expanded to include the uvm_component 

class, which introduces the notion of hierarchy and the necessary properties for the cre-

ation and connection of components. The uvm_component class is expanded to include 

base classes for user-implementable components, as depicted in the figure. In addition, 

the uvm_object is further expanded upon in the context of transactions and sequence 

items, which collectively constitute a sequence of items that are subsequently transmit-

ted to the DUT. The user has the ability to create the highlighted classes. 

Given that all base classes for individual components are derived from the uvm_compo-

nent, which includes all shared properties, the implementation of these classes is rela-

tively straightforward. The hierarchical tree of the typical UVM components is depicted 

in Figure 5. The testbench designer has the ability to differentiate between components 

by inheriting them from their respective base class. This approach ensures that the com-

ponents will inherit and utilize all the characteristics of the base class. Certain foundation 

classes, like uvm_monitor, serve as empty containers that do not introduce any addi-

tional functionality to classes derived from uvm_component. However, it is possible that 

functionality could be incorporated in subsequent versions of UVM. 
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Figure 5. UVM component class hierarchy[16] 

 

4.2.2 UVM Phasing 

 

Figure 6. UVM Phases [16] 
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The process of simulating UVM consists of distinct phases. The chronological order of 

the UVM phases is depicted in Figure 6. There are a total of 21 simulation phases, which 

can be classified into three separate categories. At the start of the simulation, the build 

time phases are responsible for constructing the test environment. This is achieved by 

using the factory to build components, establishing connections between the Transaction 

Level Modeling(TLM) channels, and configuring all the components through the config-

uration database. The various stages of the build process do not require any simulation 

time. 

The run-time phases are initiated, and the simulation time is used after the test environ-

ment has been built. The actual simulation in which the test case is executed for the DUT 

is carried out during the run-time stages. When a test is terminated, simulation time is no 

longer used, and cleanup phases gather and report the test case's results [25]. 

4.3 UVM Architecture 

A Universal Verification Methodology (UVM) testbench's architectural framework is made 

up of user-defined components that derive from base classes offered by the UVM library. 

Every element of the testbench hierarchy has a given name and a parent. These com-

ponents are created sequentially from top to bottom during the build phase using the 

UVM factory. Figure 7 shows a block level UVM testbench in illustrated form. The 

UVM environment in figure 7 is used in many tests. The agents communicate between 

the two bus interfaces present in the sample scenario, together with elements that track 

test coverage and carry out functional checks on the DUT. 

A simple UVM testbench was developed as a use case as part of this thesis. So, Under-

standing the UVM architecture is a crucial objective. In the following section, the differ-

ence between UVM tests and UVM environment is highlighted.  



31 
 

 

Figure 7. Block Diagram of UVM Architecture [27] . 

4.3.1 UVM Environment 

The environment refers to the structural framework of the testbench, that includes its 

physical architecture. The instantiation of components occurs in a hierarchical manner, 

with the possibility of multiple sublevel environments being contained within a single en-

vironment. In the context of system level testbenches, it is common to have a single top-

level environment that creates multiple instances of environments for each individual 

block within the design. The use of identical block level environments can be employed 

for conducting block level testing prior to integration. The process of constructing a sys-

tem-level testbench by utilizing block-level environments is commonly known as vertical 

reuse. 

The environment consists of multiple agents that interact with the DUT, as well as sub-

scribers who utilize the data supplied by these agents. The agent, as shown in figure 7, 

instantiate the components that control the stimulus flow, provide the DUT with input 

data, and track the signals as they travel between the testbench and the DUT. There is 

typically one agent for each interface that the DUT is connected to. The configuration 

database determines whether an agent will play an active or passive role: an active agent 

supplies stimulation data for the DUT, whilst a passive agent just keeps track of the 

transfers [27]. 

The typical components instantiated within the agent include a sequencer, driver, and 

monitor (As depicted in Figure 7). The sequencer works as a liaison that retrieves se-

quence objects from a list and regulates the progression of the sequence. The se-

quences are transmitted in the form of TLM transactions. The driver is responsible for 
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receiving the TLM transactions from the sequencer and transmitting them to the DUT. 

Consequently, the driver converts the high-level transaction sequences into low-level 

activity within the DUT. 

A monitor tracks the operations occurring within the DUT interface and samples its be-

havior. The pin-level activity within the DUT is transformed into TLM transactions and 

then transmitted for analysis. The monitor includes an analysis port that facilitates the 

transmission of TLM data to the testbench. In case of a passive agent, the sequencer 

and driver functionalities are disabled, leaving only the monitor operational. The infor-

mation transmitted from the monitor undergoes analysis by subscribers that utilize anal-

ysis exports, establishing a connection to the analysis port within the monitor. Typically, 

these subscribers are located outside the agent within the environment. However, in 

more intricate designs, they may also be instantiated within the agent itself. 

The coverage collector is a subscriber responsible for collecting data on functional cov-

erage. It accomplishes this by collecting and examining all the transactions transmitted 

by the monitor and using this data to update counters within covergroups. Covergroups 

define the particular signals and conditions to be observed as coverpoints. The counter 

values associated with each coverpoint provide real-time insights into functional cover-

age, indicating both tested and untested scenarios. 

The scoreboard is a vital component of the UVM that is responsible for evaluating the 

correct functionality of the Design Under Test DUT. The process involves the specifica-

tion of a reference model and the subsequent comparison of the output generated by the 

DUT with the reference. In basic designs, the declaration of the reference model and 

comparator can be consolidated within a solitary component. However, it is also feasible 

to employ distinct components or even use an external model of the Device Under Test 

DUT as the reference [16]. 

4.3.2 UVM Tests 

The test acts as the top-level component within a UVM testbench. The test is responsible 

for managing the construction and configuring the test environment, determining the se-

quence of stimuli to be used during the test, and directing the simulation process. Multiple 

tests can be conducted within a shared environment, each applying distinct sequences 

and configurations. It is a common practice to create a base test class that initializes the 

testing environment and performs the required configuration. Subsequently, this base 

test class is extended to include various test cases for the DUT. 
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Sequences are collections of objects that are transmitted to the sequencer within the 

agent. The sequencer methodically processes each item. The layering of sequences al-

lows for the description of complex transactions involving multiple layers. A sequence at 

a higher level of abstraction has the ability to control transactions and command to se-

quences operating at a lower level that are closer to the hardware. In order to facilitate 

randomized testing, it is possible to assign variables in sequences to be randomized. 

Constraints can be implemented in order to restrict the randomization process to a par-

ticular range of values or to establish distributions that ensure a signal is predominantly 

set at a high level, approximately 95% of the time, while being set at a low level for the 

remaining duration [27]. 
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5. OVERVIEW OF EDA PLAYGROUND 

EDA Playground is an open-source web-browser based integrated development envi-

ronment (IDE) that allows the electronic design and simulation of various HDLs such as 

SystemVerilog, Verilog, VHDL, and C++/SystemC. The primary objective of this initiative 

is to accelerate the learning of design and testbench development skills by facilitating 

code sharing and enhancing accessibility to simulators and libraries. 

It was originally developed by Victor Lyuboslavsky as a part of Victor EDA, which was 

later acquired by Doulos in 2019. 

The objective of this chapter is to demonstrate the extent of usability of EDA playground 

by applying design, simulation, verification, and synthesis with VHDL and SystemVerilog.  

The work was mainly focused on two parts. Firstly, a simple VHDL design was created 

in the platform and a VHDL testbench was simulated using different simulators. Sec-

ondly, a simple SystemVerilog design was implemented, and the design was simulated 

using simulators and verified using the UVM. The focus of the latter work was to show-

case the feasibility of implementing a complete UVM flow utilizing the EDA Playground 

platform. 

5.1 Application of EDA Playground 

EDA Playground has the potential to be used for various applications. Primarily, this 

platform can serve as an introductory educational tool or for the purpose of prototyping, 

as it offers support for design and testbench in multiple programming languages, as well 

as a diverse range of simulators. Additionally, it provides support for various verification 

frameworks such as UVM, SVUnit, Verilog, or Python, which are frequently used by en-

gineers. Moreover, numerous engineers have reported that it has been used as an as-

sessment tool for evaluating the coding and debugging abilities of interview candidates. 

5.2 User Interface 

EDA Playground has a straightforward user interface. To access the application, users 

can direct their browsers to the domain address: https://www.edaplayground.com/. Us-

ers can continue to the interface without logging in, but it is recommended to register and 

log in as it allows some additional features like sharing code and saving workspace.  

https://www.edaplayground.com/
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Figure 8 illustrates the interface of EDA Playground. it shows the presence of two win-

dows. The window located on the right side is designated for design purposes, while the 

window situated on the left side is intended for testbench functions. The user has the 

capability to include a maximum of ten files using the "+" icon, which is accessible in both 

the design and testbench windows. Located on the far-left side of the interface, one can 

find the selection panel which includes language options, tools and simulators, exam-

ples, as well as community sharing features. The log can be found in the lower section 

of the screen. The profile and saved playground options are in the upper right corner of 

the interface.  

After the completion of the design and testbench, the user is required to choose the 

preferred simulator and initiate the execution process by selecting the run button. The 

user interface includes checkboxes that allow for the opening of EPWave (a tool used 

for visualizing waveforms) and for visualizing the netlist generated after synthesis. Once 

these boxes are selected, the waveform and netlist will be displayed in a new tab. 

  

 

Figure 8. User Interface of EDA Playground 

5.3 Languages and Libraries 

EDA Playground allows users to design and test with several languages, which include: 

VHDL, SystemVerilog, C++/SystemC, python, perl, and others. It also allows users to 

use methodologies like UVM 1.2 and OVM 2.1.2.  
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5.4 Tools and Simulators 

Within the user interface (UI) of the EDA Playground, there exists a variety of simulation 

tools situated on the left-hand side. These tools include both commercial and open-

source simulators, providing users with a diverse range of options for their EDA needs. 

Individuals have the ability to choose simulation tools based on their specific require-

ments. In addition to the aforementioned tools, a limited number of synthesis tools are 

also accessible for users who wish to assess the designed design's utilization. In addition 

to simulators and synthesizers, there are also available compilers for C++ and Python 

programming languages. All simulators within the EDA Playground are integrated with 

EPWave, a debugging tool that enables users to visualize waveforms. 

5.4.1 Commercial Simulators 

The available commercial simulators on this platform include Aldec Riviera Pro 2022.04, 

Cadence Xcelium 20.09, Mentor Questa 2021.3, and Synopsys VCS 2021.09. Each sim-

ulator possesses distinct advantages, allowing users to choose the most suitable option 

based on their individual requirements. 

5.4.2 Synthesis Tools 

Commercial synthesis tools that can be used with EDA Playground include Mentor Pre-

cision 2021.1 and Aldec SyntHESer 2022.05. Along with these, this EDA platform also 

incorporates opensource synthesis tools like Yosys 0.9.0 and VTR 7.0. There is no target 

platform for these synthesis tools as these are all generic and available for educational 

purposes.  

 

Figure 9. Tools and Simulators in EDA Playground 
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5.5 EPWave 

EPwave is a designated wave viewing tool developed by Doulos which is incorporated 

with EDA Playground. During the course of this thesis, designs were created with VHDL, 

Verilog and SystemVerilog. All the designs’ testbenches were visualized with the help of 

EPWave. It will open up in the web browser automatically after the simulation is com-

pleted if the “Open EPWave after run” checkbox is clicked. It was also ensured that the 

testbench code incorporated suitable function calls for the purpose of generating a file 

with a *.vcd extension. 

initial begin 
 // Dump waves 

    $dumpfile(“dump.vcd”); 
    $dumpvars(0, tb_top); 
end 

Program 5. Code for dumping filename and variables 

 

 

Figure 10. Waveform Viewer EPWave 

Signals can be added to the waveform using the “Get Signals” button, as shown in Figure 

10, and then appending the signals one after another. The Radix is only limited to Binary 

and Hexadecimal and can be selected through the use of the “Radix” button. Users can 

zoom in or out, move forward or backward with the help of buttons at the top of the 

screen. This allows for easier debug of the design. The signal path is visible in a window 

at the side of the buttons. It is also possible to share wave through EPWave.  

While EPWave offers a convenient solution for viewing webform, it does have certain 

limitations in terms of its interface. The current interface lacks the functionality to enable 

simultaneous selection of multiple signals for the purpose of dragging and dropping them 

for alignments. In order to align the signals, it was necessary to first select the appropri-

ate option, followed by using of the up and down buttons. In the event of deletions, they 

had to be performed on an individual basis. One additional constraint of EPWave relates 

to the absence of flexibility in selecting the decimal Radix. 
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5.6 USE CASE 1: Design and Simulation With VHDL 

The usability of EDA Playground was started with a simple VHDL adder design. In the 

design pane, a simple VHDL code for adder was written and in the testbench pane, code 

for the testbench was written.  

For this specific design, selection of library was not required. Then the top entity name 

was specified, which in this case was the testbench entity name. For this run, all of the 

simulators were used individually, and they provided more or less the same output. As 

mentioned earlier, EPWave opened automatically, and the waveform was analysed for 

the correctness of the design.  

The Mentor Precision 2021.1 and Aldec SyntHESer 2022.05. were then used for synthe-

sis. Both required specific files with .do extensions that were customized for the required 

synthesis tools. Along with the gate level netlists, Aldec SyntHESer 2022.05 was able to 

produce critical route diagrams. It was clear that this particular architecture required 2 

LUTs, 5 wires, 5 wire bits, and 2 cells. Mentor Precision 2021.1, on the other hand, was 

able to create the netlist. Due to the compact size of the design, there were few differ-

ences and similar device usage. Yosys and VTR does not support VHDL, so these steps 

were not proceeded with.  

Next a 4 bit 4-to-1 MUX was designed, and the similar steps were followed. 

Figure 11 shows the correctness of the design behaviour of adder using EDA Play-

ground.   

 

Figure 11. Waveform for 4to1 MUX 

Figure 12 shows the critical route diagram for the 4to1 MUX. As per the report generated, 

it was utilizing 6 wires, 22 wire bits and 4 cells. The number of technology primitive was 

4 LUTs.  

The codes for the design and testbench of 4-to-1 MUX, and the simplified netlists are 

recorded in the Appendix A. 
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Figure 12. Routing Diagram for 4to1 MUX generated by Aldec SyntHESer 

5.7 USE CASE 2: UVM Verification of SV Design 

For the next case, an adder/subtractor was designed using SystemVerilog. The main 

purpose of this experiment was to try and verify this design using UVM. For this reason, 

Design Language was selected to SystemVerilog from the left-hand side pane. UVM 1.2 

was selected as verification methodology. 

The architecture of this use case replicates in figure 13.  

The design of the test environment started with declaring the interface which will aid in 

communicating to the DUT and the test environment components.  
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Figure 13. UVM architecture for the use case 2 

 

Then, a sequence_item, extending from uvm_sequence_item was defined. Se-

quence_item defines the transaction object which the driver needs to drive. These ob-

jects were declared as random variables. Also, the objects were constrained and printed 

from the sequence_item. These sequence_item transaction objects act as the funda-

mental entity within the environment, facilitating the initiation of new transactions and the 

capture of transactions from the DUT. After that, a base_sequence was designed which 

was extending from a parameterized uvm_sequence. The parameter for uvm_sequence 

was the sequence_item. After that, a basic sequencer was designed extending from the 

uvm_sequencer. The sequence generates stimuli and transmits them to the driver 

through a sequencer, whereas the sequencer acts as a connector between the sequence 

and the driver. 

After the sequencer was placed, a driver class extending from the uvm_driver was cre-

ated. In the build phase of this class, the interface was connected to the driver through 

the configuration database. The example code is as follows in program 5: 

if(!uvm_config_db#(virtual add_if) :: get(this, "", "vif", vif)) 
 `uvm_fatal(get_type_name(), "Not set at top level"); 

Program 6. Getting the virtual interface through configuration database 
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In the run phase, the driver requested to get the sequence_item objects through the 

sequence_item_port and then ran it to the virtual interface to the DUT. The example code 

is as follows: 

// Driver to the DUT 
seq_item_port.get_next_item(req); 
vif.input1 <= req.input1; 
vif.input 2 <= req.input2; 
vif.add_sub <= req.add_sub; 
seq_item_port.item_done(); 

Program 7. Getting sequence item objects and driving the DUT through virtual inter-
face 

 

After the driver class, a monitor class was created. At the beginning of the monitor class 

an uvm_analysis_port was defined. The monitor was connected to the virtual interface 

through the configuration database, similarly as it was shown in program 5. But now the 

virtual interface objects are passing the data to the monitor sequence items. The monitor 

items are then written into the analysis port. The example code is as follows: 

class add_sub_monitor extends uvm_monitor;   
//define analysis port     

uvm_analysis_port #(add_sub_seq_item) item_collect_port; 
. 
. 
. 
//inside run phase 
//getting sequence item objects 
mon_item.add_sub = vif.add_sub; 
mon_item.ip1 = vif.ip1; 
mon_item.ip2 = vif.ip2; 
@(posedge vif.clk); 
mon_item.out = vif.out; 
//writing analysis port 
item_collect_port.write(mon_item); 

endclass 

Program 8. Getting virtual interface objects and writing them to analysis port 

  

The writing of the sequence objects was necessary so that the scoreboard can fetch it 

through the analysis import. Next, the scoreboard class was created, and the analysis 

import was defined. The sequence items obtained through the analysis import was stored 

in a queue. In the run phase of the scoreboard, a reference function to the DUT was 

created and using the objects from the sequence item, the expected value and the actual 

value was compared. In case of a mismatch, a UVM_ERROR was generated.  

Before the scoreboard, an agent class was created so that the driver, monitor and se-

quencer instances can be hold in a container. In the connect phase of the agent stage, 
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the connection of the driver and the sequencer was made through seq_item_port of 

driver instance and seq_item_import of sequencer instance.   

As the scoreboard and agent was in place, it was necessary to connect the monitor 

analysis port to scoreboard analysis export, which was yet to be made. Thus, the env 

class was created and in the connect phase of env class, the connection was made. 

Program 8 shows the driver-sequencer and monitor-scoreboard connections.  

//Example of connection between driver and sequencer in agent class 
drv.seq_item_port.connect(seqr.seq_item_export); 
//Example of connection between monitor and scoreboard in env class 
agt.mon.item_collect_port.connect(sb.item_collect_export); 

Program 9. Example of TLM analysis port/export 

 

Then a base test was created which would start the sequence from its run_phase. It was 

also possible to control the number of transactions we needed to verify the DUT.  

Lastly, the testbench top file was written. It included the uvm_macros, and all the classes 

mentioned before. In this module, the clock and reset were initialized. The DUT was 

connected to the interface and configuration database was set, as shown in program 10. 

Once all the classes were in place, the base test was called to run. Lastly, the variables 

were dumped for the waves to be viewed. Then using all the simulators, one by one, the 

test was allowed to run. The logs and waveforms showed that the DUT and the test was 

working as expected.  

// set interface in config_db 
uvm_config_db#(virtual add_if)::set(uvm_root::get(), "*", "vif", vif); 

Program 10. Setting the virtual interface through configuration database 
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Figure 14. Log from the UVM test run. 

Finally, for the use this use case, all the synthesis tools were used to get simplified netlist. 

A Yosys diagram after the synthesis is shown in figure 15. Yosys is a tool designed for 

the purpose of conducting logical synthesis and generating a netlist. It uses ABC: A Sys-

tem for Sequential Synthesis and Verification for the purpose of synthesizing a sample 

cell library. This tool shows the simplified implementation diagram after the synthesis. 

Yosys in EDA Playground exclusively processes code within the Design pane. The code 

contained within the Testbench pane will not be executed. The selections of UVM/OVM 

methodology and libraries are also disregarded. 

 

Figure 15. Yosys simplified implementation diagram after synthesis for the ad-
der subtractor 
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5.8 Other Features 

Apart from the features mentioned above, EDA Playground allow users to save and 

share their code in their respective accounts. If the code is shared as published, it will be 

visible in the example tab where users can access all the examples available. Users can 

also copy a published code in their own workspace and edit if is necessary. For a public 

code, anyone with the link can open the code.  

Also, there is an EDA Playground community where users can ask questions, collabo-

rate, and provide solutions.  
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6. CONCLUSION 

Designing a digital system is complex and involves multiple stages. Among these stages, 

modelling, designing, and verifying a chip takes about half the time of the entire process. 

On the other hand, verification cannot keep up with the design growth, and design cannot 

keep up with the technology growth due to lack of competent manpower in the field of 

digital system design.  

The absence of proficient personnel in this domain can be attributed to two primary fac-

tors: the accessibility of open-source software programming tools and the absence of 

open-source EDA tools. Students worldwide who lack access to EDA tools via their ed-

ucational institutions have the opportunity to independently acquire knowledge in pro-

gramming languages such as C++, Python, Java, or other similar platforms that are read-

ily accessible. EDA Playground offers a solution in this regard.   

The objective of the thesis was to showcase the open-source EDA platform, EDA Play-

ground. EDA Playground provides a wide range of languages, tools and resources that 

can be used for the digital design and aspire digital engineers.  

As it was seen in the previous chapter, EDA Playground allows users to code in multiple 

HDLs, allow them to test the design using multiple commercial and free simulators, and 

helps them debug the failures in design using EPwave and logs. Users can synthesize 

their codes using commercial synthesizers to check for device utilization and circuit dia-

gram.  

Another significant application of EDA Playground involves the integration of UVM 1.2. 

Prospective users can acquire knowledge about this methodology through educational 

resources, including tools and examples that are made available for their benefit. The 

ability for users to copy a sample workspace into their own workspace significantly facil-

itates the process of modifying and comprehending specific sections of the code, thereby 

promoting critical thinking. 

The thesis presents a comprehensive range of use cases that demonstrate the diverse 

functionalities offered by EDA Playground. Throughout the course of this thesis, the var-

ious resources available on EDA Playground were utilized and assessed for their func-

tionality. Despite certain limitations, the platform is a powerful tool designed to enhance 

the capabilities of digital system engineers. 
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APPENDIX A: DESIGN AND TESTBENCH CODES 
FOR 4-TO-1 MUX IN VHDL 

//Design of 4 bit 4-to-1 MUX 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 

 
entity T15_Mux is 
port( 
    -- Inputs 
    Sig1 : in unsigned(3 downto 0); 
    Sig2 : in unsigned(3 downto 0); 
    Sig3 : in unsigned(3 downto 0); 
    Sig4 : in unsigned(3 downto 0); 

 
    Sel  : in unsigned(1 downto 0); 
 
    -- Outputs 
    Output : out unsigned(3 downto 0)); 
end entity; 

 
architecture rtl of T15_Mux is 
begin 
  process(Sel, Sig1, Sig2, Sig3, Sig4) is 
  begin 
   case Sel is 

  when "00" => 
    Output <= Sig1; 
  when "01" => 
    Output <= Sig2; 
  when "10" => 
    Output <= Sig3; 
  when "11" => 
    Output <= Sig4; 
  when others => -- 'U', 'X', '-', etc. 
    Output <= (others => 'X'); 
 case; 

  end process; 
end architecture; 

Program 11. Design of 4 bit 4-to-1 MUX 
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library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 

 
entity T15_PortMapTb is 
end entity; 

 
architecture sim of T15_PortMapTb is 
    signal Sig1 : unsigned(7 downto 0) := x"AA"; 
    signal Sig2 : unsigned(7 downto 0) := x"BB"; 
    signal Sig3 : unsigned(7 downto 0) := x"CC"; 
    signal Sig4 : unsigned(7 downto 0) := x"DD"; 

 
    signal Sel : unsigned(1 downto 0) := (others => '0'); 
 
    signal Output : unsigned(7 downto 0); 

 
  begin 

 
    -- An instance of T15_Mux with architecture rtl 
    i_Mux1 : entity work.T15_Mux(rtl) port map( 
        Sel    => Sel, 
        Sig1   => Sig1, 
        Sig2   => Sig2, 
        Sig3   => Sig3, 
        Sig4   => Sig4, 
        Output => Output); 

 
    -- Testbench process 
    process is 
    begin 
        wait for 10 ns; 
        Sel <= Sel + 1; 
        wait for 10 ns; 
        Sel <= Sel + 1; 
        wait for 10 ns; 
        Sel <= Sel + 1; 
        wait for 10 ns; 
        Sel <= Sel + 1; 
        wait for 10 ns; 
        Sel <= "UU"; 
        wait; 
    end process; 
end architecture; 

Program 12. Testbench for simulation of 4 bit 4-to-1 MUX 
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// Verilog description for cell T15_Mux, 
// Tue Aug 22 04:20:34 2023 
// 
// Precision RTL Synthesis, 64-bit 2021.2.0.8// 

 
 

module T15_Mux ( Sig1, Sig2, Sig3, Sig4, Sel, Output ) ; 
 
input [7:0]Sig1 ; 
input [7:0]Sig2 ; 
input [7:0]Sig3 ; 
input [7:0]Sig4 ; 
input [1:0]Sel ; 
output [7:0]Output ; 
 
wire [7:0]Sig1_int; 
wire [7:0]Sig2_int; 
wire [7:0]Sig3_int; 
wire [7:0]Sig4_int; 
wire [1:0]Sel_int; 
wire nx5780z1, nx6777z1, nx7774z1, nx8771z1, nx9768z1, nx10765z1, 

nx11762z1, 
nx12759z1; 
 
 
 
OBUF \Output_obuf(0) (.O (Output[0]), .I (nx12759z1)) ; 
OBUF \Output_obuf(1) (.O (Output[1]), .I (nx11762z1)) ; 
OBUF \Output_obuf(2) (.O (Output[2]), .I (nx10765z1)) ; 
OBUF \Output_obuf(3) (.O (Output[3]), .I (nx9768z1)) ; 
OBUF \Output_obuf(4) (.O (Output[4]), .I (nx8771z1)) ; 
OBUF \Output_obuf(5) (.O (Output[5]), .I (nx7774z1)) ; 
OBUF \Output_obuf(6) (.O (Output[6]), .I (nx6777z1)) ; 
OBUF \Output_obuf(7) (.O (Output[7]), .I (nx5780z1)) ; 
IBUF \Sel_ibuf(0) (.O (Sel_int[0]), .I (Sel[0])) ; 
IBUF \Sel_ibuf(1) (.O (Sel_int[1]), .I (Sel[1])) ; 
IBUF \Sig4_ibuf(0) (.O (Sig4_int[0]), .I (Sig4[0])) ; 
IBUF \Sig4_ibuf(1) (.O (Sig4_int[1]), .I (Sig4[1])) ; 
IBUF \Sig4_ibuf(2) (.O (Sig4_int[2]), .I (Sig4[2])) ; 
IBUF \Sig4_ibuf(3) (.O (Sig4_int[3]), .I (Sig4[3])) ; 
IBUF \Sig4_ibuf(4) (.O (Sig4_int[4]), .I (Sig4[4])) ; 
IBUF \Sig4_ibuf(5) (.O (Sig4_int[5]), .I (Sig4[5])) ; 
IBUF \Sig4_ibuf(6) (.O (Sig4_int[6]), .I (Sig4[6])) ; 
IBUF \Sig4_ibuf(7) (.O (Sig4_int[7]), .I (Sig4[7])) ; 
IBUF \Sig3_ibuf(0) (.O (Sig3_int[0]), .I (Sig3[0])) ; 
IBUF \Sig3_ibuf(1) (.O (Sig3_int[1]), .I (Sig3[1])) ; 
IBUF \Sig3_ibuf(2) (.O (Sig3_int[2]), .I (Sig3[2])) ; 
IBUF \Sig3_ibuf(3) (.O (Sig3_int[3]), .I (Sig3[3])) ; 
IBUF \Sig3_ibuf(4) (.O (Sig3_int[4]), .I (Sig3[4])) ; 
IBUF \Sig3_ibuf(5) (.O (Sig3_int[5]), .I (Sig3[5])) ; 
IBUF \Sig3_ibuf(6) (.O (Sig3_int[6]), .I (Sig3[6])) ; 
IBUF \Sig3_ibuf(7) (.O (Sig3_int[7]), .I (Sig3[7])) ; 
IBUF \Sig2_ibuf(0) (.O (Sig2_int[0]), .I (Sig2[0])) ; 
IBUF \Sig2_ibuf(1) (.O (Sig2_int[1]), .I (Sig2[1])) ; 
IBUF \Sig2_ibuf(2) (.O (Sig2_int[2]), .I (Sig2[2])) ; 
IBUF \Sig2_ibuf(3) (.O (Sig2_int[3]), .I (Sig2[3])) ; 
IBUF \Sig2_ibuf(4) (.O (Sig2_int[4]), .I (Sig2[4])) ; 
IBUF \Sig2_ibuf(5) (.O (Sig2_int[5]), .I (Sig2[5])) ; 
IBUF \Sig2_ibuf(6) (.O (Sig2_int[6]), .I (Sig2[6])) ; 
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IBUF \Sig2_ibuf(7) (.O (Sig2_int[7]), .I (Sig2[7])) ; 
IBUF \Sig1_ibuf(0) (.O (Sig1_int[0]), .I (Sig1[0])) ; 
IBUF \Sig1_ibuf(1) (.O (Sig1_int[1]), .I (Sig1[1])) ; 
IBUF \Sig1_ibuf(2) (.O (Sig1_int[2]), .I (Sig1[2])) ; 
IBUF \Sig1_ibuf(3) (.O (Sig1_int[3]), .I (Sig1[3])) ; 
IBUF \Sig1_ibuf(4) (.O (Sig1_int[4]), .I (Sig1[4])) ; 
IBUF \Sig1_ibuf(5) (.O (Sig1_int[5]), .I (Sig1[5])) ; 
IBUF \Sig1_ibuf(6) (.O (Sig1_int[6]), .I (Sig1[6])) ; 
IBUF \Sig1_ibuf(7) (.O (Sig1_int[7]), .I (Sig1[7])) ; 
LUT6 ix5780z45004 (.O (nx5780z1), .I0 (Sig1_int[7]), .I1 (Sig2_int[7]), 

.I2 ( 
Sig3_int[7]), .I3 (Sig4_int[7]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ; 
defparam ix5780z45004.INIT = 64'hFF00CCCCF0F0AAAA; 
LUT6 ix6777z45004 (.O (nx6777z1), .I0 (Sig1_int[6]), .I1 (Sig2_int[6]), 

.I2 ( 
Sig3_int[6]), .I3 (Sig4_int[6]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ; 
defparam ix6777z45004.INIT = 64'hFF00CCCCF0F0AAAA; 
LUT6 ix7774z45004 (.O (nx7774z1), .I0 (Sig1_int[5]), .I1 (Sig2_int[5]), 

.I2 ( 
Sig3_int[5]), .I3 (Sig4_int[5]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ; 
defparam ix7774z45004.INIT = 64'hFF00CCCCF0F0AAAA; 
LUT6 ix8771z45004 (.O (nx8771z1), .I0 (Sig1_int[4]), .I1 (Sig2_int[4]), 

.I2 ( 
Sig3_int[4]), .I3 (Sig4_int[4]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ; 
defparam ix8771z45004.INIT = 64'hFF00CCCCF0F0AAAA; 
LUT6 ix9768z45004 (.O (nx9768z1), .I0 (Sig1_int[3]), .I1 (Sig2_int[3]), 

.I2 ( 
Sig3_int[3]), .I3 (Sig4_int[3]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ; 
defparam ix9768z45004.INIT = 64'hFF00CCCCF0F0AAAA; 
LUT6 ix10765z45004 (.O (nx10765z1), .I0 (Sig1_int[2]), .I1 (Sig2_int[2]), 

.I2 ( 
Sig3_int[2]), .I3 (Sig4_int[2]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ; 
defparam ix10765z45004.INIT = 64'hFF00CCCCF0F0AAAA; 
LUT6 ix11762z45004 (.O (nx11762z1), .I0 (Sig1_int[1]), .I1 (Sig2_int[1]), 

.I2 ( 
Sig3_int[1]), .I3 (Sig4_int[1]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ; 
defparam ix11762z45004.INIT = 64'hFF00CCCCF0F0AAAA; 
LUT6 ix12759z45004 (.O (nx12759z1), .I0 (Sig1_int[0]), .I1 (Sig2_int[0]), 

.I2 ( 
Sig3_int[0]), .I3 (Sig4_int[0]), .I4 (Sel_int[1]), .I5 (Sel_int[0])) ; 
defparam ix12759z45004.INIT = 64'hFF00CCCCF0F0AAAA; 

endmodule 

Program 13. Simplified Netlist generated through Mentor Precision 2021.1 for 4-to-1    
MUX 
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APPENDIX B: SV AND UVM IMPLEMENTATION 
CODES FOR ADDER-SUBTRACTOR 

// Simple adder/subtractor module 
module Adder_Subtractor( 

  input            clk, 
  input            reset, 
  input [7:0]      a_in, 
  input [7:0]      b_in, 
  // if this is 1, add; else subtract 
  input            add_sub, 
  output reg [8:0] result 

); 
 

  always @ (posedge clk or posedge reset) 
    if (reset) 
      result <=0; 
    else 
      begin 
        if (add_sub) 
          result <= a_in + b_in; 
        else 
          result <= a_in - b_in; 

      end 
endmodule 

Program 14. SystemVerilog Design of Adder-Subtractor 
 
 
//--------------------------------------- 
// TB_TOP file 
//--------------------------------------- 
`include "uvm_macros.svh" 
package my_pkg; 
  import uvm_pkg::*; 
  `include "add_sub_seq_item.sv" 
  `include "add_sub_base_seq.sv" 
  `include "add_sub_sequencer.sv" 
  `include "add_sub_driver.sv" 
  `include "add_sub_monitor.sv" 
  `include "add_sub_agent.sv" 
  `include "scoreboard.sv" 
  `include "add_sub_env.sv" 
  `include "base_test.sv"   
endpackage: my_pkg 

 
`include "interface.sv" 
 
module tb_top; 
  import uvm_pkg::*; 
  import my_pkg::*; 
  bit clk; 
  bit reset; 
  always #2 clk = ~clk; 

   
  initial begin 
    reset = 1; 
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    #5;  
    reset = 0; 
  end 
 
  add_if vif(clk, reset); 

   
Adder_Subtractor DUT( 
                      .clk(vif.clk), 
                      .reset(vif.reset), 
                      .a_in(vif.ip1), 
                      .b_in(vif.ip2), 
                      .add_sub(vif.add_sub), 
                      .result(vif.out) 
); 
   
initial begin 
  // set interface in config_db 
  uvm_config_db#(virtual add_if)::set(uvm_root::get(), "*", "vif", vif); 
end 
 

  initial begin 
    run_test("base_test"); 
  end 

   
  initial begin 
    // Dump waves 
    $dumpvars(0, tb_top); 
  end 
endmodule 

Program 15. Top file of the testbench for adder-subtractor 
 
 
//--------------------------------------- 
// Interface for the adder/subtractor DUT 
//--------------------------------------- 
interface add_if(input clk, input reset); 
  logic [7:0] ip1; 
  logic [7:0] ip2; 
  logic       add_sub; 
  logic [8:0] out; 
endinterface: add_if 

Program 16.  Virtual Interface for Adder-Subtractor 
 
//--------------------------------------- 
// Sequence Item 
//--------------------------------------- 
class add_sub_seq_item extends uvm_sequence_item; 
  rand bit [7:0] ip1, ip2; 
  rand bit add_sub; 
  bit reset; 
  bit [8:0] out; 

   
  function new(string name = "add_sub_seq_item"); 
    super.new(name); 
  endfunction 
   
  `uvm_object_utils_begin(add_sub_seq_item) 
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    `uvm_field_int(ip1,UVM_ALL_ON) 
    `uvm_field_int(ip2,UVM_ALL_ON) 
    `uvm_field_int(add_sub,UVM_ALL_ON) 
  `uvm_object_utils_end 
   
  constraint ip_c {ip1 < 100; ip2 < 100;} 
endclass 

Program 17.  Adder Subtractor sequence item 
 

//--------------------------------------- 
// Sequence 
//--------------------------------------- 
class add_sub_base_seq extends uvm_sequence#(add_sub_seq_item); 
  add_sub_seq_item req; 
  `uvm_object_utils(add_sub_base_seq) 
   
  function new (string name = "add_sub_base_seq"); 
    super.new(name); 
  endfunction 

 
  task body(); 
    `uvm_info(get_type_name(), "Base seq: Inside Body", UVM_LOW); 
    `uvm_do(req); 
  endtask 
endclass 

Program 18.  Adder Subtractor base sequence 
 

//--------------------------------------- 
// Sequencer 
//--------------------------------------- 
class add_sub_sequencer extends uvm_sequencer#(add_sub_seq_item); 
  `uvm_component_utils(add_sub_sequencer) 
   
  function new(string name = "add_sub_sequencer", uvm_component parent = 
null); 
    super.new(name, parent); 
  endfunction 

   
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
  endfunction 
endclass 

Program 19.  Adder-Subtractor sequencer 
 

//--------------------------------------- 
// Monitor 
//--------------------------------------- 
class add_sub_monitor extends uvm_monitor; 
  virtual add_if vif; 
  uvm_analysis_port #(add_sub_seq_item) item_collect_port; 
  add_sub_seq_item mon_item; 
  `uvm_component_utils(add_sub_monitor) 
   
  function new(string name = "add_sub_monitor", uvm_component parent = null); 
    super.new(name, parent); 
    item_collect_port = new("item_collect_port", this); 
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    mon_item = new(); 
  endfunction 
   
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
    if(!uvm_config_db#(virtual add_if) :: get(this, "", "vif", vif)) 
      `uvm_fatal(get_type_name(), "Not set at top level"); 
  endfunction 
   
  task run_phase (uvm_phase phase); 
    forever begin 
      wait(!vif.reset); 
      @(posedge vif.clk); 
      mon_item.add_sub = vif.add_sub; 
      mon_item.ip1 = vif.ip1; 
      mon_item.ip2 = vif.ip2; 
      `uvm_info(get_type_name, $sformatf("ip1 = %0d, ip2 = %0d, add_sub 
=%0d", mon_item.ip1, mon_item.ip2, mon_item.add_sub), UVM_HIGH); 
      @(posedge vif.clk); 
      mon_item.out = vif.out; 
      item_collect_port.write(mon_item); 
    end 
  endtask 
endclass 

Program 20.  Adder-Subtractor monitor 
 
//--------------------------------------- 
// Driver 
//--------------------------------------- 
class add_sub_driver extends uvm_driver#(add_sub_seq_item); 
  virtual add_if vif; 
  `uvm_component_utils(add_sub_driver) 
   
  function new(string name = "add_sub_driver", uvm_component parent = null); 
    super.new(name, parent); 
  endfunction 
   
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
    if(!uvm_config_db#(virtual add_if) :: get(this, "", "vif", vif)) 
      `uvm_fatal(get_type_name(), "Not set at top level"); 
  endfunction 
   
  task run_phase (uvm_phase phase); 
    forever begin 
      // Driver to the DUT 
      seq_item_port.get_next_item(req); 
      `uvm_info(get_type_name, $sformatf("ip1 = %0d, ip2 = %0d, add_sub 
=%0d", req.ip1, req.ip2, req.add_sub), UVM_LOW); 
      vif.ip1 <= req.ip1; 
      vif.ip2 <= req.ip2; 
      vif.add_sub <= req.add_sub; 
      seq_item_port.item_done(); 
    end 
  endtask 
endclass 

Program 21.  Adder-Subtractor driver 
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//--------------------------------------- 
// Agent 
//--------------------------------------- 
class add_sub_agent extends uvm_agent; 
  `uvm_component_utils(add_sub_agent) 
  add_sub_driver drv; 
  add_sub_sequencer seqr; 
  add_sub_monitor mon;  
  
  function new(string name = "add_sub_agent", uvm_component parent = null); 
    super.new(name, parent); 
  endfunction 

   
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
     
    if(get_is_active == UVM_ACTIVE) begin  
      drv = add_sub_driver::type_id::create("drv", this); 
      seqr = add_sub_sequencer::type_id::create("seqr", this); 
    end     
    mon = add_sub_monitor::type_id::create("mon", this); 

endfunction 
   
function void connect_phase(uvm_phase phase); 

    if(get_is_active == UVM_ACTIVE) begin  
      drv.seq_item_port.connect(seqr.seq_item_export); 
    end 
  endfunction 
endclass 

Program 22. Adder-Subtractor agent 
 
//--------------------------------------- 
// Scoreboard 
//--------------------------------------- 
class scoreboard extends uvm_scoreboard; 
  uvm_analysis_imp #(add_sub_seq_item, scoreboard) item_collect_export; 
  add_sub_seq_item item_q[$]; 
  `uvm_component_utils(scoreboard) 
   
  function new(string name = "scoreboard", uvm_component parent = null); 
    super.new(name, parent); 
    item_collect_export = new("item_collect_export", this); 
  endfunction 

   
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
  endfunction 
   
  function void write(add_sub_seq_item req); 
    item_q.push_back(req); 
  endfunction 
   
  task run_phase (uvm_phase phase); 
    add_sub_seq_item sb_item; 
    forever begin 
      wait(item_q.size > 0); 
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      if(item_q.size > 0) begin 
        sb_item = item_q.pop_front(); 
        $display("------------------------------------------------------"); 
        if(sb_item.add_sub == 1) begin 
          if(sb_item.ip1 + sb_item.ip2 == sb_item.out) begin 
           `uvm_info(get_type_name, $sformatf("Matched: ip1 = %0d, ip2 = 
%0d, out = %0d", sb_item.ip1, sb_item.ip2, sb_item.out),UVM_MEDIUM); 
          end 
          else begin 
           `uvm_error(get_name, $sformatf("NOT matched: ip1 = %0d, ip2 = 
%0d, out = %0d", sb_item.ip1, sb_item.ip2, sb_item.out)); 
          end 
        end else begin 
          if(sb_item.ip1 - sb_item.ip2 == sb_item.out) begin 
            `uvm_info(get_type_name, $sformatf("Matched: ip1 = %0d, ip2 = 
%0d, out = %0d", sb_item.ip1, sb_item.ip2, sb_item.out),UVM_MEDIUM); 

       end 
       else begin 
         `uvm_error(get_name, $sformatf("NOT matched: ip1 = %0d, ip2 = 

%0d, out = %0d", sb_item.ip1, sb_item.ip2, sb_item.out)); 
       end 
     end 
     $display("------------------------------------------------------"); 
   end 
  end 

  endtask 
   

endclass 

Program 23. Adder-Subtractor scoreboard 
 
//--------------------------------------- 
// Environment 
//--------------------------------------- 
class add_sub_env extends uvm_env; 
  `uvm_component_utils(add_sub_env) 
  add_sub_agent agt; 
  scoreboard sb; 

  
  function new(string name = "add_sub_env", uvm_component parent = null); 
    super.new(name, parent); 
  endfunction 

   
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
    agt = add_sub_agent::type_id::create("agt", this); 
    sb = scoreboard::type_id::create("sb", this); 
  endfunction 

   
  function void connect_phase(uvm_phase phase); 
    agt.mon.item_collect_port.connect(sb.item_collect_export); 
  endfunction 
endclass 

Program 24.  Adder-Subtractor environment 
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//--------------------------------------- 
// Base Test 
//--------------------------------------- 
class base_test extends uvm_test; 
  add_sub_env env_o; 
  add_sub_base_seq bseq; 
  `uvm_component_utils(base_test) 

   
  function new(string name = "base_test", uvm_component parent = null); 
    super.new(name, parent); 
  endfunction 

   
  function void build_phase(uvm_phase phase); 
    super.build_phase(phase); 
    env_o = add_sub_env::type_id::create("env_o", this); 
  endfunction 

   
  task run_phase(uvm_phase phase); 
    phase.raise_objection(this); 
    bseq = add_sub_base_seq::type_id::create("bseq"); 
         
    repeat(10) begin  
      #10;  
      bseq.start(env_o.agt.seqr); 
    end 

     
    phase.drop_objection(this); 
    `uvm_info(get_type_name, "End of testcase", UVM_LOW); 
  endtask 
endclass 

Program 25.  Adder-Subtractor base test 
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