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Similar to most things in everyday life, the advent of payment cards also has good
and bad sides. It undoubtedly, made life easier by bringing the whole payment
system to a single card, but it also paved the way for a new set of illegal activities
and frauds. The credit card fraud has been carried out since the payment cards
came into existence, and since then, the trend in such frauds has been an increasing
one. Therefore, a quest to attenuate the losses caused by such frauds began. For
this purpose, many preventive and detective measures have been taken in the past,
and new ways are sought to further improve the policies. These measures, however,
reduce the losses temporarily only and have not yet succeeded in converting the
uptrend in the losses by such frauds into a downtrend because fraudsters always
come up with a new way of tricking the people and the system. Thus, a new way of
solving this ever-existing challenge is needed, which can detect even those fraudulent
instances that are executed by techniques and methods that are yet-to-be-invented
by fraudsters. Moreover, the occurrence of normal (non-fraudulent) credit card
transactions is much more than fraudulent ones, and therefore, the data for credit
card fraud detection is highly imbalanced. Another challenge in credit card fraud
detection systems is the high dimensionality of datasets. Therefore, to address the
imbalance nature of the data, to cope with the curse of dimensionality with a new
way of making the model to regulate and extract the discriminative features, and to
detect the fraud carried out by yet-to-be-invented techniques, we implemented a set
of novel and state of the art subspace learning-based One-Class Classification algo-
rithms. We experimented with integrating a projection matrix and geometric data
information in the training phase to improve credit card fraud detection. We also
experimented by using a maximization-update rule in updating the projection ma-
trix instead of the classical minimization-update rule in the subspace leaning-based
data description. We found that the linear version of Graph-embedded Subspace
Support Vector Data Description with kNN graph, gradient-based solution, and
minimization-update rule works better than all other models.



Keywords: Credit card fraud detection, one-class classification, financial data pro-
cessing, subspace learning, graph-embedding.

The originality of this thesis has been checked using the Turnitin Originality Check
service.



Preface
I want to express my heartfelt gratitude to my supervisors, Prof. Juho Kanniainen,
and Dr. Fahad Sohrab, for their invaluable guidance, support, and encouragement
throughout this journey. Their expertise has been instrumental in shaping this
research. I also want to extend my sincere gratitude to Prof. Moncef Gabbouj for
giving me the opportunity to work under his supervision in the Signal Analysis and
Machine Intelligence (SAMI) research group.
I also want to extend my deepest thanks to my family for their unwavering love and
encouragement. Your belief in me has been a driving force, and I am grateful for
your constant support.
I would like to acknowledge the support of the NSF-Business Finland project AMALIA.
I hope that my work contributes positively to the field and serves as a small token
of appreciation for all those who have been a part of this endeavor.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Fraud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fraud detection - a special kind of classification problem . . . . . . . 3
1.3 Research aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Credit card fraud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 One-class classification algorithms . . . . . . . . . . . . . . . . . . . . 8

2.2.1 One-Class Support Vector Machine . . . . . . . . . . . . . . . . . 9
2.2.2 Support Vector Data Description . . . . . . . . . . . . . . . . . . 11
2.2.3 Subspace Support Vector Data Description . . . . . . . . . . . . 12
2.2.4 Ellipsoidal Support Vector Data Description . . . . . . . . . . . 15
2.2.5 Graph-Embedded One-Class Support Vector Machine . . . . . . 16
2.2.6 Graph-Embedded Support Vector Data Description . . . . . . . 18
2.2.7 Graph-Embedded Subspace Support Vector Data Description . . 20

2.3 Non-linear Projection Trick . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 True positive rate . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.4 True negative rate . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.5 F-measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.6 G-mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Datasets and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Different variants of models selected . . . . . . . . . . . . . . . . 28
3.2.3 Models training . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



List of Figures

1.1 Number of reports registered by US customers for different categories
of fraud for the time period 2019-March 31,2023 [3] . . . . . . . . . . 2

1.2 A flowchart for an OCC algorithm showing the training and testing of
the model. The training consists of only positive class objects, while
the testing consists of instances from both positive and negative classes. 4

2.1 The mapping of the data points with their alpha values in the case
of SVDD in 2D. The center of the SVDD boundary is denoted by a,
and R represents the circle’s radius. . . . . . . . . . . . . . . . . . . . 12

2.2 Kernel transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Flowchart of the general methodology . . . . . . . . . . . . . . . . . . 28



List of Tables

3.1 Descriptive statistics of datasets used. The imbalance-ratio is the
ratio of fraudulent to normal transactions in the resampled training
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Performance of linear models based on G-mean across all datasets. . . 31
4.2 Performance of non-linear models based on G-mean across all datasets. 32

A.1 Results for the linear models using dataset-1. . . . . . . . . . . . . . 40
A.2 Results for the non-linear models using dataset-1. . . . . . . . . . . . 41
A.3 Results for the linear models using dataset-2. . . . . . . . . . . . . . 42
A.4 Results for the non-linear models using dataset-2. . . . . . . . . . . . 43
A.5 Results for the linear models using dataset-3. . . . . . . . . . . . . . 44
A.6 Results for the non-linear models using dataset-3. . . . . . . . . . . . 45
A.7 Results for the linear models using dataset-4. . . . . . . . . . . . . . 46
A.8 Results for the non-linear models using dataset-4. . . . . . . . . . . . 47



Nomenclature

1 Vector containing all ones
1c Vector with ones for instances belonging to class c, and zeros elsewhere
a Center of the data description
A Adjacency matrix
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1 Introduction
Fraud detection has been carried out since the beginning of modern technology, but
still, billions of dollars are annually lost by different types of fraud. The methods, as
well as the fraudsters, are evolving with time and technology, and hence, the quest
for better ways and algorithms to detect, reduce and eventually stop fraud never
ceases. This master’s thesis, like many others, is another attempt to investigate,
implement and compare a few (novel) machine learning (ML) methods (One-Class
Classification algorithms) to find a more efficient way to save the huge amount of
dollars lost by fraud.

1.1 Fraud

Fraud is a significant and ever-evolving problem that impacts people, businesses, and
society as a whole. It is a broad term encompassing a spectrum of deceitful practices
intended to exploit others and gain an unfair advantage. It can take many different
forms, depending on the channel adopted to carry out the fraudulent activity. Some
common forms of fraud are described below:

• Financial Fraud: This involves schemes such as accounting fraud and insider
trading, where individuals manipulate financial information or misuse funds
for personal gain.

• Identity Theft: In this type of fraud, criminals steal personal information to
impersonate individuals and engage in unauthorized transactions or activities,
often resulting in financial loss and damage to the victim’s reputation.

• Insurance Fraud: This form includes staged accidents, false damage claims,
fake injuries, and many other activities.

• Credit Card Fraud: Criminals obtain and use someone else’s credit card infor-
mation without permission, leading to unauthorized purchases and financial
loss for both individuals and financial institutions.

Among the various kinds of fraud, our focus in this study is on credit card fraud
and its detection. The credit card transaction can take place in two ways: either
physically, which is done physically by being at the payment terminal, or virtually
which takes place over the internet or telephone by using some PIN number and or
proof of identification [1]. In order for someone to make a fraudulent credit card
transaction in any of the two modes, either the credit card has to be stolen (in case
of physical transactions), or the information necessary to use the credit card online
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has to be leaked or stolen (for online transaction) [1]. With the invention of such a
luxury to shop online with a few clicks, online credit card fraud also got invented
[2]. Figure 1.1 shows the patterns and trends in fraud cases reported in the US
for different categories of fraud. This detailed graph of registered fraudulent reports
clearly shows the increasing trend in credit card fraud over the span of 5 years.

Figure 1.1 Number of reports registered by US customers for different categories of fraud
for the time period 2019-March 31,2023 [3]

Credit card fraud, like all kinds of fraud, does not only cause monetary losses but
also impacts trust, security, and the overall integrity of systems and institutions.
Any effort to detect or prevent such fraudulent activity considerably impacts indi-
vidual customers, organizations, and society. A few of the key benefits or impacts
of credit card fraud detection systems are listed below:

• Reducing monetary losses: Credit card fraud detection systems reduce the
potential financial losses, protecting individuals’ and businesses’ assets by
promptly identifying and blocking unauthorized transactions.

• Protecting customers’ assets and data: Providing a layer of protection by
identifying and preventing unauthorized use of credit cards, customers can
have confidence in the security of their accounts and data, which leads to
increased trust and customer loyalty.

• Preserving customers’ trust in organizations: Fraudulent activities can sig-
nificantly damage the reputation of businesses and financial institutions, and
therefore, systems mitigating such activities preserve the reputation of orga-
nizations and maintain trust among customers and stakeholders.
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• Aiding law enforcement: Effective fraud detection systems provide valuable
data and evidence that can assist law enforcement agencies in investigating
and prosecuting fraudsters.

Credit card fraud detection, like any anomaly detection, usually has heavily
imbalanced data, for example, normal (non-fraudulent) transactions happen almost
every millisecond in the world, but fraudulent ones are not that common. Hence,
the difference in the number of occurrences between the two classes is enormous.
Furthermore, as mentioned before, new ways of fraud are being used every now
and then, making it nearly impossible to incorporate every kind of fraud and all
information of each of those kinds in the dataset. So, we have to develop a new set
of solutions that can consider this imbalanced nature of the data while training and
classifying any new instance accurately.

1.2 Fraud detection - a special kind of classification problem

The ML classification algorithms are of two types: supervised and unsupervised.
In supervised learning, the dataset available is in the form of inputs and outputs;
that is, we know the labels of the data for all categories, whereas in unsupervised
methods, the labels are not specified, and data are usually clustered in groups and
classified accordingly. In supervised methods, there comes a problem when the new
data (that has to be classified) does not belong to any of the classes (for example, the
fraudster came up with a new and unusual way of fraud) because the classification
algorithms other than One-Class Classification (OCC) would classify the new data
in one of the available classes. For example, we have two classes, cars and bicycles,
and the new data is a tree. In this case, classifying the tree in either of the classes
is entirely wrong and misleading.

In OCC algorithms, the data from the positive class is used for training the
model, and everything that the model encounters that is not from the positive class
is classified as negative. The class which is of interest and an ample amount of data
is present from that class is considered positive, and the other or rest of the classes
are considered negative. In the case of the cars and bicycles (binary classification)
example, if the positive class is cars, then the classes would be cars and not-cars, and
the tree would be classified as a negative (not-car category) object. In the case of
multi-class classification problems, the one vs. all strategy is applied for predicting
the class of the new data. In the same cars and bicycle example, we would then
have three categories: cars, bicycles, and trees. The new tree object would be
considered in all three car-vs-all, bicycle-vs-all, tree-vs-all possibilities, and assigned
some probability to it being in each class. The class with the highest probability
would be considered the class of the new tree object. A general overview of how an
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OCC algorithm works is depicted in Figure 1.2.
The OCC algorithms are used when the data from one of the two classes is very

scarce or very expensive to collect, and the model is trained based on one class
(positive class) data. Another scenario where OCC algorithms are applied is when
the data from one (negative) class is so diverse that it is practically impossible to
statistically model the data from that class. Credit card fraud detection is one of the
cases where these problems exist, and therefore, it is a special kind of classification
problem where the OCC algorithms are ideal to be applied.

Figure 1.2 A flowchart for an OCC algorithm showing the training and testing of the
model. The training consists of only positive class objects, while the testing consists of
instances from both positive and negative classes.

1.3 Research aim

In this thesis, we are applying a few of the OCC models on financial datasets with
the following research aims.

• Attempting to find a better solution for the ever-existent credit card fraud
challenge.

• Addressing the imbalanced nature of the credit card transactions data in a
way so that the models are unbiased towards the dense class.

• To come up with a model that can accurately distinguish the normal trans-
actions from those which are carried out by existing as well as to-be-invented
fraudulent ways.
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• Implementing a novel way to reduce the curse of dimensionality by infusing
the feature selection into the training phase.

1.4 Thesis structure

This document is structured as follows. Chapter 2 briefly discusses the work done
on credit card fraud detection and OCC algorithms. In Chapter 3, we talk about the
sources and specifications of the datasets considered and describe the methodology
of the thesis, focusing on the steps taken during the research and the reasons why
those steps were taken. In Chapter 4, the results are published and discussed,
whereas Chapter 5 concludes the thesis with the deductions from the results and
any future work that can be done in the continuity of this research.
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2 Background knowledge
The background literature on credit card fraud detection and OCC algorithms is
presented in the following sub-sections.

2.1 Credit card fraud

In the domain of credit card fraud, there are many different kinds of fraud based
on the technique used for it. These various types are using someone’s lost or stolen
card to make transactions, non-receipt fraud, and using counterfeit credit cards
[4]. The non-receipt fraud is when the card is somehow stolen before reaching the
actual owner and used for fraudulent transactions. Counterfeit credit cards are the
ones forged with the necessary information of someone’s legitimate card gained by
skimming, phishing, or some other way. Skimming is acquiring information from
someone’s credit card electronically while using it at some payment terminal [5].
The fraudsters use a device for skimming, which is usually installed on automated
teller machines (ATMs) or any other payment terminal to record the information
on the magnetic strip, including the card number and pin. In a phishing attack, a
fraudster copies a website and lures the customer to provide personal and sensitive
information containing card details which are then used for different kinds of frauds,
including fraudulent transactions [6].

In general, we have two ways to deal with all kinds of fraud: either prevent them
or detect and stop them. Many prevention techniques have been adopted in the
last two decades. Visa uses card verification value (CVV), whereas MasterCard,
along with the CVV, also uses the card validation code (CVC) embedded with the
account number as a preventive measure [4]. CVC, which has different names based
on the card-issuing company (for example, Visa uses CVV2 for this verification
code), ensures that the initiator of the transaction has the card. It does not provide
immunity against any other form of fraud [5]. Moreover, to verify that the actual
owner received the card issued, card activation programs are used to activate the
card only if the customer’s identity is proven [7]. Apart from this, many other
measures, such as address verification systems or keeping negative and positive lists
(for example, to keep track of past offenders to avoid further fraud from those
sources), are in use to ensure that transactions are safe and risk-free.

However, prevention alone is not the solution to this problem, as the fraudsters
and or methods being used for fraud are adapting to the technology, and the losses
due to such fraudulent transactions are increasing. Also, it is usually difficult to
know in time that the preventive measures have failed to take other steps in order
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to stop the fraud that might occur. Therefore, a conjoint approach, having both
preventive and detective measures, such that not only are the losses reduced but
the cost of the strategy is also minimal, is the solution to this problem [5]. Since
the manually detecting techniques are unfeasible, inaccurate, and inefficient, ma-
chine learning algorithms are deployed to learn the pattern and identify and stop
fraudulent transactions in real-time [8]. Among the vast pool of statistical models
and machine learning algorithms, neural networks are extensively used to detect
fraudulent transactions. In [9], by implementing and comparing artificial neural
network (ANN) to support vector machine (SVM) and k-nearest neighbor (kNN),
it is found that ANN works better in terms of accuracy than SVM and kNN. Sim-
ilarly, another study [10] compared ANN with logistic regression (LR) and found
that ANN achieved a higher prediction rate than LR. In [11] genetic algorithm is
used with a neural network (GANN) to detect and predict fraudulent transactions.
A number of other models have been applied to solve the credit card fraud problem.
Some of these models are decision trees [12, 13, 14], adaptive fraud detection based
on knowledge discovery [15], self-organizing maps (SOM) [16, 17, 18], long short-
term memory (LTSM) [19], hidden Markov model (HMM) [20, 21], fuzzy clustering
[22, 23], graph- and modified butterfly optimization-based deep learning [24] and
gradient boosting techniques [25, 26].

Any fraud or anomaly detection problem has two challenges, which are also
the intrinsic properties of such problems. These issues are the imbalanced data
and the fact that all kinds of fraud cannot be statistically modeled because the
methods of fraud are ever-evolving. Once a method is exposed, measures are taken
to stop further losses through that method, and fraudsters then try to find a new
way to trick people or businesses. To handle the imbalanced nature of the data,
previous implementations have employed data sampling methods. Some have used
under-sampling [27], the method where the majority class instances are synthetically
reduced to make the data from both classes equal, while some have used over-
sampling [28] where the minority class data is synthetically generated to make the
data from both classes equal. Some implementations have employed a mixture of
under- and over-sampling techniques to overcome the imbalanced data issue [29].

Recently, there has been research on using neural networks along with OCC
algorithms for anomaly or fraud detection [30, 31, 32]. These algorithms, although
provide an end-to-end trained model, suffer from a drawback of crucial importance,
that is, representation collapse [33]. Representation collapse is a phenomenon where
a model fails to effectively capture the diversity and complexity of the input data,
leading to similar or identical outputs for different inputs (possibly mapping all the
input data to a single point).

To overcome the above-mentioned challenges without resorting to the synthetic
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alteration of data, we are using OCC algorithms, which use only the normal (non-
fraud) transactions for the training. These algorithms handle the above-mentioned
issues because normal transactions are available in abundance, and the model trained
on such data will consider everything that is not normal as fraudulent, which includes
fraud carried out by both existent and to-be-invented techniques.

2.2 One-class classification algorithms

OCC is a special type of classification problem in machine learning where the model
is trained using the data from only one (positive or target) class with the goal of
differentiating objects of positive class from other (negative) classes. These algo-
rithms are employed in problems where the data from the negative class is either
unavailable or expensive to gather. Over the last two decades, because of their use
in peculiar problems which were not solvable through the non-OCC ML algorithms,
these algorithms became the center of attention, and a lot of research has been done
to improve these models and or implement them in various applications. For exam-
ple, they have been employed to detect bots in Twitter [34], to detect and identify
criminals using the glass pieces shattered at crime spots [35], to detect depressed
patients based on the functional magnetic resonance imaging (fMRI) readings [36],
for image segmentation and classification [37], for detecting abnormalities in video
[32], for hyperspectral image analysis [38], to detect myocardial infection at early
stages [39], to identify and classify rare insects [40, 41], to detect cyberattacks in
vehicular networks [42], and detection of railway vehicle from audio data [43].

All of the OCC problems are solved by using three main approaches: density
estimation, reconstruction-based, and border-based description [44]. Density-based
approaches focus on estimating the underlying data density to distinguish between
normal and abnormal instances. These methods assume that normal instances are
generated from a high-density region, while abnormal instances lie in low-density
regions [44]. The key idea is to model the density of the target class, and for this
purpose, a few of the density modeling methods in practice are Parzen density [45]
and Gaussian or a combination of multiple Gaussian models [46].

According to [44], in reconstruction-based approaches, a model is chosen to fit
the data based on the prior information of data and the assumptions made about
the data-generating process. During training, the model learns to minimize the
difference between the original input and the reconstructed output. For the classi-
fication of new instances, reconstruction error is used; that is, the instances having
lower reconstruction error are classified as normal, whereas the ones with higher
reconstruction error are said to be outliers or belong to the negative class. A few of
the methods used for the reconstruction are self-organizing maps [47] and k-means
clustering [46].
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According to [44], these two approaches work well when the target data can be
accurately modeled using a specific distribution and the assumptions about the data
generation process are reliable. However, a challenge in these approaches lies in de-
termining an appropriate distribution that represents the given data accurately. On
the contrary, a third category of techniques, namely the border-based approaches,
exists, which does not rely on data distribution. These methods define the decision
boundary that separates normal instances from anomalies by identifying the in-
stances in the training data that are located at or lie close to the boundary between
the classes. Such instances are called support vectors; therefore, these methods are
also known as support vector-based approaches. All of the methods used in this
thesis belong to the border-based category.

The OCC algorithms which are implemented and compared in this thesis are
discussed one by one in the subsequent part.

2.2.1 One-Class Support Vector Machine

Support Vector Machine (SVM) is a powerful algorithm that classifies the data in the
groups (or predicts a continuous variable in case of regression problems) by finding
the optimal hyperplane which maximizes the margin or distance between the classes
in data. In case the data is not linearly separable, that is, no hyperplane exists
which can divide the data into the respective classes, then a kernel function is used,
which projects the data to a higher dimensional space where it is linearly separable,
find the hyperplane in the new high dimensional space which linearly classifies the
data, and projects the data back to original dimensions.

The One-Class Support Vector Machine (OCSVM), which is our benchmark
model for this study, is an OCC algorithm based on SVM; that is, it is trained by the
data from only positive class to find a hyperplane such that the margin between the
hyperplane and the positive class data points is maximum. In OCSVM a parameter
C is used, which is the percentage of the positive class data to be considered as
outliers. It is a trade-off between the number of support vectors and the percentage
of data points that will be outside the boundary. There are two approaches for
making the decision boundary between the normal data and the outliers: one is,
using a mapping function using the density distribution, and another is, making
the boundary between the origin and the data points while keeping the C amount
of data points outside the boundary [48]. The latter is often used in the OCSVM
algorithm because of its more straightforward implementation.

The mathematical form of the OCSVM problem, along with the constraints, is
given by
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min
1

2
WTW + C

∑
i

ξi − b,

s.t. W · ϕ (xi) + b ≥ b− ξi, ξi ≥ 0; i = 1, 2, ..., N, (2.1)

where W is the normal vector to the hyperplane, xi is the ith observation, N is the
number of observations, ϕ is the function which maps xi to the kernel space, b is the
threshold variable that defines the position of the decision boundary with respect
to the origin, and ξi is the slack variable [49].

To solve the OCSVM problem, variables W and b have to be found such that
they minimize (2.1). To do this, the optimization problem in (2.1) is re-formulated
using Lagrange multipliers as

L =
1

2
WTW + C

∑
i

ξi −
∑
i

γiξi −
∑
i

αi [W · ϕ (xi)− b+ ξi] . (2.2)

By minimizing (2.2) with respect to W, ξ, and b, and maximizing with respect
to α, and γ, and back-substituting those equations into (2.2), we get the final form
of the problem, that is,

min
1

2

∑
i,j

αiαjk (xi,xj) ,

s.t 0 ≤ αi ≥ C,
∑
i

αi = 1, (2.3)

where k (xi,xj) is ϕ (xi) · ϕ (xj). The problem in (2.3) is solved for the αi values
corresponding to the data points, where the data points with the positive α value
are the support vectors that determine the boundary of the positive class. The αi

are used to find the threshold b, using

b =
∑
j

αjk (xj,xi) , (2.4)

where xi corresponds to any one of the support vectors. Any test data point x∗ can
then be classified into positive or negative class using the sign function (denoted by
’sgn’) as

f(x∗) = sgn

[∑
i

αik (xi,x∗)− b

]
. (2.5)

The test data points having f(x∗) < 0 will be considered from positive class,
and f(x∗) ≥ 0 will be considered from negative class.
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2.2.2 Support Vector Data Description

An approach, other than OCSVM, to detect fraud is forming a data description
enclosing the normal transaction data. One such model is the kernel-based model,
known as Support Vector Data Description (SVDD) [50], which, unlike OCSVM,
forms a hyper-sphere around the positive class data points. The goal is to form an
optimal hyper-sphere of radius R and center a by minimizing the radius and hence
the volume of the hyper-sphere containing positive class data points while keeping
the outliers outside the boundary. To accommodate the outliers in our problem, we
add slack variables ξi ≥ 0. Mathematically, this is given as

min R2 + C Σi ξi,

s.t ∥xi − a∥2 ≤ R2 + ξi, ξi ≥ 0; i = 1, 2, ..., N, (2.6)

where the hyper-parameter C is the trade-off between the volume of the sphere and
the fraction of data points outside the boundary. The Lagrangian equation of (2.6)
is formed by incorporating the constraints using the Lagrange multipliers αi, γi as

L = R2 + C Σi ξi −
∑
i

αi

[
R2 + ξi −

(
∥xi∥2 − 2a · xi + ∥a∥2

)]
−
∑
i

γi ξi. (2.7)

Equation (2.7) is minimized and maximized with respect to R, a, ξi and αi, γi,
respectively. The resulting equations from minimization and maximization of the
Lagrangian are back-substituted into (2.7), which re-formulate the problem as

L =
∑
i

αi (xi · xi)−
∑
i,j

αiαj (xi · xj) ,

s.t. 0 ≤ αi ≥ C. (2.8)

The αi, according to the constraint (2.8), can only be equal to or between 0 and
C. Figure 2.1 shows the mapping of the data points according to their respective
αi values (and the data description for SVDD), which is described as follows:

• If αi = 0, the data points will lie inside the hyper-sphere.

• If αi = C, the data points will lie outside the hyper-sphere.

• If 0 < αi > C, the data points will lie on the surface of the hyper-sphere.
These are the points that are the support vectors for the data description.

The support vectors, that is, data points with α values between 0 and C, are
used to calculate radius R of the data description as
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Figure 2.1 The mapping of the data points with their alpha values in the case of SVDD
in 2D. The center of the SVDD boundary is denoted by a, and R represents the circle’s
radius.

R2 = (xk · xk)− 2
∑
i

αi (xi · xk) +
∑
i,j

αiαj (xi · xj) , (2.9)

where xk are the support vectors. Any test object, x∗, can be checked if it is a
normal data point or an outlier by calculating its distance from the center a of the
hyper-sphere, using

∥x∗ − a∥2 = (x∗ · x∗)− 2
∑
i

αi (x
∗ · xi) +

∑
i,j

αiαj (xi · xj) ≤ R2. (2.10)

If the distance is greater than R2, the data point is classified as an outlier,
otherwise normal.

2.2.3 Subspace Support Vector Data Description

To optimize the SVDD model and to reduce the impact of high dimensional feature
space of the dataset, another model is proposed by [51] known as Subspace Support
Vector Data Description (SSVDD), which finds an optimized subspace to map the
original high-dimensional data to lower dimension for improved OCC. The low-
dimensional data is then used to form a hyper-sphere boundary of radius R and
center a around the positive class. Let D be the original feature-dimension of the
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data and d (d being smaller than or equal to D) be the subspace to which data is
to be projected. The aim is to find a mapping function that projects the data from
D to d feature space and find a hyper-sphere that encloses the positive class such
that the radius R of the hyper-sphere is kept at a minimum. The projection matrix
Q is used to transform the data to d-dimensional subspace, represented as

yi = Qxi; i = 1, 2, ..., N. (2.11)

The problem formulation for SSVDD is the same as SVDD, except that the
projected data is being used instead of the original one. Thus, the mathematical
formulation of the SSVDD problem is

min R2,

s.t ∥Qxi − a∥22 ≤ R2; i = 1, 2, ..., N. (2.12)

To incorporate the slack variables into the model to have certain relaxation in
the description, a set of ξi are added to the model in (2.12), as follows:

min R2 + C
∑
i

ξi,

s.t ∥Qxi − a∥22 ≤ R2 + ξi,

ξi ≥ 0; i = 1, 2, , ..., N,

(2.13)

where the term C > 0 is the trade-off hyper-parameter same as in SVDD. It regulates
the volume of the hyper-sphere and the fraction of data points to be outside the
description. The higher the value of C, the greater the fraction of data points outside
the hyper-sphere will be.

Similar to the SVDD problem, Lagrange multipliers are used to express the
problem in (2.13) in the Lagrangian form as

L(R, a, αi, ξi, γi,Q) = R2 + C
N∑
i=1

ξi −
N∑
i=1

γiξi

−
N∑
i=1

αi(R
2 + ξi − xT

i Q
TQxi + 2aTQxi − aTa). (2.14)

Equation (2.14) is to be minimized with respect to the radius R, center a, slack
variables ξi, and projection matrix Q, and maximized with respect to the Lagrange
multipliers αi, and γi. The equation which results from back-substituting (2.11) and
the end equations of minimizing and maximizing (2.14) into the (2.14) is given as
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L =
N∑
i=1

αiy
T
i yi −

N∑
i=1

N∑
j=1

αiy
T
i yjαj. (2.15)

In SSVDD, the alpha values and the projection matrix are interdependent com-
ponents that work together to define the decision boundary and the representation
of data points. The projection matrix affects the arrangement of data points in the
subspace, while the alpha values define the decision boundary within that subspace,
and therefore, they cannot be optimized simultaneously. For this reason, the equa-
tion (2.15) is maximized to get the optimized αi values first. The next step is to
find the optimal Q by optimizing the modified Lagrangian equation, given by

L =
N∑
i=1

αix
T
i Q

TQxi −
N∑
i=1

N∑
j=1

αix
T
i Q

TQxiαj − βΨ, (2.16)

where Ψ is the regularization term defining the class variance, and β is the weight
assigned to the Ψ. The mathematical form of the Ψ is

Ψ = tr(QXλλTXTQT ), (2.17)

where the trace operator tr(·) gives the sum of the elements on the main diagonal
of the matrix given in the argument, and the vector λ, belonging to the vector
space RN , is used to regulate or control the impact of each training sample on the
regularization term Ψ.

The gradient of (2.16), denoted by ∆L, is used to update Q, using the following
update rule:

Q← Q− η∆L, (2.18)

where η is a hyper-parameter that specifies the step of the ∆L.
The parameter λ, which directly affects the regularization term Ψ, can take many

different values where each value results in utilizing a different set of data points in
updating Q. The four different values for λ considered in this work are:

• If λi = 0, Ψ becomes irrelevant, and the optimization of Q is performed using
equation (2.15).

• If λi = 1, all training samples contribute equally to the Ψ.

• In the case where λi = αi, both the outliers and the samples belonging to the
class boundary are used in Ψ and in the update of Q.

• In the fourth case, λi = αC
i , where αC

i takes on the values αi if Qxi is a
support vector, and αC

i = 0 in other cases. That is, only the support vectors
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are considered for the class variance, and hence, in the update of Q.

Any test object x∗ can be categorized into its respective class based on its dis-
tance from the center of the hyper-sphere. Since the model is trained on data pro-
jected into lower dimensional space d, the test object x∗ must be projected into the
same subspace d using the optimized projection matrix Q in (2.11). The distance of
the d-dimensional test sample, denoted by y∗, from the center of the hyper-sphere
is calculated using

∥y∗ − a∥22 =
(
y∗Ty∗)− 2

N∑
i=1

αiy
∗Tyi +

N∑
i=1

N∑
j=1

αiαjy
T
i yj. (2.19)

If the distance is less than R2, the test sample x∗ is categorized into positive
class. Otherwise, it is considered from the negative class.

2.2.4 Ellipsoidal Support Vector Data Description

The training data is not always in a spherical shape, and therefore, to have a more
flexible shape around the target class, a model known as Ellipsoidal Support Vec-
tor Data Description (ESVDD), proposed by [52], uses hyper-ellipsoid instead of a
hyper-sphere. This is achieved by using the inverse of covariance matrix E in the
optimization problem, given as

min R2 + C
∑
i

ξi,

s.t (xi − a)T E−1 (xi − a) ≤ R2 + ξi,

ξi ≥ 0; i = 1, 2, , ..., N,

(2.20)

where C is the trade-off variable, a is the center of the hyper-ellipsoid, and ξi are
the slack variables. The inverse of the covariance matrix E is given by

E−1 = (XXT )−1. (2.21)

Let us denote the projected center of the hyper-ellipsoid in the new feature space
by u = E− 1

2a. The problem formulated in (2.20) is re-expressed in terms of u as
follows:
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min R2 + C
∑
i

ξi,

s.t
∥∥∥E− 1

2xi − u
∥∥∥2
2
≤ R2 + ξi,

ξi ≥ 0; i = 1, 2, , ..., N.

(2.22)

The corresponding Lagrangian for the problem (2.22) is

L = R2 + C
∑
i

ξi −
∑
i

γiξi

−
∑
i

αi(R
2 + ξi − (E− 1

2xi)
TE− 1

2xi + 2uTE− 1
2xi − uTu). (2.23)

Solving the Lagrange dual problem in (2.23) gives the equations for u and R as

u =
∑
i

αiE
− 1

2xi, (2.24)

and
R =

√
(E− 1

2 s)TE− 1
2 s− 2(E− 1

2 s)Tu+ uTu), (2.25)

where s is any support vector, that is, a data point for which the α value is between
0 and C.

To classify any test instance x∗ into either class, the distance between the test
instance and the center, denoted by R∗ is calculated using

R∗ =

√
(E− 1

2x∗)TE− 1
2x∗ − 2(E− 1

2x∗)Tu+ uTu). (2.26)

The test instance is classified as positive if R∗ ≤ R and vice versa.

2.2.5 Graph-Embedded One-Class Support Vector Machine

Graph-Embedded One-Class Support Vector Machine (GEOCSVM), proposed by
[53], uses geometric information in data to find an optimal hyperplane that distin-
guishes the target class from the other class. The mathematical form of the model
GEOCSVM is as follows:
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min
1

2
WTSW + C

N∑
i=1

ξi − b,

s.t. : WTϕ(xi) ≥ b− ξi,

ξi ≥ 0; i = 1, 2, ..., N,

(2.27)

where S is the matrix containing geometric information of the data, ϕ(xi is the
function that transforms the data from input feature space to the kernel space, W
is the vector normal to the hyperplane, C is the trade-off variable, b is the threshold,
and ξi are the slack variables. The geometric information is embedded into matrix
S by the Graph Laplacian matrix L, as

S = ΦLΦT , (2.28)

where Φ = [ϕ(x1), ϕ(x2), ..., ϕ(xN)]. Among the various options for the choice of the
graph, the within-class scatter matrix, denoted by Sw, is used to exploit the local
geometric relationships in the data. Mathematically, Sw is given by

Sw = XLwX
T = X

(
I−

C∑
c=1

1

Nc

1c1
T
c

)
XT , (2.29)

where C is the total number of classes, Nc is the number of instances belonging to
class c, and vector 1c contains elements that are equal to one for instances belonging
to class c, and all other elements are set to zero. A few other graphs, employed in
other models, are described in section (2.2.7).

The problem in (2.27) is redefined using a regularized S (denoted by S̄), and
training data. The S̄ is given by

S̄ = ΦLΦ
T
+ rI, (2.30)

whereas, the decision boundary W is expressed in terms of the training data [54] as

W = ΦB, (2.31)

where r is the regularization parameter, I is the identity matrix, and B is the
reconstruction vector of dimension N. The redefined version of the problem is as
follows:
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min
1

2
BT (KLwK+ rK)B + C

N∑
i=1

ξi − b,

s.t. : BTki ≥ b− ξi,

ξi ≥ 0; i = 1, 2, ..., N,

(2.32)

where K = ΦTΦ is the kernel matrix, and ki is a vector having dot products of
the ith column with all remaining columns of K. In order to solve the optimization
problem (2.32), we have to transform it into the Lagrangian form using the Lagrange
multipliers αi, and γi as

L(B, ξi, b, αi, γi) =
1

2
BT (KLwK+ rK)B + C

N∑
i=1

ξi − b

−
N∑
i=1

αi(BTki − b+ ξi)−
N∑
i=1

γiξi.

(2.33)

The solution of (2.33) gives the reconstruction vector B as

B = (KLwK+ rK)−1Kα, (2.34)

where α is the vector having the Lagrange multipliers αi. Equation (2.34) is used in
(2.31) to find the optimal decision boundary W. Any test object x∗ can be classified
into the respective class using

f(x∗) = WTϕ(x∗) = BTk∗ − b, (2.35)

where k∗ = ΦTϕ(x∗) = [k(x∗,x1), k(x
∗,x2), ..., k(x

∗,xN)] is the vector having the
dot products of the test object with all instances in the training data in feature
space. The test object is said to be from the target class if f(x∗) ≥ 0.

2.2.6 Graph-Embedded Support Vector Data Description

The goal here is to implement SVDD by using the geometric information present in
the data, that is, to use the geometric relationships in the data to form the smallest
possible hyper-sphere of radius R and center a around the target class such that it
contains most of the training data in the feature space. The problem formulated for
the Graph-Embedded Support Vector Data Description (GESVDD) model by [53]
is as follows:
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min R2 + C

N∑
i=1

ξi,

s.t. : (ϕ(xi)− a)T S̄−1(ϕ(xi)− a) ≤ R2 + ξi,

ξi ≥ 0; i = 1, 2, ..., N,

(2.36)

where S̄ is the regularized matrix containing the geometric relationships, ξi are the
slack variables, and C is the trade-off parameter. The problem in (2.36) can be
reformulated by defining a vector u = S̄

1
2a, as

min R2 + C
N∑
i=1

ξi,

s.t. :
∥∥∥S̄− 1

2ϕ(xi)− u
∥∥∥2
2
≤ R2 + ξi,

ξi ≥ 0; i = 1, 2, ..., N.

(2.37)

The Lagrangian form of (2.37), using Lagrange multipliers αi and γi, is given as

L(R, ξi,u, αi, γi) = R2 + C
N∑
i=1

ξi −
N∑
i=1

γiξi −
N∑
i=1

αi

(
R2 + ξi −

∥∥∥S̄− 1
2ϕ(xi)− u

∥∥∥2
2

)
.

(2.38)
By solving the Lagrangian equation, we get the equations for the vector u, a,

and an optimal radius R, given by

u =
N∑
i=1

αiS̄
− 1

2ϕ(xi), (2.39)

a = S̄−1Φα, (2.40)

and
R2 =

{
min

∥∥∥S̄− 1
2ϕ(xi)− u

∥∥∥2
2
,xi is a support vector

}
. (2.41)

Any test object x∗ is classified into the target class if f(x∗) ≥ 0, where f(x∗) is
given by

f(x∗) = R−
∥∥∥S̄− 1

2ϕ(x∗)− u
∥∥∥
2
. (2.42)
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2.2.7 Graph-Embedded Subspace Support Vector Data De-
scription

To incorporate the geometric relationships in data with the projection matrix used
in (2.11) to transform the data into a lower dimensional subspace and train the
model using the graph information to form a boundary around the target class
with radius R, and center a, a model known as Graph-Embedded Subspace Support
Vector Data Description (GESSVDD), is proposed by [55]. The data in the D feature
space is projected to the lower d-dimensional subspace. The data is assumed to be
normalized by subtracting the mean of the training data. The problem for the model
is formulated as follows:

min R2 + C
N∑
i=1

ξi,

s.t. : (Qxi − a)TSQ
−1(Qxi − a) ≤ R2 + ξi,

ξi ≥ 0; i = 1, 2, ..., N,

(2.43)

where SQ is the matrix with the geometric data relationships in the projected sub-
space, Q is the projection matrix from (2.11), C is the trade-off, and ξi are the slack
variables. The geometric information of the data in the d-dimensional subspace is
embedded into the S matrix by using L and Q, as given by

SQ = QXLxX
TQT = QSxQ

T , (2.44)

where X is the matrix having all of the training instances, and Lx denotes the
availability of different L in the literature.

The optimization problem (2.43) is reformulated using a vector u = SQ
− 1

2a as

min R2 + C
N∑
i=1

ξi,

s.t. :
∥∥∥SQ

− 1
2Qxi − u

∥∥∥2
2
≤ R2 + ξi,

ξi ≥ 0; i = 1, 2, ..., N.

(2.45)

where u is the center of the description in the projected subspace. The projected
data vectors in this new feature space are represented as zi = SQ

− 1
2Qxi. Similar to

the previous methods, the problem will be solved using the Lagrange multipliers αi,
and γi. The Lagrangian form of the problem is
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L = R2 + C

N∑
i=1

ξi −
N∑
i=1

αi ( R
2 + ξi−

(SQ
− 1

2Qxi)
TSQ

− 1
2Qxi + 2uTSQ

− 1
2Qxi − uTu )−

N∑
i=1

γiξi. (2.46)

The solution of (2.46) gives us the αi values for each instance, and the equations
for the projected center of the hyper-sphere u and the radius R as given by

u =
N∑
i=1

αiSQ
− 1

2Qxi, (2.47)

and
R =

√
(SQ

− 1
2Qs)TSQ

− 1
2Qs− 2(SQ

− 1
2Qs)Tu+ uTu. (2.48)

The α value depicts the location of the data point in the projected subspace. The
data point lies inside the boundary of the hyper-sphere if the α value is zero, lies
on the boundary if 0 ≥ α ≤ C, or outside the boundary if α > C. The matrix s

contains the support vectors which are the data points corresponding to the α values
between 0 and C.

Any test object x∗ that has to be classified in either class must be transformed
to the d-dimensional subspace using

z∗ = SQ
− 1

2Qx∗, (2.49)

and then the distance of the projected test data point from the center in the projected
subspace is calculated. The test object is classified into the positive class based on
the decision rule given by

∥z∗ − u∥22 ≤ R2, (2.50)

that is, if the distance of the test object from the center is less than or equal to the
radius R.

As from equation (2.44), Sx = XLxX
T , we can use different graphs, Lx, which

will result in different variants of the model. Some of the graphs that we have used
in our study are:

• Using the identity matrix, I, instead of Lx. This variant is denoted by
GESSVDD-I in our experiments and results.

• Replacing Sx with 1
N
St, which is named as PCA graph, and therefore, the

variant is denoted by GESSVDD-PCA in results. The total scatter matrix St,
which defines the scatter of data points in the feature space, is expressed as
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St = XLtX
T = X(I− 1

N
11T )XT , (2.51)

where I is an identity matrix, 1 is a vector of ones, and N is the number of
data points.

• The geometric information in the data is also exploited using k-nearest neigh-
bor (kNN). In this case, the corresponding Sx becomes

Sx = SkNN = XLkNNX
T , (2.52)

where LkNN = DkNN −AkNN and D and A are the diagonal and adjacency
matrices, respectively. The A matrix has 1 if the data point is in the ”neigh-
borhood” and 0 otherwise. Mathematically,

[Aij] =

{
1, if xi ∈ Nj or xj ∈ Ni

0, otherwise

}
, (2.53)

where Ni denotes the neighborhood of the ith data point. This graph is
denoted by GESSVDD-kNN in our results.

Moreover, each of these variants has been solved using three approaches: gradient-
based where we use the gradient of L and update Q as in (2.18), spectral, where we
solve eigenvalue problem Sαq = vSxq and update Q, or spectral regression-based
method, where we solve eigenvalue problem Lαt = vLxt and update Q. The q and
t are the eigenvectors for the respective problems, and the v is the eigenvalue in
both cases. The equations for Sα and Lα are given as

Sα = XLαX
T, (2.54)

and
Lα = Ā−ααT , (2.55)

where α is a vector containing αi values, and Ā is a diagonal matrix with αi values.
As there is no universally recommended approach to exclusively maximize or

minimize each solution, we conducted experiments employing both strategies, re-
ferred to as ”max” and ”min”, within the context of subspace-based model. In the
gradient-based technique, ascending (Q← Q+ η∆L) and descending (as in (2.18))
steps in the update rule are applied for the purpose of maximizing and minimizing,
respectively. Conversely, for the remaining two methods, the selection of the highest
and lowest sets of positive eigenvalues and their corresponding eigenvectors is used
for maximizing and minimizing, respectively.
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2.3 Non-linear Projection Trick

A technique known as Non-Linear Projection Trick (NPT), is applied to use all
of the models mentioned above in a non-linear setting. Unlike other non-linear
transformation methods, NPT explicitly maps the training data into a kernel space
using eigenvalue decomposition of the kernel matrix [56], which is formulated using
the kernel function. One of the many such kernel functions is the radial basis function
(RBF), given by

Kij = exp

(
−
∥xi − xj∥22

2σ2

)
, (2.56)

where σ is the hyper-parameter that defines the width of the kernel. The kernel
matrix K in (2.56) is centralized as

K̂ = (I− J)K(I− J), (2.57)

where I is an identity matrix of dimensions NxN and J is calculated using

J =
1

N
11T , (2.58)

where 1 is an N -dimensional vector having 1 as its elements. The eigenvalue de-
composition is then performed on K̂, given by

K̂ = UΛUT , (2.59)

which gives a diagonal matrix Λ containing non-negative eigenvalues and a ma-
trix U containing the corresponding eigenvectors. Finally, the data in the reduced
dimensional kernel space is obtained using

Φ = Λ
1
2UT , (2.60)

where Φ represents the transformed data. This Φ can be used instead of the original
data matrix X in any linear method to achieve a non-linear transformation. The
transformation due to any kernel method like NPT is shown in Figure 2.2.

2.4 Performance measures

Performance measures are essential in evaluating the effectiveness and accuracy of
machine learning models. A broad spectrum of performance measures is available,
and depending on the nature of the data and the task at hand, different measures
are used. For OCC or any binary classification task, all measures, in one way or
another, count the number of correctly classified objects from a positive and negative
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Figure 2.2 Kernel transformation

class. The counts used for these measures are:

• True positives: True positives, denoted by tp, is the count of correctly clas-
sified positive class objects.

• True negatives: True negatives, denoted by tn, is the count of correctly
classified negative class objects.

• False positives: It represents the number of instances from the negative class
that are classified into the positive class. It is denoted by fp.

• False negatives: It represents the number of instances from the positive class
that are classified into the negative class. It is denoted by fn.

Here are some of the common performance measures for machine learning shown
in the context of binary class classification problems:

2.4.1 Accuracy

Accuracy is a widely used performance measure that calculates the proportion of
correctly predicted instances, both positive and negative, over the total number
of instances. It provides a general overview of how well the model is performing.
Mathematically, it is given by

Accuracy =
tp+ tn

N
, (2.61)

where N = tn+ tp+ fn+ fp.
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2.4.2 Precision

Precision measures the proportion of true positives out of all predicted positives. It
indicates the model’s ability to correctly identify positive instances and avoid false
positives. It is expressed as

Precision =
tp

tp+ fp
. (2.62)

2.4.3 True positive rate

The true positive rate, denoted by tpr, calculates the proportion of true positives
out of all actual positive instances. It quantifies the model’s ability to identify all
relevant positive instances. True positive rate, also known as sensitivity or recall, is
given by

tpr =
tp

tp+ fn
. (2.63)

2.4.4 True negative rate

The true negative rate, denoted by tnr, measures the proportion of true negatives
out of all actual negative instances. It is useful in binary classification tasks where
identifying true negatives is of primary importance. True negative rate, also known
as specificity, is expressed as

tnr =
tn

fp+ tn
. (2.64)

2.4.5 F-measure

The F-measure, also known as F1-measure or F-score, is the harmonic mean of
precision and recall.It is often used while working with imbalanced datasets as it
provides a balance between precision and recall and quantifies the model’s ability
to identify positive instances correctly (precision) and to capture all actual positive
instances (recall). Mathematically, the F-measure is written as

F −measure = 2 x precision × tpr

precision+ tpr
. (2.65)

2.4.6 G-mean

The G-mean, or geometric mean, is a performance measure that combines the eval-
uation of both sensitivity and specificity in binary classification tasks. It provides
a balanced assessment of a model’s ability to correctly identify both positive and



26

negative instances. Like F-measure, it is often used in classification problems having
highly imbalanced datasets. It can be expressed as

G−mean =
√
tpr × tnr. (2.66)
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3 Datasets and methodology

3.1 Datasets

In this thesis, four different datasets are used for detecting and predicting fraudulent
credit card transactions. All of these datasets have been taken from Kaggle1 open-
source datasets. The details of each of these datasets are given below, which are
summarized in Table 3.1.

The dataset-1 [57] was collected for research on data mining and fraud detec-
tion by the Worldline and Machine Learning Group at Université Libre de Bruxelles
(ULB). The dataset consists of credit card transactions made by European card-
holders over the span of two days in September 2013. It contains a total of 284,807
transactions with 29 features. Out of the 29 features, 28 are the result of PCA
(principal component analysis) transformation, and the other feature is the amount
of transaction. The background information about the original features from which
these 28 have been extracted is confidential and, therefore, not publicly available.
Moreover, the dataset is highly imbalanced, with only 492 fraudulent transactions,
which make up about 0.172% of all transactions.

The dataset-2 used contains the transactions of digital payments. It has 7 fea-
tures and 1 million instances, of which only 87,403 are fraudulent, and the rest are
normal (non-fraudulent) transactions. So the dataset is highly imbalanced with a
ratio of 0.087.

The dataset-3 is generated synthetically using a simulator called PaySim [58]. A
sample of real mobile transactions for a period of one month is used to generate this
synthetic dataset. It has 5 features and 1,048,575 transactions, out of which only
1142 are fraudulent, which makes the skewness ratio 0.001.

A dataset from some banks for fraud detection, available on Kaggle, is used as
dataset-4 in this study. It has 112 features and 20,468 transactions, out of which
only 5437 are fraudulent, making up 26.6% of the dataset.

Dataset Total
Instances

Resampled
Training Instances

Testing
Instances Features Imbalance-ratio

1 284,807 3144 85,443 29 0.12
2 1,000,000 3000 300,000 7 0.2
3 1,048,575 3000 314573 5 0.2
4 20,468 3000 6141 112 0.2

Table 3.1 Descriptive statistics of datasets used. The imbalance-ratio is the ratio of
fraudulent to normal transactions in the resampled training data.

1https://www.kaggle.com/
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3.2 Methodology

A general overview of the process as a whole is described in Figure 3.1.

Figure 3.1 Flowchart of the general methodology

3.2.1 Data pre-processing

All of the datasets used are divided into train and test data based on the 70-30 split
rule. The target class in the 70% train data is first used to calculate the mean and
standard deviation, which are used for normalization. Since most models have the
complexity of O(N3) [59], it is not possible to train the model with the positive
class of 70% train dataset because of the high number of instances. So, the training
dataset is resampled in a way to maintain the skewed nature of the data. For this
reason, the random resampling is done to extract 500 fraudulent (or a maximum
number of fraudulent instances, if the maximum is less than 500) and 2500 (except
for dataset-1 where we have extracted 3144) normal transactions, which gives the
ratio of fraudulent to normal transactions of 0.2, which is shown in Table 3.1. This
reduced train dataset is then normalized using the mean and standard deviation
calculated in the beginning.

3.2.2 Different variants of models selected

The datasets after prepossessing in 3.2.1 are used to train the models described in
2.2. Each of the algorithms used has different variants. On a general level, each has
a linear and non-linear version (except GEOCSVM and GESVDD, which have only
a non-linear version), and a few algorithms have many other variants depending
on the choice of regularization term or some other criterion. The OCSVM, SVDD,
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and ESVDD have only linear and non-linear while the SSVDD and graph-based
SSVDD, in addition to the linear and non-linear, also have other variants. The
NPT, discussed in 2.3, is used to implement the non-linear version of these models.

Based on the Ψ term, which depends on the choice of value for λ, the four different
variants of SSVDD are mentioned in section 2.2.3. Based on the update rule used for
updating the projection matrix Q, SSVDD has two kinds of variants: one, referred
to as minimization, in which the update rule is the same as in (2.18), and second,
referred to as maximization, in which the update rule is as Q ← Q + η∆L. So in
total, 16 different variants of the SSVDD model have been implemented.

Like the SSVDD, GESSVDD has linear, non-linear, and minimization, maxi-
mization variants. Apart from that, as discussed in 2.2.7, GESSVDD has been
implemented using three different graphs, and each of these three versions has been
solved using all three solving techniques. So, altogether, 36 different variants for
GESSVDD are implemented and compared during this study.

3.2.3 Models training

In order to train the models, the hyper-parameters are fine-tuned by using 5-fold
cross validation. A range is decided for every hyper-parameter depending upon its
scope, and the performance of the model using each value in the range is evaluated
and compared with each other to get the best-performing value in the range for that
specific parameter. All of the performance measures described in 2.4 are reported
for every model. Since the g-mean provides a balanced assessment of both positive
and negative instances, it is used as a metric of evaluation in cross-validation and
in the comparison of models after testing. The hyper-parameters and their range of
values are given below:

• C → [0.1 0.2 0.3 0.4 0.5].

• d → [1 2 3 4 5 10 20].

• β → [0.01, 0.1, 1, 10, 100].

• η → [0.1, 1, 10, 100, 1000].

• σ → [0.1, 1, 10, 100, 1000].

The number of iterations for all iterative methods and the number of neighbors for
the kNN graph are both set to 5.
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4 Results and discussion
The performance based on G-mean for linear and non-linear versions of all mod-
els (and their variants) for each of the four datasets are given in Tables 4.1 and
4.2 whereas the results for the rest of the measures described in 2.4 are in Ap-

pendix. From the analysis of Tables 4.1 and 4.2, it is found that for dataset-1,
the GESSVDD model performed better. The linear version and the minimization-
update rule for the GESSVDD rank higher than the respective counter-versions.
It is also noticed that the kNN graph and the gradient-based solution technique
outperform all other counter-variants for this dataset. For all other datasets, a
graph-based non-linear model GEOCSVM performed better than all other models.

The different variants of SSVDD, based on the regularization term, Ψ, were an-
alyzed, and it is found that Ψ0 gives better results for dataset 1. In contrast, for
all other datasets, all variants of Ψ work the same. Also, an overall comparison was
made on the basis of the average of g-mean, and it is found that Ψ0 ranks higher than
the other versions. This shows that for the datasets in consideration, the regulariza-
tion term adds no extra information, and the problem could be optimized by solving
the Lagrange equation without the added regularization term (2.15) formulated for
the respective model.

In the analysis of graph-based vs. non-graph-based models, it is found that
for our considered datasets, the geometric knowledge present in the data added
extra information, and hence, graph-embedded models, in general, perform better
than the non-graph-based models. Furthermore, it is seen that the kNN graph works
significantly better than the other considered graphs. The eigenvalue decomposition
and gradient-based solution both work almost the same for all datasets.

In each dataset, few models have very high tnr and very low tpr or vice versa.
One example is the SSVDD with Ψ1 for dataset 1, which shows a tpr of 1.00 and
tnr of 0.00. Such models overfit the data on the positive class; therefore, in testing,
it fails to predict the objects from the negative class (fraudulent transactions). In
the opposite case, models like ESVDD for dataset 1, where tpr is 0.0, and tnr is 1.0,
form an extremely small boundary during training, which practically excludes all of
the positive instances along with the negative ones.

For almost all datasets, SSVDD shows behavior that for the linear versions of
respective variants, the tpr is quite high, and the tnr is quite low. In contrast, the
non-linear versions of the same variants exhibit an opposite behavior (high tnr and
low tpr). This shows that the linear models struggle to capture the complexities
of the data distribution and are sensitive to outliers that are close to the decision
boundary, leading to a high tpr and a low tnr. On the other hand, the NPT,
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employed to capture the non-linear relationships in the data, makes a flexible deci-
sion boundary which makes the model sensitive to the positive class, and therefore,
misclassifies the normal transactions as fraudulent ones.

Overall, based on the experiments and results, a model that performed reliably
(on average) for every dataset is the linear version of GESSVDD with the kNN graph,
gradient-based solution, and minimization-update rule. Moreover, the tnr and tpr
values are also reasonable across all datasets, which shows that this model can ac-
curately detect (in most cases) both fraudulent and normal transactions. Therefore,
we recommend this model for the given datasets for credit card fraud detection.

Model G-mean Average of
G-meansDataset-1 Dataset-2 Dataset-3 Dataset-4

GESSVDD-kNN-G-min 0.906 0.551 0.603 0.644 0.676
GESSVDD-kNN-G-max 0.849 0.541 0.603 0.691 0.671
GESSVDD-kNN-E-min 0.640 0.326 0.697 0.598 0.565
GESSVDD-kNN-E-max 0.686 0.692 0.603 0.501 0.620
GESSVDD-kNN-S-min 0.296 0.472 0.728 0.410 0.477
GESSVDD-kNN-S-max 0.296 0.214 0.638 0.472 0.405
GESSVDD-PCA-G-min 0.432 0.282 0.595 0.074 0.346
GESSVDD-PCA-G-max 0.644 0.192 0.605 0.070 0.378
GESSVDD-PCA-E-min 0.777 0.177 0.624 0.055 0.408
GESSVDD-PCA-E-max 0.720 0.186 0.595 0.082 0.396
GESSVDD-PCA-S-min 0.164 0.178 0.595 0.241 0.294
GESSVDD-PCA-S-max 0.082 0.193 0.595 0.243 0.279
GESSVDD-I-G-min 0.116 0.209 0.595 0.401 0.330
GESSVDD-I-G-max 0.000 0.123 0.595 0.527 0.311
GESSVDD-I-E-min 0.725 0.170 0.624 0.434 0.488
GESSVDD-I-E-max 0.493 0.186 0.595 0.429 0.426
GESSVDD-I-S-min 0.164 0.086 0.595 0.085 0.233
GESSVDD-I-S-max 0.082 0.205 0.610 0.113 0.252
SSVDD-Ψ0-min 0.438 0.204 0.407 0.150 0.300
SSVDD-Ψ0-max 0.391 0.162 0.404 0.123 0.270
SSVDD-Ψ1-min 0.000 0.204 0.407 0.150 0.190
SSVDD-Ψ1-max 0.000 0.162 0.404 0.123 0.172
SSVDD-Ψ2-min 0.183 0.204 0.407 0.150 0.236
SSVDD-Ψ2-max 0.183 0.162 0.404 0.123 0.218
SSVDD-Ψ3-min 0.182 0.204 0.407 0.150 0.236
SSVDD-Ψ3-max 0.182 0.162 0.404 0.123 0.218
OCSVM 0.446 0.559 0.227 0.355 0.397
SVDD 0.198 0.185 0.404 0.216 0.251
ESVDD 0.000 0.187 0.595 0.035 0.204

Table 4.1 Performance of linear models based on G-mean across all datasets.
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Model G-mean Average of
G-meansDataset-1 Dataset-2 Dataset-3 Dataset-4

GESSVDD-kNN-G-min 0.329 0.264 0.570 0.283 0.362
GESSVDD-kNN-G-max 0.070 0.314 0.559 0.345 0.322
GESSVDD-kNN-E-min 0.007 0.346 0.576 0.321 0.313
GESSVDD-kNN-E-max 0.000 0.346 0.576 0.321 0.311
GESSVDD-kNN-S-min 0.522 0.365 0.580 0.052 0.380
GESSVDD-kNN-S-max 0.550 0.365 0.580 0.066 0.390
GESSVDD-PCA-G-min 0.003 0.110 0.592 0.347 0.263
GESSVDD-PCA-G-max 0.446 0.019 0.592 0.335 0.348
GESSVDD-PCA-E-min 0.181 0.591 0.547 0.114 0.358
GESSVDD-PCA-E-max 0.000 0.301 0.533 0.113 0.237
GESSVDD-PCA-S-min 0.417 0.627 0.227 0.121 0.348
GESSVDD-PCA-S-max 0.341 0.627 0.579 0.121 0.417
GESSVDD-I-G-min 0.003 0.060 0.555 0.192 0.203
GESSVDD-I-G-max 0.494 0.043 0.601 0.323 0.365
GESSVDD-I-E-min 0.007 0.360 0.557 0.068 0.248
GESSVDD-I-E-max 0.000 0.360 0.497 0.133 0.247
GESSVDD-I-S-min 0.151 0.268 0.557 0.469 0.361
GESSVDD-I-S-max 0.000 0.268 0.557 0.129 0.238
SSVDD-Ψ0-min 0.215 0.384 0.089 0.398 0.272
SSVDD-Ψ0-max 0.208 0.380 0.244 0.398 0.308
SSVDD-Ψ1-min 0.194 0.384 0.089 0.398 0.266
SSVDD-Ψ1-max 0.173 0.380 0.244 0.398 0.299
SSVDD-Ψ2-min 0.193 0.384 0.089 0.398 0.266
SSVDD-Ψ2-max 0.386 0.380 0.244 0.398 0.352
SSVDD-Ψ3-min 0.197 0.384 0.089 0.398 0.267
SSVDD-Ψ3-max 0.208 0.380 0.244 0.398 0.308
OCSVM 0.131 0.574 0.102 0.662 0.367
SVDD 0.198 0.073 0.039 0.179 0.122
ESVDD 0.214 0.048 0.592 0.108 0.241
GEOCSVM 0.183 0.937 0.791 0.714 0.656
GESVDD 0.215 0.913 0.593 0.694 0.604

Table 4.2 Performance of non-linear models based on G-mean across all datasets.
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5 Conclusion
Credit card fraud detection is still a challenge, even in this era of advanced and
AI-driven technology. This is owed to the imbalanced nature of data and the ever-
evolving techniques of fraud. Furthermore, the curse of dimensionality is also a
problem that has to be dealt with in a way to let the model itself extract mean-
ingful features. To address these inherent properties of the problem in a way to
not synthetically alter the proportion of data classes, we use OCC algorithms, and
specifically subspace-based models which also cope with the high-dimensionality
problem, to efficiently and effectively learn the patterns in the data and predict the
fraudulent transactions and eventually mitigate the losses caused by such fraudulent
activities.

For this thesis, we used four datasets taken from Kaggle. These datasets are
highly imbalanced, with the percentage of minority class instances as low as 0.001%.
All of the datasets have a high number of total instances which required a very high
computational power, given that the models implemented in this thesis have the
complexity of O(N3). Therefore, the datasets were resampled while keeping the
imbalanced nature of the data. We used these resampled datasets to train 60 (in
total) different variants of SVM, SVDD, SSVDD, graph-embedded versions of these
models, and ESVDD.

From the results, we found that the linear version of GESSVDD with kNN
graph, gradient-based solution, and minimization-update rule works better than all
other models and variants for all datasets. The cost of miss-classifying a fraudulent
transaction as normal is high in terms of monetary value, and the cost of miss-
classifying a normal one as a fraudulent transaction is high in terms of customer
trust and satisfaction. Therefore, the miss-classification of both classes’ instances
is crucial and must be avoided. For this reason, we chose g-mean as an evaluation
metric because it provides a balanced assessment of both positive and negative
instances.

However, one of the shortcomings we faced during this thesis is the high com-
putational power needed to train the models. These models have to be improved in
terms of complexity and efficiency to be able to get trained with fewer resources in
terms of time and computing power. Moreover, another limitation of this work is the
unavailability of real-world datasets. The banks and financial institutions, because
of confidentiality issues, do not publish real data publicly. In some cases, like in
the first dataset we used, the original features of the dataset have been transformed
using some feature-extraction process (in our case PCA) and then anonymized using
random names, which makes it difficult to interpret and extract meaningful features
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from the data using hand-crafted methods. This transformation and anonymization
also affect the interpretation of the results and to infer meaningful insights from the
results.

For future work, the existing models can be modified in terms of complexity
to work efficiently in real-time. Moreover, in the quest to get better results, these
models can also be modified by using different kernels (or a combination of kernels)
and or different graphs (or a combination of different graphs). Many other versions
of SSVDD can be derived and implemented based on introducing new regularization
terms. Also, the existing and the derived versions of SSVDD can be infused with
the geometric information in data to get many different graph-based solutions to the
problem at hand. Furthermore, all subspace-based models (SSVDD, GESSVDD,
and their variants) can be implemented using a newly proposed solution based on
Newton’s method [60]. Moreover, the credit card fraud detection system can be
adapted to the Multi-modal Subspace Support Vector Data Description [61] settings
for future reference.
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A Appendix

Model Accuracy tpr tnr Precision F-measure
GESSVDD-kNN-G-min 0.855 0.855 0.959 1.000 0.922
GESSVDD-kNN-G-max 0.987 0.988 0.730 1.000 0.994
GESSVDD-kNN-E-min 0.993 0.994 0.412 0.999 0.996
GESSVDD-kNN-E-max 0.995 0.996 0.473 0.999 0.997
GESSVDD-kNN-S-min 0.998 1.000 0.088 0.998 0.999
GESSVDD-kNN-S-max 0.998 1.000 0.088 0.998 0.999
GESSVDD-PCA-G-min 0.196 0.195 0.959 1.000 0.326
GESSVDD-PCA-G-max 0.450 0.449 0.926 1.000 0.619
GESSVDD-PCA-E-min 0.993 0.993 0.608 0.999 0.996
GESSVDD-PCA-E-max 0.996 0.996 0.520 0.999 0.998
GESSVDD-PCA-S-min 0.998 1.000 0.027 0.998 0.999
GESSVDD-PCA-S-max 0.998 1.000 0.007 0.998 0.999
GESSVDD-I-G-min 0.996 0.998 0.014 0.998 0.998
GESSVDD-I-G-max 0.998 1.000 0.000 0.998 0.999
GESSVDD-I-E-min 0.997 0.998 0.527 0.999 0.998
GESSVDD-I-E-max 0.997 0.999 0.243 0.999 0.999
GESSVDD-I-S-min 0.998 1.000 0.027 0.998 0.999
GESSVDD-I-S-max 0.998 1.000 0.007 0.998 0.999
SSVDD-Ψ0-min 0.216 0.215 0.892 0.999 0.354
SSVDD-Ψ0-max 0.172 0.170 0.899 0.999 0.291
SSVDD-Ψ1-min 0.998 1.000 0.000 0.998 0.999
SSVDD-Ψ1-max 0.998 1.000 0.000 0.998 0.999
SSVDD-Ψ2-min 0.049 0.048 0.689 0.989 0.092
SSVDD-Ψ2-max 0.049 0.048 0.689 0.989 0.092
SSVDD-Ψ3-min 0.049 0.048 0.689 0.989 0.092
SSVDD-Ψ3-max 0.049 0.048 0.689 0.989 0.092
OCSVM 0.919 0.920 0.216 0.999 0.958
SVDD 0.050 0.048 0.811 0.993 0.092
ESVDD 0.002 0.000 1.000 0.000 0.000

Table A.1 Results for the linear models using dataset-1.
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Model Accuracy tpr tnr Precision F-measure
GESSVDD-kNN-G-min 0.998 1.000 0.108 0.998 0.999
GESSVDD-kNN-G-max 0.007 0.005 0.905 0.970 0.011
GESSVDD-kNN-E-min 0.002 0.000 0.919 0.294 0.000
GESSVDD-kNN-E-max 0.002 0.000 1.000 0.000 0.000
GESSVDD-kNN-S-min 0.984 0.985 0.277 0.999 0.992
GESSVDD-kNN-S-max 0.951 0.952 0.318 0.999 0.975
GESSVDD-PCA-G-min 0.002 0.000 1.000 1.000 0.000
GESSVDD-PCA-G-max 0.950 0.952 0.209 0.999 0.975
GESSVDD-PCA-E-min 0.049 0.048 0.676 0.988 0.092
GESSVDD-PCA-E-max 0.998 1.000 0.000 0.998 0.999
GESSVDD-PCA-S-min 0.951 0.953 0.182 0.999 0.975
GESSVDD-PCA-S-max 0.952 0.954 0.122 0.998 0.976
GESSVDD-I-G-min 0.002 0.000 0.980 0.250 0.000
GESSVDD-I-G-max 0.950 0.952 0.257 0.999 0.975
GESSVDD-I-E-min 0.002 0.000 0.905 0.222 0.000
GESSVDD-I-E-max 0.998 1.000 0.000 0.998 0.999
GESSVDD-I-S-min 0.025 0.024 0.966 0.998 0.046
GESSVDD-I-S-max 0.998 1.000 0.000 0.998 0.999
SSVDD-Ψ0-min 0.049 0.048 0.966 0.999 0.091
SSVDD-Ψ0-max 0.050 0.048 0.899 0.996 0.092
SSVDD-Ψ1-min 0.050 0.048 0.777 0.992 0.092
SSVDD-Ψ1-max 0.032 0.031 0.980 0.999 0.059
SSVDD-Ψ2-min 0.050 0.048 0.770 0.992 0.092
SSVDD-Ψ2-max 0.998 1.000 0.149 0.999 0.999
SSVDD-Ψ3-min 0.050 0.048 0.804 0.993 0.092
SSVDD-Ψ3-max 0.050 0.048 0.899 0.996 0.092
OCSVM 0.019 0.017 1.000 1.000 0.034
SVDD 0.050 0.048 0.811 0.993 0.092
ESVDD 0.048 0.047 0.980 0.999 0.089
GEOCSVM 0.036 0.034 0.980 0.999 0.066
GESVDD 0.048 0.047 0.993 1.000 0.089

Table A.2 Results for the non-linear models using dataset-1.
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Model Accuracy tpr tnr Precision F-measure
GESSVDD-kNN-G-min 0.402 0.359 0.846 0.961 0.523
GESSVDD-kNN-G-max 0.636 0.654 0.448 0.925 0.766
GESSVDD-kNN-E-min 0.259 0.242 0.440 0.819 0.373
GESSVDD-kNN-E-max 0.820 0.844 0.567 0.953 0.896
GESSVDD-kNN-S-min 0.527 0.538 0.414 0.906 0.675
GESSVDD-kNN-S-max 0.128 0.047 0.974 0.949 0.089
GESSVDD-PCA-G-min 0.915 0.995 0.080 0.919 0.955
GESSVDD-PCA-G-max 0.911 0.995 0.037 0.915 0.953
GESSVDD-PCA-E-min 0.910 0.994 0.032 0.915 0.953
GESSVDD-PCA-E-max 0.913 0.997 0.035 0.915 0.954
GESSVDD-PCA-S-min 0.912 0.997 0.032 0.915 0.954
GESSVDD-PCA-S-max 0.912 0.996 0.037 0.915 0.954
GESSVDD-I-G-min 0.757 0.824 0.053 0.901 0.861
GESSVDD-I-G-max 0.911 0.997 0.015 0.914 0.953
GESSVDD-I-E-min 0.910 0.995 0.029 0.914 0.953
GESSVDD-I-E-max 0.913 0.997 0.035 0.915 0.954
GESSVDD-I-S-min 0.907 0.994 0.008 0.913 0.951
GESSVDD-I-S-max 0.913 0.996 0.042 0.916 0.954
SSVDD-Ψ0-min 0.913 0.996 0.042 0.916 0.954
SSVDD-Ψ0-max 0.912 0.997 0.026 0.914 0.954
SSVDD-Ψ1-min 0.913 0.996 0.042 0.916 0.954
SSVDD-Ψ1-max 0.912 0.997 0.026 0.914 0.954
SSVDD-Ψ2-min 0.913 0.996 0.042 0.916 0.954
SSVDD-Ψ2-max 0.912 0.997 0.026 0.914 0.954
SSVDD-Ψ3-min 0.913 0.996 0.042 0.916 0.954
SSVDD-Ψ3-max 0.912 0.997 0.026 0.914 0.954
OCSVM 0.463 0.440 0.712 0.941 0.599
SVDD 0.912 0.997 0.034 0.915 0.954
ESVDD 0.912 0.996 0.035 0.915 0.954

Table A.3 Results for the linear models using dataset-2.
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Model Accuracy tpr tnr Precision F-measure
GESSVDD-kNN-G-min 0.914 0.994 0.070 0.918 0.955
GESSVDD-kNN-G-max 0.179 0.111 0.885 0.910 0.199
GESSVDD-kNN-E-min 0.226 0.185 0.647 0.846 0.304
GESSVDD-kNN-E-max 0.226 0.185 0.647 0.846 0.304
GESSVDD-kNN-S-min 0.311 0.297 0.447 0.849 0.441
GESSVDD-kNN-S-max 0.311 0.297 0.447 0.849 0.441
GESSVDD-PCA-G-min 0.912 0.999 0.012 0.913 0.954
GESSVDD-PCA-G-max 0.087 0.000 0.997 0.542 0.001
GESSVDD-PCA-E-min 0.430 0.384 0.908 0.978 0.552
GESSVDD-PCA-E-max 0.233 0.214 0.422 0.795 0.338
GESSVDD-PCA-S-min 0.508 0.478 0.822 0.966 0.640
GESSVDD-PCA-S-max 0.508 0.478 0.822 0.966 0.640
GESSVDD-I-G-min 0.087 0.004 0.956 0.474 0.008
GESSVDD-I-G-max 0.088 0.002 0.984 0.538 0.004
GESSVDD-I-E-min 0.250 0.217 0.596 0.849 0.346
GESSVDD-I-E-max 0.250 0.217 0.596 0.849 0.346
GESSVDD-I-S-min 0.151 0.081 0.883 0.879 0.149
GESSVDD-I-S-max 0.151 0.081 0.883 0.879 0.149
SSVDD-Ψ0-min 0.228 0.162 0.913 0.951 0.277
SSVDD-Ψ0-max 0.241 0.192 0.753 0.890 0.315
SSVDD-Ψ1-min 0.228 0.162 0.913 0.951 0.277
SSVDD-Ψ1-max 0.241 0.192 0.753 0.890 0.315
SSVDD-Ψ2-min 0.228 0.162 0.913 0.951 0.277
SSVDD-Ψ2-max 0.241 0.192 0.753 0.890 0.315
SSVDD-Ψ3-min 0.228 0.162 0.913 0.951 0.277
SSVDD-Ψ3-max 0.241 0.192 0.753 0.890 0.315
OCSVM 0.447 0.413 0.797 0.955 0.577
SVDD 0.069 0.007 0.713 0.214 0.014
ESVDD 0.085 0.002 0.952 0.348 0.005
GEOCSVM 0.891 0.881 0.997 1.000 0.936
GESVDD 0.870 0.860 0.969 0.997 0.923

Table A.4 Results for the non-linear models using dataset-2.
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Model Accuracy tpr tnr Precision F-measure
GESSVDD-kNN-G-min 0.996 0.997 0.364 0.999 0.998
GESSVDD-kNN-G-max 0.996 0.997 0.364 0.999 0.998
GESSVDD-kNN-E-min 0.722 0.722 0.673 1.000 0.838
GESSVDD-kNN-E-max 0.996 0.997 0.364 0.999 0.998
GESSVDD-kNN-S-min 0.547 0.546 0.971 1.000 0.707
GESSVDD-kNN-S-max 0.420 0.419 0.971 1.000 0.591
GESSVDD-PCA-G-min 0.996 0.996 0.356 0.999 0.998
GESSVDD-PCA-G-max 0.996 0.997 0.367 0.999 0.998
GESSVDD-PCA-E-min 0.996 0.996 0.391 0.999 0.998
GESSVDD-PCA-E-max 0.996 0.996 0.356 0.999 0.998
GESSVDD-PCA-S-min 0.996 0.996 0.356 0.999 0.998
GESSVDD-PCA-S-max 0.996 0.996 0.356 0.999 0.998
GESSVDD-I-G-min 0.996 0.996 0.356 0.999 0.998
GESSVDD-I-G-max 0.996 0.996 0.356 0.999 0.998
GESSVDD-I-E-min 0.996 0.996 0.391 0.999 0.998
GESSVDD-I-E-max 0.996 0.996 0.356 0.999 0.998
GESSVDD-I-S-min 0.996 0.996 0.356 0.999 0.998
GESSVDD-I-S-max 0.997 0.997 0.373 0.999 0.998
SSVDD-Ψ0-min 0.996 0.997 0.166 0.999 0.998
SSVDD-Ψ0-max 0.996 0.997 0.163 0.999 0.998
SSVDD-Ψ1-min 0.996 0.997 0.166 0.999 0.998
SSVDD-Ψ1-max 0.996 0.997 0.163 0.999 0.998
SSVDD-Ψ2-min 0.996 0.997 0.166 0.999 0.998
SSVDD-Ψ2-max 0.996 0.997 0.163 0.999 0.998
SSVDD-Ψ3-min 0.996 0.997 0.166 0.999 0.998
SSVDD-Ψ3-max 0.996 0.997 0.163 0.999 0.998
OCSVM 0.052 0.051 1.000 1.000 0.098
SVDD 0.996 0.997 0.163 0.999 0.998
ESVDD 0.996 0.996 0.356 0.999 0.998

Table A.5 Results for the linear models using dataset-3.
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Model Accuracy tpr tnr Precision F-measure
GESSVDD-kNN-G-min 0.545 0.545 0.598 0.999 0.705
GESSVDD-kNN-G-max 0.622 0.623 0.501 0.999 0.767
GESSVDD-kNN-E-min 0.850 0.850 0.391 0.999 0.919
GESSVDD-kNN-E-max 0.850 0.850 0.391 0.999 0.919
GESSVDD-kNN-S-min 0.841 0.841 0.399 0.999 0.913
GESSVDD-kNN-S-max 0.841 0.841 0.399 0.999 0.913
GESSVDD-PCA-G-min 0.896 0.897 0.391 0.999 0.945
GESSVDD-PCA-G-max 0.896 0.897 0.391 0.999 0.945
GESSVDD-PCA-E-min 0.942 0.942 0.318 0.999 0.970
GESSVDD-PCA-E-max 0.946 0.946 0.300 0.999 0.972
GESSVDD-PCA-S-min 0.070 0.069 0.746 0.996 0.129
GESSVDD-PCA-S-max 0.919 0.920 0.364 0.999 0.958
GESSVDD-I-G-min 0.911 0.911 0.338 0.999 0.953
GESSVDD-I-G-max 0.961 0.961 0.376 0.999 0.980
GESSVDD-I-E-min 0.940 0.941 0.329 0.999 0.969
GESSVDD-I-E-max 0.952 0.952 0.259 0.999 0.975
GESSVDD-I-S-min 0.940 0.941 0.329 0.999 0.969
GESSVDD-I-S-max 0.940 0.941 0.329 0.999 0.969
SSVDD-Ψ0-min 0.009 0.008 0.997 1.000 0.016
SSVDD-Ψ0-max 0.094 0.094 0.638 0.996 0.171
SSVDD-Ψ1-min 0.009 0.008 0.997 1.000 0.016
SSVDD-Ψ1-max 0.094 0.094 0.638 0.996 0.171
SSVDD-Ψ2-min 0.009 0.008 0.997 1.000 0.016
SSVDD-Ψ2-max 0.094 0.094 0.638 0.996 0.171
SSVDD-Ψ3-min 0.009 0.008 0.997 1.000 0.016
SSVDD-Ψ3-max 0.094 0.094 0.638 0.996 0.171
OCSVM 0.011 0.010 1.000 1.000 0.021
SVDD 0.003 0.002 0.886 0.934 0.003
ESVDD 0.896 0.897 0.391 0.999 0.945
GEOCSVM 0.862 0.862 0.726 1.000 0.926
GESVDD 0.789 0.789 0.446 0.999 0.882

Table A.6 Results for the non-linear models using dataset-3.
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Model Accuracy tpr tnr Precision F-measure
GESSVDD-kNN-G-min 0.600 0.538 0.770 0.866 0.664
GESSVDD-kNN-G-max 0.725 0.761 0.628 0.850 0.803
GESSVDD-kNN-E-min 0.647 0.694 0.515 0.798 0.743
GESSVDD-kNN-E-max 0.573 0.637 0.394 0.744 0.687
GESSVDD-kNN-S-min 0.496 0.568 0.297 0.690 0.623
GESSVDD-kNN-S-max 0.653 0.786 0.284 0.752 0.769
GESSVDD-PCA-G-min 0.730 0.992 0.006 0.734 0.844
GESSVDD-PCA-G-max 0.731 0.994 0.005 0.734 0.844
GESSVDD-PCA-E-min 0.732 0.996 0.003 0.734 0.845
GESSVDD-PCA-E-max 0.732 0.995 0.007 0.735 0.845
GESSVDD-PCA-S-min 0.745 0.994 0.058 0.745 0.852
GESSVDD-PCA-S-max 0.741 0.987 0.060 0.744 0.848
GESSVDD-I-G-min 0.584 0.714 0.225 0.718 0.716
GESSVDD-I-G-max 0.638 0.731 0.380 0.765 0.748
GESSVDD-I-E-min 0.671 0.831 0.227 0.748 0.787
GESSVDD-I-E-max 0.540 0.630 0.292 0.711 0.668
GESSVDD-I-S-min 0.731 0.993 0.007 0.734 0.844
GESSVDD-I-S-max 0.730 0.989 0.013 0.735 0.843
SSVDD-Ψ0-min 0.736 0.994 0.023 0.738 0.847
SSVDD-Ψ0-max 0.734 0.994 0.015 0.736 0.846
SSVDD-Ψ1-min 0.736 0.994 0.023 0.738 0.847
SSVDD-Ψ1-max 0.734 0.994 0.015 0.736 0.846
SSVDD-Ψ2-min 0.736 0.994 0.023 0.738 0.847
SSVDD-Ψ2-max 0.734 0.994 0.015 0.736 0.846
SSVDD-Ψ3-min 0.736 0.994 0.023 0.738 0.847
SSVDD-Ψ3-max 0.734 0.994 0.015 0.736 0.846
OCSVM 0.319 0.257 0.491 0.582 0.356
SVDD 0.740 0.991 0.047 0.742 0.848
ESVDD 0.734 1.000 0.001 0.734 0.847

Table A.7 Results for the linear models using dataset-4.
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Model Accuracy tpr tnr Precision F-measure
GESSVDD-kNN-G-min 0.252 0.196 0.407 0.478 0.278
GESSVDD-kNN-G-max 0.344 0.344 0.346 0.592 0.435
GESSVDD-kNN-E-min 0.308 0.291 0.355 0.555 0.381
GESSVDD-kNN-E-max 0.308 0.291 0.355 0.555 0.381
GESSVDD-kNN-S-min 0.267 0.003 0.998 0.800 0.005
GESSVDD-kNN-S-max 0.267 0.004 0.991 0.571 0.009
GESSVDD-PCA-G-min 0.640 0.819 0.147 0.726 0.770
GESSVDD-PCA-G-max 0.326 0.316 0.355 0.575 0.407
GESSVDD-PCA-E-min 0.270 0.013 0.979 0.632 0.026
GESSVDD-PCA-E-max 0.270 0.013 0.979 0.634 0.026
GESSVDD-PCA-S-min 0.254 0.016 0.910 0.332 0.031
GESSVDD-PCA-S-max 0.254 0.016 0.910 0.332 0.031
GESSVDD-I-G-min 0.287 0.038 0.974 0.803 0.072
GESSVDD-I-G-max 0.299 0.264 0.395 0.547 0.356
GESSVDD-I-E-min 0.266 0.005 0.990 0.553 0.009
GESSVDD-I-E-max 0.262 0.019 0.936 0.447 0.036
GESSVDD-I-S-min 0.492 0.516 0.426 0.713 0.599
GESSVDD-I-S-max 0.255 0.018 0.909 0.358 0.035
SSVDD-Ψ0-min 0.602 0.743 0.213 0.723 0.733
SSVDD-Ψ0-max 0.602 0.743 0.213 0.723 0.733
SSVDD-Ψ1-min 0.602 0.743 0.213 0.723 0.733
SSVDD-Ψ1-max 0.602 0.743 0.213 0.723 0.733
SSVDD-Ψ2-min 0.602 0.743 0.213 0.723 0.733
SSVDD-Ψ2-max 0.602 0.743 0.213 0.723 0.733
SSVDD-Ψ3-min 0.602 0.743 0.213 0.723 0.733
SSVDD-Ψ3-max 0.602 0.743 0.213 0.723 0.733
OCSVM 0.741 0.814 0.538 0.830 0.822
SVDD 0.212 0.049 0.662 0.284 0.083
ESVDD 0.230 0.014 0.827 0.185 0.026
GEOCSVM 0.757 0.800 0.638 0.859 0.828
GESVDD 0.740 0.787 0.612 0.849 0.817

Table A.8 Results for the non-linear models using dataset-4.
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