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The acceleration of climate change has led regulators to impose constraints and incentives, en-
couraging both companies and individuals to align their actions with the goals of a green transi-
tion. There's a growing imperative to reduce waste and emissions while simultaneously maximiz-
ing the utilization of waste and by-products as valuable resources. These trends are driving soci-
eties toward adopting principles of the Circular Economy (CE). As the consumption of fossil en-
ergy sources needs to be reduced, the development and production of renewable energy sources 
become essential. Biogas, a form of renewable energy, offers an efficient way to utilize agricultural 
bio-based waste and side-flows, contributing to waste reduction and providing an alternative to 
fossil fuels. This approach aligns with the principles of the Circular Bioeconomy (CBE). However, 
establishing a circular supply chain for biogas production from biomasses is a complex endeavor. 
To ensure effective and sustainable operations within this system, logistics planning is crucial. 
This involves determining where, when, and how much biomass should be imported and trans-
ported for biogas production. It presents a multi-objective optimization problem, aiming to guar-
antee continuous biogas production while minimizing the costs associated with transporting bio-
mass flows and other occurred inefficiencies. 
 
This study models and simulates a circular supply chain that produces biogas from agricultural 
biowastes and side-flows. The supply chain in question encompasses a biogas plant, which is 
currently in the design phase but will later be constructed in the Kanta-Häme region of Finland. It 
also involves farms located in nearby areas, which are potential sources of biomass. The model-
ing aspect aims to optimize the logistics of collecting and transporting various types of biomasses 
from the farms to the biogas plant for use in the biogas production process. To achieve this opti-
mization, a simulation model that utilizes a genetic algorithm (GA) has been developed. The ob-
jectives of the study include generating knowledge about both general and case-specific factors 
that should be considered when planning logistic routing to align with the principles of the Circular 
Bioeconomy (CBE). Another objective is to create an optimized routing plan for collecting re-
sources for biogas production at the plant. Additionally, this study seeks to contribute to under-
standing of how time-critical factors, such as the quality of biomasses in terms of their energy 
potential, impact the optimization of logistic routing. 
 
The study successfully maps the biomass potentials near the biogas plant and develops a meth-
odology for optimizing the logistic routing of biomasses using the simulation model and the genetic 
algorithm. The study achieves the objective of generating an optimized routing proposal for the 
biogas plant in the case study, ensuring a continuous biogas production process. However, it is 
important to note that the results of the study may be suboptimal due to the complexity of the 
optimization problem and the time constraints of the research. The time-critical nature of bio-
masses should be considered when planning logistic systems for biogas production to avoid un-
necessary costs. Limitations of the study include the use of non-farm-specific datasets, simplifying 
assumptions made in the simulation model, and time constraints that influenced the optimization 
stopping criteria and the potential for suboptimal results. Further research on this topic is neces-
sary, either with more advanced methods or by allocating more computational time for optimiza-
tion. 
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supply chain, simulation, genetic algorithm 
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Ilmastonmuutoksen kiihtyminen on johtanut lainsäätäjät asettamaan rajoituksia ja kannustimia, 
jotka rohkaisevat yrityksiä ja yksilöitä mukauttamaan toimintaansa vihreän siirtymän tavoitteiden 
mukaisesti. Jatkuva kasvava tarve vähentää syntyviä jätteitä ja päästöjä samanaikaisesti jättei-
den uudelleenkäytön ja hyödyntämisen maksimoiden vie yhteiskuntia kohti kiertotaloutta (engl. 
circular economy). Fossiilisten energialähteiden vähentämisen tarve synnyttää tarvetta kehittää 
ja tuottaa uudenlaisia uusiutuvan energian lähteitä. Biokaasu on tällainen uusiutuvan energian 
muoto, mikä mahdollistaa tehokkaan tavan maatalousjätteiden ja -sivutuotteiden hyödyntämiseen 
samalla vähentäen syntyvien jätteiden määrää ja tarjoten kestävän vaihtoehdon fossiilisille polt-
toaineille lähestyen biokiertotaloutta (engl. circular bioeconomy). Koska biokaasua tuottavat toi-
mitusketjut ovat luonteeltaan monimutkaisia, niiden logistisia toimintoja on optimoitava jatkuvuu-
den turvaamiseksi. Suunnittelu kattaa päätökset siitä, mistä, milloin ja miten paljon eri tyyppisiä 
biomassoja tulisi noutaa ja kuljettaa biokaasulaitokselle kulutettavaksi biokaasun tuotannossa. 
Tällainen toimitusketjun logistiikka muodostaa monitavoitteellisen optimointiongelman, jonka ta-
voitteena on biokaasun tuotantoprosessin jatkuvuuden turvaaminen samalla minimoiden logisti-
sen kuljetuksen sekä muiden mahdollisten tehottomuuksien aiheuttamat kustannukset. 
 
Tässä tutkimuksessa mallinnetaan ja simuloidaan toimitusketjua, joka tuottaa biokaasua maata-
loudessa syntyvistä biojätteistä sekä sivuvirroista. Tarkasteltava toimitusketju sisältää suunnitte-
luvaiheessa olevan biokaasulaitoksen, joka tullaan sijoittamaan Kanta-Hämeen alueelle, sekä lä-
hialueella biomassoja tuottavat tilat. Mallinnuksen tavoitteena on optimoida toimitusketjun logisti-
nen reititys eri tyyppisten biomassojen keruun ja kuljetuksen suhteen. Optimoinnissa hyödynne-
tään geneettistä algoritmia simulaatiomallin kustannusfunktion minimoinnissa. Tutkimuksen ta-
voitteet kattavat ymmärryksen tuottamisen niistä yleisistä ja tapauskohtaisista tekijöistä, jotka on 
huomioitava toimitusketjun logistiikkaa optimoidessa varmistaakseen toimintojen yhteensopivuu-
den biokiertotalouden kanssa. Tavoitteena on myös tuottaa optimoitu reitityssuunnitelma koh-
deyritykselle, joka vastaa biokaasulaitoksen suunnittelusta ja rakennuttamisesta. Reitityssuunni-
telman tavoitteena on tuottaa kohdeyritykselle tietoa siitä, miten, mistä ja miten paljon eri biomas-
soja tulisi hakea. Lisäksi tutkimus tavoittelee ymmärryksen lisäämistä biomassojen sisältämien 
aikakriittisten tekijöiden vaikutuksesta logistisen reitityksen optimointiin. 
 
Tutkimus onnistuu kartoittamaan laitoksen lähialueen biomassat sekä tuottamaan metodologian 
biomassojen logistisen reitityksen optimointiin osana biokaasun tuotantoa hyödyntämällä kehitet-
tyä simulaatiomallia ja geneettistä algoritmia. Tutkimus saavuttaa tavoitteen optimoidun reitityk-
sen tuottamisesta, mikä turvaa biokaasun tuotantoprosessin jatkuvuuden. Optimoitu reititys ei 
kuitenkaan välttämättä saavuta globaalia optimia. Biomassojen aikakriittinen luonne tulisi ottaa 
huomioon biokaasua tuottavien toimitusketjujen logistiikkaa suunniteltaessa välttääkseen ylimää-
räisiä kustannuksia. Tutkimuksen rajoitteisiin kuuluvat lähtödatan tilakohdattomuus, mallinnuk-
sessa tehdyt välttämättömät yksinkertaistavat oletukset sekä tutkimusajan rajallisuus optimointi-
ongelman monimutkaisuuteen nähden. Jatkotutkimusta aiheesta tarvitaan, joko käyttämällä edis-
tyksellisempiä ja tehokkaampia menetelmiä tai allokoimalla tutkimukselle enemmän aikaa, jotta 
tulosten optimaalisuus voidaan varmistaa pidemmällä laskenta-ajalla. 
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1 INTRODUCTION 

This chapter introduces the topic of the study by defining the context of it and motivating 

its importance. Later in the chapter, the research problem, research questions, scope, 

and objectives of the study are defined and presented. The chapter closes by summa-

rizing the structure of the study. 

1.1 Research background 

Mankind is facing one of its greatest challenges with the inevitable fact of climate change 

and its progression. Due to regulators' acknowledgment of climate change, many objec-

tives and guidelines have been set to ensure the compatibility of individuals’ and com-

panies’ actions with the green transition. States and non-profit organizations play a cru-

cial role here since it is often their decision what kind of magiyaentures they are funding. 

In Europe, the European Union (EU) is one of the major operators accelerating the green 

transition, having set a goal to become climate neutral by 2050 (Bauer et al. 2021). EU’s 

Green Deal policies, with planned investment of a total of €1 trillion, are seeking ways to 

speed up the green transition in different industries by researching the topics of sustain-

able energy production, carbon-neutral fuels and enabling the usage of more circular 

products and resources in energy-intensive industries with less or zero waste and pollu-

tion. (Bauer et al. 2021) 

An urgent need to reduce consumption and mitigate emissions has led academics and 

companies operating in different fields to seek ways to reinvent prevailing business mod-

els and supply chains to become more sustainable. Increasing sustainability may some-

times require necessary trade-offs with maximizing profitability and operational perfor-

mance (Varenova et al. 2013). A current and predominant perspective to this issue in 

which one is seeking ways to improve the sustainability of operations by increasing re-

usage and recycling of materials, enhancing cost-effectiveness, and mitigating emis-

sions without compromising profitability or performance, is denoted by the term circular 

economy (CE). The advantages of the CE have been studied and argued widely – it has 

been found that a total shift to a circular economy would reduce greenhouse-gas emis-

sions by up to 70 %, simultaneously growing the workforce by about 4 % in seven Euro-

pean nations. (Stahel, 2016) 

The principle of the CE provides interesting opportunities to replace non-renewable en-

ergy sources by utilizing waste management as a part of energy production. Especially 
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managing and properly processing the biomass side-flows offer considerable opportuni-

ties to produce green energy (Bellezoni et al. 2022). Waste-to-energy systems, in gen-

eral, offer opportunities to improve the operational efficiency and cost-effectiveness of 

actors producing waste and capable of generating energy out of it instead of using raw 

materials in the first place. Proper procession of biomass side-flows enables industries 

to use their waste to produce energy for their needs, which is greatly consistent with 

circular economy principles. (Monteiro & Ferreira, 2022) However, bioenergy production 

may have an increasing impact on the ecological footprint (Wang et al. 2020). That raises 

more questions on how bioenergy production and its resource flows should be organized 

and optimized to utilize the maximum amount of wastes and side-flows, without compro-

mising emissions and ecological footprint. 

Enhancing the optimization of resource flows and logistical operations stands as a sig-

nificant means toward attaining the principles of circularity. Depending on the type of 

resource, transportation time may become a critical factor due to the pollution of re-

sources. For instance, this is the case for the animal manure transported to be used as 

a fertilizer for plants (Kamilaris & Prenafeta-Boldú, 2021). Efficient transportation of ma-

nure would, therefore, mitigate resource pollution, improve the valorization rate of ma-

nure as a resource rather than waste, and align with the principles of the circular econ-

omy. However, transportation itself comes with environmental and economic costs, 

which should also be taken into consideration in optimization. (Kamilaris & Prenafeta-

Boldú, 2021) While optimizing the supply chain configurations, the offering and demand 

of actors and the balance between them must also be considered (Balaman et al. 2018). 

Due to the complicated nature of circular supply chains, digital and analytical tools be-

come a necessity in modeling and optimizing those networks. 

Sufficient digital capabilities and technologies are critical factors in enabling circular busi-

ness models. It has been argued widely that digital technologies provide opportunities to 

improve resource flows and value creation and capture and enable innovations for cir-

cular business models to emerge. (Ranta et al. 2021) It is important to note that digital 

technologies contribute to the circular economy in two fundamentally different ways. 

They provide knowledge creation and sharing, enabling decision-makers to rationalize 

factors affecting decisions to optimize resource flows and value creation in a way that is 

aligned with the principles of CE (Ranta et al. 2021). They also provide analytical tools 

to be used as assistance in decision-making, such as modeling and optimizing waste-to-

energy supply chains with multi-objective decision-making algorithms (Balaman et al. 

2018). Through these kinds of use cases, digital technologies catalyze many kinds of 

business model and process innovations (Ranta et al. 2021) that enable aligning the 
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operations with the principles of CE across industries. By embracing practices and prin-

ciples of CE and applying them with advanced computational and digital methods, man-

kind may achieve carbon neutrality and better tomorrow via a green transition to living to 

fight another day.  

1.2 Scope and objectives of the research 

This study is conducted as a part of the EU-funded research venture BioKanta. The ven-

ture studies and seeks sustainable ways to maximize bioenergy production, improve 

current practices of it, and enhance the circular use of waste and side-flows generated 

by agriculture, the manufacturing industry, and waste and water management facilities 

(Kymäläinen & Tampio, 2023). The venture focuses on improving circularity and bioen-

ergy production in the region of Kanta-Häme in Finland. BioKanta is implemented in col-

laboration among the research units Bio and Smart at Häme University of Applied Sci-

ences (HAMK) and with the Natural Resources Institute Finland (LuKe). (Kymäläinen & 

Tampio, 2023) 

This study is part of the first phase of the BioKanta. In the first phase of the venture, the 

objective is to identify and bring into use the potential of bioenergy production and recy-

cling in resource flows in Kanta-Häme (Tampio, 2023). This includes notifying and con-

necting the actors operating the bioenergy facilities with the local actors producing po-

tential waste and resource side-flows to be used in bioenergy production and enabling 

collaboration among them. The first phase also includes planning and optimizing the 

logistic operations amongst the notified actors and with the upcoming large biogas plant 

under construction. (Tampio, 2023) This study focuses on one large, centralized biogas 

plant under construction and optimizing the logistic routing of the resource flows that 

enable the operation of the upcoming biogas plant. The research focus of the study is 

illustrated in Figure 1, which represents the intersection of the objectives of the first 

phase of BioKanta. 
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Figure 1. The research focus of the study. 

In more detail, this study focuses on modeling and optimizing the logistic routing of bio-

mass side-flows that will be utilized by the centralized biogas plant as part of its bioen-

ergy production process. These biomass side-flows consist of manures, grasses, and 

straws. Spatial data mapping of biomass potentials located nearby the biogas plant is 

also conducted as a prerequisite for modeling and optimizing the biomass side-flows.  

Objectives of the study include generating knowledge about and understanding the gen-

eral and case-specific circular bioeconomy goals, practices and prevailing dynamics that 

are required to consider in modeling the routing of flows, enabling better the utilization of 

circular business models. Understanding the circularity goals and the possibilities and 

constraints of its practices play a critical role if one is seeking to model and simulate a 

complicated logistic network with multiple factors and conditions to consider.  

The study also aims to produce knowledge of how the routing of biomass side-flows 

should be organized by the case company which can be used as assistance in the case 

company’s decision-making processes. Along with this, as an additional objective, the 

study aims to generate knowledge about comparing the results of optimized routing un-

der two different simulation schemes, with one assuming the quality of biomasses in 

terms of their energy potential is not dependent on time-critical factors, and the other 

assuming time-critical factors exist. This comparison could have a practical impact on 

optimizing the routing of biomass side-flows under circularity principles, especially if the 

simulation results vary significantly due to the assumption of time-critical factors. 

Enabling circular 
bioeconomy business 

models

Better 
understanding 
the dynamics 

affecting logistics' 
circularity

Logistic routing 
optimization by 
modeling and 

simulation
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1.3 Research problem and questions  

The research problem may be formatted accordingly with the following three research 

questions this study seeks answers for. The first one aims to understand the practices, 

opportunities, and constraints of circular bioeconomy in the context of optimizing logistic 

operations, with a general and case-specific perspective and is formatted accordingly: 

RQ1: What are the key factors to consider in modeling and optimizing biomass side-flow 

routing to ensure logistic operations compatibility with circular bioeconomy practices?  

The second objective leverages the information obtained from addressing the first re-

search question and aims to establish a consensus on how the case company should 

organize logistic routing within the context of its prevailing conditions, constraints, and 

practices, as identified by the response to the first question. The second research ques-

tion is as follows: 

RQ2: How should the routing of biomass side-flows be organized to align the logistic 

operations with circular bioeconomy practices and dynamically optimize the routing of 

biomass side-flows based on selected criteria?  

The third research question seeks to find new ways to enhance the optimization of logis-

tics by creating new knowledge of the prevailing dynamics affecting the optimal solution. 

This is done by comparing the optimized solutions of logistic routing, simulated with cur-

rently approved circumstances, and expanding these circumstances by including new 

factors to the optimization procedure that has been neglected before.  

RQ3: How does the consideration of decreasing biomass quality over time affect the 

optimal routing solution compared to the optimized result?  

1.4 Structure of the study 

This study is in six chapters. The first one introduces the background of the study, sets 

scope and objectives of it, and defines the research problem and questions. The second 

chapter presents the literature review, discussing the concepts of circular bioeconomy, 

circular business models, and biomass utilization through biogas production. It also illus-

trates the case company's supply chain and analyzes related circular business models, 

success, and risk factors, with a focus on logistic optimization. The literature review con-

cludes by presenting a theoretical framework of factors, constraints, and possibilities to 

consider for the methodology of logistic routing optimization of biomass side-flows, serv-

ing as an answer for the first research question. 
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The third chapter presents the research methodology for this study, including a concep-

tual description of the optimization problem of biomass routing and biogas production, 

data collection, description, processing, and model development. It covers topics such 

as processing and visualizing data in Python (Magiya, 2019), utilizing the KMeans clus-

tering algorithm (Jeffares, 2019), the SimPy library for discrete-event simulation (Team 

SimPy, 2020), and the genetic algorithm used in optimization (Gracia et al. 2014; Katoch 

et al. 2021; Niemitalo & Ekkerman, 2022). The chapter concludes by assessing the va-

lidity and reliability of the methodology. 

The results, answering the second and third research questions, are presented in the 

fourth chapter. This presentation includes the optimization trajectories of the optimized 

routings and their performance in both cases. Furthermore, the results are validated by 

benchmarking them against randomized and baseline routing. In the fifth chapter, the 

results are discussed, analyzed, and compared, leading to the presentation of the study's 

key findings. Finally, the sixth chapter concludes the study by addressing its theoretical 

and practical implications, assessing the quality and limitations of the study, and sug-

gesting ideas for future research on the topic. 
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2 CIRCULAR BIOECONOMY 

This chapter reviews the literature regarding the circular bioeconomy. Firstly, the con-

cepts of bioeconomy, circular economy (CE), and circular bioeconomy (CBE) are defined 

and distinguished. Secondly, the conceptual frameworks for CE and CBE are presented, 

discussed, and compared. In the third, fourth, and fifth sections of the chapter, the per-

spective of the literature review is taken to a more practical level by discussing and an-

alyzing the implementation of circular business models (CBM) aligned with the principles 

of the circular bioeconomy in the context of the study’s case company, its supply chain, 

and the related success and risk factors. The chapter closes by synthesizing the litera-

ture review.  

2.1 From bioeconomy and circular economy to circular bioe-
conomy 

The term bioeconomy refers to parts of the society and economy that utilize renewable 

biological resources from land and sea to produce materials, food, and energy. These 

parts of the society and the economy cover the sectors and associated services that 

process, produce or are in contact with any part of the supply chain involving biological 

resources. (Giampietro, 2019) One example of the bioeconomy is the utilization of agri-

cultural waste and side-flows, such as manure and straw, as a resource in biogas pro-

duction, in cooperation with actors from the energy and agriculture industries and their 

stakeholders. The term is intended to remind people of the biological origin of the eco-

nomic process and highlight the problem of limited usable and accessible resources that 

are unevenly located and unequally appropriated (Giampietro, 2019). However, due to 

the renewable nature of bio-resources, they can be said to be naturally circular at some 

level (Salvador et al. 2021). The natural circularity of bio-resources may already enable 

greater environmental sustainability compared to practices using fossil resources 

(Paredes-Sánchez et al. 2019). 

Since the diversity of bioeconomies is greatly dependent on local characteristics and the 

possible scarcity of required resources, cooperation among the actors in the bioeconomy 

should be developed to enable more efficient utilization of circularity via the renewable 

nature of bio-resources. With more circular usage of bio-resources, economic growth 

and environmental benefits may be achieved by maximizing the value of resources and 

minimizing the consumption of virgin or non-renewable resources, approaching the prin-

ciples of the CE (Salvador et al. 2021). 
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The CE has gained an increasing amount of attention and popularity during the last few 

years. This has led to a multitude of partly congruent and vague definitions of the CE by 

the science community (Korhonen et al. 2018; Prieto-Sandoval et al. 2018). Differing 

definitions of the CE have generated a need to define a general framework for it. It is 

important to understand the differences between the CE and sustainable development, 

whereas the principles of CE offer tools to attain sustainable development. Understand-

ing the prevailing dynamics affecting circularity which are dependent on the level of per-

spective also plays a crucial role if sustainability is sought via circularity. Economic, en-

vironmental, and social dimensions of sustainability should also be considered to adjust 

the CE practices in a way that serves the purpose of reaching the selected type of sus-

tainability. (Korhonen et al. 2018; Prieto-Sandoval et al. 2018) 

Stahel (2016), Korhonen et al. (2018) and Kirchherr et al. (2018) discuss the defining 

factors of the CE, its opportunities, and its restrictions. The main aim of the CE is to close 

loops in industrial ecosystems. This is achieved by repurposing goods near the end of 

their useful life, thus reducing waste. This approach profoundly shifts the economic par-

adigm from production to sufficiency. The focus is on deriving value from existing goods 

and manufacturing only when necessary. This fundamental departure from non-circular 

economies classifies CE business models into two non-exclusive groups. The first prior-

itizes reuse and prolonging product life through repairs and upgrades. The second group 

seeks value by transforming goods and materials into valuable resources through recy-

cling. (Stahel, 2016) However, implementing circular practices and business models 

must address challenges arising from current industry practices to achieve sustainable 

development. (Korhonen et al. 2018; Kirchherr et al. 2018). 

The challenges of implementing CE practices arise from the physical scale of the econ-

omy and its impact on sustainability, as well as the path-dependency and lock-in effects 

(Korhonen et al. 2018; Kirchherr et al. 2018). Even if CE practices increase the econo-

my's scale, harmful impacts can result (Korhonen et al. 2018). Jevons' paradox, de-

scribed as lower costs leading to increased production and consumption, complicates 

matters (Alcott, 2005; Korhonen et al. 2018). Economic growth presents the "boomerang 

effect”, where pollution-intensive industries may relocate to poorer countries during sus-

tainability efforts (Korhonen et al. 2018).  

Path-dependencies and lock-in challenges stem from market dynamics. Early solutions 

dominate, hindering new CE innovations. (Korhonen et al. 2018) Pricing dynamics of 

recycled materials are perceived to be more volatile in comparison with prices of virgin 

materials, influencing the consumption behavior of the markets (Grafström & Aasma, 
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2021). Kirchherr et al.'s (2018) study highlights barriers to CE: cultural (consumer disin-

terest, linear operations), market (low virgin material prices, high upfront costs), regula-

tory (policy framework gaps), and technological (lack of circular design and remanufac-

turing) barriers. Technological deficiency can be further extended to encompass a lack 

of technological capabilities. Businesses without suitable IT systems might find it difficult 

to evaluate costs and profits associated with circularity investments using their opera-

tional data (Grafström & Aasma, 2021). This can lead to unsupported decisions to either 

reject or accept investments in CE. While businesses prioritize cost and competition, 

policymakers recognize the importance of regulatory shifts toward supportive CE frame-

works (Kirchherr et al. 2018). 

Circularity brings some additional benefits if its requirements are satisfied. Applying cir-

cular practices, such as recycling and reprocessing of materials, generates jobs and 

saves energy with lower resource consumption and waste (Stahel, 2016). By considering 

these kinds of indirect benefits of the CE, challenges for implementing CE practices prof-

itably that are hard to affect directly, such as thermodynamic and system boundary limits 

(Korhonen et al. 2018), may be addressed indirectly. For instance, a car owner choosing 

between buying new tires or repairing old ones illustrates the circular ecosystem. Waste 

management services are crucial for this system to work, allowing used items to be re-

sold rather than discarded. The main goal is profitable waste management to enhance 

circularity, achieved by minimizing collection and disposal costs. To optimize resource 

value over time, proper markets and collection points are needed for recycling, based on 

the material being considered. (Stahel, 2016)  

While defining the marketplaces and collection points that enable circularity, the cost 

caused by using the circular channel of recycling materials to individuals must be con-

sidered. For instance, one may not sort the waste he produces, if dumping all goods into 

mixed waste containers is perceived significantly more cost-efficient to the individual than 

sorting the waste. However, if sorting of waste is sufficiently encouraged through se-

lected incentives and restrictions, the collection of certain types of waste, especially bio-

based waste, becomes possible. This enables the implementation of a circular bioecon-

omy and its opportunities. 

The circular bioeconomy (CBE) refers to the overlapping parts of the bioeconomy and 

the CE. One definition of the CBE states that its implementation enables sustainable 

economic growth in developed countries by considering the CE as what should be done, 

and the bioeconomy as how it should be done (Giampietro, 2019). The implementation 

of CBE promotes more sustainable manufacturing practices in general, leading to the 

transformation towards a broader usage of renewable bioresources, which are converted 
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into bioenergy and other bio-based products. This, in turn, generates new jobs and in-

dustries (European Commission, n.d., as cited in Giampietro, 2019). 

The CBE is a system that maximizes the utilization of bioresources in manufacturing and 

energy production, adds high sustainable value with the reuse and cascaded use of ma-

terials, and minimizes the virgin resource input from the natural environment, as well as 

the emissions and resource outputs to the environment. In comparison to the bioecon-

omy, the CBE aims to keep bioresources within the technical cycle for as long as possi-

ble. (Salvador et al. 2021) Therefore, the CBE aims to maximize the total value gener-

ated per unit of a resource rather than maximizing the value generated per resource unit 

in a fixed measure of time or usage. The approach of solely seeking the best and most 

effective economic impact in a fixed service life of a resource is an old-fashioned and 

less innovative approach, typically implemented in the context of the bioeconomy, not in 

the context of CBE (Salvador et al. 2021). 

2.2 Conceptual framework for circular bioeconomy 

Prieto-Sandoval et al. (2018) propose a framework for the CE, highlighting its relationship 

with eco-innovation. In this section, the conceptual framework of CE is reviewed and the 

CBE’s positioning in it is examined. After that, the conceptual framework of CBE pre-

sented by Wei et al. (2022) is analyzed in detail and discussed and compared to the CE 

framework by discussing the similarities between the frameworks. 

Analysis of Prieto-Sandoval et al. (2018) suggests that the CE should include four main 

components: minimizing resource demand, a multi-level approach, importance for sus-

tainable development, and the connection between the CE and innovation (Prieto-Sand-

oval et al. 2018). The first and third components align with Stahel's (2016) definition, 

emphasizing the minimization of resource consumption and the enablement of sustain-

able development. The multi-level approach and connection to eco-innovation offer new 

insights into understanding the CE. 

Yuan et al.'s (2006) research informed Prieto-Sandoval et al.'s (2018) introduction of 

three levels of the CE implementation: micro-, meso-, and macro-level. At the micro-

level, companies focus on implementing CE practices that serve their own interests, such 

as reducing costs and enhancing their reputation (Prieto-Sandoval et al. 2018). While 

this may generate economic benefits, it is important for regulators to incentivize compa-

nies to operate with circular principles to ensure that CE practices are implemented for 

the right reasons. 
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At the meso-level of the CE, companies participate in industrial symbiosis, which benefits 

both the regional economy and the environment (Prieto-Sandoval et al. 2018). The focus 

is on encouraging the creating of eco-industrial parks and networks generating both 

types of benefits (Geng et al. 2012; Prieto-Sandoval et al. 2018). An example of a meso-

level network is a group of companies operating in different industries, whose operations 

are related in some way. Cooperation between these companies creates economic and 

environmental benefits, such as a biogas network producing and selling renewable en-

ergy. This reduces the need for non-renewable energy sources and provides a sustain-

able alternative. 

The macro-level of the CE involves focusing on cities, municipalities, provinces, and 

states, and their circularity. This includes developing eco-cities, eco-municipalities, and 

eco-provinces, which require institutions to raise awareness and set boundaries and in-

centives to implement the CE practices. (Yuan et al. 2006; Prieto-Sandoval et al. 2018) 

Raising awareness for the need to improve circularity affects the funding of research, 

leading to more sustainable development. This research provides opportunities for eco-

innovation, which is crucial for improving the CE practices and achieving sustainable 

development. 

Eco-innovations drive the improvement of existing practices across all three levels of the 

CE (Prieto-Sandoval et al. 2018). They are defined as improved products, services, pro-

cesses, marketing changes, or organizational changes that decrease waste and emis-

sions across the entire supply chain of the given context and reduce the use of natu-

ral/virgin resources (Hojnik & Ruzzier, 2016). Ultimately, eco-innovations address the 

environmental impact of innovation by promoting more efficient resource usage while 

simultaneously minimizing the harmful environmental impacts of current practices (Ho-

jnik & Ruzzier, 2016). 

Three determinants of eco-innovations in the CE are identified: policy and regulation, 

supply side, and demand side. Policy and regulation determine the legal framework for 

the CE that should support circular supply side actions such as cleaner production. 

(Prieto-Sandoval et al. 2018) Incentives are also provided to execute sustainable action 

to gain additional benefits. Demand side determinants consist mainly of consumers, who 

should be able to acquire sustainable behavior and accept eco-innovative products in 

the market instead of less sustainable products (Prieto-Sandoval et al. 2018). Policy and 

regulation determinants may influence demand-side determinants through market dy-

namics, such as sales restrictions or taxes on non-sustainable products. Hidden deter-

minants such as market-specific factors can also affect the capability of actors to adopt 
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sustainable behavior, such as the government's view on the importance of green transi-

tion. Acceptance of the importance of green transition can lead to funding research on 

the CE, enabling more eco-innovations to emerge. 

In more detail, eco-innovations may be divided into product, process, and organizational 

eco-innovations, which emerge from environmental R&D investments driven by factors 

such as regulatory requirements, investments, market pull, operational efficiency needs, 

and cost savings (Hojnik & Ruzzier, 2016). As a result, eco-innovations may not be solely 

technological; they can also encompass organizational, social, or institutional innova-

tions. This is why they can emerge from either companies or nonprofit organizations, and 

they may not always be tradable in the markets. Due to the complex and multifaceted 

nature of eco-innovations, an interdisciplinary approach is usually required for their emer-

gence. An interdisciplinary approach is necessary to understand the economic market 

factors that determine the success of innovation. On the other hand, the innovation itself 

must be sufficiently advanced to generate enough environmental value, such as waste 

reduction and minimized use of virgin materials. (Hojnik & Ruzzier, 2016) 

Since it is argued that the CE offers tools to achieve sustainability (Korhonen et al. 2018; 

Prieto-Sandoval et al. 2018), a similar argument can be made for the necessity of eco-

innovations to emerge to design and enhance the current CE practices. These practices 

enable more sustainable operations and, ultimately, sustainable development by con-

sistently improving the adopted methods through eco-innovation. Sustainability is de-

fined as the attainment of a well-coordinated balance among economic, social, and en-

vironmental performance across different generations (Geissdoerfer et al. 2017). This 

equilibrium involves respecting nature's capacity for self-regeneration by avoiding over-

consumption and staying within the limits of nature's production capacity. The three pil-

lars of sustainability – people, profit, and planet – encapsulate the idea of a necessary 

balance among environmental, economic, and social dimensions while striving for sus-

tainability. These pillars aim to preserve the functions of the Earth's ecosystems, nurtur-

ing well-being, health, and security, all of which are crucial for ensuring a sustainable 

future. (Geissdoerfer et al. 2017) 

However, since sustainability may be perceived as a high-level concept, its set of goals, 

which involves pursuing simultaneous benefits for the environment, economy, and soci-

ety (Geissdoerfer et al. 2017), is broader and less defined than the corresponding set of 

goals for the CE. On the other hand, the goals of CE are centered around closing the 

loops within material flow systems (Geissdoerfer et al. 2017). If the CE practices are 

considered as prerequisites for sustainability and similarly regard eco-innovations as 

prerequisites for the CE practices, it becomes essential to consider the factors that drive 
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and influence the adoption of eco-innovations (Bossle et al. 2016; Hojnik & Ruzzier 

2016). These forces driving the success of eco-innovations may ultimately determine 

whether sustainable development is achieved or not. 

The widespread adoption of eco-innovation requires innovation itself to emerge and cir-

cumstances to adjust for broad adoption across actors in the examined market or indus-

try. This entails considering established factors that impact eco-innovation adoption at 

the company level (Bossle et al. 2016; Hojnik & Ruzzier 2016). Eco-innovation's emer-

gence is primarily driven by regulations and market pull factors, which are crucial for its 

emergence within companies (Hojnik & Ruzzier, 2016). These factors, aside from the 

type of eco-innovation, play a vital role in its development, adoption, and diffusion phases 

(Hojnik & Ruzzier, 2016). 

Factors influencing the adoption of eco-innovations and achieving sustainable develop-

ment can be categorized as internal and external factors within an organization (Bossle 

et al. 2016). Regulatory and market demands also impact eco-innovation adoption, com-

pelling organizations to embrace new practices, resources, or processes. For instance, 

customers and stakeholders may demand operations that align with corporate social re-

sponsibility (CSR), which can be enhanced by impactful eco-innovations. Internal factors 

affecting eco-innovation adoption at the company level encompass environmental capa-

bilities, strategy, human resources, and the drive for operational efficiency. Industry sec-

tor and company size similarly influence the adoption process. (Bossle et al. 2016) 

Based on the previously presented review and analysis on the CE, an illustration of its 

central concepts is presented on the Figure 2. The illustration includes the main process 

of the CE representing the ideas of circular material flows and the crucial role of innova-

tion in enabling the implementation and development of the CE practices. Subsequent 

and key social, environmental, and economic benefits are also illustrated and empha-

sized. See page 14 for the Figure 2.  The positioning of the CBE in the context of the CE 

will be discussed next.
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Figure 2. Conceptual model for the circular economy (CE). Graph adapted from Stahel (2016) and Korhonen et al. (2018). 
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Since the CBE is a sub-concept of the CE that focuses on biological materials (Giam-

pietro, 2019), it can be argued that the framework presented in Figure 2 for the CE is still 

applicable when discussing the CBE. However, one must consider the potential bound-

ary conditions established by the CBE. For example, the variety of extracted resources 

significantly decreases when focusing on the CBE rather than the CE. A common mech-

anism used in the CE manufacturing industries to repair goods simply disappears in the 

CBE. While inspected materials have processing value in the terms of energy and nutri-

ents, there are no logical ways to repair or refurbish them, limiting the ways in which the 

materials can be used compared to the CE. Additional examples could be easily gener-

ated to highlight the differences between the CBE and the CE. Nevertheless, in the con-

text of Figure 2, especially its inner circle that represents the material flow in a circular 

system, the group of alternative ways to execute operations in each phase (use, innova-

tion, extracted resources, manufacturing, distribution, and use) is significantly narrowed 

when the focus shifts from the CE to the CBE. Thus, one should consider the CBE-

special boundary conditions and restrictions caused by the focus of biological materials.  

The CBE is argued to bring environmental and economic benefits by Mohan et al. (2018) 

and Salvador et al. (2021). The benefits are achieved via the recovery of bio-based 

wastes and byproducts, preventing pollution, and promoting valorization, allowing the 

sale of wastes as marketable products with added value, thus enabling economic growth 

(Salvador et al. 2021). It can also be argued that the CBE brings social benefits, but not 

as much as the CE in general. The CBE's contribution to generating jobs and industries 

in capturing the value of bioresources is undisputed, whereas the complete supply chain 

of biomass procession generates a variety of jobs in capturing the value. However, the 

other typical aspects of the CE's social benefits may not be as predominant in the context 

of the CBE. The sense of community, cooperation, and sharing functions and services 

are probably less relevant in the CBE since the boundary conditions of the CBE do not 

naturally encourage the sharing economy as strongly as the CE in general. Reuse, re-

furbishment, and other measures that encourage the sharing of recycled goods are gen-

erally more applicable in the CE. 
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Figure 3. Conceptual model for the circular bioeconomy (CBE). Graph adapted 
from Wei et al. (2022). 

The conceptual model for the CBE presented by Wei et al. (2022) encapsulates the po-

sitioning of the CBE in the broader context of the CE, in comparison with the presentation 

of Figure 2 which is based on the CE frameworks presented by Stahel (2016), Prieto-

Sandoval et al. (2018), and Korhonen et al. (2018). In the CBE, inputs of circular system 

consist of bio-based-resources used as substitutes of non-renewable sources, whose 

utilization enhance efficiency and effectiveness of production and services along the sup-

ply chain of biomass utilization, ending up with reduced greenhouse gases (GHG) and 

emissions and improved sustainability (Wei et al. 2022). Biotechnology innovation, mar-

ket needs of bio-products and services and the incentive and constrain structures set by 

the policy framework together guides and accelerates the development of circular bioe-

conomy and its direction (Wei et al. 2022). This conceptual model for the CBE is illus-

trated above in the Figure 3.  

2.3 Circular business models for valorizing agricultural bio-
waste and side-flows in biogas production 

To adopt the practices of the CBE, businesses operating in related fields must align their 

operations with the principles of the CBE and circular business models (CBM). In gen-

eral, a business model is a conceptual representation of how and what value the com-
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pany aims to deliver to its customers (Salvador et al. 2021). Salvador et al. (2021) ana-

lyzed key aspects of business models for the CBE. These aspects include technological 

innovations, customer segments and relationships, value creation process, logistics and 

biomass collection, biowaste and by-product valorization, cost structure, resilient value 

chains, and strategic partnerships. The implementation of a business model for the CBE 

enables the production, utilization, and management of bioresources with high added 

value. This approach reduces material leakage and optimizes resource flows through 

cascading and upcycling. (Salvador et al. 2021) The role of optimizing logistics and bio-

mass material collection should be emphasized here, as it is a cost that can be greatly 

affected. Thus, if collection points are chosen wisely and the logistic operations for col-

lecting and transporting them are cost-effective, the total value created by the CBE sys-

tem may be maximized, ensuring the alignment of implemented practices with the prin-

ciples of the CBE. 

Circular systems that valorize biowaste and biomass side-flows simultaneously utilize 

several CBMs. Based on the typology for CBMs that valorize agro-waste proposed by 

Donner et al. (2020), it can be argued that within the system comprising farms, logistic 

operators, biogas facilities, and bioenergy users, the CBMs of a biogas plant, agropark, 

and support structure (Donner et al. 2020) are applied in the given context. The simulta-

neous utilization of multiple CBMs also highlights the importance of cooperating with 

research organizations and raising awareness within relevant stakeholders by establish-

ing strong strategic partnerships within farms, carriers, biogas facilities, and end custom-

ers to ensure the compatibility and synergies between the CBMs, as noted by Donner et 

al. (2020) and Salvador et al. (2021) as well. The presence of multiple actors in the cir-

cular supply chain and the overlapping of multiple CBMs result in a potential uneven 

distribution of costs and benefits in valorizing agro-waste and side-flows, as noted by 

Donner et al. (2020). Hence, the importance of strategic partnerships is emphasized 

again to ensure a sufficient transparency in the circular supply chain, satisfying the needs 

and requirements of all related actors. This enables continuity in their businesses and, 

ultimately, aligns the implemented practices with the principles of CBE through cooper-

ation within the circular network. 

2.3.1 Anaerobic digestion  

As mentioned earlier, circular systems valorizing biomasses utilize multiple CBMs sim-

ultaneously, which also applies to the supply chain of the case company in this study. In 

short, biomasses consisting of agricultural waste and side-flows, such as manures and 
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straws, are generated on farms as part of their daily operations. These biomasses con-

tain energy potential if effectively valorized (Donner et al. 2020). The main principle for 

valorizing these biomasses is anaerobic digestion (AD) (Monlau et al. 2015; Donner et 

al. 2020). AD is a biological process in which the degradable fraction of organic matrix is 

converted into biogas and/or biofuel, which can be used to produce heat and energy 

(Monlau et al. 2015). However, the implementation of AD requires significant technolog-

ical investments, which are typically greater than what farmers are willing to afford (Don-

ner et al. 2020). This is why large, centralized biogas plants, such as the plant being 

constructed by the case company, are necessary. These plants make substantial invest-

ments in the technology required for the valorization process and collect the required 

biomasses from multiple farms. However, collecting the biomasses from multiple pickup-

sites brings the problem of planning the logistic operations from the farms to the facility. 

As noted by Salvador et al. (2021), the cost-effective logistic operations are crucial for 

CBMs to succeed. By noting that the prices of bioenergy are usually fixed by national 

policies (Donner et al. 2020), the importance of cost-effective logistics is justified once 

again. It is a key factor in the cost structure of the supply chain, greatly affecting the total 

net value generated. 

Depending on the chosen AD processing technology, certain thresholds for the compo-

sition of input flows are established. AD processing technologies can be broadly catego-

rized into two types: dry and wet processes (Hadin & Eriksson, 2016). The differentiating 

factor between dry and wet processes is the total solids (TS) content in the material to 

be digested. If the TS rate of the process is below 15%, it is considered a wet process; 

otherwise, it is a dry process. (Hadin & Eriksson, 2016) 

The biogas reactor of the case company is designed for wet processes, aiming for a 15% 

TS rate (Case company, 2023). This design sets requirements and restrictions for the 

composition of processed biomass materials and, consequently, for the collection and 

transportation operations of biomasses as well. Since the case company intends to pro-

duce biogas from grass, straws, dry and slurry manure, the logistic operations must be 

organized in a way that the TS rate within the reactor does not exceed the 15% but 

comes as close to it as possible. 

If the TS rate of the biomass mixture in the plant’s reactor exceeds 15%, the biomasses 

need to be diluted with water before being inserted into the AD process. This dilution 

incurs avoidable monetary and time costs, making the overall AD process suboptimal. 

Therefore, to ensure optimal material flow within the biogas plant, the logistic operations 

should be executed in a manner that maintains a TS rate lower than, but as close as 
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possible to, 15% within the plant’s storage, assuming the AD process and material flows 

within the plants are daily ongoing processes. 

To ensure a suitable TS rate within the AD process, passive drying of biomasses during 

transportation and warehousing should be examined as a contributing factor. According 

to van Dyken et al. (2010), the level of moisture within the biomasses is related to their 

energy content. Therefore, minimizing passive drying of the biomasses to be processed 

would probably be beneficial for the case company to avoid decreases in the energy 

content due to passive drying. Thus, passive drying can be seen as a time-critical varia-

ble affecting the quality of biomasses in terms of their energy content, and later in the 

supply chain, the biogas yield. Passive drying of processed biomasses could be benefi-

cial if bioenergy is planned to be produced with a dry AD process (Hadin & Eriksson, 

2016). However, since the case's biogas plant is designed to produce biogas with a wet 

process (Hadin & Eriksson, 2016; Case company, 2023), passive drying of biomasses 

may have harmful effects on biogas production if the TS rate exceeds 15% due to pas-

sive drying. To avoid biomasses exceeding a 15% TS rate, the logistics and transporta-

tion of biomasses should be executed as efficiently and quickly as possible, which is also 

aligned with the existence of time-critical variables affecting biomass quality in terms of 

the biogas yield. 

Factors affecting the utilization rate, later referred to as the AD rate, which represents 

the degradable fraction of the biomass, i.e., the proportion of the input from which biogas 

is produced, should also be considered here. Hadin et al. (2016) examined the critical 

factors affecting the AD of horse manure. According to their study, storage type, storage 

time, and transport distance from the farm to energy production had impacts on the me-

thane potential and nutrient content of the inspected biomasses. They concluded that 

the storage time of manure appeared to reduce methane potential and nutrient content 

through the decomposition of manure, indicating the presence of time-critical variables 

that affect the quality of horse manure in terms of the biogas production. (Hadin et al. 

2016) 

A similar conclusion has been presented by Mönch-Tegeder et al. (2013) regarding the 

time-sensitive factors affecting the biogas potential of horse manure. The storage dura-

tion of manure seemed to have a significant decreasing impact on the methane potential 

of horse manure, reducing the easily degradable fraction of manure and resulting in a 

suboptimal biogas production process compared to the fresh manure. Manure storage 

also appeared to contribute to energy losses. (Mönch-Tegeder et al. 2013) 
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Key time-sensitive factors negatively affecting the methane potential of horse manure 

and, consequently, biogas yield are passive underlying chemical processes that result in 

the release of methane and nitrous oxide (Hadin et al. 2016). These passive processes 

occur during storage and transport, causing emissions and reducing the biogas potential 

of manure (Hadin et al. 2016). As a result, the production quantities of biogas and bio-

mass utilization rates decrease. Approximately 25% of the total nitrogen is lost during 

storage (Hadin et al. 2016), indicating that storage and other possible inefficiencies con-

tribute to increased total emissions of the system and a reduced biogas yield. 

The storage duration has an impact on the biogas production process itself. Research 

has shown that storage decreases a fraction of easily degradable compounds within the 

manure compared to fresh manure, thus reducing the efficiency of the biogas production 

process. (Hadin et al. 2016) Additionally, it has been noted that the decomposition of dry 

manure within the AD process progresses more slowly compared to wetter manure 

(Hadin et al. 2016). Therefore, the effects of passive drying of manures (van Dyken et 

al. 2010) should be considered and minimized. 

Additionally, it was noted that GHG emissions released from manures were at their peak 

during warm seasons, which was observed as an increase in volatile organic matter, 

leading to a higher passive decomposition rate of manures (Mönch-Tegeder et al. 2013). 

The study concluded that long-term storage of manures should be avoided to maximize 

the economic and environmental benefits of the circular system. This requires the estab-

lishment of a flexible, efficient, and resilient logistic system for collecting and transporting 

the manures to biogas production, ensuring the rapid reuse of manure as a raw material 

in the biogas production. Continuous development and improvement of the logistic sys-

tem within the supply chain are necessary to minimize the storage duration of manures 

as much as possible to achieve the optimal economic and environmental outcomes. 

(Mönch-Tegeder et al. 2013) 

According to the perceptions and conclusions made by van Dyken et al. (2010), Mönch-

Tegeder et al. (2013) and Hadin et al. (2016), it can indisputably be stated that time-

sensitive variables affecting the quality of manures in terms of their energy potential exist. 

That is why the logistic system processing them should be as efficient as possible to 

ensure the maximization of biogas production quantities and the minimization of emis-

sions and waste. These dynamics can also be assumed to apply during the transporta-

tion of manures since they are stored within the collection vehicles during the transpor-

tation. 
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These factors affecting methane potential, nutrient content, and emissions generated 

should also be considered by the case company when planning its logistic operations, 

as similar dynamics can be expected when transporting other types of manures. To op-

timize the supply chain of manures and maximize the AD rate of the biogas plant, ma-

nures should be collected and transported to the biogas production as quickly as possi-

ble, with minimal storage time and total mileage to minimize emissions and costs. How-

ever, since achieving a 100% AD rate may be impossible, and some biomasses usually 

does not degrade within the AD process and results in digestates (Monlau et al. 2015), 

the processing of digestates should also be planned to maximize their later utilization, 

which will be discussed in the following subchapter. 

2.3.2 Digestates as fertilizers 

Another interesting area of the case company’s supply chain and its CBMs is the use of 

digestate, which refers to the fraction of biomass that has not been anaerobically de-

graded (Monlau et al. 2015). This kind of digestate is typically used as fertilizer. It can be 

resold back to farmers for their use, thereby recycling nutrients, supporting crop growth, 

minimizing biomass leakage, and ultimately enhancing the CBE. (Donner et al. 2020) 

From a logistic optimization perspective, it would be interesting to examine whether the 

logistic routing of biomasses has an impact on the AD rate of biomass processing. If the 

quality of the transported biomasses is a time-critical variable that impacts the AD-rate, 

it can be reasoned that with an optimal solution to the logistic routing problem, the AD 

process can also be optimized for factors related to the logistic operations. The optimal 

AD rate for the biogas plant depends on the case-specific factors and should not be tried 

to be generalized. Case-specific factors include variables such as market prices for bio-

gas and fertilizers, accessibility to customers, and external influences like the number of 

competing biogas plants. 

Based on the findings of van Dyken et al. (2010) and Hadin et al. (2016), discussed in 

chapter 2.3.1, it can be assumed that there are time-critical variables that affect the qual-

ity of manures in terms of their methane potential and nutrient content. Therefore, to 

maximize the reuse potential of digestates as fertilizers, their nutrient content should be 

maximized. Thus, the optimal solution for picking up and transporting the biomasses to 

biogas production also improves the fertilization potential of digestates, highlighting the 

need to organize the collection and transportation operations of manures from farms to 

biogas production as effectively and quickly as possible, with minimized storage and 

transport time, as well as the emissions of the system. 
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Based on the inefficiencies in the AD process (where not 100% of the biomasses are 

degraded), it could be reasonable to ask whether it would be more profitable and desir-

able to sell and use the manures generated on the farms as fertilizer in the first place, 

instead of first transporting it in and out of the biogas facility? This question becomes 

relevant when the supply of manure and the demand for manure as a fertilizer are in 

balance. However, in most cases, the availability of manure is usually higher than the 

fertilizer needs (Kamilaris & Prenefeta-Boldú, 2021). In addition, it has been found that 

utilizing surpluses of digestates as fertilizers leads to a lower level of emissions com-

pared to spreading raw manure on fields as a fertilizer (Jensen et al. 2017). Therefore, 

utilizing digestates as fertilizers instead of raw manures enhances the implementation of 

the CBE principles through decreased emissions. The type of manure being inspected 

here is also a relevant question since research results have concluded that the profita-

bility of setting up treatment units to compost manure for later fertilizer use depends on 

the species of the manure being inspected. Another factor to consider is the season of 

the review period, as there may be national policies restricting the use of solid manure 

as a fertilizer during certain times. (Kamilaris & Prenefeta-Boldú, 2021) 

However, it should also be considered that transporting manures to be used as fertilizer 

comes with considerable logistic and transportation costs as well, although their usage 

decreases the need to use artificial fertilizer inputs (Lessman et al. 2023). It has also 

been found that the number of harmful pathogens in digestate resulting from the AD 

process is linked to storage time and other process parameters, such as temperature 

and the carbon-nitrogen ratio of the feedstock-manure (Nag et al. 2019). There is no 

reason to question whether pathogens also exist in pure manure, which reduces the 

attractiveness of both digestate and pure manure for use as fertilizer in the food industry, 

since the usage of organic materials as fertilizers can contribute to pollution (Lessmann 

et al. 2023). From this perspective, the most reasonable solution to this question would 

be to produce as much biogas as possible and, depending on the AD rate of the process, 

decide whether transporting the resulting digestate is reasonable and cost-effective. The 

emergence of harmful pathogens should be ensured to be minimized by considering the 

factors that affect them (Nag et al. 2019). Therefore, by reviewing the economic and 

environmental costs and benefits of transporting the digestates back to farms, the case 

company could increase the probability of aligning its operations with the practices of 

CBE. 



23 
 

2.4 Supply chain of the biogas production 

In Figure 4, an example of a circular supply chain is depicted, which bears resemblance 

to the supply chain employed by the case company. The illustration showcases the utili-

zation of CBMs within this circular supply chain. See page 24 for the illustration. Follow-

ing that, this section examines the phases occurring in the supply chain and the related 

terms presented in Figure 4 in detail.  



24 
 

 

 

 

 

Figure 4. Example illustration of the case company’s circular supply chain. For circular bioeconomy supply chain activities, see 
Ponjavic et al. (2020). For more details about the selected customer, see Jumppanen (2023).    
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Figure 4 presents the value creation process and supply chain of biomasses initially gen-

erated on farms. They are then transported to be used as feedstocks in biogas produc-

tion, followed by the value realization through profits made from selling the biogas and 

digestates as fertilizers. The process phases are described as self-explanatory in Figure 

4. However, the phases occurring at the biogas facility, which cover the warehouse pro-

cesses, material flows, and actual biogas production, include certain indicator terms that 

measure the performance of those phases within the supply chain. The meaning of these 

indicator terms should be explained. The indicator terms are inventory turnover, delivery 

time, order point, EOQ, production capacity, MRP, production planning, EPQ, and quality 

management.  

These terms presented above are all closely related to the philosophy of lean production 

(Demeter & Matyusz, 2011). Lean aims to satisfy customer demand at the highest pos-

sible level while minimizing wastes, losses, and other inefficiencies throughout the sup-

ply chain. If executed effectively, lean procedures enable lower storage levels and faster 

inventory turnover, thereby reducing storage costs and waste, and therefore aligning 

practices with the principles of CBE. (Demeter & Matyusz, 2011) 

Since the demand for biogas is assumed to be relatively steady in the case company's 

operating environment due to the chosen strategic customer (Jumppanen, 2023), and 

the product portfolio of the biogas plant is narrow, consisting of biogas and digestates 

sold as fertilizers, the benefits of lean are more achievable, according to Demeter & 

Matyusz (2011). These benefits within the operation of the supply chain can be achieved 

by the case company by making wise choices of biomass feedstock suppliers, preferring 

suppliers with high delivery security and biomass production capacity, as well as aiming 

for short and predictable delivery times. 

However, since real-world supply chain processes are not deterministic and various dis-

ruptions may occur within them, planning and operating the supply chain for the biogas 

production should consider being prepared for feedstock supply disruptions, biogas pro-

duction stoppages caused by feedstock shortages, and other factors that may lead to 

production interruptions. Additionally, uncertainty in biogas and fertilizer demand should 

also be taken into consideration. To prepare for feedstock supply disruptions, it could be 

beneficial to employ biomass type-specific reorder points and order quantities, ensuring 

a continuous production process through the use of safety stocks (Sevgen & Sargut, 

2019). The determination of order quantities and reorder points should be guided by a 

model that takes into account case-specific uncertainties in relevant factors, such as 

demand levels and lead times (Chaharsooghi & Heydari, 2010). 
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The reorder point establishes a threshold for the storage level of a feedstock, triggering 

the creation of a new purchase order when the storage level falls below it. When the 

storage level is below the reorder point, a purchase order with the specified quantity for 

the feedstock is sent to the supplier. By considering the costs of purchasing, including 

fixed and logistic costs, storage costs, and the expected demand for the feedstock, the 

economic order quantity (EOQ) can be defined. This helps determine the optimal order 

quantity for purchases. (Sevgen & Sargut, 2019) If an optimal order quantity can be de-

fined and utilized, waste, losses, and costs caused by procurement operations could be 

reduced, thereby enhancing compliance with the principles of CBE. However, the effi-

cient utilization of optimized values for order points and quantities requires commitment 

from all parties across the supply and demand sides (Chaharsooghi & Heydari, 2010). 

To ensure the commitment of supply-side actors, models for reorder points and quanti-

ties that also incentivize suppliers could be developed. These models incentivize actors 

on the supply side by providing shared economic benefits through commonly agreed-

upon agreements and practices related to the procurement and supply of feedstocks. 

(Chaharsooghi & Heydari, 2010) 

Given that the demand for biomass feedstocks is cyclical and discontinuous due to the 

long processing time of a feedstock batch within anaerobic digestion (Su et al. 2022), 

defining and applying reorder points and order quantities for biomass feedstocks could 

significantly help the case company prepare for feedstock shortages without interrupting 

biogas production. However, higher storage levels may lead to additional storage costs 

and feedstock spoilage, reducing the biogas and fertilizer yield of the production process 

(Hadin et al. 2016). Therefore, the reorder points and order quantities should be defined 

with careful consideration of all other possible and relevant consequences. This includes 

determining threshold values for potential acceptable spoilage rate and storage costs. 

Although the demand for the biogas produced in the case company's biogas reactor can 

be assumed to be rather steady and predictable due to the chosen strategic customer 

(Jumppanen, 2023), unpredictable disruptions may still occur, impacting biogas demand. 

It should be noted that these potential disruptive impacts on demand, whether negative 

or positive, should be considered. Regardless, preparation for demand disruptions can 

be achieved by establishing and maintaining biogas storage facilities near the biogas 

plant (Jensen et al. 2017; Butemann & Schimmelpfeng, 2020).  

Since biogas is unlikely to spoil like feedstock manures, it is reasonable to suggest that 

the case company prioritize biogas production over storing manures and straws when 

biogas production is not in progress. This suggestion holds if the costs of biogas and 
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fertilizer storage are reasonable and acceptable (Jensen et al. 2017). However, it is im-

portant to consider that the unit storage cost for biogas may be higher compared to the 

unit storage cost of feedstocks, as gas has a lower density than feedstocks, requiring 

more storage space and containers. Once again, the actual decision regarding the pri-

oritization of storing gas and fertilizers with continuous biogas production instead of in-

tentionally maintaining feedstock storage levels should always be made by considering 

all potential consequences related to total costs, emissions, and biogas and fertilizer 

nutrient yields. These decisions should align with the case company's production plan-

ning and material requirements planning (MRP) processes, which determine the biogas 

and fertilizer production batch sizes and schedules to meet the expected demand (Ste-

venson, 2014, pp. 495–515).   

MRP is a process carried out in conjunction with production planning, where the material 

requirements for planned production volume are determined, and upcoming purchase 

orders are scheduled. Production capacity should be considered alongside production 

planning and MRP, since it may restrict the production volumes in the time unit, which 

may lead to oversized feedstock storages, causing pollution and waste. (Stevenson, 

2014, pp. 495–515) Differences in biogas yield potential across biomasses to be utilized 

should also be considered when defining the composition of biomasses for AD. For in-

stance, manures have a lower biogas yield compared to straws (Jensen et al. 2017), 

indicating that the proportion of manure in the composition should be restricted to 

achieve the planned biogas production volumes. Alongside material requirements and 

production planning, the economic production quantity (EPQ) could be determined and 

utilized to define an economically optimal production batch size for biogas, as well as for 

digestate as a by-product (Karmakar et al. 2017). EPQ is fundamentally similar to EOQ 

(Sevgen & Sargut, 2019), which takes into account inventory and fixed costs of produc-

tion, as well as the demand for biogas and fertilizers. It proposes an optimal batch size 

for biogas and digestate production. If executed with justification and efficiency, an opti-

mal production schedule resulting from production planning and MRP processes could 

ultimately improve the economic viability of the biogas plant through decreased produc-

tion costs (Jensen et al. 2017). This would enable more resource allocation towards im-

proving the practices that enhance CBE.  

Alongside production planning, potential incentive structures for the biogas production 

set by the regulators should also be considered if they exist. If the incentive structure 

enables it, it may be reasonable and economically more viable to schedule production of 

biogas for times of high market prices for electricity, while favoring the storage of biogas 

and fertilizers during times of low market prices (Butemann & Schimmelpfeng, 2020). 
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This would be the case for the case company's biogas plant if they decided to let markets 

price biogas and fertilizers to be delivered. However, due to the chosen strategic cus-

tomer (Jumppanen, 2023), the prices for biogas are probably set by a mutual agreement. 

Additional costs caused by recurrent stopping and starting combined heat and power 

units would result in avoidable costs and wear and tear (Butemann & Schimmelpfeng, 

2020), which may decrease profits and unnecessarily commit critical resources of the 

biogas plant, instead of using those resources to improve the practices enhancing CBE. 

However, if incentive structures of this kind are found to exist, and the biogas and ferti-

lizers are sold at market prices, the case company should consider this as a relevant 

factor while planning its biogas production, since it is possible to increase revenues and 

minimize additional costs caused by the flexible production of biogas (Butemann & 

Schimmelpfeng, 2020). 

The last concept to be explained is quality management. Although it is illustrated as being 

related to the warehouse and production phases of the supply chain in Figure 4, it should 

be noted that quality management practices should be considered and executed 

throughout all phases of the supply chain. In the context of processing biomass materials 

consisting of manures, grass, and straws, the quality management practices to be im-

plemented should focus on the inactivation of harmful pathogens within the manures and 

digestates (Nag et al. 2019). If harmful pathogens still exist in digestate to be reused as 

fertilizer, the spreading of serious illnesses may follow as a consequence, especially if 

digestates are used as a fertilizer in industries producing food for humans and animals 

(Liu et al. 2008; Kinyua et al. 2016). The pathogens have the potential to spread through 

air, water, and direct contact, which highlights the need for careful treatment of manures 

and digestates. (Kinyua et al. 2016; Nag et al. 2019)  

However, there are ways to increase pathogen inactivation throughout the AD process 

by setting up process parameters to create conditions that increase the probability of 

inactivation (Nag et al. 2019). High process temperature significantly contributes to path-

ogen inactivation (Manyi-Loh et al. 2013; Nag et al. 2019). The biogas production lead 

time, or hydraulic retention time (HRT) in other words, also has an impact on pathogen 

inactivation. Depending on the composition of the biomass to be digested, an HRT of 12 

to 35 days could contribute the most to pathogen inactivation as well as biogas yield. 

Other important factors to consider in decreasing the pathogen count are maintaining a 

high organic loading rate (OLR) throughout the AD process and pasteurization of mate-

rials to be processed. (Sakar et al. 2009; Nag et al. 2019) 
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2.5 Success and risk factors of the biogas supply chain 

The implementation of CBMs within the case company's supply chain involves additional 

success and risk factors worth noting. Donner et al. (2021) analyzed critical success and 

risk factors for CBMs that valorize agricultural biomasses and side-flows. From the per-

spectives of logistic optimization and AD, it should be noted that the outputs of the biogas 

plant and the efficiency of the logistic operations may be influenced by the need to 

transport and process different types of biomasses and by-products (Donner et al. 2021). 

From a logistic perspective, this is critically important as it can impose restrictions on 

transporting certain materials together, leading to significant impacts on logistics plan-

ning and costs. Depending on the TS rate within the plant’s storage and production, 

production may be disrupted if water dilutions are required to reach TS lower than 15 %, 

decreasing the efficiency of biogas production and restricting it from reaching its full po-

tential. Thus, co-transporting of materials should always be utilized when required and 

possible from the perspectives of logistics and production management, but also in terms 

of emissions. It was found by Yu et al. (2023) that co-distribution of straw and manure 

contributes most to GHG mitigation. 

The processing capacity of the biogas plant should also be balanced with the material 

input from the logistic system. As noted by Donner et al. (2021), high storage capacity 

for feedstock located nearby the AD processing system may serve as a critical success 

factor if the biomass to be processed can be stored. However, this incurs storage costs 

for the case company, requiring analysis and optimization of the balance between stor-

age capacity and delivery times within the logistic system. It is important to consider the 

possible time sensitivity of the quality of biomasses to be stored, as their accumulation 

can lead to biomass spoilage and decrease the facility's AD-rate. From this, it can be 

concluded that with an optimal solution to the logistic routing problem, the utilization rates 

of biomasses can also be improved, as their quality in terms of methane potential and 

nutrient content is assumed to be a time-critical variable, as found in the case of horse 

manure by Hadin et al. (2016). This is intuitive, since if the quality decreases over time, 

so does the amount of material to be valorized. This means that with an optimal solution 

to the logistic problem, pollution of materials can also be decreased. 

When balancing production capacity, logistics and warehouse management, it should be 

also noted that the availability of side-streams valorized through AD can be affected by 

seasonality (Donner et al. 2021). Thus, depending on the magnitude of technological 

investments in production capacity and valorization rates of processed materials, it 

should be reviewed what types of materials it is most reasonable to valorize in different 

seasons. A probable suggestion would be to valorize only manures during the winter and 
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inspect the costs and benefits of valorizing straws alongside manures during the sum-

mer. On the other hand, since the grass and straw are baled in the fields, their collection 

is permitted throughout the year, although they are accumulated only during the summer. 

However, making valid recommendations to utilize only a selected group of biomasses 

in specific periods would require further and more detailed analysis, which is excluded 

from this study. The collection and utilization of all biomasses of interest are assumed to 

be continuous, although the peculiarities in their accumulation dynamics are taken into 

consideration.   

The geographical distribution of biomasses and side-streams to be picked up should also 

be noted as planning the logistic operations. Agricultural wastes and side-streams have 

varying quality and limited volume depending on the farm (Donner et al. 2021), making 

it more appealing to pick up biomasses from specific farms. Therefore, farms with high 

quality and volume of biomasses should be recognized and establish strategic partner-

ships with their owners. If the required biomass is picked up from farms with high volume 

and quality, it follows that the need for logistic operators to pick up biomass from several 

farms decreases. Thus, it can be reasoned that the total mileage driven by the logistic 

operators decreases, indicating lower fuel consumption and emissions caused by the 

vehicles. Efficient resource consumption and the minimization of emissions should re-

main as key design principles when planning logistic operations. This is because the total 

contribution of bioenergy production systems to the ecological footprint has been ques-

tioned by Wang et al. (2020), who concluded that biomass-based energy production in-

creased the ecological footprint of G7 countries. Therefore, aligning practices with CBE 

principles, such as minimizing emissions and maximizing resource usage, should not be 

taken for granted. Instead, the pursuit of these practices should guide all related deci-

sion-making processes in planning the logistic operations as well. 

2.6 Synthesis of literature review 

Based on the previously presented literature review, it can be generally stated that the 

profitable and efficient utilization of CBMs requires in-depth analysis of the prevailing 

market, industry, and company-related factors and dynamics. Due to the broad set of 

ways to minimize resource consumption and maximize their utilization, the material flows 

and the processes affected by them should be defined and well-known before choosing 

the parameters of the CBM to be utilized. 

However, in the context of the case company and the CBE, it seems that the selection 

of actors and processes in the supply chain and processing technologies to valorize bi-

omass materials through bioenergy production are justified. These selections aim to 
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achieve aligning practices with the principles of CBE, which include reducing emissions, 

minimizing costs, maximizing biomass utilization, and enhancing sustainability by pro-

posing bio-based energy alternatives. 

In planning the logistic operations related to transporting, storing, and utilizing biomasses 

such as manures, grasses and straws collected from nearby farms, the case company 

should optimize its supply chain. This optimization involves optimizing the transportation 

of biomasses from farms to the biogas plant, as well as warehouse and production man-

agement. The optimization of transportation logistics for biomasses is thoroughly exam-

ined in this study. Additionally, the examination covers monitoring stock levels of feed-

stocks and their consumption within the biogas production process. However, other fac-

tors related to warehouse management and production control are excluded from the 

analysis. The costs caused by the logistic system may have subsequent implications for 

endangering the achievement of aligning practices with the principles of CBE by con-

suming the company's resources, namely money, on unproductive operations such as 

logistics. These resources could be better invested in funding research on more ad-

vanced bioprocessing techniques and practices, ultimately enhancing circularity itself.  

Based on the literature review and synthesis, a theoretical framework was designed to 

highlight the factors of the biogas supply chain that need to be improved and can be 

enhanced with developed data processing and dynamic optimization tools. These tools 

will be examined in the following chapter, and the framework is presented below. 

 

 

Figure 5. Framework of the factors within the biogas supply chain that can be 
improved with developed methods. 
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Optimizing complicated supply chains, such as that of the case company, often requires 

the use of analytical tools to model and optimize their functioning. Such tools have been 

developed in earlier studies for municipal solid waste (Das & Bhattacharyya, 2015), 

broad regional supply chain consisting of multiple products and feedstocks (Balaman et 

al. 2018), to recognize key performance indicators of poultry manure supply chain 

(Ponjavic et al. 2020), to optimize the logistics of straightforward utilization of manures 

as fertilizers without the biogas production (Kamilaris & Prenafeta-Boldú, 2021), to opti-

mize combined biomass flows of straws and manures (Yu et al. 2023), utilizing wood 

biomasses in bioenergy production (Shabani & Sowlati, 2013), and to optimize supply 

chains of biofuel production (Zhang et al. 2013; Huang et al. 2014). 

However, these kinds of tools model the case-specific factors, such as the scope of mod-

eling, the number of actors, the types of materials and flows being inspected, etc., in 

detail. Analyzing at a detailed level is a prerequisite for obtaining reliable research re-

sults, which limits the applicability of models developed under different circumstances in 

the context of the case company in this study. Dynamically optimizing the logistic routing 

of transporting biomass side-flows from farms to the case company's biogas plant re-

quires the development of a new model that considers case-specific factors relevant to 

that context. This model development and research methodology will be examined in the 

next chapter. 
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3 LOGISTIC ROUTING OPTIMIZATION OF BIO-
MASS SIDE-FLOWS – METHODOLOGY 

The research methodology of this study is described in this chapter. First, the research 

design and strategy are established by discussing the goals, purpose, and research pro-

cess of the study. Secondly, the optimization problem of this study is presented at a 

conceptual level. Then, the data and its collection method used in this study are pre-

sented. In the third subchapter, the data processing phases are presented in detail with 

illustrative examples. After data processing, the model in which the processed data is to 

be used is presented. The model covers the simulation approach to logistic routing opti-

mization and the utilization of the genetic algorithm within it. Lastly, the validity and reli-

ability of the methodology are reviewed. 

3.1 Research design and strategy 

This study aims to scan the biomass potentials that could potentially be utilized by the 

case company, provide information on cost-effective selection of biomass pick-up sites, 

and propose an optimal plan to implement logistic routing operations related to the col-

lection and transportation of biomass side-flows for the bioenergy production at the case 

company’s biogas plant. It simultaneously considers the prevailing restrictions, opportu-

nities and dynamics related to the CBE that were analyzed in the literature review of the 

study, presented in the previous section. These prevailing conditions cover factors such 

as the general principles of CBE, which aim to minimize waste, emissions, and costs 

while maximizing the utilization rates of agricultural wastes such as manures and side-

flows of grasses and straws. Case-specific conditions are also considered, such as the 

restriction of the TS rate within the biogas production and targeted input values for the 

biomasses to be processed at the biogas plant. 

Additionally, the study aims to produce basic information for a possible paradigm shift in 

the field, supported by the study's results. The current practice in the field of not dynam-

ically optimizing the logistic routing operations may be questioned if the study's results 

conclude that dynamic optimization could yield significant cost savings. Dynamic optimi-

zation in this context encompasses the dynamic processes of biomass accumulation, 

movements, and decisions made by logistic operators, as well as the consideration of 

potential time-critical variables related to the quality of biomass. Therefore, by achieving 

the goals of the study, this study and its results could ultimately enable CBMs in the 
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context of the CBE more effectively, produce valuable information for the case com-

pany’s decision-makers, and explain how the case company could reach its targets of 

operating its CBMs effectively. 

This study utilizes both quantitative and qualitative methods, with a focus on quantitative 

methods. Data modeling, processing, and the utilization of processed data in simulation 

schemes to optimize logistic routing are self-evidently quantitative methods since they 

involve measurable, numerical variables (Saunders et al. 2019). The aim of these quan-

titative methods is to seek objectively undisputed results within the scope of the study’s 

assumptions, highlighting positivism as a research philosophy of the study. However, 

since these quantitative methods involve choices and decision-making by the creators 

of the methodologies, it could be argued that this study also utilizes qualitative methods, 

ultimately making it a multi-method study (Saunders et al. 2019). 

For instance, since the original data required significant processing before being utilized 

in the simulation scheme, as seen in the following subchapters 3.3 and 3.4, the re-

searcher made various choices regarding quantitative data procession methods. One 

such choice was the utilization of the K-Means clustering algorithm to model the pick-up 

sites (Jeffares, 2019; Magiya, 2019; scikit-learn developers, 2023). Although these quan-

titative methods were validated with other quantitative methods, such as plotting the pre-

processed data and calculating WCSS for clustering (Saji, 2023), the initial choice of the 

method was determined qualitatively by the researcher. 

The study is conducted with a constructive research approach in accordance with the 

principles of positivism and pragmatism (Saunders et al. 2019). By its nature, the study 

is an applied practical research endeavor, aiming to solve a problem and provide guid-

ance on how the collection and transportation of biomass side-flows should be executed 

within the case company. The problem-solving nature of the study, along with the re-

searcher's qualitative choices of quantitative methods, emphasizes pragmatism. Further-

more, the utilization of precise and measurable variables in the simulation and optimiza-

tion processes highlights the role of positivism. 

The time horizon of the study is cross-sectional, as the simulated and optimized results 

are generated within a short timeframe from June 2023 to August 2023 (Saunders et al. 

2019). It should be noted that the original biomass data, described in chapter 3.3, origi-

nated from a longer perspective, with each dataset including annual data. However, this 

is not relevant in terms of the time horizon of the study, as the original biomass data is 

modeled as pick-up sites in the simulation scheme, and the simulation itself was run in 

a short timeframe from June 2023 to August 2023, resulting in the perception that the 
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result data was generated within a short timeframe. The simulation period itself for bio-

mass accumulation and logistic routing is one year, resulting in a proposal for routing 

plans on a yearly level. 

The research process is as follows. The research topic was identified and defined 

through the collaboration of research organizations, namely HAMK Smart, HAMK Bio, 

and LuKe. This was based on a research problem presented by a case company plan-

ning to establish a biogas plant. The research problem can be summarized as a question 

of how and from where the case company should collect biomasses for biogas produc-

tion, while considering the production process restrictions and the principles of CBE. 

Three research questions were created to address the research problem, as presented 

in chapter 1.3. The principles of CBE and production process restrictions were discov-

ered through a literature review in the second chapter of the paper. 

The data used in this study consists of geospatial datasets for various types of bio-

masses located in Finland (LuKe, 2023). The data collection, description, and processing 

are explained in detail in subchapters 3.3 and 3.4. The data was used to scan the bio-

mass distribution in the nearby areas of the facility and to generate appropriate simula-

tion schemes by modeling the biomass pick-up sites from the datasets. Based on the 

generated biomass pick-up sites for a total of 9 biomass types, a simulation scheme was 

defined, and logistic routing was optimized by running the simulation multiple times 

(Niemitalo & Ekkerman, 2022; Eloranta, 2023b). The optimization was achieved by ap-

plying a genetic algorithm (GA) to minimize a cost function defined within the simulation 

scheme (Gracia et al. 2014; Katoch et al. 2021). 

The simulation scheme, which simulates the circumstances of the optimization problem 

described in section 3.2, was defined through discussions with experts from HAMK Bio, 

LuKe, HAMK Smart, and the case company. These discussions included considerations 

of various factors, such as the differing dynamics of biomass accumulation depending 

on the biomass type and the varying dynamics of collecting different biomasses, which 

have implications for the cost function. Additionally, differences in warehouse capacity 

assumptions for relevant farms were considered. For instance, the warehouse capacity 

for grasses and straws stored in the field was assumed to be infinite, while for manures, 

it was assumed to be the total sum accumulated within a year as dictated by the law 

(Government Decree on the Restriction of Discharge of Nitrates From Agriculture into 

Waters 2000/931 § 4). 

The results and their compliance with the restrictions of CBE and the biogas production 

process were reviewed through post-analysis. For example, the proportion of dry matter 
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in the reactor producing biogas had to be kept below a given rate, which could be ana-

lyzed post-simulation to determine if the condition was met. The results were then ana-

lyzed and discussed among experts from HAMK and LuKe, and the discussion of results 

and key findings of the study are presented in the fifth chapter of the paper. 

3.2 The problem of biomass routing and biogas production  

The optimization problem of this study combines and expands upon elements from the 

vehicle routing problem (VRP), which can be considered a generalization of the classical 

traveling salesman problem (TSP) for multiple operators (Bochtis & Sørensen, 2009). It 

also incorporates elements from the biomass collection problem (BCP) (Gracia et al. 

2014). The collection points, modeled as pickup sites within the routing problem, and the 

level of their content, needed to be calculated from geo-spatial biomass datasets as out-

lined in Chapters 3.3 and 3.4. However, the development of pickup sites was not opti-

mized within the genetic algorithm itself, resulting in their exclusion from the actual opti-

mization problem. Therefore, the data processing presented in Chapters 3.3 and 3.4 can 

be considered a solution for BCP. In this context, the pickup sites and their dynamics are 

assumed and taken as given within the optimization problem.  

The elements expanding the VRP encompass the dynamic accumulation of biomasses 

at pickup sites, as well as modeling their consumption within the biogas plant. Another 

expansion of the VRP involves not allowing a vehicle to visit certain sites, as the vehicle's 

type determines the sites it is supposed to visit. Modeling of biomass consumption in-

volves assuming a continuous biogas production process on a daily basis, with discrete 

consumption of biomasses from the plant's storage. Therefore, the optimization problem 

of this study is referred to as the Biomass Routing and Biogas Production Problem 

(BRBPP). BRBPP is described at a conceptual level within this subchapter, and the de-

veloped methodology aimed at solving it is presented in Chapter 3.5 

In VRP, a fleet of vehicles is supposed to visit a fixed number of collection points, with 

each point being visited exactly once. The optimization problem in VRP is to find the 

routing that minimizes the total distance driven while satisfying the requirement of visiting 

each point exactly once. (Gracia et al. 2014) Vehicles have capacity levels that pickups 

should not exceed during a route, and a route starts from and ends at a depot site 

(Bochtis & Sørensen, 2010). A duration of a route, including travel time and time spent 

at sites, is bounded to preset limit (Berger & Barkaoui, 2003). In BRBPP, the number of 

visits at each site is not restricted to one, as the number of visits is determined by the 

time window of the problem. To elaborate further, the number of visits at a site depends 

on the number of vehicles allowed to visit a site, the assumed time window, and the 
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problem parameters that define the duration of each visit at the site. The duration of a 

route must not exceed the duration of a single work shift.  

VRP assumes that collection points are static, meaning that the amount of mass that can 

be picked up there remains constant over time. Once the pickup operation is completed, 

the site does not need to be visited further, as the pickable mass does not accumulate 

over time. (Bochtis & Sørensen, 2009) In BRBPP, biomasses are assumed to accumu-

late at sites, implying that a site may need to be revisited once it has been emptied. 

Depending on the type of biomass accumulating within the site, the accumulation pro-

cess may be linear and discretely continuous on a daily basis. Alternatively, it could be 

discontinuous, with biomass accumulation observed only on random days. In this case, 

the amount of accumulation is greater compared to linear accumulation, resulting in what 

is known as a biomass “jump”. At sites where the accumulation process is discretely 

continuous, the maximum storage capacity is assumed. If the site's mass level exceeds 

this capacity, additional storage costs are incurred. Therefore, it can be argued that 

BRBPP combines and modifies elements of the vehicle routing problem with time win-

dows (VRPTW) as well, where the demand of a node must be satisfied within a given 

time window (Bochtis & Sørensen, 2010). In BRBPP, sites are not obligated to be visited 

precisely within the time windows defined by the site. However, the longer the visit to a 

site takes, the more possible additional storage costs may accumulate over time, con-

tributing to the total costs of the solution. 

A significant expansion of the BRBPP, which contributes significantly to the increased 

complexity of the problem, involves the assumed biogas production process that con-

sumes biomasses picked up and transported to the biogas plant by the vehicles. In TSP, 

VRP, and VRPTW, the depot is assumed solely as the starting and ending point of the 

routes, with no significant attributes of its own (Berger & Barkaoui, 2003; Bochtis & 

Sørensen, 2009; Bochtis & Sørensen, 2010; Gracia et al. 2014). In BRBPP, the biogas 

plant is represented as the depot, with its storage levels required to fulfill the resource 

demand of the biogas production. This production process involves consuming bio-

masses from the storage on a daily basis. If the storage runs out, a production stoppage 

and significant additional costs emerge. The composition of the stored biomasses must 

stay within certain thresholds, as the TS rate of the organic material to be anaerobically 

digested must not exceed 15% within a wet process (Hadin & Eriksson, 2016). If the 

weighted average of TS in storage exceeds 15%, dilution water must be added to 

achieve an appropriate TS ratio, resulting in additional costs to the system. The bio-

masses have targeted input values on an annual level, and plant’s storages have capac-

ities representing these targeted values. If a storage level exceeds its capacity, additional 
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costs are incurred. Similarly, if the total amount of biomass imported during the year 

surpasses the targeted annual input, additional costs are incurred in the form of unnec-

essary imports. 

The dynamic accumulation of biomasses at the sites transforms the BRBPP into a dy-

namic optimization problem (Liu et al. 2019). For instance, a decision to visit a certain 

site a week later instead of immediately affects the total costs of a solution, as this deci-

sion could ultimately impact the occurrence of a production stoppage at the biogas plant 

if storage runs out. This is due to the choice of early site visit with a lower level of biomass 

to be collected, rather than visiting a site with a greater level of biomass and postponing 

the visit to the initial site for the following week. Additional storage costs caused by ex-

ceeding the site’s storage capacity could also arise, depending on whether the initial site 

was visited immediately or not. 

The illustration of the BRBPP is presented in Figure 6; refer to page 39 for that. The 

illustration highlights various types of pickup sites and vehicles. The scenario depicted 

in the illustration can be considered a starting point for a typical day within the simulation 

period, providing an example of a partial solution to BRBPP. At the beginning of each 

day, every vehicle is assigned a route, which is essentially a list of locations to be visited 

throughout that day. A vehicle's route may also be empty, indicating that no transporta-

tion is required for that vehicle during that day. 

The solution encompasses routing information for each vehicle for every day of the sim-

ulation period. For example, if the simulation period is set to last 251 days and routing is 

calculated for 9 vehicles, the BRBPP solution includes routing details for those 9 vehicles 

over the coming 251 days. The solution is derived through optimization facilitated by the 

GA, which simulates the system with generated routing proposals and calculates the 

costs incurred with the given routing. The cost function is shown in the lower right corner 

of Figure 6; a more comprehensive analysis of it is provided in Chapter 3.5.2. 
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Figure 6. An example illustration of a partial solution to the Biomass Routing and Biogas Production Problem (BRBPP).
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As can be detected from the cost function presented in the Figure 6, the value of a cost 

function is determined by multiple variables. The presence of multiple variables affecting 

to the costs of a solution proposal alters the BRBPP multi-dimensional optimization prob-

lem, whose solutions can be sought by multi-objective optimization methods (Jozefowiez 

et al. 2008; Baños et al. 2013; Banasik et al. 2017). The difference is fundamental in 

comparison with the classical VRP, whose solutions minimize the total distance driven 

by the operators with the requirement of visiting each node once, thus being a single-

objective optimization problem (Jozefowiez et al. 2008; Baños et al. 2013). By incorpo-

rating multiple cost terms, which are objective variables to be minimized through opti-

mized routing, the optimization of biomass side-flows within a circular supply chain allows 

us to discover more comprehensive solutions. These solutions consider the relevant fac-

tors that affect costs in the system, thereby enhancing the overall efficiency of the supply 

chain. (Jozefowiez et al. 2008; Baños et al. 2013; Banasik et al. 2017).  

The cost function presented in Figure 6, examined in detail in Chapter 3.5.2, aims to find 

a logistical routing for a simulation period that optimizes the operation of the biogas pro-

duction supply chain, from the farms to the biogas reactor. This optimization should mit-

igate production interruptions in the biogas production due to resource shortages, mini-

mize the consumption of dilution water in production, prevent overflows and excessive 

visits to the facility. This can be achieved through route planning that simultaneously 

minimizes driving distances (and wrong visits), reduces overtime for drivers, and ensures 

sufficient storage capacity on a farm-specific basis for biomass production. 

3.3 Data collection and description  

The data used in this study was collected from LuKe's Biomassa-atlas (LuKe, 2023). The 

Biomassa-atlas provides geospatial datasets for various types of biomasses located in 

Finland. The methodology used in creating and calculating Biomassa-atlas’s datasets is 

described in detail by Luostarinen et al. (2017). The datasets include information on the 

year of dataset collection, biomass type, mass in tons, and location coordinates for each 

biomass point. Location coordinates for each mass point were given as multipolygons, 

including corner points of the area covering the biomass. The coordinates were initially 

given in the EUREF-FIN coordinate system and were later transformed to the WGS84 

coordinate system as part of the data processing. These corner points were used to 

calculate an average point of areas. Hence, average points were approximated to include 

an area’s mass, to enable processing biomasses as unique points. An example of the 

unprocessed data is illustrated in Figure 7. 
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Figure 7. An example of the form of unprocessed data. 

All datasets collected and used in this study were initially in a consistent, unified format, 

as illustrated previously. However, the datasets related to manures were on the munici-

pal level, while the datasets for grass and straw were more detailed. The selection of 

datasets was conducted with case-by-case consideration to align the types of biomasses 

inspected in the datasets with the case company's intentions regarding the types of bio-

masses to be collected and used for the biogas production. The opinions of LuKe's ex-

perts were also taken into account regarding the types of biomasses that the case com-

pany is likely willing and able to utilize. The datasets chosen, processed, and utilized in 

this study included slurry manure of bovines and pigs stored in animal shelters in the 

years 2015 and 2016, dry manure of horses, bovines, poultry, and pigs stored in storage 

facilities in 2016, and side-streams of straw, grass, and silage grass generated in 2021. 

3.4 Data procession  

The data processing tool was developed and written in Python as part of this study. The 

source code for the tool is publicly available (Eloranta, 2023a). The tool was developed 

to map the biomasses located nearby the biogas plant, determining the extent to which 

biomass potentials from surrounding areas could meet the resource needs of the plant’s 

annual production capacity. Additionally, the tool aimed to identify and approximate po-

tential and optimal pick-up sites for logistic operators, from which biomasses could be 

collected and transported to the plant for use in biogas production.  

The pre-processed data was initially plotted to validate its correctness, including loading, 

transforming, and averaging operations. Figure 8 illustrates an example of this phase, 

where the x- and y-axes represent the coordinates of the biomass points. The points are 

colored based on their mass, highlighting areas with higher biomass density. The color 

bar on the right side of the diagram represents the scaling system for coloring the points. 
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Figure 8. An example of the data pre-processing phase. 

After data validation, the datasets were filtered to include only biomasses located within 

a 50-kilometer radius from the plant’s location. The cutoff value for the 50-kilometer ra-

dius was set because it appeared that biomasses within this range could easily meet the 

plant’s resource demand. Expert opinions from LuKe and HAMK were also considered, 

along with the case company's interests regarding the resource demand levels. Euclid-

ean distances were calculated for each point, and biomasses that were further than the 

chosen cutoff value were filtered out from the datasets. The accuracy of the distance 

calculations and filtering operations was validated by plotting the remaining data once 

again. An example of this phase of data processing is illustrated in Figure 9 below.  



43 
 

 

Figure 9. An example of the filtering phase in data processing. 

The remaining parts of the datasets were subjected to the unsupervised learning method, 

the KMeans clustering algorithm, to identify reasonable subareas (Jeffares, 2019; 

Magiya, 2019; scikit-learn developers, 2023). Approximations from these subareas were 

later modeled as pick-up sites in logistic simulation and optimization. The uneven geo-

graphical distribution of biomasses was taken into account during clustering by duplicat-

ing biomass points based on their masses. Mass coefficients were derived accordingly 

for duplicating points. This duplication was necessary because Sklearn's KMeans clus-

tering algorithm does not consider weights in its clustering; it only considers coordinates 

without weight coefficients. 

The k value used for clustering was validated using the Elbow Method (Saji, 2023). The 

idea behind the Elbow Method is to cluster the dataset with varying numbers of cluster 

centers (k) and find the optimal value for k that minimizes the WCSS (within-cluster sum 

of squares). The optimal k is a value that is small enough to enable efficient calculations, 

yet large enough that further increasing k would not significantly minimize the WCSS 

(Saji, 2023). By plotting the WCSS as a function of k, a figure in the form of an elbow is 

formed, and the optimal k can be located at the elbow. An example of this validation is 
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presented in Figure 10, which was generated using the same dataset as the previous 

examples. 

 

Figure 10. An example of the Elbow method in validating the number of clusters. 

As can be seen in Figure 10, the WCSS has dramatically decreased as the number of 

clusters reached 25, approaching almost zero with 100 clusters. However, since these 

clusters will later be modeled as biomass pick-up sites in logistic simulation (i.e., farms), 

and the data being used is not farm-specific, it is important to choose the number of 

clusters cautiously. Additionally, it can be assumed that within a 50 km radius of the 

biogas facility located in Kanta-Häme, there are more than 25 farms. To ensure that the 

number of clusters more realistically represents the number of farms in the relevant area, 

the k value was initially set to 200 for clustering. This decision results in heavier compu-

tation but provides a more realistic modeling scheme with a very low WCSS value. 

An example of the initial clustering of biomass data within a 50 km radius, using 200 

clusters, is presented in Figure 11. It is important to note that the unit of mass was con-

verted to truckloads, assuming that 45 tons are equivalent to one truckload. Additionally, 

the masses were transformed to a logarithmic scale to enhance the visualization of bio-

mass potentials for the case company. This allows for a better understanding of where 

the biomasses should be collected and from how far away to meet the resource demand. 

In Figure 11, each point located within a colorized sub-area represents the weighted 

central point of that sub-area, which includes all points related to the same cluster. Thus, 

the colorized sub-areas represent clusters in Figure 11’s visualization. The intensity of a 

color of the central point indicates the total amount of biomass within the cluster area. 
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These kinds of points will be modeled as pick-up sites, assuming that farmers within a 

cluster area will collect the biomasses and deliver them to the pick-up site for the logistic 

operator to retrieve. 

 

Figure 11. An example of the initial clustering phase in data processing. 

After the initial clustering presented in Figure 11, it was noted that the biomass resource 

demands for the case company's plant could be easily satisfied within a 50 km radius. 

The case company set the target input value for grasses and straws at 28,000 tons per 

year (Tampio, 2023), and it can be seen from Figure 11 that the biomass potentials of 

straws alone could theoretically meet the requirements. Similarly, with manures, the tar-

get value was set at 14,000 tons (Tampio, 2023), leading to similar conclusions. Due to 

the abundant occurrence of biomasses within the 50 km radius, the number of clusters 

was reduced to enable more efficient computation later on. It can be intuitively concluded 

that collecting biomasses as close to the facility as possible would be more cost-efficient, 

as it would reduce the total kilometers driven. Based on these observations and conclu-

sions, a methodology for thinning the clusters was developed and implemented. 
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The thinning methodology utilized divides the initially clustered dataset of a 50 km radius 

area into 5 tires, with each tire having a thickness of 10 km. Then, the new desired value 

for k within each tire was calculated by dividing the number of clusters originally in the 

tire by a divisor coefficient raised to the power of the tire’s sequence number. With the 

new value of k for each tire, the biomasses within the tire’s area were clustered again, 

resulting in a lower total number of clusters. As a result, the number of clusters near the 

plant were thinned the least, while those furthest away were thinned the most. An exam-

ple of the results of the thinning method described here is presented in Figure 12 below. 

 

Figure 12. An example of the methodology of cluster thinning. 

After thinning the clusters, the number of clusters was further reduced to enable more 

efficient computation. It appeared that the combined masses of different biomasses 

would exceed the targeted input values of the case company based on their resource 

demand. In this phase, the number of clusters was reduced by identifying the nearest 

clusters to meet the yearly biomass resource demand. Clusters that remained above the 

resource needs were filtered from the data. This filtering procedure was implemented for 

all biomass datasets, resulting in a significantly lower number of clusters to be calculated. 

At the same time, it ensured the adequacy of biomasses for the demand, considering 
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multiple grass, straw, and manure datasets. An example of the resulting clusters from 

this phase of data processing is presented in Figure 13 in page 48 in unified form with 

previous figures, and in Figure 14 in format of plotting cluster points within actual map 

format after transporting datapoints to GEOJSON format. 

After calculating the nearest clusters for each biomass type, the resulting datasets were 

combined to be used in simulation and optimization. It should be noted that the resulting 

datasets included information about the biomass type, thus ensuring that no information 

was lost when combining the datasets. The combination of datasets is visualized in Fig-

ure 15 in page 49, where the color of each point represents the biomass type.
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        Figure 13. An example of the nearest clusters to fulfil resource needs. 

  

         Figure 14. An example of the nearest clusters plotted within a map.
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Figure 15. Pick-up sites approximated from biomass datasets. 



50 
 

The combined dataset, visualized in Figure 15, which consists of pick-up sites for each 

biomass type, was then imported into GeoJSON format to be used in simulation and 

optimization. The methodology for logistic routing simulation and dynamic optimization 

is described in the following section 3.5. 

3.5 Model development 

The models used for simulation and optimization in this study were based on the previous 

work of Niemitalo and Ekkerman (2022). They contributed significantly to the develop-

ment of the model by implementing simulation schemes and the GA for routing optimi-

zation. The models implemented by Niemitalo and Ekkerman (2022) were further devel-

oped for this study to align the models with case-specific factors, such as operating in 

the context of CBE and simulating the transportation of biomasses to be used as a re-

source in the biogas production. 

The simulation and optimization tool developed by Niemitalo and Ekkerman (2022) sim-

ulates the accumulation of waste at multiple collection sites, referred to as pickup sites. 

Each pickup site has a unique capacity, current state, geographical coordinates, daily 

growth rate, and the accumulation follows a linear pattern (Niemitalo & Ekkerman, 2022). 

In the context of this study and CBE, the adjustments were implemented for the attributes 

of pickup sites. These adjustments include, for instance, implementing an alternative 

accumulation model for grasses and straws. More of these adjustments are discussed 

in the following subchapters 3.5.1 and 3.5.2. 

The simulation scheme includes logistic operators, i.e., vehicles, whose mission is to 

collect waste from the pickup sites and transport it to depot sites. A number of vehicles 

and geographical coordinates are defined for each depot. Vehicles have attributes such 

as load capacity, current load, current location, routes to drive, the duration of a shift, the 

proportion of break time during the shift, and the constant duration for the pickup opera-

tion. When a vehicle's load reaches its capacity, the vehicle must return to the depot to 

unload the collected waste. (Niemitalo & Ekkerman, 2022) The behavior of the logistic 

operators was also adjusted for this study. For instance, the assumption of a constant 

duration for the pickup operation was rejected, and the duration of a pickup operation 

was modeled to consist of two factors: a constant one that represents the setting time 

required for connecting the equipment within a pickup site, and a factor that is linearly 

dependent on the amount of waste to be collected. Other case-specific adjustments im-

plemented in the model are described in detail in the following subchapters 3.5.1 and 

3.5.2. 
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Transportation traffic is simulated for a given period of days, which is defined by the user 

in the simulation scheme's configuration. The type of simulation is process-based dis-

crete event simulation, which is implemented in Python using SimPy (Team SimPy, 

2020). The optimizer is implemented in C++ for faster calculations, and, as a result, it 

uses the C++ implementation of the same simulation model, SimCpp20 (Schütz, 2021). 

The traffic is simulated with the routes optimized by the GA utilizing SimCpp20. A route 

is a list of locations for a vehicle for each day. The optimized routes are generated by 

minimizing a cost function that depends on the routing. (Niemitalo & Ekkerman, 2022) 

The variables of the initial cost function implemented by Niemitalo and Ekkerman (2022) 

were fuel consumption, which was derived from kilometers driven by vehicles, overtime 

work, and daily penalties for overfull pickup sites. The cost function used within the 

study's biogas case included some additional variables that were implemented and used 

to consider relevant case-specific factors, such as the dynamics of the biogas production 

and resource consumption. The cost function utilized in this study is presented in sub-

chapter 3.5.2. 

The distances and travel times between the pickup sites and other locations were col-

lected by utilizing a routing API (openrouteservice, 2023), which returns distance and 

duration matrices for the given geographical coordinates. These matrices were used to 

calculate the costs of alternative routing proposals generated by the GA. Routing pro-

posals are ranked by the GA based on their costs, while the minimization of costs is 

preferred when generating new routing proposals through the GA. (Niemitalo & Ekker-

man, 2022)
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3.5.1 Simulation approach to biomass routing optimization 

Adjustments were made to the simulation model as part of this study. The entire simula-

tion and optimization model used in this study can be found in Eloranta (2023b). These 

adjustments were implemented to better align the model with the characteristics of the 

biogas production from agricultural waste and side-flows. In contrast to the initial model 

developed by Niemitalo & Ekkerman (2022), which assumed consistent factors influenc-

ing the dynamics of waste collection and transportation, the model used in this study was 

further developed to account for various types of biomasses being collected and trans-

ported. 

This development was necessary due to the distinct requirements for collecting grasses 

and straws, dry and slurry manure, each of which necessitates different types of vehicles 

and results in differing collection rates. Henceforth, within this study, the terms "grass 

and straw," "dry manure", and "slurry manure" will collectively refer to the three general 

types of biomasses. In the study's model, it was assumed that grass and straw bales are 

collected and transported as piece goods, secured with straps during transportation. Col-

lecting slurry manure involves specialized intake equipment integrated into a container 

on the transportation vehicle, while dry manures are gathered in a closed boxcar. Overall, 

the study's model was expanded to encompass different types of biomasses for collec-

tion and transportation. This expansion built upon the initial model introduced by 

Niemitalo & Ekkerman (2022) to ensure the validity and realism of simulating the biogas 

supply chain. 

General assumptions regarding the logistic simulation and routing optimization were 

made as follows: a total of 9 collection trucks were assumed, with an equal distribution 

among general biomass types. The simulation calculates the instances of wrong visits 

for each vehicle and applies penalties during the optimization process to ensure logical 

routes for each vehicle. An example of an incorrect visit occurs when a vehicle, originally 

intended to collect dry manure, visits a pickup site containing grass or straw and at-

tempts, unsuccessfully, to collect biomass from within that site. The capacity of each 

truck was assumed to be 45 tons. The duration of the work shift was set to 9 hours, 

including a break of 45 minutes. Since the targeted input values for biomasses were set 

on an annual level (Tampio, 2023), the length of the simulation period was set to be one 

year, representing 251 workdays. Number of depot sites were set to one, including the 

coordinates of the biogas plant under construction. 

During the simulation, additional adjustments were made due to the presence of three 

types of biomasses. The depot site, designed to mimic the biogas plant, was expanded 
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to incorporate storage capacities for the various biomass types and to monitor their lev-

els. For manures, the storage capacity was set at 14,000 tons, while for grasses and 

straws, it was set at 28,000 tons. These capacities aligned with the targeted input values 

for biomasses established by the case company (Tampio, 2023). 

In relation to manures, the capacity of pickup sites was defined as the sum of masses 

within the clusters. This definition adheres to regulations requiring farms to be capable 

of storing the amount of manure produced annually (Government Decree on the Re-

striction of Discharge of Nitrates From Agriculture into Waters 2000/931 § 4). Notably, 

the clustering datasets are based on an annual timeframe. For grasses and straws, a 

theoretical capacity was similarly set, although its impact on optimization was disre-

garded, as grasses and straws are assumed to be stored as bales in fields, essentially 

having infinite capacity. 

Cluster centroids were modeled as pickup site locations, serving as collection points for 

the biomasses within the designated area of each cluster. For simulation purposes, initial 

storage levels of the pickup sites were selected randomly to prevent potential systematic 

errors that could result from uniform or constant level settings. These initial levels were 

determined for manure pickup sites by multiplying the site's capacity by a random num-

ber between 0 and 0.8. Regarding grass and straw pickup sites, 40% of the pickup sites 

were randomly selected to include a storage level that represents the amount of collect-

able grass and straw generated from a single cutting. This level corresponds to a third 

of the annual accumulation of grass and straws, considering that three cuttings occur 

within a year. 

Different dynamics within the accumulation and collection processes of various generic 

biomass types at the pickup sites were taken into consideration. These dynamics were 

subsequently implemented into the simulation model. The accumulation of manures was 

assumed to follow a linear pattern, based on discussions with experts from HAMK and 

LuKe, where it was concluded to be a reasonable assumption. The fulfillment process of 

the pickup sites within the manure sites were thus modeled as follows: 

     ∆𝑚𝑡,𝑖 = 𝑚𝑖 ,      (1) 

where ∆𝑚𝑡,𝑖 is an accumulation of manure at the day 𝑡 on the pickup site 𝑖, 𝑚𝑖 is a daily 

expected accumulation of manure at the site 𝑖, derived by dividing the site’s annual ac-

cumulation with the length of the simulation period.  

Assuming a similar linear accumulation process with the grasses and straws would be 

inappropriate due to the need for cutting before collection, which only takes place during 

the summer. Consequently, an alternative accumulation process became necessary. It 
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was assumed that farms perform three cuttings during the summer: the first in mid-June, 

the second at the beginning of August, and the third in mid-September. Once these cuts 

are completed, the storage level at a pickup site goes from zero to one-third of the annual 

production for that site. To prevent simultaneous jumps at all sites, the jumps were dis-

tributed over three two-week periods: mid-June, the beginning of August, and mid-Sep-

tember. Each site was allowed a jump only once during a two-week period, resulting in 

a maximum of three jumps per site throughout the simulation period.  

During a two-week period, the accumulation process was modeled as follows: 

     ∆𝑚𝑡,𝑖 =
1

3
𝑀𝑖𝜀𝑡,𝑖,      (2) 

in which ∆𝑚𝑡,𝑖 is the accumulation of grass or straw at the day 𝑡 on the pickup site 𝑖, 𝑀𝑖 

is the annual accumulation of grass or straw at site 𝑖, and 𝜀 is a vector consisting of 10 

elements, with 9 of them being zeros and one element equal to 1. The location of this 

element within the vector, i.e., the date of the jump occurrence, was chosen randomly. 

The accumulation of grasses and straws follows Equation 2 only if the simulation is in 

one of the three two-week periods during which the cuttings are expected to occur. Oth-

erwise, the accumulation of grasses and straws is zero. 

It should be noted that each site had a unique ε for each two-week period, ensuring that 

the cuttings did not occur on the exact same day for every site within that period, thus 

increasing the randomness of the simulation. Additionally, ε was initially generated for 

routing optimization and remained fixed for the optimization process. The decision to fix 

ε values was made because optimizing the routing would not yield actual optimality if ε 

values were completely random. This is because the optimization problem would change 

with each simulation run during the optimization process. 

To address the third research question, additional time-sensitive factors that influence 

the levels of biomass volume and moisture were incorporated into the model. The effect 

of passive drying of biomass was modeled, utilizing the storage model presented by van 

Dyken et al. (2010). The passive drying dynamics were applied to all simulation 

schemes. 

The rate of biomass volume loss due to passive drying is assumed to be 1% per week 

within the storage model of van Dyken et al. (2010). Therefore, the time-critical factor 

representing the volume losses of biomasses caused by passive drying was modeled as 

follows: 

     𝑉𝑏,𝑤  = 𝑉𝑏(1 −  𝑟𝑙,𝑑)𝑤,    (3) 
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where 𝑉𝑏,𝑤 is the volume of biomass 𝑏 at week 𝑤, 𝑉𝑏 is the initial volume level of biomass 

at the location of interest, and 𝑟𝑙,𝑑 is the rate of biomass volume loss caused by passive 

drying on a weekly basis.  

Due to passive drying, the moisture level of biomasses decreases, affecting their TS-

rate. The decreasing drying rate of biomasses was defined in timestep within the storage 

model of van Dyken et al. (2010). However, due to the broader complexity of this study's 

problem, including the accumulation and consumption of biomasses, the modeling of 

changes within the biomasses' level of moisture was simplified and not defined by 

timestep. In this study, a 5% decrease in moisture content per week through passive 

drying was assumed, based on the approximation of van Dyken et al.'s (2010) drying 

rate, which is dependent on storage time. Therefore, the time-critical factor representing 

the changes in the moisture level, later being transformed to changes within the TS rate, 

was modeled as follows: 

     𝑀𝑏,𝑤  = 𝑀𝑏(1 −  𝑟𝑚,𝑑)𝑤,    (4) 

where 𝑀𝑏,𝑤 is the level of moisture of biomass 𝑏 at week 𝑤, 𝑀𝑏is the initial level of mois-

ture of biomass at the location of interest, and 𝑟𝑚,𝑑 is the rate of biomass moisture de-

crease caused by passive drying on a weekly basis. The dynamics of passive drying, as 

presented in Equations 3 and 4, were assumed to be valid at storages of pickup sites, 

during transportation, and at the storage of the biogas plant before being utilized within 

the AD process. 

The assumption of a constant pickup duration (Niemitalo & Ekkerman, 2022) was re-

jected within this study. This rejection may be justified by the coexistence of multiple 

types of biomasses and the dependence of pickup duration on the amount of biomass to 

be picked up. It was assumed that the pickup duration consists of a constant factor and 

a variable that is linearly dependent on the amount of biomass to be collected. The pickup 

duration may be formatted as follows: 

     ∆𝑡𝑖,𝑙 =  𝑇 + 𝑣𝑚𝑙 ,      (5) 

where ∆𝑡𝑖,𝑙 is the pickup duration for the pickup site 𝑖 with a load level of 𝑙, 𝑇 is the 

constant term of the pickup operation, and 𝑣𝑚 is the collection rate for the biomass 𝑚. 

𝑇 was assumed to be 10 minutes for all biomasses, based on the discussions had with 

the experts of HAMK and LuKe. Therefore, T may be considered as the setting time of a 

pickup operation, including the time spent on setting up and dismantling the collection 

equipment. Based on the discussions with the experts, 𝑣𝑚 was assumed to be 1.6 

tons/min  0.625 min/ton for slurry manures, 1 ton/min  1 min/ton for dry manures, 
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and 1.2 ton/min  0.833 min/ton for grasses and straws. Although grasses and straws 

accumulate only in summer, it was assumed that once the cuttings are done, they are 

baled and stored in the fields, allowing the collection of them to be continuous throughout 

the year. It should be noted that the vehicle may not be able to empty the site if its load 

reaches its capacity. In that case, the vehicle loads only the amount it′s able to, and the 

time spent on that operation is calculated based on the loaded level. 

To facilitate monitoring the storage levels of general biomass types within the biogas 

plant and to analyze the fulfillment of TS-rate requirements within the wet process used 

in the biogas production (Hadin & Eriksson, 2016), the implementation of the depot class 

(Niemitalo & Ekkerman, 2022) was significantly expanded. The biogas plant is modeled 

as an object constructed by the depot class in the simulation. Methods for receiving bio-

mass into storage and consuming it from storage were implemented, along with methods 

to track and update storage levels within the biogas plant and its TS rate. The necessary 

object variables were also defined (Eloranta, 2023b). These variables include the stor-

age levels of the biogas plant, cumulative amounts of received biomasses, weighted 

average of the TS rate within the storage, cumulative dilution water consumed, and con-

sumption rates. The consumption rates were defined through discussions with experts 

from LuKe and HAMK Bio, replicating the potential mixture utilization within the biogas 

reactor. 

In the simulation, the storage levels of biomasses decrease each day by the consumption 

rates, which represent the utilization of resources in the biogas production. When a ve-

hicle arrives at the biogas plant to unload, the plant's biomass-receiving method is in-

voked. This action increases storage levels by the amount unloaded by the vehicle and 

updates the weighted average of the TS rate of the storage. The logging of storage levels 

and TS rate has been implemented to facilitate post-analysis for assessing the fulfillment 

of the 15% TS rate requirement.  

Additional object variables were introduced for the depot class to enable the identification 

of unfavorable actions within the biogas production process, similar to the cost variables 

in the optimizer's cost function discussed in more detail in the following subchapter 3.5.2. 

A cumulative amount of received biomass was implemented to track the moment when 

the received quantity of biomass reaches the yearly targeted input value. If this occurs, 

subsequent unloads executed by vehicles are unnecessary and are counted and penal-

ized within the cost function. Overfilling of the biogas plant's storage is also considered 

as a cost variable within the cost function and is penalized on a daily basis. If the storage 

level of the biogas plant reaches zero, it causes a production stoppage, which is also 

penalized within the cost function based on the number of days with biogas production 
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stopped. To maximize the likelihood of generating an optimized routing with a continu-

ously maintained TS rate below 15% within the storage, the cumulative consumption of 

dilution water in the biogas production has been introduced. Each day, if the storage's 

TS rate exceeds 15%, the total consumption of dilution water increases by the amount 

required to dilute the storage's biomass mixture to achieve a TS rate of 15%. The cumu-

lative consumption of dilution water is incorporated as a single cost term within the cost 

function minimized by the GA, a topic that will be discussed in the next subsection. 

3.5.2 Genetic algorithm in optimization 

A genetic algorithm (GA) implemented by Niemitalo & Ekkerman (2022) is utilized as part 

of this study to optimize the collection and logistic routing of biomasses in a way that 

minimizes the cost function to be defined. GAs are population-based metaheuristics ap-

proaches to solve optimization problems, suitable for variety of problems in the field of 

operations management (Katoch et al. 2021). During the optimization process of popu-

lation-based metaheuristics, multiple potential solutions are simultaneously maintained, 

evaluated, compared, and evolved. The diversity is maintained in the population to avoid 

the solutions from being stuck in local optimum. The principles that guide the optimization 

of the genetic algorithm are derived from the biological evolution process. (Katoch et al. 

2021) In short, GA’s optimization starts with a set of solutions, noted as the initial popu-

lation. A single solution within the population is noted as a chromosome. By utilizing a 

set of genetic operators, new potential solutions, noted as children, are generated by 

combining the parts, noted as genes, of the initial solutions, noted as parents. The fea-

sibility of a solution is examined with the defined fitness function. Based on the value of 

the fitness function, a solution is either accepted to the population or rejected. If the so-

lution is accepted, a new generation of solutions is established. The process of inheriting 

potential solutions is repeated until the defined stopping criteria are met. (Gracia et al. 

2014) 

The implementation of the GA includes a set of discrete phases. These phases encom-

pass setting the parameters, the initialization of the population, i.e. selecting the initial 

parents, defining the fitness value, i.e. cost function based on the conditions and goals 

of the optimization context, defining the crossover and mutation operators utilized to in-

herit new solutions, and the replacement of each generation. (Gracia et al. 2014) The 

crossover and mutation operators are referred to as genetic operators, implemented not 

only to inherit descendants, i.e. generate new solutions, but also to maintain the diversity 

of the population and avoid ending up with a solution located in a local optimum (Gracia 

et al. 2014; Katoch et al. 2021). 
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The implementation of the GA utilized in this study is as follows. The parameters such 

as the population size, number of genes, and generations (Gracia et al. 2014) are set as 

follows: the number of genes, i.e. the number of potential locations to be visited by a 

vehicle (including pickup sites and the biogas plant), is calculated from the simulated 

logistic routing proposal. The size of the population is derived as follows: 

     𝑆𝑝 =  max (100, 4𝑁𝑔) ,     (6) 

where 𝑆𝑝 is the size of the population used within the optimization, and 𝑁𝑔 is the number 

of genes calculated from the routing information. Based on the routing input information 

given to the algorithm, size of population within this study was calculated to be 12,384. 

The number of generations to be inherited serves as the stopping criteria for the optimi-

zation and was set to 600,000. After 400,000 generations were completed, the algorithm 

switched to a greedy approach for the remaining 200,000 generations, utilizing a greedy 

optimization algorithm. The difference between the non-greedy and greedy algorithms 

will be explained in the next paragraph. The initial population is generated randomly. For 

each initial solution, a random permutation of integers is generated from 0 to 𝑁𝑔 − 1, in 

which each integer represents one gene in the chromosome. 

Before inheriting descendants, i.e., utilizing the crossover operator, a selection of chro-

mosomes from which the new solutions are generated is done. Selection is a crucial step 

in optimization if the GA is utilized since it determines which portion of the initial solutions 

will be included in the optimization process, and later on, the selection is applied with 

inherited generations. (Katoch et al. 2021) The selection procedure implemented by 

Niemitalo and Ekkerman (2022) and utilized within this study does not narrow the number 

of chromosomes while inheriting new generations of solutions. It takes each chromo-

some as a parent 𝑝0 and chooses another chromosome randomly as a parent 𝑝1, with 

each chromosome being chosen randomly only once. Therefore, each chromosome 

within the generation is utilized once as a parent 𝑝0 and once as a parent 𝑝1. However, 

after switching to a greedy approach, the algorithm fixes the choice of the other parent 

to be the best-known chromosome, i.e., the best among the simulated solutions thus far. 

(Niemitalo & Ekkerman, 2022) Consequently, the number of potential descendants 

equals the number of parents. By not narrowing the number of descendants within the 

inherited generations, the chances of ending up with a solution located in a local optimum 

are decreased since the best chromosome is chosen at the end of the optimization with 

the best fitness value, i.e., the lowest cost.  

The creation of descendants is done by the crossover operator after the selection pro-

cedure. The crossover operator determines the combination of genes for descendants, 
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consisting of parts of the parents' genes. (Gracia et al. 2014; Katoch et al. 2021) The 

crossover operator implemented by Niemitalo and Ekkerman (2022) and utilized within 

this study chooses two random crossover points from the chromosome of parent 𝑝1 and 

transmits the genes between the crossover points to the child. The rest of the genes are 

transmitted to the child from parent 𝑝0, from which the genes that are not in between the 

previously chosen crossover points are chosen. Thus, a new descendant is generated 

with genes consisting of parts of its parents' genes. 

Mutation operators could be implemented to add random variations to the genes of chil-

dren with determined probabilities (Gracia et al. 2014). However, mutation operators 

were not implemented in the GA utilized within this study (Niemitalo & Ekkerman, 2022). 

Mutation operators would maintain the diversity within the population across the gener-

ations, ensuring the avoidance of ending up in a local optimum (Katoch et al. 2021). 

However, since the number of chromosomes within generations is not narrowed through 

the inheritance process, the implementation of a separate mutation operator was not 

seen as a necessity for this study. 

After inheriting descendants, the feasibility of each chromosome is evaluated using the 

cost function. The value of the cost function with the inherited chromosome is calculated 

and compared to the cost function values of its parents. The chromosome with the lowest 

cost function value is accepted into the new generation of solutions. (Niemitalo & Ekker-

man, 2022) Therefore, it is ensured that each round of generations improves or maintains 

a set of solutions equally good as the previous generation by rejecting the child from the 

inherited generation if its cost is higher than either of its parents. 

The cost function utilized within this study is based on the one implemented by Niemitalo 

and Ekkerman (2022) and has been further developed for this study to better align its 

functioning with the context of transporting agricultural wastes and side-flows as bio-

masses for utilization in the biogas production. The cost function utilized within the opti-

mization of this study is defined as follows: 

                                           TC =  𝑐𝑜𝑣𝑙𝑑 ∑ OVLDi

𝑚

𝑖=1

+ Cvehicles + Cbgp,                                 (7) 

where TC is the total costs caused by the system with the given routing, 𝑐𝑜𝑣𝑙𝑑 is the 

assumed cost of one day of overload at a pickup site, OVLDi is the number of days of 

overloading at pickup site 𝑖 and 𝑚 is the number of pickup sites.  

Cvehicles consist of costs caused by vehicles, and is defined as follows: 
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                          Cvehicles =  𝑝𝑓𝑐𝑓 ∑ ODO𝑖

𝑛

𝑖=1

+ 𝑐𝑜𝑣𝑡ℎ ∑ OVT𝑖 

𝑛

𝑖=1

+ 𝑐𝑤𝑣 ∑ WVi

𝑛

𝑖=1

,                 (8) 

where 𝑝𝑓 is the assumed price of fuel (€/l), 𝑐𝑓 is the assumed fuel consumption (l/100km), 

𝑛 is the number of vehicles collecting and transporting the biomasses from farms to the 

biogas plant, ODO𝑖 is the total mileage driven by vehicle 𝑖 with the given routing, 𝑐𝑜𝑣𝑡ℎ is 

the assumed cost of the overtime work (€/h), OVT𝑖 is the total overtime work of vehicle 𝑖 

with the given routing, 𝑐𝑤𝑣 represents the unit cost for a vehicle visiting the wrong type 

of pickup site, and WVi signifies the number of wrong visits carried out by vehicle 𝑖 based 

on the given routing. The incorporation of cost terms penalizing wrong visits was a com-

ponent of the ongoing development of the cost function, which was undertaken as part 

of this study. Other cost terms associated with vehicles were introduced by Niemitalo & 

Ekkerman (2022), along with the cost term for pickup site overload, as presented in 

Equation 7.  

Cbgp was a part of further development of the cost function implemented by Niemitalo 

and Ekkerman (2022), and it represents costs caused by inefficiencies in biogas produc-

tion at the biogas plant. Cbgp is defined as follows: 

   Cbgp = 𝑐𝑝𝑑𝑠𝑡PDST + c𝑜𝑣𝑓OVF + c𝑒𝑥𝑖𝑚EXIM + 𝑐𝑑𝑤DW,          (9) 

where 𝑐𝑝𝑑𝑠𝑡 is the assumed cost of a production stoppage, i.e. biogas plant running out 

of feedstock storage, PDST is the number of production stoppages that occurred within 

the simulation with the given routing, c𝑜𝑣𝑓 is the assumed cost of overfilling the biogas 

plant’s storage, which is assumed to have a capacity equal to the targeted annual inputs 

(Tampio, 2023), OVF is the number of overstocking occurrences that happened with the 

given routing, c𝑒𝑥𝑖𝑚 is the assumed cost of one unnecessary import of biomasses to the 

biogas plant after the targeted annual input is reached, EXIM represents the number of 

unnecessary imports that occurred within the simulation with the given routing, 𝑐𝑑𝑤 rep-

resents the assumed cost for one ton of dilution water consumed, and DW signifies the 

total amount of dilution water, in tons, consumed at the biogas plant based on the given 

routing.  

It should be noted that Equations 7, 8 and 9 all include penalty terms that are difficult to 

measure, but practical and reasonable to utilize within optimization procedure to ensure 

the streamlining of the related phases in the biogas supply chain. These penalty terms 

are costs of overloading of pickup sites, costs of wrong visits, costs of production stop-

pages and overfills of the feedstock storage at the biogas plant, and costs of unneces-

sary imports of biomasses.  
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Although Equation 7 shows the general cost term for overloads at pickup sites, it should 

be noted that overfilling of grass and straw pickup sites was neglected within the optimi-

zation. Since it was assumed that grasses and straws are baled on the fields, a theoret-

ical infinite storage capacity could be assumed. Therefore, the cost function term OVLD𝑖’s 

value was not increased during the simulation if storage level exceeded site’s capacity 

at pickup site consisting of grass or straw, resulting in neglection of overloads at grass 

or straw pickup sites.   

The cost function presented in the Equation 7 was utilized in this study because it con-

siders the dynamic optimization of logistic routing, aims to minimize transportation costs 

(mileage and overtime work), and consequently, aims to reduce transportation emissions 

(by minimizing mileage and fuel consumption). It also aims to enhance the flow of bio-

masses within the biogas supply chain by taking into account biomass flows at the biogas 

plant and addressing potential inefficiencies that might arise, including the consumption 

of dilution water and occurrences of production stoppages. These factors are consistent 

with those presented in Figure 5 of Chapter 2.6, which illustrates the factors within the 

biogas supply chain that can be improved using the methods developed and utilized in 

this study. The methods also consider case-specific factors related to the CBE and the 

transportation of agricultural wastes and side-flows as biomasses to be utilized in the 

biogas production, based on the literature review presented and discussed in Chapter 2.   

3.6 Validity and reliability of the methodology 

Throughout the research process, ensuring high-quality standards was of utmost im-

portance. This involved acknowledging the factors that influence the validity and reliabil-

ity of the research and considering their potential threats. Validity is concerned with the 

accuracy and integrity of the research process, ensuring that it effectively addresses the 

intended subjects and problems through appropriate data collection and analysis meth-

ods, leading to credible and dependable results (Saunders et al. 2019). The examination 

of validity involves assessing whether the utilized methodologies effectively measure the 

intended variables and phenomena. Moreover, it includes evaluating the soundness of 

the analysis of results and the conclusions drawn from them. Additionally, the generali-

zability of the study's findings and methodologies to a broader context should be exam-

ined. The content of the study should also be validated, with the correct and accurate 

application of terms related to the research subject. Furthermore, it should be considered 

whether the utilized methods sufficiently cover the phenomenon under study. Ultimately, 

the goal is to have results that can be explained based on the utilized variables rather 

than the research process itself. (Saunders et al. 2019) 
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The methodology successfully covered the intended topics. The dynamics of CBE and 

the collection and transportation of agricultural wastes and side-flows as biomasses were 

analyzed comprehensively in Chapter 2's literature review. Insights derived from this re-

view were then considered in later simulation schemes and optimization procedures, 

ensuring alignment of the upcoming results with the case-specific conditions and require-

ments. Ultimately, the key insights from the literature review are presented in Figure 5. 

By comparing it with the data processing methodologies in Chapter 3.4 used to locate 

biomass potentials within the relevant area, as well as the simulation schemes and GA's 

cost function in chapters 3.5, 3.5.1, and 3.5.2, all with case-specific adjustments, it can 

be argued that this study successfully aimed to measure and improve the aspects pre-

sented in Figure 5. 

However, it should be noted that this study has its restrictions regarding the quality of 

the initial geospatial data processed to model the pickup sites via clustering, as well as 

regarding the generalizability of the methods and the results, caused by implemented 

and assumed case-specific adjustments. The limitations of the study are discussed in 

more detail in Chapter 6.2. 

The replication and consistency of the study are referred to as reliability (Saunders et al. 

2019). Due to the utilization of publicly available geospatial datasets for biomasses 

(LuKe, 2023), the development and utilization of quantitative methods for data proces-

sion with open-source code (Eloranta, 2023a), and the simulation approach to optimiza-

tion utilizing a GA with open-source code (Niemitalo & Ekkerman, 2022; Eloranta, 

2023b), replication of the study can be argued to be high. To replicate the study, one 

should possess basic knowledge of installing Python and C++ and related packages and 

running source code files utilizing those with the integrated development environment of 

their choice. 

Consistency of the study can also be argued to be high since the research process is 

described comprehensively and transparently step by step within this study. It starts with 

the literature review in Chapter 2 and forms the theoretical framework presented in Fig-

ure 5. It then continues by describing the optimization problem at a conceptual level and 

the data processing phases in detail in Chapters 3.2, 3.3, and 3.4, concluding with the 

model development by presenting the simulation approach and the GA to be utilized 

within the optimization in Chapters 3.5, 3.5.1, and 3.5.2. 
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4 RESULTS 

This chapter reports the results of the study. Initially, the results addressing the second 

and third research questions are presented in subsections 4.1 and 4.2. These results 

include the performance indicator values of the biogas supply chain, for which logistic 

routing was optimized. As the results are related to logistic routing planning on an annual 

basis, this chapter presents the selected performance indicators of the system produced 

with optimized routings. Comprehensive routing plans are excluded from the study as 

they exist in the form of raw data, including routes for nine vehicles each day within a 

year. The chapter closes by benchmarking the results with randomized and practical 

base case routings. 

4.1 Optimized routing 

The optimized routing for collecting and transporting biomasses from sites to the biogas 

plant, without assuming the time-criticality of biomass, was addressed first, in response 

to the second research question. This optimized routing plan covers nine vehicles des-

ignated for collecting biomasses from sites, with an equal distribution among various 

biomass types. In other words, every third vehicle is assigned to collect grasses and 

straws, among others. The routing was optimized and presented using location indexes, 

which are employed in simulation and optimization, with each index representing a site 

generated within Chapter 3.4 or the biogas plant. 

The optimization trajectory is shown in Figure 16. This trajectory represents the lowest 

cost within the population of routing proposals, as a function of the number of cost func-

tion evaluations (Niemitalo & Ekkerman, 2022). The number of cost function evaluations 

increases by the population size of 12,384 within each generation during the optimization 

process. The number of generations was set to 600,000, serving as a stopping criterion 

for optimization. The switch to the greedy optimization algorithm can be observed in Fig-

ure 16 after 400,000 generations, resulting in an acceleration of the total cost minimiza-

tion, which corresponds to 4,953,600 thousand cost function calculations.
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Figure 16. Routing optimization progress. 
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The performance of the optimized routing was assessed by calculating the values of 

performance indicators using the optimized routing. These performance indicators cor-

respond to the cost terms included within the cost function presented in Equations 7, 8, 

and 9 in Chapter 3.5.2, which were minimized during the routing optimization process. 

The values of the performance indicators are presented below in Tables 1 and 2. Table 

1 covers vehicle-specific performance indicators, while Table 2 covers the performance 

indicators of the biogas plant, and the vehicles as a whole. 

Upon analyzing and comparing Figure 16 with Tables 1 and 2, it can be concluded that 

the optimized routing plan is a viable solution for the BRBPP problem in this case. How-

ever, it may not be the ultimate optimal solution to the problem.  

Continuous biomass flow is ensured with the optimized routing at the biogas plant, as 

evidenced by zero production stoppages in the biogas production. Concerning overtime 

work, the optimized routing meets the objective of not extending any routes beyond work-

ing hours, as the overtime for each vehicle is zero hours.  

Still, the mileage of vehicles could probably be further minimized if the number of wrong 

visits were optimized to be zero for each vehicle. Wrong visits occur within the optimized 

routing, indicating that vehicles are driving unnecessary extra kilometers. This means 

that the optimized routing plan includes routes for vehicles that involve visiting the wrong 

types of pickup sites.  

In the globally optimal solution, each vehicle should make zero wrong visits, meaning 

they only visit the designated pickup sites. Another factor supporting the suboptimality of 

the solution is the fact that the slope curve of the total costs in Figure 16 still seems to 

be negative at the end of the optimization, indicating the possible existence of solutions 

producing lower total costs. 

The optimized routing can be further improved by filtering out wrong visits from the 

routes. Since each vehicle and pickup site has an attribute called type, sites that don't 

match a vehicle's type from the routing can be excluded. After this filtering process, new 

performance indicators can be calculated by rerunning the simulation using the optimized 

and filtered routing. The performance indicators of the filtered routing are compared to 

the indicator values provided with the optimized routing below in Tables 1 and 2. 
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Table 1. The vehicle-specific performance indicators. 

 Type of the vehicle Mileage (km) 
Wrong 
visits 

Overtime 
(h) 

Mileage with 
the filtered 

routing (km) 

Vehicle 1 Slurry manure 2,419.09 47 0 276.59 

Vehicle 2 Grass/straw 1,204.33 18 0 564.67 

Vehicle 3 Dry manure 4,436.51 32 0 3,219.76 

Vehicle 4 Slurry manure 2,375.23 57 0 148.63 

Vehicle 5 Dry manure 4,009.24 22 0 2,997.21 

Vehicle 6 Grass/straw 1,335.37 16 0 662.39 

Vehicle 7 Slurry manure 3,070.02 62 0 288.79 

Vehicle 8 Grass/straw 1,640.47 18 0 901.84 

Vehicle 9 Dry manure 6,643.38 41 0 4,367.31 

 

Table 2. The performance indicators of the biogas plant and vehicles. 

 

Optimized 
routing 

Optimized and 
filtered routing 

Total mileage (km) 27,133.63 13,427.20 

Total wrong visits 313 0 

Total overtime (h) 0 0 

Number of days with no routes 29 74 

Total pickup site overload days 11,062 11,062 

Production stoppages 0 0 

Consumption of dilution water (tons) 998,452 998,452 

Unnecessary imports to the biogas plant 0 0 

Overfillings within the biogas plant 0 0 

Total costs (€) 5,858,387.13 5,545,373.43 
 

However, although the performance of the optimized routing can be improved by filtering 

out wrong visits from the optimized routing, as demonstrated in Tables 1 and 2, it should 

be noted that the results provided by the optimized and filtered routing should not be 

considered as the global optimum solution.  

Since the consumption of dilution water almost reaches a million tons with the optimized 

and filtered routing, it suggests the possible existence of solutions with lower total costs. 

In principle, if there are biomass inputs, i.e., pickup sites, with a TS content lower than 

15%, it should be possible to find solutions that require no dilution water consumption at 

all by limiting the routing to sites with a TS lower than 15%. As indicated by the biomass 

datasets (LuKe, 2023) used for site clustering in Chapter 3.4, slurry manure has TS rates 

of 8.2% and 9.2%. However, if optimization were constrained to include only visits to 

slurry manure sites, the impact on other cost factors within the simulation remains un-

clear. This constraint could potentially improve the solution in terms of dilution water 
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consumption but weaken it in terms of other cost factors, potentially moving it further 

away from the global optimum. 

4.2 Optimized routing under the assumption of biomass time-
criticality 

The optimized routing for collecting and transporting biomasses from sites to the biogas 

plant, considering the time-criticality of biomasses as described in Equations 3 and 4 in 

Chapter 3.5.1, was addressed as the second aspect in response to the third research 

question. This routing plan was optimized and presented in a unified format, in contrast 

to the routing plan found in Chapter 4.1, which covers nine vehicles of three types dis-

tributed equally. The routing uses similar location indexes, and the routes were optimized 

on a daily basis for all vehicles. 

The optimization trajectory is presented in Figure 17. The optimization process shared 

fundamental similarities with that of Figure 16. In both cases, a similar cost function, as 

described in Equation 7 in Chapter 3.5.2, was utilized. Figure 17's trajectory similarly 

depicts the lowest cost within the population of routing proposals as a function of the 

number of cost function evaluations (Niemitalo & Ekkerman, 2022). The optimization 

process involved a population size of 12,384, and the stopping criteria for optimization 

were set at 600,000 generations. A switch to the greedy optimization algorithm occurred 

after 400,000 generations, as can be observed in Figure 17's trajectory, after 4,953,600 

thousand cost function calculations, where the minimization of total costs begins to ac-

celerate.
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Figure 17. Routing optimization progress under the assumption of biomass time-criticality.

0

10000

20000

30000

40000

50000

60000

0 1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000

TC
 (

€
, i

n
 t

h
o

u
sa

n
d

s)

Number of cost function evaluations (in thousands)



69 
 

Similar performance indicators, as found in Tables 1 and 2 in Chapter 4.1, were calcu-

lated to assess the performance of the optimized routing under the assumption of bio-

mass time-criticality as well. These indicators are specific to both vehicles and the sys-

tem, corresponding to cost terms within the simulation model and its cost function that 

was optimized using the GA. They are presented below in Tables 3 and 4, with Table 3 

focusing on vehicle-specific indicators and Table 4 on system-specific indicators, cover-

ing all vehicles and the biogas plant. 

Based on the analysis and comparison of Figure 17 and Tables 3 and 4, similar conclu-

sions can be drawn about the performance of the optimized routing when considering 

the time-criticality of biomass, as discussed in Chapter 4.1 for the routing that was opti-

mized without the time-criticality assumption. While the optimized routing is a viable so-

lution for the BRBPP with the inclusion of time-critical biomass, it must be noted that it 

may not be the ultimate optimal solution to the problem. 

The suboptimality of the solution can be observed through the number of wrong visits 

that occurred within the simulation using the optimized routing in Tables 3 and 4. The 

number of wrong visits should be zero in the global optimal solution since wrong visits 

imply unnecessary and additional kilometers driven by vehicles during the simulation. 

Similarly, as seen in the optimization presented in Chapter 4.1, the total costs still appear 

to decrease at the end of the optimization in Figure 17, with the slope curve of the total 

costs showing a negative trend. This suggests the possible existence of solutions that 

could produce lower total costs. 

Similarly to Chapter 4.1, the optimized routing can be further improved by filtering out 

wrong visits from the routing. The performance indicators under the assumption of bio-

mass time-criticality, along with the optimized and filtered routing, are compared to the 

optimized results within Tables 3 and 4. 
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Table 3. The vehicle-specific performance indicators under the assumption of 
biomass time-criticality. 

 Type of the vehicle 
Mileage 

(km) 
Wrong 
visits 

Overtime 
(h) 

Mileage with 
the filtered 

routing (km) 

Vehicle 1 Slurry manure 927.42 14 0 329.45 

Vehicle 2 Grass/straw 352.08 7 0 65.01 

Vehicle 3 Dry manure 3,568.97 17 0 2,774.14 

Vehicle 4 Slurry manure 1,124.62 14 0 235.92 

Vehicle 5 Dry manure 4,599.48 10 0 4,132.51 

Vehicle 6 Grass/straw 352.00 4 0 182.47 

Vehicle 7 Slurry manure 559.80 14 0 148.62 

Vehicle 8 Grass/straw 230.10 6 0 58.44 

Vehicle 9 Dry manure 3,621.91 8 0 3,270.08 

 

Table 4. The performance indicators of the biogas plant and vehicles under 
the assumption of biomass time-criticality. 

 
Optimized 

routing 
Optimized and 
filtered routing 

Total mileage (km) 15,336.4 11,196.65 

Total wrong visits 94 0 

Total overtime (h) 0 0 

Number of days with no routes 74 95 

Total pickup site overload days 10,666 10,666 

Production stoppages 0 0 

Consumption of dilution water (tons) 950,863 950,863 

Unnecessary imports to the biogas plant 0 0 

Overfillings within the biogas plant 0 0 

Total costs (€) 5,381,630.34 5,287,626.20 

 

Filtering out wrong visits improves the solution in terms of total costs, mileage, and the 

number of wrong visits. However, the results of the filtered routing should not be consid-

ered as the global optimum, as there are likely solutions with lower total costs. This is 

indicated by the high consumption of dilution water and the number of pickup site over-

load days in Table 4. 

Still, the goodness of the solution can be argued again with the number of production 

stoppages, total overtime hours of zero, and unnecessary imports to the biogas plant 

being zero. This implicates that with the given routing, continuous biomass flow and bi-
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ogas production process was ensured within the biogas plant, simultaneously not ex-

ceeding the yearly targeted input values for biomasses at the biogas plant and not in-

cluding routes exceeding the work shifts. 

4.3 Benchmarking of results 

The results for both cases, as presented in Chapters 4.1 and 4.2, were validated and 

benchmarked by comparing the performance of optimized routings to randomized rout-

ings and routings that correspond to a practical approach to biomass routing, serving as 

a base case in benchmarking. In the randomized routing, the vehicle routing is chaotic. 

In the baseline routing, controlled collection of biomasses in response to orders arising 

randomly at the farms is assumed. These benchmarks were based on calculating per-

formance indicator values, similar to the approach used in Chapters 4.1 and 4.2 with 

optimized routings. 

The benchmark routings used in these comparisons were generated by utilizing the 

same simulation and optimization model as presented in Chapters 3.5, 3.5.1, and 3.5.2. 

However, the number of generations to be optimized was set at 100, serving as a stop-

ping criterion for the optimization process. Since the initial population is generated ran-

domly by the GA (Gracia et al. 2014; Katoch et al. 2021), the solution obtained by stop-

ping the optimization after 100 generations is also close to a random solution and is used 

as the randomized routing in benchmarks. 

Filtering out wrong visits from the randomized routing can be intuitively considered as 

the baseline solution for routing the collection of biomasses used in biogas production. 

In this scenario, orders for collecting biomasses from farms are generated randomly. 

Biomass pickup trucks are used to collect and transport the biomasses back to the bio-

gas plant based on the orders. If there are multiple orders for the same truck on the same 

day, the truck collects them all within its capacity limits before returning to the biogas 

plant. Hence, the baseline routing can be considered a practical solution used by real-

world logistical operators who collect biomasses in an order-controlled manner. 

4.3.1 Benchmarks of the optimized routing 

Benchmarks for the optimized routing results presented in the Chapter 4.1, are shown 

below in Tables 5 and 6. Tables covers the performance indicators of the randomized 

and the baseline routing. 

 

 



72 
 

 

Table 5. The vehicle-specific performance indicators with the randomized 
routing (1) and baseline routing (2). 

 

Type of the 
vehicle 

Mileage (1) 
(km) 

Wrong visits 
(1) 

Overtime (1) 
(h) 

Mileage (2) 
(km) 

Overtime (2) 
(h) 

Vehicle 1 Slurry manure 3,841.94 76 0 74.26 0 

Vehicle 2 Grass/straw 4,782.23 58 0 2,472.88 0 

Vehicle 3 Dry manure 4,639.28 61 0 2,063.67 0 

Vehicle 4 Slurry manure 4,210.87 85 0 15.56 0 

Vehicle 5 Dry manure 4,796.84 62 0 1,833.60 0 

Vehicle 6 Grass/straw 3,991.96 64 0 1,532.51 0 

Vehicle 7 Slurry manure 4,732.29 96 0 77.98 0 

Vehicle 8 Grass/straw 3,508.54 44 0 1,495.74 0 

Vehicle 9 Dry manure 4,186.06 49 0 1,658.06 0 

 

Table 6. The performance indicators of the biogas plant and vehicles with the 
randomized routing and baseline routing. 

 
Randomized  

routing 
Baseline  
routing 

Total mileage (km) 38,690.02 11,224.26 

Total wrong visits 595 0 

Total overtime (h) 0 0 

Number of days with no routes 16 101 

Total pickup site overload days 13,684 13,684 

Production stoppages 53 53 

Consumption of dilution water (tons) 7,252,490 7,252,490 

Unnecessary imports to the biogas plant 0 0 

Overfillings within the biogas plant 0 0 

Total costs (€) 42,841,688.69 42,246,661.22 

 

By comparing the performance of the optimized routings, as presented in Tables 1 and 

2 in Chapter 4.1, with the performance of randomized and base case routings, as pre-

sented in Tables 5 and 6 above, the appropriateness of the developed simulation model 

and optimization method can be justified. In comparison to the practical baseline ap-

proach to biomass routing, where the collection of biomasses is triggered only by orders 

arising from the farms, a high number of production stoppages may occur within a year, 

as the baseline routing does not consider resource needs and production stoppages as 

a factor to be considered in routing. Such significant addition in the number of production 
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stoppages greatly contributes to the total costs of the system. Randomized routing gen-

erates even greater total costs since a high number of additional kilometers are driven 

by vehicles due to wrong visits. 

4.3.2 Benchmarks of the optimized routing under the assump-
tion of biomass time-criticality  

Benchmarks for the results that considered the time-criticality of biomass, as presented 

in Chapter 4.2, are shown below in Tables 7 and 8. Tables benchmarks the performance 

of the optimized results with the performances of the randomized and the baseline rout-

ing. 

Table 7. The vehicle-specific performance indicators with the randomized 
routing (1) and baseline routing (2) under the assumption of biomass time-criti-

cality. 

 

Type of the 
vehicle 

Mileage (1) 
(km) 

Wrong visits 
(1) 

Overtime (1) 
(h) 

Mileage (2) 
(km) 

Overtime (2) 
(h) 

Vehicle 1 Slurry manure 4,103.60 86 0 123.99 0 

Vehicle 2 Grass/straw 3,394.59 36 0 1,920.22 0 

Vehicle 3 Dry manure 4,149.73 48 0 2,321.36 0 

Vehicle 4 Slurry manure 3,583.74 75 0 59.69 0 

Vehicle 5 Dry manure 4,486.19 44 0 2,371.47 0 

Vehicle 6 Grass/straw 3,781.46 42 0 1,943.40 0 

Vehicle 7 Slurry manure 4,688.62 99 0 124.90 0 

Vehicle 8 Grass/straw 5,743.46 61 0 3,216.70 0 

Vehicle 9 Dry manure 4,270.88 54 0 1,570.06 0 
 

Table 8. The performance indicators of the biogas plant and vehicles with the 
randomized routing and baseline routing. 

 
Randomized  

routing 
Baseline  
routing 

Total mileage (km) 38,202.26 13,651.79 

Total wrong visits 545 0 

Total overtime (h) 0 0 

Number of days with no routes 14 88 

Total pickup site overload days 13,018 13,018 

Production stoppages 34 34 

Consumption of dilution water (tons) 7,995,460 7,995,460 

Unnecessary imports to the biogas plant 0 0 

Overfillings within the biogas plant 0 0 

Total costs (€) 44,573,238.2 44,028,213.65 
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By comparing the performance of the optimized routings under the assumption of bio-

mass time-criticality, as presented in Tables 3 and 4 in Chapter 4.2, with the performance 

of the randomized and the baseline routings under the same assumption of biomass 

time-criticality, as presented in Tables 7 and 8 above, similar conclusions can be drawn 

regarding the appropriateness of the developed simulation and optimization model. If the 

collection of biomasses is triggered solely by orders from farms occurring randomly, a 

high number of production stoppages may occur within a year, significantly contributing 

to the total costs of the system. Randomized routing introduces additional costs due to 

the extra kilometers driven during wrong visits. 
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5 DISCUSSION 

This section analyzes and compares the results of the study presented in previous chap-

ter. Finally, the chapter presents and discusses the key findings of the study. 

5.1 Comparison of results 

By comparing the results presented in Chapters 4.1 and 4.2, it is possible to develop 

perceptions of the impact on solutions, which may be influenced by the consideration of 

biomass time-criticality. Interestingly, the total distance driven by the vehicles and the 

number of visits to wrong types of sites by vehicles appear to be significantly lower when 

assuming biomass time-criticality. However, it remains unclear whether the difference 

between mileage and wrong visits is solely due to the assumption of biomass time-criti-

cality. 

The assumption of biomass time-criticality ultimately incorporates the continuous drying 

process of biomass within the sites, vehicles, and the biogas plant's storage into the 

simulation model, as presented in Equations 3 and 4, inspired by the biomass storage 

model by van Dyken et al. (2010). This process leads to a continuous decrease in the 

volume of biomass and an increase in its TS rate due to drying. Thus, it cannot be ex-

plicitly concluded that there is a cause-and-effect relationship between the drying pro-

cess of biomasses and the mileage driven by vehicles transporting them based on these 

results. The possible improvement in mileage and wrong incorrect visits may also be 

attributed to pure coincidence, as there is a chance for the GA to become stuck in local 

optima if the optimization is terminated prematurely (Katoch et al. 2021). Consequently, 

further research on this topic is necessary. 

It can be assumed that in a time-critical scenario, biogas yield should increase when the 

effects of time-criticality are minimized through efficient logistic routing. Therefore, if the 

increase in biogas yield exceeds the additional logistic costs incurred by driving extra 

kilometers, then it would be justifiable to do so. However, it's important to note that the 

model used in this study does not measure the actual amount of biogas produced within 

the plant; it only tracks the consumption of biomasses as resources. Consequently, con-

clusions about this observation cannot be drawn based on the study's results. The need 

for further research on the topic is justified once again.  

However, based on these results, it can be stated that the passive processes occurring 

within the biomasses should be considered when planning the logistic routing of a circu-

lar system for transporting biomasses to biogas production. In both cases, the number 
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of production stoppages occurring within a year was managed to be reduced to zero with 

the optimized routing. Additionally, the consumption of dilution water and the total system 

costs appear to be lower when optimizing the routing under the assumption of biomass 

time-criticality. The actual availability of biomasses for use in biogas production may also 

be influenced by time-critical factors, as suggested by the lower number of overload days 

at the pickup sites when biomass time-criticality was considered. This can be explained 

by the assumption of biomass time-criticality. Storage levels at the pickup sites continu-

ously decrease daily, resulting in fewer days when storage levels exceed their capacities. 

Given the relatively high number of days with pickup site overloads in both cases, one 

might question whether nine vehicles are enough to collect biomasses from this many 

sites. On the other hand, the number of pickup sites was intentionally set to be this high 

to ensure an adequate supply of biomass for the annual resource consumption at the 

biogas plant. Therefore, using the number of pickup site overload days as a performance 

indicator and cost factor in this case may not be necessary. Based on this, its high value 

with the optimized routing can be partially ignored. 

While part of the reduced cost is attributed to lower mileage and fewer wrong visits when 

considering biomass time-criticality, the key observation here is that the number of pro-

duction stoppages remains at zero in both cases. This indicates a continuous biogas 

production process and biomass flow within the biogas plant. This highlights the potential 

cost savings through more efficient logistic planning, as it becomes evident that passive 

time-critical processes affecting the quality of biomasses for energy production do exist 

(van Dyken et al. 2010; Mönch-Tegeder et al. 2013; Hadin et al. 2016). The question, 

then, is whether decision-makers planning the logistic systems used within circular sup-

ply chains for the biogas production take these processes into consideration or not. 

Additionally, after filtering out wrong visits from the optimized routings and rerunning the 

simulation with the filtered routings, the results appear to be promisingly good. It should 

be mentioned that wrong visits should be considered more as a feature of a solution that 

exists due to the deficiency of the GA. The GA utilized within the study’s optimization 

generates routing proposals solely based on the locations that are given to it as an input. 

Therefore, it does not check or exclude the possible wrong visits arising within the gen-

erated routing, which is why the filtering procedure executed afterwards is appropriate. 

Wrong visits arising within the optimized routings indicates the suboptimality of the solu-

tion, since if the global optimum was found by the GA, wrong visits should not occur at 

all. 
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In real life, logistics operators know which type of sites they should visit, and therefore, 

wrong visits would not occur. This is also why filtering out wrong visits from the optimized 

solutions is justified. Continuous biogas production is ensured in both cases with no need 

for overtime work, and vehicles visit sites only of their type, reducing the kilometers and, 

therefore, total costs significantly. It remains unclear how far these results with the filtered 

routings are from the global optimum, as there is no reason to believe they are at the 

global optimum. On the other hand, it's not clear what cost factors the solutions could be 

improved upon. The need for further research on this topic is justified, as the develop-

ment of methods for finding the global optimum solution is required. 

The benchmarks of the results prove the benefits of planning the logistic routing of bio-

masses by utilizing dynamic optimization methods. As can be concluded from the bench-

marks presented in Chapter 4.3, if the decision-making process for collecting biomasses 

is simply reactive to orders arising randomly from the farms, the continuous process of 

biogas production may be endangered, as observed with the high number of production 

stoppages within the benchmarks. In addition, excess kilometers are driven due to the 

reactive approach of collecting biomasses in an order-controlled manner, instead of plan-

ning the logistic routing while considering the resource needs and consumption within 

the biogas plant. Additionally, if the routing is completely random, a significant number 

of additional kilometers may be driven due to the wrong visits, decreasing the perfor-

mance of the solution. On the other hand, the optimized routings are generated proac-

tively by considering resource shortages, consumption of dilution water, total mileage 

driven by vehicles, and other relevant factors. The decision-making process for collecting 

the biomasses is more rational and sophisticated in comparison to reactive collection in 

an order-driven manner, which may significantly decrease the total costs of the system, 

ultimately making the circular supply chain more effective and enhancing the practices 

of the CBE. 

5.2 Key findings 

The objectives of the study included identifying critical general and case-specific factors 

for optimizing the logistic routing within a circular supply chain to ensure its compatibility 

with the CBE practices. This objective partially overlapped with the subobjectives of im-

plementing spatial information mapping for biomasses located near the biogas plant, 

generating information about biomass availability, and subsequently identifying potential 

strategic partnerships for the case company. Using spatial information mapping of bio-

masses, the study aimed to plan and optimize logistic routing crucial to the biogas plant's 

production process. This optimization sought to achieve a continuous biogas production 
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and efficient biomass flow while simultaneously minimizing logistic costs by planning and 

optimizing routes for vehicles collecting and transporting biomasses from various sites 

to the biogas plant. Additionally, the study aimed to advance understanding of how pas-

sive time-critical processes occurring within the biomasses influence the optimization of 

logistic routing. 

The objectives of the study were relatively well achieved. The factors needed to align 

logistic system operations with CBE practices were effectively addressed. This resulted 

in no significant deficiencies in the developed methodology, which models, simulates, 

and optimizes the functions of the components of the circular supply chain responsible 

for transporting biomass from farms to the biogas plant for biogas production. For exam-

ple, the requirement that the TS-rate must be at most 15% within the biogas production 

process (Hadin & Eriksson, 2016) was probably the most important restriction related to 

CBE practices that was identified and considered in this study. Other identified and con-

sidered factors influencing the implementation of the CBE practices are presented in 

Figure 5 in Chapter 2.6. 

The implementation of spatial information mapping for biomasses near the case com-

pany’s biogas plant was successfully completed. As presented in Chapter 3.4, the 

phases during the data processing achieved the goal of mapping biomass potentials 

near the biogas plant. This process began with wide and unmapped datasets of bio-

masses located in Finland and concluded with mapping the biomass potentials within a 

50 km radius of the biogas plant. It also proposed locations from which the biomasses 

should be picked up to meet the annual demand for biomasses within the biogas pro-

duction process. Similar maps as presented in Chapter 3.4, can be found for all inspected 

biomasses of the study in GitHub (Eloranta, 2023c).  

The study optimized and proposed a routing plan for the case company. By following this 

plan, logistic routing could be executed relatively cost-effectively, ensuring continuous 

biogas production at the biogas plant. The performance of the optimized routing plans 

was validated and assessed by comparing the values of selected performance indicators 

with randomized routings and routings corresponding to a practical approach to biomass 

routing. These performance indicators were the cost terms implemented within the sim-

ulation model, which were minimized during the routing optimization process. However, 

as demonstrated in Chapter 4, the optimized routings, which serves as the results of this 

study, may represent suboptimal solutions to the problem of BRBPP. Thus, the results 

likely provide sufficiently decent solutions for executing logistic operations, but they prob-

ably may be further optimized with additional computing time and power. Still, the results 

of the study successfully enable improving the efficiency of the case’s circular supply 
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chain, as the optimized routing improve the factors presented in Figure 5 in Chapter 2.6 

simultaneously considering the relevant factors of implementation of the CBE practices. 

The final objective of the study was to examine how the consideration of time-critical 

factors, occurring as passive drying processes within the biomasses collected, trans-

ported, and used in biogas production, affects the solution of optimized routing. Based 

on the study's results, it may be concluded that considering passive processes that affect 

biomass quality in terms of their bioenergy potential could potentially lead to cost savings 

through more efficient logistic routing planning. However, since the study's results cannot 

be considered as the global optimum, a direct causal link between considering time-

critical factors and reduced total system costs cannot be definitively established. There-

fore, further research on this topic is required to authenticate the global optimality of the 

optimized routing.  
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6 CONCLUSIONS 

This chapter concludes the study by discussing its theoretical and practical implications, 

addressing the study's limitations, assessing its quality, and presenting ideas for future 

research. 

6.1 Theoretical and practical implications 

The study has both theoretical and practical implications. Theoretical implications of the 

study include the initial definition of the biomass routing and biogas production problem 

(BRBPP) and the use of sophisticated optimization methodology in seeking a solution 

for the BRBPP. Since the study's results were determined to likely be suboptimal, the 

need for further research on the topic also serves as a theoretical implication of the study. 

It is possible that the developed methodology of the study may not be sufficient to fully 

optimize the BRBPP, given the complexity of the problem and the various factors influ-

encing the solution's optimality. Additionally, the comparison of optimized results with 

and without the assumption of passive drying processes within the biomasses has theo-

retical implications. As examined in the study's results, considering passive drying pro-

cesses within the biomasses may impact the optimization of logistic routing. Therefore, 

the BRBPP should be re-evaluated and considered from the perspective of time-critical-

ity to ensure that the problem is appropriately addressed. 

The primary practical contribution of the study is the development of tools and method-

ologies that can be used for geospatial mapping of large datasets (Eloranta, 2023a), as 

well as modeling and optimizing the logistic routing of biomass collection and transpor-

tation operations for use in centralized biogas plants (Niemitalo & Ekkerman, 2022; El-

oranta, 2023b). The later utilization of these developed tools for biomass data pro-

cessing, simulation, and optimization is not limited to the case company's biogas plant 

in the study. Instead, they enable the mapping of any geospatial biomass datasets and 

the modeling and optimization of logistics for collecting biomasses from farms, which can 

serve as feedstock for centralized biogas plants. The practical implications for the case 

company from the study include an optimized daily routing plan for collecting biomasses 

destined for the biogas plant. Furthermore, the geospatial mapping of biomasses con-

ducted in this study allows the case company to gain a better understanding of the avail-

ability of various types of biomasses near the biogas plant, providing initial information 

on where and how far biomass collection can be efficiently carried out. 
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6.2 Quality assessment and limitations of the study 

The study has certain limitations. One significant limitation pertains to the initial biomass 

data used in this study (LuKe, 2023), from which the cluster central points were calcu-

lated and modeled as pickup sites. The limitation lies in the usability of the study's results. 

The locations of these pickup sites were defined as the weighted central points of the 

clusters, even though their locations could have been determined using methods explic-

itly designed to define biomass collection points, such as the Borvemar model (Veláz-

quez-Marti & Annevelink, 2009; Gracia et al. 2014). Since the pickup sites were gener-

ated by clustering the initial biomass datasets, the pickup sites modeled as farms within 

the simulation are, by their nature, theoretical and may not correspond to actual farms 

near the case company's biogas plant. This limitation must be acknowledged, as the 

biogas plant is still in the planning and design phase, and the actual farm-specific sup-

plier network has not yet been established. However, once the actual farms are identified 

and confirmed as suppliers to the biogas plant, the developed simulation and optimiza-

tion methodology of the study can be reused to produce more practical solutions for the 

execution of routing. 

A potential limitation of the study is the lack of restrictions on the actual mix of biomasses 

used in biogas production. Currently, the developed model allows the composition of 

biomasses to change daily, from which biogas is assumed to be produced. However, this 

may not be realistically feasible, as there are optimization methods available for selecting 

the optimal composition of biomasses for anaerobic digestion to maximize methane pro-

duction (Álvarez et al. 2010). These methods indicate the stable nature of the process 

and minimal changes in its composition. 

Additional limitations are associated with the optimization of logistic routing, the use of 

the GA as the optimization method, and the high computing power it requires. As previ-

ously noted, optimization performed by the GA carries the risk of converging to a local 

optimum (Katoch et al. 2021). As concluded, the study's results are likely suboptimal, 

which could be a consequence of the GA becoming trapped in a local optimum. The 

suboptimality of the solution is emphasized by the apparent negative slope of the total 

cost curve at the end of the optimization process. The high number of wrong visits within 

the optimized routings suggests suboptimal results. However, it's important to note that 

wrong visits can be attributed to deficiencies within the GA used for optimization. After 

filtering out wrong visits from the optimized routings, the results appear promising but 

should still be considered suboptimal rather than the global optimum. 
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However, due to the high computational power required and the limited time available 

for the study, the number of generations was capped at 600,000 as a stopping criterion 

for optimization. If the optimization had been allowed to continue beyond 600,000 gen-

erations, it is possible that more optimal solutions could have been found. Nevertheless, 

due to the complexity of the problem, the choice of 600,000 generations was made to 

accommodate the constraints of available research time. Optimizing for 600,000 gener-

ations alone took roughly a week to compute with the hardware used in the study. 

To account for limitations in computing power and time, the amount of noise was inten-

tionally reduced in the study. Initially, there were plans to model the accumulation of 

biomasses at sites with noise terms, but these were omitted due to the aforementioned 

constraints. However, it remains unclear whether the inclusion of noise would have sig-

nificantly improved the simulation model or merely added unnecessary complexity to the 

optimization process. 

However, the validity of the developed methodology and the results it provides are sup-

ported by the benchmarks used when assuming an order-controlled approach to bio-

mass collection. If the decision-making process for the heuristics governing the collection 

and transportation of biomass from farms to the plant relies solely on farm-generated 

orders, it can disrupt the continuous flow of resources and biogas production. In the real 

world, it is reasonable to assume that, to some extent, logistics operators employ order-

controlled practices in biomass collection and transportation. However, this approach 

neglects other relevant factors within the biogas supply chain operations, leading to sig-

nificant inefficiencies and additional costs, such as resource shortages and the need for 

dilution water to bring the biomass mix within the reactor to acceptable levels. 

6.3 Ideas for future research 

As the need for future research has been discussed in previous chapters, future studies 

on this topic could further advance optimization methods for solving the BRBPP. One 

promising avenue for development is the creation and implementation of optimization 

methodologies based on reinforcement learning (RL). Methods aimed at optimizing lo-

gistic systems based on RL have already been developed (Sun et al. 2019; Chen et al. 

2022). Reinforcement learning is a sophisticated machine learning approach that has the 

potential to efficiently address the BRBPP. Unlike the GA, which seeks to improve the 

current best solution, RL also aims to learn the functioning of the system underlying the 

optimization problem (Sun et al. 2019; Chen et al. 2022). Incorporating RL into the opti-
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mization of logistic routing within the context of BRBPP could provide a more compre-

hensive understanding of how passive time-critical processes within biomasses impact 

the performance of the optimized solution.  

The model could be expanded to cover more of the biogas supply chain. This includes 

transporting excess digestate back to farms after the AD process. It also involves con-

sidering operations for supplying the actual biogas produced to clients. 

Furthermore, in future research, the level of noise within the simulation model could be 

increased to create a more realistic model. For example, the accumulation process of 

manures could be modified to include a noise term, introducing randomness to the de-

terministic nature of manure accumulation. Similar noise terms could be introduced to 

various parts of the simulation model, such as the duration of collection operations per-

formed by vehicles or the daily consumption of biomasses by the biogas plant from its 

storage. While increased noise would enhance the realism of the simulation model, it 

would also significantly complicate the optimization problem. Therefore, the inclusion of 

noise terms and their implications should be carefully considered before implementation 

in the simulation model. 
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