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Abstract

This paper addresses the problem of comparing different measures of graph symmetry. Two
measures, each based on the number and respective sizes of the vertex orbits of the automorphism
group or a graph, are compared. A real valued distance measure is used to compare the symmetry
measures by establishing the limiting value of the distances for several well known classes of graphs.
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1. Introduction

A number of different symmetry measures for networks/graphs have been developed and an-
alyzed, see [1, 2, 3, 4, 5]. The differences are due in part to the fact that symmetry can be
interpreted in different ways, e.g. by means of knot theory [6] or using the automorphism group
of a graph. Here, we investigate symmetry in graphs in relation to the automorphism group, with
special emphasis on the vertex orbits of the group. One problem we face in this investigation is
that there is no general formula for the size of the automorphism group of a graph [7, 8], although
many special cases are known [9]. Symmetry based on vertex orbits has long been used to define
measures of the structural complexity of graphs. For example, see the seminal work due to Moon-
shots [5, 10, 11, 12] who analyzed several variants of these measures representing the structural
information content of a deterministic graph.

Symmetry measures have been applied in many disciplines. Such measures have been used
in structural chemistry and chemotherapies for characterizing molecular graphs numerically and
to solve QSAR/QSPR problems, see [1, 2, 13]. MacArthur et al. [14] determined the size and
structure of the automorphism groups of real networks, and discussed how symmetry can be
used for applications. A similar study has been performed by Ball and Geyer-Schulz [15] who
analyzed symmetries in large graphs. Finally, the role of symmetry in network aesthetics has been
investigated by Chen et al. [16].
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As indicated above, many graph measures have been defined [17, 18, 13]. However, relatively
few of them have been examined in much depth. This also holds for symmetry-based graph
measures defined in terms of graph automorphisms [3, 5]. This paper focuses on the relationships
between symmetry measures for graphs, utilizing real number distance measures. More precisely,
we study limiting values of distances d(I1, I2) between measures (see Section (2.2)) as the number
of vertices goes to infinity; I1 : G → R+ and I2 : G → R+ are two graph measures and G is a class
of graphs. In particular, we investigate the symmetry measures δ [3] and Ia [5].

In [3], Dehmer et al. introduced the concept of the so-called orbit polynomial denoted by
OG(z), which is defined in terms of the sizes of vertex orbits and their respective multiplicities.
The unique, positive root δ ≤ 1 of the modified polynomial 1 − OG(z) has been shown to serve
as a measure of symmetry of a graph, see [3]. So, the aim of this paper is to establish limiting
values of d(δ, Ia) for some special graph classes that have proven useful in chemistry and related
disciplines.

2. Methods and Results

After stating the definitions required, we will establish the limiting values of d(δ, Ia) for some
special graph classes.

2.1. Main Definitions

The main definitions needed in subsequent sections are given here. An automorphism is an
edge-preserving bijection of the vertices of a graph, see [19]. The set of automorphisms under
composition of mappings forms the automorphism group of the graph [19] and is usually denoted
by Aut(G). |Aut(G)| is the number of elements in the automorphism group of G. The vertex orbits
are the equivalence classes of the vertices of a graph under the action of the automorphisms.

Now, we define the so-called orbit polynomial, see [3]. Let G = (V,E) be a graph with |V | <∞,
and let V1, V2, . . . , Vρ be its vertex orbits, where ρ denotes the total number of distinct vertex orbits
of G. Let k be the number of different cardinalities among the orbit sizes, and suppose the number
of orbits of size ij is a(ij) for 1 ≤ j ≤ k, so that

∑k
j=1 ija(ij) = |V |.

∑k
j=1 a(ij) = ρ. The following

is from [3].

Definition 2.1. The orbit polynomial of G is defined by

OG(z) :=

k∑
j=1

aijz
ij . (1)

Definition 2.2. The graph polynomial O?G(z) of G is defined by

O?G(z) := 1−OG(z). (2)

The polynomial O?G(z) has a unique, positive root δ ∈ (0, 1], and other properties proven in [3].
Now, we define the graph entropy measure (see [5]) based on vertex orbits to be compared

with δ.

Definition 2.3. Let G = (V,E) be a graph with |V | < ∞, and let V1, V2, . . . , Vρ be its vertex
orbits, where ρ denotes the total number of vertex orbits of G. Let n := |V |.

Ia(G) := −
ρ∑
j=1

|Vj |
n

log

(
|Vj |
n

)
. (3)

In this paper all logarithms are taken to base 2.
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2.2. Distance Measures

To establish relationships between graph measures, we employ real distance measures [20, 21].
This gives distances between network measures as real numbers. With this approach, it is also•
possible to calculate limiting values of distances to enable comparisons between classes of graphs.

Suppose X is a set. A general distance measure d : X×X −→ R+ has the following properties
[20, 21]:

d(x, y) ≥ 0, (4)

d(x, y) = d(y, x), (5)

d(x, y) = 0 ⇐⇒ x = 0. (6)

If the triangle inequality d(x, z) ≤ d(x, y) + d(y, z) is also satisfied, then d is a distance metric.
However we only use distance measures in this paper as the metrical property is not required. The
real measure adopted in this paper is defined as follows:

d(x, y) = (x− y)2. (7)

Clearly, the properties of a distance measure given by the Equations (4) - (6) are satisfied. The
reason for choosing this particular distance measure is that it lends itself to establishing limit
values. Note however that other distance measures would lead to comparable results.

2.3. Relationships between the symmetry measures δ and Ia

In this section, we prove relations between the two symmetry measures δ and Ia. As a first
step in applying the distance measure defined above, we examine several special classes of graphs.
Since δ cannot be calculated analytically for arbitrary graphs, it is useful to investigate fully the
limiting values of distances in special cases, see [3].

2.4. Ring and Vertex Transitive Graphs

Ring graphs are undirected cycles. We use the term ”ring” here, instead of the more usual
”cycle,” to call attention to applications in which the structural formulas of certain chemical
compounds such as benzene, which are termed rings, play an important role. So, let Rn be a
ring graph on n vertices. This graph has exactly one orbit containing all n vertices. The orbit
polynomial has the form

ORn(z) = zn−1 (8)

and
O?Rn

(z) = 1− zn. (9)

So, O?Rn
(z) = 0 gives z = δ(Rn) = 1. Moreover,

Ia(Rn) = −n
n

log
(n
n

)
= 0. (10)

Theorem 2.1. Let Rn be the ring graph with n vertices. Then

lim
n→∞

d(δ(Rn), Ia(Rn)) = 1. (11)

Proof: By plugging in the calculated values above, we obtain the limiting value represented by
Equation (11). �

Ring graphs are special vertex transitive graphs. We can therefore easily generalize the last
statement.

Theorem 2.2. Let G be a vertex-transitive graph. Then

lim
n→∞

d(δ(G), Ia(G)) = 1. (12)
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Figure 1: An alkane tree with 6 carbon atoms.

Proof: Let G be a vertex-transitive graph on n vertices. O?G(z) = 1− zn and thus δ(G) = 1. On
the other hand, we obtain

Ia(G) =
n

n
log

n

n
= 0. (13)

This completes the proof. �

2.5. Path graphs with even n

Consider the path graph Pn with even n. As shown in [3], we have

OPn
(z) =

n

2
z2, (14)

and
O?Pn

(z) = 1− n

2
z2. (15)

So, we have n
2 orbits of size two. Finally O?Pn

(z) = 0 gives z = δ(Pn) =
√

2
n . Calculating Ia on

Pn yields to

Ia(Pn) = − 2

n
log

(
2

n

)
n

2
= − log

(
2

n

)
= log(n)− 1. (16)

The following theorem shows the relationship between Ia and δ for Pn.

Theorem 2.3. Let Pn be the path graph with n vertices. Then

δ(Pn) < Ia(Pn), (17)

for even n.

Proof: We will prove by induction that√
2

n
< log(n)− 1 for alln ≥ 4. (18)

For n = 4 we see that √
2

4
= 0.70711 < log(4)− 1 = 1. (19)

The induction hypothesis is given by the inequality (19). Now,
√

2√
n+ 1

<

√
2√
n
< log(n)− 1 < log(n+ 1)− 1. (20)

which completes the inductive proof. �

Now, we turn to the limiting case.

Theorem 2.4. Let Pn be the path graph with n vertices. It is obvious that the distance between
the two measures diverges, i.e.,

lim
n→∞

d(δ(Pn), Ia(Pn)) = +∞. (21)
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Proof: We obtain,

lim
n→∞

d(δ(Pn), Ia(Pn)) =

(√
2√
n
− (log(n)− 1)

)2

, (22)

=

(
lim
n→∞

√
2√
n
− lim
n→∞

log(n) + 1

)2

, (23)

= +∞. (24)

Since ()2 and log are continuous, their use in Equations (22), (21) insures the desired result. �

2.6. Path graphs with odd n

Suppose the path graph Pn has an odd number n of vertices. From [3], we see that there exist
dn2 e orbits having two elements except for just one with a single element. Hence,

OPn
(z) =

(
dn

2
e − 1

)
z2 + z, (25)

and
O?Pn

(z) = −
(
dn

2
e − 1

)
z2 − z + 1 (26)

O?Pn
(z) = 0 yields to [3]

δ(Pn) = − 1

2
(⌈

n
2

⌉
− 1
) +

√√√√√
 1

2
(⌈

n
2

⌉
− 1
)
2

+
1(⌈

n
2

⌉
− 1
) . (27)

Now, Ia(Pn) has the form

Ia(Pn) = −

[
1

n
log

(
1

n

)
+

2

n
log

(
2

n

)(⌈n
2

⌉
− 1
)]

. (28)

Theorem 2.5. Let Pn be the path graph with n odd. Then

lim
n→∞

d(δ(Pn), Ia(Pn)) = +∞. (29)

Proof: It is easy to see that

lim
n→∞

d(δ(Pn), Ia(Pn)) = lim
n→∞

[
− 1

2
(⌈

n
2

⌉
− 1
) +

√√√√√
 1

2
(⌈

n
2

⌉
− 1
)
2

+
1(⌈

n
2

⌉
− 1
)

+
1

n
log

(
1

n

)
+

2

n
log

(
2

n

)(⌈n
2

⌉
− 1
)]2

=

[
− lim
n→∞

1

2
(⌈

n
2

⌉
− 1
) +

√√√√√
 lim
n→∞

1

2
(⌈

n
2

⌉
− 1
)
2

+ lim
n→∞

1(⌈
n
2

⌉
− 1
)

+ lim
n→∞

1

n
log

(
1

n

)
+ lim
n→∞

2

n
log

(
2

n

)(⌈n
2

⌉
− 1
)]2

(30)

Again, noting that ()2, ()
1
2 and log are continuous functions, and using the well-known facts [22]

0 log(0) = 0 and log(0) = −∞, the result given by Equation (29) is proven. �
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Figure 2: A complete and an incomplete ladder.

2.7. Ladder Graphs
We call a graph a complete ladder if it is the cartesian product of a path graph with n ≥ 3

elements and a path graph of length 2. An incomplete ladder is a ladder where some rungs are
missing and it’s not a ring.

The situation for ladder graphs is quite similar to path graphs; A complete ladder graph with
2 × n vertices has n

2 orbits with 4 elements if n is even; if n is odd, there are n−3
2 orbits with 4

elements and one orbit with 2 elements. This is also true for incomplete ladder graphs if there
are two symmetry patterns; if there is only one symmetry pattern there exist n orbits with two
vertices. Examples can be seen in Figure (2).

For ladder graphs with two symmetry patterns and even n, the related orbit polynomial yields
to

O∗(z) = 1− n

2
z4. (31)

This polynomial possesses the unique positive root

δ =
4

√
2

n
. (32)

For odd n, we obtain

O∗(z) = 1− z2 − n− 1

2
z4, (33)

and

δ =

√√
2n− 1− 1

n− 1
. (34)

For incomplete ladders with only one symmetry pattern, we get the related orbit polynomial

O∗(z) = 1− nz2 (35)

with

δ =
1√
n
. (36)

The entropy for ladder graphs with two symmetry patterns and even n yields to

Ia = −n
2

4

2n
log

(
2

2n

)
= log(n). (37)

For ladder graphs with two symmetries and odd n, the entropy becomes to

Ia = −n− 1

2

4

2n
log

(
4

2n

)
− 2

2n
log

(
2

2n

)
= log(n)

m− 1

n
. (38)

Finally, for incomplete ladders with only one symmetry pattern, the entropy equals

Ia(z) = −n 2

2n
log

(
2

2n

)
= log(n). (39)

These computations lead to the following analogous version of the Theorems (2.4), (2.5).

Theorem 2.6. Let Ln be a ladder graph with 2n vertices. Then

lim
n→∞

d(δ(Ln), Ia(Ln)) = +∞. (40)
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2.8. Star graphs

In this section, we investigate the limiting value of our distance measure for star graphs Sn
with n vertices. The star graph has one orbit with n − 1 vertices and n − 1 orbits with just one
vertex. So,

OSn
(z) = zn−1 + z, (41)

and
O?Sn

(z) = −zn−1 − z + 1 (42)

Now, assume that δ < 1 [3] satisfies the equation

−δn−1 − δ + 1 = 0. (43)

To obtain the limiting value of δ, consider the algebraic equation

lim
n→∞

(
−δn−1 − δ + 1

)
= 0. (44)

Clearly, −δ + 1 = 0 and, hence, δ = 1. For Ia(Sn), we obtain

Ia(Sn) = −

[
1

n
log

(
1

n

)
+
n− 1

n
log

(
n− 1

n

)]
. (45)

Theorem 2.7. Let Sn be the star graph with n vertices. Then

lim
n→∞

d(δ(Sn), Ia(Sn)) = 1. (46)

Proof: We have shown above that limn→∞ δn(Sn) = 1. So,

lim
n→∞

d(δ(Sn), Ia(Sn)) = lim
n→∞

[
δn(Sn)− 1

n
log

(
1

n

)
− n− 1

n
log

(
n− 1

n

)]2
(47)

=

[
lim
n→∞

δn(Sn)− lim
n→∞

1

n
log

(
1

n

)
− lim
n→∞

n− 1

n
log

(
n− 1

n

)]2
(48)

Noting the continuity of ()2, log and 0 log(0) and 1 log(1) = 0, the desired result, Equation (46),
follows. �

2.9. Regular Rooted Trees

Rooted trees often occur in computer science related areas [23]. In this section, we study a
special case thereof namely regular rooted trees. A complete regular rooted tree of degree d and
height h is a rooted tree where every inner vertex has d children and every leaf has distance h

from the root vertex. Such a tree Td,h has n = dh+1

d−1 vertices. The orbits of this tree represent the

vertices on the same level, so there are h+ 1 many orbits, with 1, d1, d2, . . . , dh elements.
We prove the following theorem.

Theorem 2.8. The entropy of a regular rooted tree with degree d and height h equals

Ia(Td,h) = log(dh+1 − 1)− log(d− 1)− log(d) · hd
h+2 − (h+ 1)dh+1 + d

(dh+1 − 1)(d− 1)
. (49)

For fixed degree d, the limit limh→∞ Ia(Td,h) yields to

lim
h→∞

Ia(Td,h) =
d

d− 1
log(d)− log(d− 1). (50)

For fixed height h, the limiting value equals

lim
d→∞

Ia(Td,h) = 0. (51)
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Proof:

Ia(Td,h) = −
h∑
k=0

dk

n
log

(
dk

n

)
, (52)

=
1

n

h∑
k=0

dk · (log(n)− k log(d)),

=
log(n)

n

h∑
k=0

dk − log(d)

n

h∑
k=0

kdk,

= log(n)− log(d)

n

h∑
k=0

kdk. (53)

The expression
∑h
k=0 kd

k is an arithmetic-geometric sequence

h∑
k=0

kdk =
hdh+2 − (h+ 1)dh+1 + d

(d− 1)2
. (54)

Hence, we get

Ia(Td,h) = log(n)− log(d)

n
· hd

h+2 − (h+ 1)dh+1 + d

(d− 1)2
,

= log

(
dh+1 − 1

d− 1

)
− log(d) · (d− 1)

dh+1 − 1
· hd

h+2 − (h+ 1)dh+1 + d

(d− 1)2
,

= log(dh+1 − 1)− log(d− 1)− log(d) · hd
h+2 − (h+ 1)dh+1 + d

(dh+1 − 1)(d− 1)
. (55)

Now we consider the limiting value of the entropy for a fixed degree d and for h → ∞. In order
to compute these limits, we reformulate Equation (55):

Ia(Td,h) = log

(
dh+1 − 1

dh+1
· dh+1

)
− log(d− 1)− log(d) · h · (d− 1)− 1 + d−h

(1− d−h−1) · (d− 1)
,

= log

(
dh+1 − 1

dh+1

)
+ (h+ 1) · log(d)− log(d− 1)− log(d) ·

(
h− 1− d−h

d− 1

)
· 1

1− d−h−1
.

(56)

Now we fix the degree d and calculate the limit h → ∞; then the first term in Equation (56)
converges to 0 an the last factor converges to 1. Thus

lim
h→∞

Ia(Td,h) = lim
h→∞

(
(h+ 1) · log(d)− log(d− 1)− log(d) ·

(
h− 1

d− 1

))
(57)

= log(d)− log(d− 1) +
log(d)

d− 1
(58)

=
d

d− 1
log(d)− log(d− 1) (59)

On the other hand, if we fix the height h an consider the limit d → ∞, the first summand in
Equation (56) converges to 0 an the last factor converges to 1 too, hence

lim
d→∞

Ia(Td,h) = lim
d→∞

(
(h+ 1) · log(d)− log(d− 1)− log(d) ·

(
h− 1

d− 1

))
, (60)

= lim
d→∞

(
(log(d)− log(d− 1)) +

log(d)

d− 1

)
, (61)

= lim
d→∞

log

(
d

d− 1

)
+ lim
d→∞

log(d)

d− 1
= 0. (62)
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In what follows, we investigate δ for trees Td,h. The polynomial 1−OTd,h
(z) equals

O∗Td,h
(z) = 1−

h∑
k0

zd
k

. (63)

These polynomials have degree > 4 (except for trivial cases) and, therefore, there is no analytical
formula for their roots by radicals, see [24]. Instead of exact formulas, we give upper and lower
bounds for δ.

Theorem 2.9. Let Td,h be a complete regular rooted tree. It holds,

δ(Td,h) < z
(d)
1 :=

d

d+ 1
. (64)

A tighter upper bound is

δ(Td,h) < z
(d)
2 :=

(d− 1) · dd + (d+ 1)d

(d+ 1) · dd + (d+ 1)d
. (65)

Proof: For a fixed degree d, (O∗Td,h
(z))h∈N is a sequence of polynomials with O∗Td,h

(0) = 1 for all h

and for every z > 0 the sequence (O∗Td,h
(z))h∈N) is decreasing. Therefore the sequence (δ(Td,h))h∈N

is decreasing too.
Hence, to obtain an upper bound of (δ(Td,h)) it suffices to find upper bounds for δ(Td,1).
δ(Td,1) is the positive root of the polynomial O∗Td,1

(z) = 1 − z − zd. We determine two

approximations of the Newton-Iteration method [25] for the positive root of O∗Td,1
. We obtain

zi+1 := zi −
O∗Td,1

(zi)

O∗Td,1

′(zi)
= zi −

zd + z − 1

dzd−1 + 1
, (66)

if starting with z0 = 1. As O∗Td,1

′(z) = −1 − dzd−1 < 0 and O∗Td,1

′′(z) = −d(d − 1)zd−2 < 0 for

all z > 0, O∗Td,1
(z) (restricted to the domain R+) is concave downwards. Every tangent of this

function at z > 0 lies above the curve. If we choose zi such that O∗Td,1
(zi) < 0, the zero of the

tangent zi+1 is greater than δ(Td,1). So, if we start the Newton-Iteration method with z0 = 1, we
obtain the upper bounds z1 and z2 for δ(Td,1):

z1 = 1− 1d + 1− 1

1d−1 + 1
=

d

d+ 1
, (67)

z2 =
d

d+ 1
−

(
d
d+1

)d
+ d

d+1 − 1

d
(

d
d+1

)d−1
+ 1

,

=
d

d+ 1
− dd + (d+ 1)d−1 · d− (d+ 1)d

(d+ 1) · dd + (d+ 1)d
,

=
(d− 1) · dd + (d+ 1)d

(d+ 1) · dd + (d+ 1)d
. (68)

These upper approximations z1 and z2 are the bounds of the Inequalities (64), (65). �

We mention by determining further approximations zi of δ(Td,1), we obtain even tighter but more
complicated bounds.
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In order to find lower bounds for δ(Td,h), we compare the orbit polynomial with the geometric
sequences sharing the first two summands. For each orbit polynomial OTd,h

(z) and each z with
0 < z < 1 holds

OTd,h
(z) =

h∑
k=1

zd
k

≤
∞∑
`=0

z1+`·(d−1) := q(z) =
z

1− zd−1
(69)

The solution of q(z) = 1 is a lower bound of δ(Td,h); this solution is the positive root of

zd−1 + z − 1 = 0. (70)

For d > 2 this corresponds to the value of δ of the star graph Sd. The value range of δ of the
star graph has already been investigated in [3]. If we take a closer look at the just obtained
bound, we see that the value of the bound represents another root of the Equation (70). When
investigating bounds for the moduli of the complex zeros of complex polynomials, Dehmer et al.
gave a classification of zero bounds namely implicit and explicit bounds, see [26, 27, 28]. By
definition, bounds have been called implicit if the bound value is a positive zero of a concomitant
polynomial obtained by direct calculation [27, 28]. In contrast, explicit bounds can be calculated
by just plugging in certain parameter; note that explicit bounds are functions of the polynomial
coefficients.

For d = 2, the zero of the polynomial represented by Equation (70) equals z = 0.5 (we do
not mean δ(S2) because the star graph S2 is a degenerated star). As a consequence, we get the
following theorem.

Theorem 2.10. For a tree Td,h, we obtain the following lower bounds for the δ:

δ(Td,h) > δ(Sd) if d > 2 and δ(T2,h) > 0.5. (71)

Table (1) shows the bounds of δ for some trees.

d δ(Sd) lim
h→∞

δ(Td,h) δ(Td,1) z
(d)
2 z

(d)
1

2 0.50000000 0.56612379 0.61803399 0.61904762 0.66666667
3 0.61803399 0.67074015 0.68232780 0.68604651 0.75000000
4 0.68232780 0.72230845 0.72449196 0.73123360 0.80000000
5 0.72449196 0.75454389 0.75487767 0.76438212 0.83333333
6 0.75487767 0.77804564 0.77808960 0.78995185 0.85714286
7 0.77808960 0.79653918 0.79654435 0.81036362 0.87500000
8 0.79654435 0.81165177 0.81165232 0.82707615 0.88888889
9 0.81165232 0.82430051 0.82430056 0.84103233 0.90000000

10 0.82430056 0.83507904 0.83507904 0.85287348 0.90909091
11 0.83507904 0.84439753 0.84439753 0.86305309 0.91666667
12 0.84439753 0.85255071 0.85255071 0.87190191 0.92307692
13 0.85255071 0.85975667 0.85975667 0.87966741 0.92857143
14 0.85975667 0.86618067 0.86618067 0.88653867 0.93333333
15 0.86618067 0.87195054 0.87195054 0.89266286 0.93750000
16 0.87195054 0.87716687 0.87716687 0.89815626 0.94117647
17 0.87716687 0.88191005 0.88191005 0.90311211 0.94444444
18 0.88191005 0.88624517 0.88624517 0.90760599 0.94736842
19 0.88624517 0.89022557 0.89022557 0.91169991 0.95000000
20 0.89022557 0.89389541 0.89389541 0.91544519 0.95238095

Table 1: Bounds for lim
h→∞

δ(Td,h). δ(Sd) is a lower bound. Upper bounds for δ(Td,h) are z
(d)
2 and z

(d)
1 , see

Equation (65) and Equation (64).
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2.10. Alkane trees

In this section, we consider single-bond hydrocarbons (alkane) represented as trees with k
carbon atoms, see [9]. This tree possesses 2k + 2 hydrogen atoms and has n = 3k + 2 vertices
[9]. Figure (1) shows an alkane tree with 5 carbon atoms represented by vertices of degree 4. We
denote this graph by Tk. For even k, Tk has one orbit of size 6, k−22 of size 4, and k

2 of size 2, see
[9]. We will discuss the case for k even with k > 2; the odd case can be analyzed in a similar way.
The orbit polynomial of Tk has the form

OTk
(z) = z6 +

k − 2

2
z4 +

k

2
z2 (72)

and

O?Tk
(z) = −z6 − k − 2

2
z4 − k

2
z2 + 1 (73)

From [3], we see that O?Tk
(z) has a unique, positive root δ < 1. To simplify the proof we first state

and prove a lemma.

Lemma 2.11. All zeros of the polynomial

P (z) = 1− (z6 + α1z
4 + α2z

2) = −z6 − α1z
4 − α2z

2 + 1 = 0, α1, α2 ∈ R, (74)

lie in |z| ≥ 1√
3M

where M := max(|α1|, |α2|).

Proof: From the triangle inequality, it follows that

P (z)| = |1− (z6 + α1z
4 + α2z

2)|,
≥ 1− |(z6 + α1z

4 + α2z
2)|,

≥ 1− {|z|6 + |α1||z|4 + |α2||z|2},
≥ 1−M{|z|6 + |z|4 + |z|2},
≥ 1−M{3|z|2} > 0. (75)

In addition, |P (z)| > 0 if |z| < 1√
3M

. Hence, all zeros of P (z) lie in |z| ≥ 1√
3M

. �

Applying Lemma (2.11) to O?Tk
(z) (see Equation (73)), it is clear that all zeros of this polynomial

lie in |z| ≥
√

2
3

1√
k

. Thus,
√

2
3

1√
k
→ 0 as k →∞.

As an example, take k = 16. This gives

O?T16
(z) = −z6 − 7z4 − 8z2 + 1, (76)

and δ(T16) = 0.3369. The zero bound by Lemma (2.11) gives the region |z| ≥
√

2
3 ·

1
4 = 0.2041.

In order to prove a result for the limiting case of Tk, we first show that the unique, positive zero of
Equation (76) converges to zero as k increases without bound. We have computed the zero using
the well-known Newton-Iteration method [25]. The following Table (2) illustrates the results.

From Table (2), we observe that δi → 0 as k →∞. The same result is shown in Figure (3).

Theorem 2.12. Let Tk be the alkane tree with k even. Then

lim
n→∞

d(δ(Tk), Ia(Tk)) = +∞. (77)

11



Step i k O∗Tk
(z) (δ(Tk))i

1 1 −z6 − 0.5z4 − 0.5z2 + 1 1.0000000000
2 10 −z6 − 4z4 − 5z2 + 1 0.4178030760
3 1000 −z6 − 499z4 − 500z2 + 1 0.0446768826
4 100000 −z6 − 49999z4 − 50000z2 + 1 0.0044720912
5 100000000 −z6 − 49999999z4 − 5 · 107z2 + 1 0.0001414214
6 10000000000 −z6 − 4999999999z4 − 5 · 109z2 + 1 0.0000141421

Table 2: The values of δi for different k.
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8
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k

δ i

Figure 3: δi for different k.

Proof: First we compute I(Tk). Appealing to the orbit structure of Tk above, we obtain

I(Tk) = −

[
6

3k + 1
log

(
6

3k + 1

)
+
k − 2

2
· 4

3k + 1
log

(
4

3k + 1

)

+
k

2
· 2

3k + 1
log

(
2

3k + 1

)]
, (78)

= −

[
6

3k + 1
log

(
6

3k + 1

)
+

2k − 4

3k + 1
log

(
4

3k + 1

)

+
k

3k + 1
log

(
2

3k + 1

)]
. (79)

Taking δ(Tk) as the unique, positive zero ofO?Tk
(z) = 0, we make use of the observation limk→∞ δ(Tk) =

12



0. Thus,

lim
k→∞

d(δ(Tk), Ia(Tk)) = lim
k→∞

[
δ(Tk)− 6

3k + 1
log

(
6

3k + 1

)
+

2k − 4

3k + 1
log

(
4

3k + 1

)

+
k

3k + 1
log

(
2

3k + 1

)]2
, (80)

=

[
lim
k→∞

δ(Tk)− lim
k→∞

6

3k + 1
log

(
6

3k + 1

)
− lim
k→∞

2k − 4

3k + 1
log

(
4

3k + 1

)

− lim
k→∞

k

3k + 1
log

(
2

3k + 1

)]2
. (81)

In conclusion, we again use the fact that the functions ()2 and log are continuous. Noting that
limk→∞

2k−4
3k+1 = 2

3 and limk→∞
k

3k+1 = 1
3 and, moreover, 0 · log(0) = 0 and log(0) = −∞, we finally

obtain from Equation (81) that the limiting values given by Equation (77) hold. �

It is evident that the statement of Theorem (2.12) is also valid for odd k and can be proven
analogously.

2.11. Complete Bipartite Graphs

In this section, we consider complete bipartite graphs Kn1,n2
with two orbits of order n1 and

n2. We assume that n1 6= n2, otherwise bipartite graphs are transitive and these graphs have
already been tackled in Section (2.4). A special case of complete bipartite graphs are star graphs
that we already analyzed in Section (2.8). We start by discussing the graph measure δ of these
graphs. We state the following lemma.

Lemma 2.13. For every ε > 0 there only exist a finite number of pairs (n1, n2) ∈ Ṅ2 with
δ(Kn1,n2) < 1− ε.

Proof: Assume that δ := δ(Kn1,n2) < 1 − ε. By definition of the related orbit polynomial, we
obtain δn1 + δn2 = 1. Without loss of generality we assume n1 < n2. δ < 1 implies δn1 > δn2 . So,
1
2 < δn1 < (1− ε)n1 and n1 ≤ log(1/2)

log(1−ε) .

Moreover, as δ < 1 − ε, we also conclude δn1 < 1 − ε. Therefore, ε ≤ δn2 ≤ (1 − ε)n2 , and

finally n2 ≤ log(ε)
log(1−ε) . �

The computation of the entropy of a complete bipartite graph Kn1,n2 is straightforward.

Ia(Kn1,n2) = p1 log(p1) + p2 log(p2), (82)

where p1 =
n1

n1 + n2
and p2 =

n2
n1 + n2

.

As a consequence of Lemma (2.13) and Equation (82), we obtain the next statement.

Theorem 2.14.

1. For a fixed number n1, the limit of the distances of the entropy and δ on bipartite graphs is

lim
n2→∞

d(δ(Kn1,n2
), Ia(Kn1,n2

)) = 1. (83)

2. If (n
(i)
1 , n

(i)
2 ) is a sequence of pairs with limi→∞ n

(i)
1 = limi→∞ n

(i)
2 = ∞ and if p1 :=

limi→∞
n
(i)
1

ni
1+n

i
2

and p2 := limi→∞
n
(i)
2

ni
2+n

i
2

exist, then

lim
n2→∞

d(δ(Kn1,n2), Ia(Kn1,n2)) = (p1 log(p1) + p2 log(p2)− 1)2. (84)
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3. Summary and Conclusion

This paper has initiated a comparative analysis of alternative quantitative measures of graph
symmetry. Two measures based on the automorphism group of a graph were considered. For
purposes of comparison a real valued distance measure was introduced, and the limiting values of
the respective distances between the two symmetry measures on each of several classes of graphs
were established. Although both symmetry measures compared are based on the same variables,
namely the number and sizes of the orbits of the automorphism group, there can be considerable,
and even extreme differences between them. For example, the distance between the two symmetry
measures on the path graph diverges to infinity. An appropriate analogy is the case of two functions
on the same set of variables having very different functional forms. The current research is viewed
as a first step in a systematic analysis of symmetry measures. Distances between the two symmetry
measures on additional classes of graphs, as well as comparative analysis of other measures, will
be undertaken in future work.
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