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Abstract

Myocardial infarction (MI) is the leading cause of mor-
tality and morbidity in the world. Early therapeutics of
MI can ensure the prevention of further myocardial necro-
sis. Echocardiography is the fundamental imaging tech-
nique that can reveal the earliest sign of MI. However,
the scarcity of echocardiographic datasets for the MI de-
tection is the major issue for training data-driven classi-
fication algorithms. In this study, we propose a frame-
work for early detection of MI over multi-view echocardio-
graphy that leverages one-class classification (OCC) tech-
niques. The OCC techniques are used to train a model
for detecting a specific target class using instances from
that particular category only. We investigated the usage of
uni-modal and multi-modal one-class classification tech-
niques in the proposed framework using the HMC-QU
dataset that includes apical 4-chamber (A4C) and apical
2-chamber (A2C) views in a total of 260 echocardiogra-
phy recordings. Experimental results show that the multi-
modal approach achieves a sensitivity level of 85.23% and
F1-Score of 80.21%.

1. Introduction
World Health Organization (WHO) has recently re-

ported that coronary artery disease (CAD) is the reason for
16% of total deaths worldwide [1]. Myocardial infarction
(MI) is the most severe manifestation of CAD that leads
to irreversible necrosis of the myocardium [2]. Hence,
early diagnosis of MI plays a vital role in the prevention
of mortality and morbidity. Accordingly, the presentation
of MI is recognized by its symptoms and several clinical
features that are the biochemical markers, electrocardiog-
raphy (ECG) findings, and imaging techniques [3]. How-
ever, the symptoms of MI, i.e., shortness of breath and pain
around the upper body, may not be visible in the early
stages [4]. Furthermore, the biochemical values of my-
ocardial necrosis, such as the high sensitivity cardiac tro-
ponin (hs-cTn), take time to evolve to a diagnostic level
for MI [5, 6]. On the other hand, the changes at the ECG

are occasionally non-diagnostic and also have a significant
delay compared to imaging techniques [6]. Echocardio-
graphy is a non-invasive imaging technique that reveals
the earliest sign of MI, which is the regional wall mo-
tion abnormality (RWMA) of the necrosed myocardium
[7]. Hence, echocardiography has the potential to be the
most useful diagnostic tool to detect early MI with easy
accessibility and low-cost options [8].

The diagnosis of MI using echocardiography has sev-
eral drawbacks, where the RWMA assessment is highly
subjective, and the recordings generally have low image
quality with a high level of noise [7, 9]. Thus, computer-
aided diagnosis algorithms have become a necessity for MI
detection. However, many studies [10–13] have evaluated
their algorithms over scarce, private, synthetic, and single-
view echocardiographic data which causes certain relia-
bility and robustness issues, especially for deep learning
models. Contrary to class-specific algorithms, one-class
classification (OCC) models require only the positive class
during training with much fewer samples [14, 15]. How-
ever, despite their feasibility, only the studies [16,17] have
used OCC models for echocardiographic data.

In this study, we propose a framework that leverages
OCC for the early detection of MI using multi-view
echocardiography as depicted in Figure 1. First, we ex-
tract features from apical 4-chamber (A4C), and apical
2-chamber (A2C) view echocardiography recordings by
tracking the motion of the left ventricle (LV) using Active
Polynomials (APs) [18]. Then, we use a multi-modal OCC
approach over the maximum displacement features of A4C
and A2C views. As the pioneer study with multi-modal
OCC for the MI diagnosis using multi-view echocardiog-
raphy, we have extensively evaluated both multi-, and uni-
modal OCC algorithms over the HMC-QU1 dataset.

The paper proceeds as follows. In Section 2, we propose
the framework for early MI detection. In Section 3, we
report the experimental results and conclude the paper in
Section 4.

1The benchmark HMC-QU dataset is publicly shared at the repository
https://www.kaggle.com/aysendegerli/hmcqu-dataset
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Figure 1: The proposed framework for early detection of MI with multi-modal one-class classification over multi-view
echocardiography, where the features of both modalities are mapped to a shared subspace to perform diagnosis.

2. Methodology

The accurate extraction of the LV endocardium is a cru-
cial step in myocardial motion tracking. In this study, the
endocardial boundary of the LV from A4C and A2C views
are extracted by Active Polynomials (APs) [19] that are
the constrained versions of active contours [20]. In or-
der to overcome the common issues due to the low-quality
in echocardiography, APs are formed by encapsulating the
LV by a thick wall around the chamber, and then, the ac-
tive contour is initialized and evolved towards the endo-
cardium. Once the APs are formed over each frame of
echocardiography recordings, the LV wall is divided into
a total of 12 distinct myocardial segments. Thus, myocar-
dial motion is obtained for each myocardial segment as de-
picted in Figure 1.

The feature engineering is performed as in our previ-
ous study [18], where we extract the feature vectors from
A4C (modality 1) and A2C (modality 2) view echocar-
diography recordings in one-cardiac cycle. In the pro-
posed framework, we used OCC for training the predic-
tive model. Contrary to class-specific algorithms, the OCC
models do not require information from negative samples
during training. For the OCC model, we propose using
the Multi-modal Subspace Support Vector Data Descrip-
tion (MS-SVDD) [21] due to its feasibility with multi-view
echocardiographic data. MS-SVDD maps the multi-view
feature vectors to a lower-dimensional optimized feature
space shared by features from different views of echocar-
diography as illustrated in Figure 1. The feature vectors
of view v are represented by Fv = [fv,1, fv,2, ..., fv,6],

fv,i ∈ RDv , where the dimensionality of the original fea-
ture space is Dv . Accordingly, a projection matrix Qv

∈ Rd×Dv is formed for each modality v that projects the
feature vectors Fv into a lower d−dimensional shared sub-
space optimized for OCC. Hence, MS-SVDD is trained by
the target data that fits into the smallest hypersphere by
minimizing the following function:

minF (R, a) = R2 + C
V∑

v=1

N∑
i=1

ξv,i

s.t. ||Qvfv,i−a∥22≤ R2 + ξv,i, ξv,i ≥ 0,

∀v ∈ {1, . . . , V },∀i ∈ {1, . . . , N}, (1)

where R is the radius, a is the center of hypersphere, ξv,i
are slack variables, and C controls the outliers in the train-
ing set. Then, Qv is updated as Qv ← Qv − η∆L, where
∆L is the gradient of Lagrangian of Eq. (1) for the cor-
responding modality v, and η is the learning rate. Dif-
ferent regularization techniques (r) are also used in MS-
SVDD by considering the co-variance of data from differ-
ent modalities in the shared subspace. The regularization
term expressing the co-variance of selected data is repre-
sented by ω and the importance of ω is controlled by a
hyper-parameter β.

In this study, we also investigate the uni-modal OCC al-
gorithms: One-class Support Vector Machine (OC-SVM)
[22], Support Vector Data Description (SVDD) [23], Sub-
space SVDD (S-SVDD) [15], and Ellipsoidal Subspace
SVDD (ES-SVDD) [24]. Contrary to MS-SVDD, where

Page 2
 



Table 1: Average myocardial infarction detection performance results (%) computed over the test sets of each 5−fold in
HMC-QU dataset.

Target: MI Target: non-MI
r Sen Spe Pre F1 Acc GM r Sen Spe Pre F1 Acc GM

Non-linear one-class classification
MS-SVDDds1 ω1 70.45 61.90 79.49 74.70 67.69 66.04 ω0 71.43 53.41 42.25 53.10 59.23 61.77
MS-SVDDds2 ω2 63.64 42.86 70.00 66.67 56.92 52.23 ω0 61.90 73.86 53.06 57.14 70.00 67.62
MS-SVDDds3 ω2 55.68 59.52 74.24 63.64 56.92 57.57 ω0 57.14 57.95 39.34 46.60 57.69 57.54
MS-SVDDds4 ω6 39.77 76.19 77.78 52.63 51.54 55.05 ω2 73.81 67.05 51.67 60.78 69.23 70.35

ES-SVDD ψ0 73.86 38.10 71.43 72.63 62.31 53.05 ψ0 69.05 56.82 43.28 53.21 60.77 62.64
S-SVDD ψ2 59.09 54.76 73.24 65.41 57.69 56.88 ψ1 54.76 52.27 35.38 42.99 53.08 53.50
SVDD − 80.68 38.10 73.20 76.76 66.92 55.44 − 69.05 71.59 53.70 60.42 70.77 70.31

OC-SVM − 42.05 71.43 75.51 54.01 51.54 54.81 − 35.71 82.95 50.00 41.67 67.69 54.43
Linear one-class classification

MS-SVDDds1 ω5 81.82 47.62 76.60 79.12 70.77 62.42 ω2 73.81 62.50 48.44 58.49 66.15 67.92
MS-SVDDds2 ω2 54.55 59.52 73.85 62.75 56.15 56.98 ω2 78.57 36.36 37.08 50.38 50.00 53.45
MS-SVDDds3 ω0 67.05 59.52 77.63 71.95 64.62 63.17 ω5 73.81 50.00 41.33 52.99 57.69 60.75
MS-SVDDds4 ω5 85.23 42.86 75.76 80.21 71.54 60.44 ω0 80.95 59.09 48.57 60.71 66.15 69.16

ES-SVDD ψ3 82.95 35.71 73.00 77.66 67.69 54.43 ψ3 45.24 67.05 39.58 42.22 60.00 55.08
S-SVDD ψ3 70.45 45.24 72.94 71.68 62.31 56.45 ψ2 50.00 70.45 44.68 47.19 63.85 59.35
SVDD − 86.36 33.33 73.08 79.17 69.23 53.65 − 69.05 69.32 51.79 59.18 69.23 69.18

OC-SVM − 44.32 73.81 78.00 56.52 53.85 57.19 − 47.62 81.82 55.56 51.28 70.77 62.42

the feature vectors are projected to a joint subspace suit-
able for OCC, in the uni-modal OCC methods, we con-
catenate the feature vectors of A4C and A2C views as
F =

[
F1 F2

]
∈ R(D1+D2)×N . In uni-modal subspace

OCC methods (S-SVDD, ES-SVDD), the corresponding
regularization technique is denoted by ψ.

3. Experimental Evaluation

In this section, the experimental setup is introduced.
Then, the experimental results are reported over the HMC-
QU dataset.

3.1. Experimental Setup

The performance of the proposed framework is evalu-
ated over the HMC-QU dataset [18] that includes a total
of 260 echocardiography recordings from A4C and A2C
views of 130 individuals with the ground-truths of 88 MI
patients, and 42 non-MI subjects. During the training of
the OCC models, we consider the target class as MI or non-
MI, and report the results for both targets. Accordingly,
noting that the target class is the positive class, we calcu-
late the standard performance metrics as follows: Sensi-
tivity (Sen) is the ratio of correctly detected positive sam-
ples in the positive class, Specificity (Spe) is the rate of ac-
curately identified negative samples in the negative class,
Precision (Pre) is the ratio of correctly detected target sam-
ples among the samples that are identified as the positive
class, F1−Score (F1) is the harmonic mean of Sen and Pre,
Accuracy (Acc) is the ratio of correctly classified samples
over the dataset, and GMean (GM) is the geometric mean
of Sen and Spe.

The OCC models are evaluated in a stratified 5−fold
cross-validation (CV) scheme with a ratio of 80% training
to 20% test sets. The best hyper-parameters for the testing

phase are determined by an exhaustive search over a strati-
fied 10−fold CV scheme with respect to the best GM dur-
ing training. We have experimented with both linear and
non-linear (kernel) versions of the OCC models, where we
used the kernel Ki,j = exp

(
−||f i−fj ||2

2σ2

)
with the hyper-

parameter σ. The hyper-parameters η, β, C, σ, and d are
searched as follows: η ∈ {10−4, 10−3, 10−2, 10−1, 1},
β ∈ {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104}, C ∈
{0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, σ ∈ {10−2, 10−1,
1, 10, 102, 103}, in multi-modal d ∈ [1, 5], whereas in uni-
modal d ∈ [1, 11] with a gap of 1 increasing at each step.
Moreover, the MS-SVDD has different decision strate-
gies ds1, ds2, ds3, ds4, where the details are presented in
[21]. Lastly, the implementation of the OCC models is
performed on MATLAB R2020a.

3.2. Experimental Results
In this section, we investigate the performances of multi-

and uni-modal OCC models for different targets with lin-
ear and non-linear versions. The performances are re-
ported in Table 1. Primarily, the best GM of 66.04% and
70.35% are obtained by non-linear MS-SVDD for MI and
non-MI targets, respectively. It can be observed that non-
linear MS-SVDDds1 has achieved the highest precision of
79.49% for target MI, where the decision strategy 1 is per-
formed that merges the decisions of both modalities by

Table 2: Confusion matrices of the linear SVDD (a) and
MS-SVDDds4 (b) models with target MI.

(a)

SVDD Predicted
Non-MI MI

Ground
Truth

Non-MI 14 28
MI 12 76

(b)

MS-SVDDds4
Predicted

Non-MI MI
Ground
Truth

Non-MI 18 24
MI 13 75
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the AND operator in the testing phase. Moreover, the best
F1−Score of 80.21% is achieved by linear MS-SVDDds4

for target MI with an elegant sensitivity level of 85.23%,
where only the decision of the second modality is con-
sidered in the testing phase. The best sensitivity level of
86.36% is obtained by linear SVDD for target MI which is
very close to the sensitivity of linear MS-SVDDds4 , where
their confusion matrices are shown in Table 2.

4. Conclusions

The early diagnosis of MI is a crucial task to prevent the
further myocardial necrosis. This study investigates the
OCC algorithms for the first time for multi-view echocar-
diography. The experimental results over the HMC-QU
dataset have revealed that multi-modal OCC models have
achieved the highest precision of 79.49% and F1−Score of
80.21% despite the decent performance of the uni-modal
OCC algorithms. Furthermore, we have investigated the
linear and non-linear options of the presented OCC algo-
rithms, and experimentally showed that the best GMean of
70.35% is achieved by the multi-modal OCC model.
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