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ABSTRACT

Jinhan Gao: Dynamic multivariable optimization for routing in high-density manufacturing trans-
portation systems
Master of Technology Thesis
Tampere University
August 2023

Intelligent manufacturing systems play a pivotal role within the framework of Industry 4.0. It
encompass an array of diverse resources, including robots, conveyors, sensors, among others.
The effectiveness of such systems hinges upon the adept scheduling of all available resources
to successfully execute production tasks. Hence, scheduling systems assume particular signif-
icance. They facilitate a comprehensive and harmonized approach to planning and scheduling
across all resources, ensuring the efficient utilization of resources while concurrently expediting
the accomplishment of designated tasks.

The central aim of this thesis is to conceptualize and execute a scheduling system encompass-
ing job shop scheduling and route planning components. This system is proficient in generating
scheduling plans that concurrently fulfill multiple objectives, including minimizing work time, attain-
ing balanced workloads, and enabling collision-free movement.

Through scenario modeling, this scheduling system is represented as a bilevel optimization
problem. Each level constitutes a mixed-integer linear programming problem, that is able to be
resolved autonomously through the prediction of interconnected parameters.

The system comprises three core components: parameter prediction, an manufacturing as-
signment scheduling problem solver, and a route planning problem solver. This configuration
equips the system with the capability to effectively handle unforeseen circumstances, such as
mechanical failures, while concurrently alleviating the complexity associated with resolving the
primary problem.

The simulation outcomes affirm the system’s capacity to generate solutions that are both ef-
fective and aligned with the stipulated objectives.

Keywords: Smart Manufacturing, Bilevel Optimization, JSSP, Route Planning

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1. INTRODUCTION

This chapter serves as an introduction, delving into the backdrop of smart manufacturing,

the research context, and challenges explored within this paper. It proceeds to elucidate

the targeted objectives and provides an overview of the thesis structure.

1.1 Background

As information technology and AI techniques continue to advance rapidly, the integration

of intelligence and information technology within the manufacturing sector has grown in

significance. This evolution has coincided with the rise of concepts such as smart facto-

ries and unmanned factories, which has gained significant attention in recent times.

Amidst a myriad visions of the future of manufacturing, two overarching points of consen-

sus have emerged:

1. The future factory will witness diminished human involvement, with a substantial

portion of operations autonomously executed by machines.

2. Resources will be harnessed to their fullest extent and judiciously orchestrated in

the planning process.

These aspects are inherently intertwined with the evolution and exploration of scheduling

and planning systems. In alignment with the pursuit of building the future factory, this

thesis is motivated to conceive and actualize a planning system.

1.2 Scenario statement and research questions

The scenario explored in this paper entails the requirement for a scheduling algorithm

to ensure the coherent allocation of resources within an intelligent manufacturing system

encompassing industrial robots and pallet transportation systems. The resultant outputs

of this algorithm encompass the scheduling of production tasks and the planning of routes

for pallet transportation. This scenario encompasses two distinct components: the pro-

duction scheduling and the route planning. The research endeavors of this thesis are

directed towards addressing the research questions:

1. What is the manufacturing assignment scheduling model of the entrusted testbed?
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2. What is the route planning model of the entrusted testbed?

3. How to integrate the job shop scheduling problem and route planning problem?

4. How to find an optimal or close-to-optimal solution within an reasonable computa-

tional time?

5. What is the trade-off of the proposed solution?

1.3 Objectives

This thesis is aiming to formulate of a scheduling system that optimizes the speed of

producing essential products. To construct this scheduling system, the given scenario

is converted into a mathematical model, while the relevant solution methodologies are

explored in the literature review segment. The objectives pursued through the implemen-

tation of this system encompass:

1. The ability to attain solutions within an acceptable timeframe. 2. Capability to ef-

fectively manage unforeseen contingencies, including system failures. 3. Achievement of

equitable work distribution among robots. 4. Facilitation of pallet movement to designated

locations in minimal time, without collisions.

1.4 Outline

The thesis follows the subsequent structure: Chapter 2 delves into the technical underpin-

nings of modeling and optimization algorithms. Chapter 3 expounds upon the modeling

process and outlines the design of the optimizer. The implementation process is detailed

in Chapter 4. Chapter 5 presents the simulation results and their subsequent analysis.

Lastly, Chapter 6 concludes the research endeavors and deliberates upon potential av-

enues for future exploration.
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2. LITERATURE REVIEW

The primary objective of this chapter is to critically assess the articles that related to

research problems. The sections are organized thematically. Firstly, the section 2.1

presents the concept of smart manufacturing and the essentiality of intelligent sched-

ule algorithm in this field. Secondly, the section 2.2 focus on the main problems, current

gap, and typical solutions in the job shop scheduling area. Then, the section 2.3 focus

on the literature about the methodology that is used in this paper. Finally, the section 2.4

summarizes past research work and present findings.

2.1 Smart Manufacturing

The ICT (Information and communication technology) has extremely improved compet-

itiveness of the manufacturing industry. Due to the development of ICT, Smart Manu-

facturing is identified as the fourth revolution and a new paradigm [22]. It consists of

various techniques including multi sensors system, cloud techniques, and smart devices,

which Human can manage and communicate between themselves [36]. Furthermore, it

becomes a new paradigm of manufacturing industry and effects global trends [22].

However, scheduling algorithms in an efficient and effective manner are necessary to

achieve optimal output with all the recent developments in smart manufacturing sys-

tems [3]. The scheduling solutions provide the ability for smart manufacturing to adapt to

dynamic and real-time environments [37]. Past scheduling algorithms have focused on

the research of fixed production models, however, the study of scheduling algorithms that

deal with more flexible and dynamic scenarios has been increasingly significant in recent

years [3].

To meet the growing need of efficient production in manufacturing industries, the investi-

gation of solving job shop schedule problem is therefore apparent.

2.2 Job Shop Scheduling Problem

The field of manufacturing assignments scheduling pertains to the investigation of the

most efficient scheduling of numerous production machines. The utilization of this tech-

nology is prevalent in various industries and has resulted in a substantial volume of aca-
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demic investigations pertaining to diverse implementation contexts [51]. The conven-

tional formulation is depicted in the subsequent manner: given a collection of machines

M = M1,M2,M3, ...,Mm in the work space, and a batch of jobs J = J1, J2, J3, ..., Jn is

waiting for manufacturing in this work space, each job Ji comprises a series of operations

O = O1, O2, O3, ..., On, and normally, the dominate target is to minimize the makespan or

other criterion. The figure 2.1 illustrates an example work space of the job shop problem.

Figure 2.1. JSSP [53]

Based on previous studies, the job shop scheduling problem (JSSP) commonly exhibits

the following constraints, which necessitate appropriate consideration [54]:

1. If a robot is restricted to performing only one operation at any given moment.

2. If there exists a predefined order of operations for executing a certain job.

3. If a hierarchy of significance exists for different jobs.

4. It is imperative to note that the machine is not susceptible to interruption during the

execution of an ongoing operation.

In accordance with the specified constraints and production processes, JSSP can be

classified by the following categories [58]:

1. Basic JSSP.

2. Flexible JSSP (FJSSP).

3. Multi-resources FJSSP (MrFJSSP).

4. Multi-plants-based MrFJSSP.

Since the research problem discussed in this thesis is a variant of FJSSP, a more detailed

review of it is presented in Section 2.2.1.

Besides the makespan which has been mentioned before, there are other measure per-

formance existing as objects in JSSP [51]. The common types are summarized by [35]:

criteria related to processing time, criteria related to working jobs, criteria related to us-

age, and criteria related to the priority of jobs. Table 2.1 lists some elementary criteria of
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these four categories. In JSSP, there can be more than one objective as target measure

performance, which is called multi-objective optimization problem.

Table 2.1. Classification of the JSSP Criterion

Types Criterion

Time-based Makespan

Cycle Time

Tardiness

Sum of completion time

Cost-based Cost of raw materials per machine

Total cost per job

Average cost per job

Work-in-process Number of jobs in process

Average number of jobs

Percentage of tardy jobs

Due-date related Mean lateness

Earliness

Over the past few decades, a substantial body of research is presented to the efficient

resolution of Job Shop Scheduling Problem (JSSP) that is generally formulated by integer

optimization, and various variants based on it are applied to different JSSP, which means

that finding a solution to JSSP is actually finding an algorithm to solve its MILP model [32].

The common solutions to JSSP are classified into three types: Mathematical Program-

ming, Heuristic Method, and Artificial Intelligence Method [54]. The table 2.2 presents

some typical algorithms of each type.

Table 2.2. Classification of the JSSP Solving Algorithms

Types Example

Exact Algorithms Branch-and-bound

Lagrangian Relaxation

Hearistic Genetic Algorithm

Hill Clibing Algorithm

Beam search Algorithm

Data Driven Methods Reinforcement Learning

Neural Network

Graph Learning
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2.2.1 Job Shop Scheduling Problem Solving Algorithms

A basic definition of FJSSP has been given in the preceding section, and FJSSP has the

subsequent specific assumptions and constraints [50]:

1. The start time of all operations are before zero.

2. Each operation in the context is limited to be processed in only one machine.

3. It is a limitation that each individual machine is capable of executing only a single

operation at any given moment.

4. The absence of precedence constraints between operations of distinct jobs is due

to their independent nature.

5. The predetermined sequence of operations is established for each occupation.

FJSSP can be further divided into two categories: Total FJSSP means that each machine

can handle all operations, and Partial FJSSP means that not necessarily all machines can

execute all operations, but at least one of them can [21].

Mathematical planning methods, or exact algorithms, aim to determine the optimal so-

lution of the FJSSP. R.S.Hansmann [18] proposed an approach to solve FJSSP com-

bining fast greedy algorithm and branch-and-bound method. Specifically, he developed

a MILP model was developed for a railcar maintenance scenario in which a series of

maintenance tasks on railcars contain a fixed order and busy machines block access to

subsequent tasks. Zhou [61] performed Petri Net modeling of the flexible manufacturing

system and presented an algorithm that incorporates priority setting in the branch-and-

bound. AitZai [2] proposed an improved version branch-and-bound method aimed at

resolving the manufacturing assignment scheduling while considering the blocking con-

straint. The primary distinction between the two approaches lies in the formation of the

conjunctive graph, which incorporates disjunctive and no-wait arcs. The approach re-

lies by exhaustively exploring potential solutions and incorporates several graph theory

techniques, including the identification of strongly connected components, employment

of reduced graphs.

Recent years, numerous studies have concentrated on the Surrogate Lagrangian Relax-

ation Method. The present study [60] introduces the surrogate subgradient approach,

which enables the derivation of a suitable direction without the need to solve all subprob-

lems optimally. The algorithm’s convergence has been proven, and it is only necessary to

optimise one subproblem approximately to obtain a suitable surrogate subgradient direc-

tion. This approach has the capability to yield accurate guidance with reduced exertion

and presents a novel methodology that is particularly efficacious for issues of consid-

erable magnitude. Bragin [5] devised a decomposition and coordination strategy based

on pricing, which leverages the linear contraction of complication and geometric conver-
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gence capability of Polyak’s stepsizing formula to achieve nearly optimal solutions effi-

ciently. The primary innovative approach for determining stepsizes is based solely on

decision-making. Specifically, a new auxiliary constraint satisfaction problem is utilised to

deduce suitable stepsizes.

The Surrogate Lagrangian Relaxation Method is largely applied in job shop scheduling

problem. Sun [44] expands the Lagrangian relaxation technique to detect and mitigate

solution oscillation, and introduces a normalised surrogate subgradient algorithm to ex-

pedite the convergence of Lagrangian multipliers. The experimental findings indicate that

mitigating solution oscillation leads to the attainment of superior schedules, thereby sub-

stantially enhancing conventional approaches. Fang [16] expands upon the Lagrangian

relaxation method by proposing a technique to detect and mitigate solution oscillation.

The empirical findings indicate the mitigation of solution oscillation leads to the attainment

of superior schedules, thereby resulting in a noteworthy enhancement over conventional

approaches. Yan [52] devised a methodical formulation for enhancing the precision of

a given system. This approach relied on the conversion of constraints and vertices, as

well as the projection of vertices. The objective is to optimise a specific component’s for-

mulation as the limitations of machine capacity across the entire system are alleviated.

The proposed method involves the relaxation of integrality constraints imposed on dis-

crete decision variables. This relaxation leads to the generation of vertices based on the

numerical values of the constraints in the resultant LP-relaxed problem. The formulation

can be considered tight if all integer decision variables maintain their integer value at ev-

ery vertex. If non-integer values are not feasible, they will be rounded up or down to the

nearest integer.

Cui [11] investigates a steelmaking continuous casting (SCC) scene, which is a hybrid

flowshop scheduling (HFS) problem.A MILP model containing a 0/1 variable is formulated

for the SCC process and a constraint containing two decision variables is relaxed into

the objective function by Lagrangian Relaxation Method. Because the obtained relaxed

function is still difficult to solve, it is converted into a DC programming problem through

Sum of Squares formula which is easy to solve by cplex. Deflected surrogate subgradi-

ent method is applied for updating the Lagrangian multipliers. The convergence of DC

algorithms and deflected surrogate subgradient method have been proven.A constructive

heuristic method is applied to fix this solution since the Lagrangin Method usually only

returns a lower bound. Torabi [47] formulated a novel MINLP model to address a preva-

lent lot-scheduling problem involving multiple products in a common cycle. Additionally,

an iterative enumeration technique was suggested to solve the problem.

Exact algorithms can ensure the identification of an optimal solution but at the cost of

running speed, Heuristic methods are fast enough and get good enough solutions in

large-scale optimization problems. Nature has created complex life phenomena and nat-

ural wonders, providing an inexhaustible source of wisdom for the intelligent process of
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humans. inspired by this, computational intelligence algorithms are presented, such as

genetic, simulated annealing algorithm, etc. [54]. [34] introduces an improved genetic

algorithm (GA) for FJSSP. The presented GA enhances certain strategies that have been

previously documented in biography and combines them to determine the optimal criteria

at every stage of the algorithm. The process of selecting a criterion is undertaken from

among three options. Various genetic operators are employed for the purposes of re-

combination and transformation, alongside the implementation of an intelligent mutation

assignment operator. Wang [49] proposed the HGA-TS methodology which is a hybrid ap-

proach that utilizes a combination of the exploitation capabilities of Tabu Search (TS) and

the exploration capabilities of Genetic Algorithm (GA) to address the flowshop manfac-

turing assignment that has a requirement of predefined times of the order. The approach

employs a succinct encoding technique for denoting a pair of sub-problems, efficient ge-

netic operators for executing selection, crossover, and mutation operations, and novel

neighborhood structures and diversification functions to enhance its local search capabil-

ity. Empirical investigations conducted on datasets derived from established benchmark

instances indicate that HGA-TS is capable of achieving favorable outcomes within brief

iterations. Ding [14] suggests a hybrid HLO-PSO algorithm that solves FJSP by com-

bining different variations of the presented enhanced PSO and suggested scheduling

schemes. In addition to being simple to implement and embed in other environment and

scenarios, it supports individual learning capacity and enhances search capability. Most

single-objective FJSSP scenarios can be solved successfully using it.

Numerous studies have started to concentrate on using reinforcement learning and neu-

ral networks to solve MILPs as artificial intelligence develops, and these methods have

caught the attention of both academia and industry due to their superior generalization.

Baer [4] proposed a distributed method with multiple agents which controlling products.

This approach offers greater flexibility and provides complete system information to each

agent, resulting in a centralized agent architecture. Gaining a comprehensive understand-

ing of the entire malleable processing system is essential to make informed decisions

regarding resource allocation. This paper introduces an efficient scheduling agent that

selects an appropriate service from a list of candidate services for each incoming task.

The approach utilizes a deep reinforcement learning framework, specifically employing

the deep Q-learning method, to address the Dynamic Scheduling and Service Matching

(DSSM) problem at hand. Zhang [55] proposed automatically learning PDRs to incorpo-

rate the states encountered during the solving process. They take advantage of the dis-

tributed graph representation and proposed an improved method based on Graph Neural

Networks. The resulting policy network is size-independent, which makes it possible to

generalize on large-scale cases. The agent performs well when tested against the top

PDRs currently in existence, according to experiments, and can train high-quality PDRs

from scratch using simple raw features. On considerably larger situations not encoun-
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Figure 2.2. Mutation Operators [49]

tered during training, the learnt policies also work well. Park [33] proposed a framework

for learning to make schedule for FJSSP using reinforcement learning (RL) and a graph

neural network (GNN). To take into account the structure of FJSSP, it is conceptualized

as a subsequent decision-making challenge, depicted using a graph-based representa-

tion of the state. A suggested framework uses a GNN to discover how node features

are utilized to encapsulate and incorporate the dimensional architecture within the graph

representation. of the FJSSP and to generate the best scheduling policy, which converts

the ingrained node features into the most effective scheduling action. The modules are

trained end-to-end using an RL technique based on Proximal Policy Optimization (PPO).

Hu [19] proposed a DRL method. The proposed Automated Guided Vehicles true-time

planning structure has two layers: the jobs assignment layer and the DQN-based agent
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scheduling layer. In the first layer, true-time production system data is collected from

Internet of Things (IoT) devices. This data is transmitted to the System State module,

which extracts and sends relevant state information to the Q-network module for training

and learning. The Q-network module processes the data and generates learned informa-

tion. The learned information is then forwarded to the Combined Action module, which

computes the appropriate dispatching rule and selects the optimal AGV for the task. This

information is then communicated to the first layer as a command to show solution to the

AGVs of their tasks. This approach enables efficient ture-time scheduling of AGVs in the

dynamic production processing environment by utilizing the power of Deep Q-Network

(DQN) based reinforcement learning techniques.

Figure 2.3. Linked GA and RL structure [7]

2.2.2 Multi-objective Optimization

The definition is given below [62]:

min f(X) = min[f1(X), f2(X), ..., fm(X)]

X = (x1, x2, ..., xn) ∈ Rn

The function fi(X) represents the ith one of objective functions, where X represents a

solution vector and Rn denotes a decision variable space. A solution X∗ is considered

Pareto optimal if there is not an existing any solution X ∈ Rn that dominates X∗. There

are several methods to find a Pareto optimal solution: Weighted global criterion method,

Weighted sum method, Weighted min-max method, etc [28].

This section will focus on reviewing solutions of scheduling optimization problem with
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multiple objectives. Moslehi [30] study introduces a novel approach that combines the

particle swarm and local search algorithms to address the flexible manufacturing as-

signment scheduling problem with multi objective. Zhu [62]investigates the challenge

of production assignment scheduling problem in a flexible environment, where job prece-

dence constraints exit (FJSSP-JPC). The proposed approach considers ranked job prior-

ity constraints specified by Bills-of-Materials (BOMs) and presents an evolutionary multi-

objective grey wolf optimizer that is effective in minimizing the a few significantly objectives

in the context of the production processing concurrently. The approach incorporates the

enhanced social ranking and a differing upper scheme to separately augment the conver-

gence time and population diversification. Li [24] introduces a novel approach, namely

the Elitist Nondominated Sorting Hybrid Algorithm (ENSHA), to address the production

assignment scheduling problem in a flexible environment with multi objective in the con-

text of sequence-dependent composition times/costs. The primary focal points of the

manuscript include the operation-based sequence model, tasks allocation strategies that

are dependent on the problem. The utilization of the arrangement model represents a

novel approach in MOFJSSPs as it marks the initial instance wherein the TSC has been

regarded as a distinct objective. Zhang [59] proposed a distributed ant colony system as

a potential solution to address the MOFJSSP and investigate the Pareto front. The solu-

tion contains a PheromoneMap, which is shared among ants from different colonies, has

been designed to influence their pathfinding behavior. Figure 2.4 presents the exploration

directions of ant colonies.

Figure 2.4. Exploration directions of ant colonies [59]

Chen [6] investigated the the subject of cost-effective decentralized no-idle recombination

flow-shop scheduling and proposed a collaborative optimization algorithm (COA) consist-

ing of two heuristics, multiple search operators, local intensification strategies, and speed

adjusting strategies for minimizing makespan and the sum of energy usage. Wang [48]

introduces a multi-objective whale swarm algorithm (MOWSA) as a potential solution
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for the energy saving dynamic project scheduling problem (DPFSP). A novel problem-

specific local search technique has been devised to enhance the exploitation potential of

MOWSA. Furthermore, a mechanism for improving development is introduced to improve

energy generating speed while maintaining productivity. The Figure 2.5 shows the PMX

crossover operator in this solution.

Figure 2.5. PMX crossover operator [48]

In order to tackle a multiple goals mixed manufacturing assignment scheduling problem,

Sven [39] combines three strategies into one model. To identify a three-dimensional

Pareto front for the following objectives — makespan, entirety of energy expenses, and

peak usage — a novel continual local search technique has been created.

Heuristic methods are efficient and most research in MOFJSSP focus on it, however,

exact algorithms can still find the optimal answer for multi-objective optimization. A new

parallel branch and bound algorithm is introduced in this work [41]. Its upper bound is

initialised using the NSGA-II algorithm. It uses a coexisting order list to save and distribute

outstanding sub-problems and is built for shared memory architectures. Additionally, the

solution domain is shown in a structured format.
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2.2.3 Dynamic Optimization

In the context of actual production systems, the environment is characterised by a high

degree of dynamism, as evidenced by unforeseeable occurrences such as machinery

breakdowns and worker absenteeism. Consequently, there arises a pressing require-

ment for dynamic scheduling which is a prominent area of focus in the field of production

scheduling research [29].

According to reference [45], the dynamic events have been categorised into four distinct

classes:

1. Workpiece related events, which can be characterised by uncertain processing

times, random arrival of workpieces, changing delivery dates, and dynamic shifts in

priority and order.

2. The occurrence of machine-related events, which have significant impacts on pro-

duction processes. For instance, machine damage can impose limitations on the

availability of load, while conflicts may arise between productivity and the actual

utilisation.

3. Instances about the procedure, which delay in the procedure, rejection of quality

and instability in production.

4. Other potential events that may impact operations include the unavailability of per-

sonnel, delayed arrival of raw materials, and defects in raw materials.

The common solution to Dynamic JSSP (DJSSP) are Heuristic Method and Reinfore-

ment Learning. Zhang [56] outlines a newly developed framework, which utilises a two-

stage GPHH approach including feature selection, which facilitate the automatic evolution

of scheduling heuristics specifically for DFJSSP. The framework is devised to develop

heuristics based solely on picked features.. Concurrently, proposed are particular varia-

tion approaches that leverage the situation of both the picked features and the considered

instances. Zhang [57] introduces a new approach that utilises surrogate assistance in an

evolutionary multitask algorithm, with the aim of enhancing both the efficiency and efficacy

of training. Phenotypic characteriszation is employed to assess the scheduling rule be-

haviours and construct surrogates for individual tasks, thereby enhancing efficiency and

knowledge transfer among a substantial pool of potential candidates. Figure 2.6 show

the surrogate-assisted multitask respecting the technique for transferring surrogate and

knowledge transfer.

Heuristic Method is more time consuming, and reinforcement learning methods can quickly

select the best scheduling solution at each rescheduling point. The present study [26] has

developed a deep Q-network (DQN) as a solution to tackle an aforementioned issue. The

proposal suggests a few synthesized scheduling rules that determine a suitable opera-

tion and assign it to an accessible machine in instantaneously., upon the finish of the
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Figure 2.6. Surrogate-assisted multitask [57]

operation or arrival of a novel job. The production status when rescheduling occurs is

represented by extracting seven generic state features. The DQN is subjected to training

through the utilisation of deep Q-learning (DQL), which has been augmented based on

enhancements, namely double DQN and soft target weight improvement. The utilisation

of a "softmax" action selection policy serves to elevate rules by greater Q-values when si-

multaneously preserving the policy entropy. Chen [8] introduces an innovative framework

based on deep reinforcement learning aimed at addressing the typical JSSP. The JSSP

is modelled through the utilisation of the attention module and distributed graph embed-

ding technique, while a transformer architecture that has been enhanced by a multi head

attention procedure is employed. The system exhibits proficiency in acquiring knowledge

of distant relationships and resolving extensive scheduling predicaments.

2.3 Route Planning

Within the realm of intelligent manufacturing, the transportation of products and raw ma-

terials is increasingly dependent on AGV or intelligent transportation systems. Intelligent

transportation systems can significantly reduce labor and time costs, and can simultane-

ously assure the stability of transportation. Path planning is one of the software founda-

tions of transportation systems, and efficient planning algorithms can greatly improve the

efficiency of transportation systems.

Route planning problem can be defined below: there exits n transporters on the transport

system, and they have their respective starting positions Sn, and a defined end positions

Gn. In the basic scenario, the transporters need to reach their predefined goals within

the shortest time. In some variants, the transporters need to reach the specified positions

within a specified time period or need to consider carrying passengers.
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Figure 2.7. A multi-agent path finding (MAPF) instance with two agents [46]

However, all path planning problems are concerned with one important constraint: all

transporters must not have collisions. There are four common types of collision, showing

in the Figure 2.8.

Figure 2.8. 4 possible collision or crash scenarios [42]: (a) Collision in the vertical direc-
tion, (b) Collision when switching positions, (c) a following struggle, and (d) Dead Loop.

Therefore, this section review focuses on various algorithms that allow transporters to

attain the desired locations with the fastest speed without facing conflicts. Path plan-

ning algorithms can be categorized into two main approaches: centralized methods and

distributed methods, which depend on whether individual agents make independent de-

cisions. A centralized approach means considering all transmitters simultaneously and

planning routes for them as a whole. In the context of distribution, individual transporters

are assigned their own optimisation subproblems, which they independently solve to plan

their respective routes and prevent potential conflicts with other transporters.

The selection of solution technique and the efficiency of solution can be significantly in-

fluenced by the optimisation modelling. Hence, this section will provide an overview of

various prevalent target formalisms prior to delving into particular algorithms.

i. Constraint Satisfaction Problem(CSP) CSP is comprised of three principal components:

variables, domains, and constraints. In route planning problem, variables are the positions

or states of transporters. Domains are available position set for transporters at each time

step. Constraints represent what is allowed or prohibited.
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ii. Boolean Satisfiability (SAT) Problem The utilisation of the SAT problem is a viable

approach for modelling and resolving specific facets of route planning. The solutions are

found by determining if assigned truth values can satisfy given Boolean formula (encoded

original problem).

iii. Answer Set Programming (ASP) It is a programming paradigm that is declarative in

nature and enables the representation and resolution of problems related to combinatorial

optimisation. The application of this method is especially advantageous in addressing

issues that entail discrete decision variables and intricate constraints. ASP programmes

are formulated using rules and facts, and the resulting solutions, which are referred to as

answer sets, are determined by the logical coherence of these rules and facts.

2.3.1 Centralized Approach

The centralised approach involves a central entity, such as a computer, that possesses

comprehensive information and devises planning for all transporters or agents. The cen-

tral entity assumes the duty of communicating with all agents, gathering data and dissem-

inating directives.

The path planning model is an integer or mixed integer model, which allows for cen-

tralised resolution through employment of exact solution methods. Divya [1] suggests a

lagrangian relaxation-based optimisation algorithm as a solution to the route planning

problem with time windows. The issue at hand involves the incorporation of optimal

Lagrangian multipliers, with the utilisation of the subgradient method to determine the

suitable multipliers. The algorithm has undergone implementation and tested on some

problems, and the outcome shows the proposed approach is not only competitive but

also superior to the optimal solution.The path planning model utilised is an integer model,

also known as a mixed integer model, which allows for centralised resolution through the

use of exact solution methods. Van [12] introduces a proficient algorithm designed for

the purpose of path planning for multiple robots. The approach involves breaking down

the problem into a few small sub-problems that is possible to be solved in a sequential

manner, with a focus on minimising the dimension of the subproblem with the highest

dimensionality. The optimal sequence is derived by the algorithm through planning solely

within configuration spaces that possess a dimension that is either less than or equal to

the aforementioned minimum. The algorithm is comprehensive and universally applicable

to robots of varying types and degrees of freedom.

In addition to exact algorithms, heuristic algorithms are also largely applied to solve of

path planning. Faiza [17] presents the Aquila Optimisation Algorithm, which has been

recently developed and tailored to perform Multi-Robot space exploration, which is a novel

amalgamation. Jose [20] devises heuristic techniques for the allocation of tasks and the

planning of collision-free paths for a trio of robots operating within a shared workspace.
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The task allocation was performed using a genetic algorithm (GA), while path planning

was accomplished through the utilisation of an A* algorithm. The present study’s findings

were superior to the preceding research conducted by Liu and Kroll (2012). The reason

for this outcome can be attributed to the utilisation of Genetic Algorithm (GA) for task

scheduling and allocation of an optimal number of tasks to each robot. This approach

encoded a greater number of environmental conditions in the GA-string.

Chen advocates [9] for a comprehensive strategy that merges the precomputation of op-

timal potential routes with online routes retrieval and dynamic improvement, in order to

develop a dynamic navigation strategy within a centralised structure. A heuristic approach

is employed to increment link weights and construct a partially disjoint set of candidate

paths prior to the trip. The algorithm under consideration exhibits several noteworthy fea-

tures. Firstly, it demonstrates an action time for navigation requests that is almost linear

with the size of the network and is not significantly influenced by system load. Secondly,

it enhances the accuracy of pretrip route planning by incorporating travel time reliabil-

ity. Lastly, the algorithm allows for system optimisation while still accommodating driver

preferences.

Li [23] introduces a motion planning approach for multi-AGV systems that is centralised

in nature. This method is characterised by high computational requirements, but exhibits

a heightened responsiveness to the quality of solutions obtained. The scenario is cast

as an optimal control problem, wherein the dynamics of the AGV, mechanical limitations,

and external constraints are described using differential algebraic equations. The study

involved conducting comprehensive simulations on tasks related to the reconfiguration of

10-AGV formations. The results of the simulations indicate that the centralised planner

introduced in the study has the potential to be validated, unified, and implemented in

real-time.

2.3.2 Distributed Approach

Compared to the centralized algorithm, each transporter makes an independent path

planning in the distributed solution. The computational cost of the centralized algorithm is

large, while the communication cost between the central entity and transporters increases

as the number of transporters increases. A typical strategy for addressing a multi-agent

route finding problem in a decoupled manner involves three distinct stages: (i) determin-

ing the plans for each individual agent, (ii) establishing the sequence or priority of agents

whose plans will be restructured to achieve a conflict-free solution, and (iii) restructur-

ing the particular plans in accordance with an established sequence from the previous

stage [10].

Certain exact algorithms that facilitate the decomposition of the optimization problem ex-

hibit high proficiency in assigning the primary problem to individual transporters. The
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present study puts forth a technique for planning routes in a distributed manner for mul-

tiple automated guided vehicles (AGVs). The approach presented by [31] exhibits a dis-

tinctive attribute whereby Automated Guided Vehicle (AGV) autonomously generates a

routeing plan that is in close proximity to the optimal solution. This is achieved through

iterative communication between the distributed agents and local computation for each

individual agent. The proposed method’s solution optimality is assessed through a com-

parison with an optimal solution.

Another common approach in distributed algorithms is reinforcement learning, which al-

lows training strategies directly on a individual transporter. Sartoretti [38] proposes a

framework named PRIMAL which incorporates reinforcement learning and imitation learn-

ing techniques to facilitate the acquisition of fully decentralised policies. It presents an ex-

position of proficient MAPF planning techniques, including the utilisation of expert demon-

strations during the training process, reward shaping, and environment sampling. After

acquiring knowledge of the policy, it can be replicated across multiple agents and adapted

to varying team sizes and world dimensions.

Figure 2.9. PRIMAL framework [38]

Zolfpour-Arokhlo [63] introduces a novel approach for devising a multi-agents path finding

problem that relies on multi-agent reinforcement learning techniques. They presented a

model that employs QVDP and Boltzmann distribution techniques to generate a prioritised

route plan for vehicles, taking into account various factors such as climate, traffic statistics,
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security, and power capacity. Luviano [27] introduces a novel approach for planning multi-

agent systems in continuous time, which involves the utilisation of a fuzzy Q-iteration

algorithm and an improved Wolf-PH algorithm. The algorithm has been implemented in

the context of a collaborative mission involving a pair of mobile Khepera robots, and the

empirical findings indicate its efficacy.

In the context of distributed algorithms, the occurrence of deadlock behaviour can be

attributed to the conflicting objectives pursued by individual transmitters, each of which

operates based on its own planning and optimisation strategies. Solving the deadlock

problem is one of the problems that must be solved in practical applications of distributed

approaches. A methodology is introduced by [13] for constructing a grid-oriented Multi-

Agent Path Finding (MAPF) scenario, which is commonly demanded by contemporary

MAPF solving algorithms.

Figure 2.10. An instance of solving the deadblock. [13]

2.4 Bilevel Optimization

In the previous sections, studies on task assignment and path planning problems in smart

manufacturing were reviewed. In practical applications, they are often linked together

to form a bilevel problem. This is because in an intelligent manufacturing system, task

assignment requires consideration of transportation time, which in turn depends on task

assignment. Hence, this section strives to offer a all-inclusive overview of the current

body of literature pertaining to bilevel optimization.
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Figure 2.11. An illustration of a typical bilevel optimization problem. [40]

A typical bilevel optimisation problem comprises a leader level optimisation problem and a

follower level optimisation problem that seeks to be linked [40]. If the bilevel optimization

problem demonstrates convexity, it is apparent that there are a few techniques which can

be used to integrate two optimization problems to one problem. The primary objective is

to identify the circumstances in which the problem at the follower level achieves optimality

and to utilize this as a constraint on the problem at the leader level.

In integer programming or mixed integer programming problems, the lower level problems

exhibit discontinuity, thereby rendering the KKT conditions inapplicable. When nested

approach is used, the problem size and solution difficulty become significant. Liu [25]

introduces a novel algorithmic framework, aimed at mitigating the challenges posed by

the non-convex follower structure in Bi-Level Optimisation (BLO). The proposed method

incorporates an auxiliary initialisation strategy to facilitate the optimisation dynamics and

devises a conservative trajectory truncation mechanism to construct a dependable ap-

proximation of the original BLO when the LLC hypothesis is absent.

Stouraitis [43] suggests a proficient bilevel paradigm that merges network discovery tech-

niques with motion optimisation. This approach empowers intelligent individuals to adjust

their strategies in real-time, in response to modifications in the dyadic task. This sys-

tem represents a novel approach to enhancing agent capabilities by enabling them to

engage in online planning within hybrid spaces. Specifically, the system optimises multi

parameters, thereby providing agents with a comprehensive suite of tools to enhance their

performance. In the context of co-manipulation of large objects, wherein there is a need

for frequent changes in grasp-holds and plan adaptation, this aspect assumes significant

importance.
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Figure 2.12. An illustration of a human-machine cooperative transport system. [43]

2.5 Summary

This section provides a comprehensive review of a substantial body of literature pertain-

ing to the Job Shop Scheduling Problem and Route Planning Problem. The examination

of solutions to these optimization problems reveals that the identification of an optimal ap-

proach is challenging. Each approach exhibits distinct merits and demerits, necessitating

the consideration of trade-offs depending on particular scenarios.
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3. DESIGN OF THE ALGORITHM TO SOLVE THE

BILEVEL OPTIMIZATION PROBLEM

3.1 A Scenario Statement for Smart Manufacturing Systems

The FAST-Lab at the Tampere University has a complete experimental environment for

simulating engineering production, including multiple industrial robots and pallet transfer

systems. Presently, the FAST-Lab is in the process of enhancing its pallet transfer system

by integrating a novel version, thus establishing an intelligent manufacturing configuration

in conjunction with the existing industrial robots.

The novel pallet system consists of 120 diminutive blocks that leverage magnetic levita-

tion, thereby enabling the pallet’s movement in a state devoid of physical contact. The

industrial robots undertake the execution of manufacturing tasks, while the conveyance

of products amid these robotic entities is effectively facilitated by the integrated pallet

mechanism.

In a conventional manufacturing context, a prevalent scenario encompasses the fabrica-

tion of a set of cellphones, comprising three discrete constituents: namely, the screen,

the frame, and the keypad. The manufacturing system has to assemble the three parts,

each of which has its own color. The extent of operations achievable by an industrial

robot is contingent upon its specifications and model attributes. The pallet, in this context,

operates as a conduit for conveying unfinished components across multiple robotic sta-

tions, culminating in the transportation of the finalized product to its predetermined point

of reception.

There are two actions for a certain robot: 1. Draw product. 2. Change pen. The time

required for a pen change is around 40 seconds. However, the time it takes to draw a

product varies and is dependent on the specific product being drawn. This drawing time

can range from approximately 30 to 60 seconds, depending on the particular product

being processed.

Each pallet can perform nine operations on the blocks: move horizontally to the right,

move horizontally to the left, move vertically up, move vertically down, move up along the

diagonal left, move up along the diagonal right, move down along the diagonal left, move
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Figure 3.1. The illustration of the pallet system.

Figure 3.2. The cell phone screens, frames, and keypads. [15]

down along the diagonal right, and stay.

The intelligent manufacturing system is required to manufacture products in accordance

with the user’s specifications and has the capacity to process approximately 100 units

on a daily basis. The processing time of a system is significantly affected by various

scheduling algorithms due to the vast array of products involved. The objective of this

portion is to illustrate the structure and functionality of an effective scheduling system.

3.2 Problem Formulation

This section outlines the process of translating a given scenario into a mathematical

model. The initial phase of integrating optimization methodologies encompasses the cre-

ation of a mathematical framework that accurately portrays the provided scenario. The

act of formulating this model holds substantial significance, given that an apt approach

to modeling can augment the algorithm’s efficacy, whereas an inadequately constructed

model can significantly amplify the complexity of deriving a solution. This section will
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elaborate on the strategies employed for both the process of model formulation and the

subsequent optimization thereof.

This indeed constitutes a bilevel optimization quandary comprising a pair of distinct opti-

mization problems:

1. Upper Problem: Job Shop Scheduling Problem: This optimization problem investi-

gates how to assign the tasks to be produced to the industrial robots in the system

to achieve goals while satisfying the constraints. When attempting to get the opti-

mal schedule, it is essential to consider the duration of the transporting process for

the pallet transporting item. The duration of transporting is derived from the route

planning problem, thus the solution to it serves as a constraint on the variables.

2. Lower Problem: Route Planning Problem: The lower problem aims to plan the

transportation routes for each pallet. The input of the lower problem is the sched-

ule obtained from the upper problem, and the output is the shortest path planning

without collision. The lower problem will generate a plan by considering the initial

and final locations of individual pallets at various time steps.

The primary goal of an intelligent manufacturing system resides in attaining the utmost

efficiency in production for a specified array of tasks. Correspondingly, the aim of the pre-

sented bilevel optimization quandary is to minimize the makespan. An integral constituent

of the system’s makespan is attributed to the pallet transportation time, which is ascer-

tained via computations from the lower-tier problem. Stated differently, the acquisition of

the task assignment schedule necessitates precise knowledge of the transportation time,

while conversely, the precise transportation time hinges on awareness of the schedule.

The subsequent segment will expound upon the approach employed for both the formu-

lation and resolution of the aforementioned optimization predicament.

Regarding the previously described scenario, there are specific strategies that can con-

tribute to achieving a resolution, including the establishment of an extensive set of pre-

defined rules. Nevertheless, attaining an optimal or nearly optimal solution within this

complex context presents a challenge. The utilization of optimization methods emerges

as the most suitable approach to attain a scheduling solution that is suitably efficient.

3.3 Solution Design

A trade-off emerges between expeditiously solving a bilevel optimization predicament and

attaining an optimal solution. Achieving the optimal solution frequently demands a no-

table computational expenditure. For instance, employing precise algorithms such as the

Lagrangian Relaxation method mandates iterative resolution of the subproblem multiple

times to ascertain the lower bound. Conversely, techniques proficient in efficiently tackling

optimization quandaries do not assure the production of optimal solutions. The solution



25

posited by this thesis endeavors to secure an optimal or closely optimal resolution within

a reasonable temporal investment.

3.3.1 Overview

The bilevel optimisation problem comprises an upper and a lower problem, both of which

can be represented as mixed integer programming models. As indicated by the preceding

review of pertinent literature, the resolution of a bilevel optimization predicament conven-

tionally requires adopting a nested strategy that transforms the lower-tier problem into an

upper-tier problem constraint. This adaptation engenders a notable proliferation of the

exploratory domain. The envisaged methodology is grounded in the divide-and-conquer

principle, wherein the two optimization problems will be independently formulated and

resolved. Ultimately, an intrinsic interrelation between the two optimization problems be-

comes evident. The variables indispensable for the upper-tier problem are prognosticated

by leveraging the optimal conditions derived from the lower-tier problem.

If the two optimisation problems are solved independently, the ensuing considerations will

appear:

1. The value assigned to the transport time variable within the upper-tier problem can

come into discord with the corresponding value in the lower-tier problem, leading

to instances where the anticipated collision-free transportation duration between

pallets and their intended destination may not always be achievable.

2. If a substantial margin is allotted to the optimal transport time, the upper and lower

problems will not exhibit conflicting outcomes. However, this will result in a signifi-

cant increase in the makespan.

To achieve a satisfactory solution within a reasonable time, it is imperative to ensure that

the estimated transport time closely approximates the actual solution.

The subsequent sections are organized as: 1. Present the model and solution of the up-

per problem (Job Shop Scheduling Problem) and lower problem (Path Finding Problem).

2. Present an approach to integrate two problems.

3.3.2 Processing Task Allocation

Model Job Shop Scheduling Problem

There are N industrial robots in use, (0 ≤ N ≤ 10), and there are M products to be

processed, each product has T tasks to be completed.

Initially, it is important to establish the objective function for the processing task allocation

scenario. The first aim is to minimize the makespan, where the scheduling scheme of
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production is expected to complete the production of all products in the shortest possible

time. Assuming that the time for robot k to finish all the tasks assigned to it is Ck, then

makespan can be expressed as the maximum value in Ck.

Makespan = Max {Ck} ,∀k = 1, 2, ..., N

In addition to minimizing makespan, achieving a balanced workload distribution among

the robots is also significant. This is due to the fact that if one robot is overloaded for an

extended length of time, it will undergo maintenance earlier than the other robots and will

be more likely to sustain damage. The second objective can be then formulated as the

following objective function.

WB =
1

M

M∑︂
k=1

⃓⃓
Wk − W̄

⃓⃓
,∀k = 1, 2, ..., N

Wk stands for the workload of robot k in the formula, and W̄ is the average of the total

sum of all robot workloads. Minimizing the workload variance (WB) serves to equalize the

distribution of tasks across all robots.

After presenting objective functions to be optimized, three decision variables are intro-

duced: xk
ij , y

k
ijgh, Sij , ∀k = 1, 2, ...,M , ∀i, g = 1, 2, ..., P , ∀j, h = 1, 2, ..., T . In the

optimisation problem, the decision variables define the search space, and in the sce-

nario discussed in this work, the decision variables are required to be able represent a

schedule.

xk
ij and ykijgh are integer variables and Sij is a continuous variable. xk

ij is used to indicate

whether task j of product i is scheduled to robot k. ykijgh is employed to denote the

sequential arrangement of tasks. If the task j of product i and the task g of product h

both perform on the robot k and the task j of product i performs before the task g of

product h, ykijgh is equal to 1. Sij indicates the start time of the task j of product i.

Following the deliberation on the objective function and the determination of decision

variables, the ensuing exposition will elucidate the constraints inherent to this Job Shop

Scheduling Problem. These constraints delineate and confine the scope of exploration in

accordance with the attributes of the intelligent manufacturing system.

There are some general considerations of JSSP.

1. Each task (task i of product j) can be assigned to only one robot.

N∑︂
i=1

xk
ij = 1, ∀k = 1, 2, ..., N j = 1, 2, ..., T (1)

2. The start time of each task (task i of product j) must be greater than or equal to 0.
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Figure 3.3. An example solution of the JSSP.

Sij ≥ 0, ∀i = 1, 2, ..., N, j = 1, 2, ..., T k = 1, 2, ...,M (2)

3. It is necessary to complete the entire task for each product. T is the number of

tasks per product, and in this scenario, T is generally equal to 3.

R∑︂
k

T∑︂
j

xk
ij = T, ∀i = 1, 2, ...,M (3)

In addition to these common constraints of JSSP, constraints specific to this system must

be considered.

1. A fixed sequence governs the arrangement of diverse tasks within each product.

As depicted in Figure 3.3, a temporal gap exists between the initiation of task 1

for product i and the commencement of task 2 for the same product. This interval

necessitates a minimum duration exceeding the execution time of task 1. Moreover,

the prospective transportation time warrants consideration. If sequential tasks of

the identical product are designated to a common robot, the transportation time

is rendered as 0. Conversely, when successive tasks for the same product are

assigned to distinct robots, the temporal span between the initiation times of the two

tasks is either equivalent to or greater than the combined duration of the processing
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time and the transportation time..

Si(j+1) − (Sij + Eij +Rij) ≥ 0, ∀i = 1, 2, ..., N j = 1, 2, ..., T − 1 (4)

In the above formula, Eij represents the estimated processing time of the task j of

the product i and it is a predefined constant variable, Rij represents the transport

time of the task j of the product i. Rij equals 0 when i is equal to j.

2. There exits an order between tasks that are assigned to the same robot. The

variable ykijgh is initially defined to restrict the start time duration of two consecutive

tasks on the same robot.

ykijgh + ykghij = xk
ijx

k
gh, ∀i, g = 1, 2, ..., N j, h = 1, 2, ..., T k = 1, 2, ...M

(5)

In the given expression, if task j of product i and task h of product g are not exe-

cuted on the same robot, the product of xk
ij and xk

gh will be zero for all k (represent-

ing all robots). Consequently, both ykijgh and ykghij will be equal to zero. This setup

serves the purpose of excluding discussions about tasks that are not performed on

the same robot.

However, when both task j of product i and task h of product g are executed by

the same robot, the combined values of ykijgh and ykghij equate to 1, illustrating

that one of these variables assumes a value of 0 while the other adopts a value of

1. The determination of which variable corresponds to 0 and which corresponds

to 1 hinges on the selection that optimally minimizes the objective function. This

constraint ensures the establishment of a distinct order for task execution on the

shared robot, a sequence that can be succinctly conveyed through the utilization of

the variables ykijgh.

Upon attaining the definition of the binary variable y, the formulation of the temporal

constraint governing the commencement times of tasks executed by the same robot

can be succinctly articulated as follows:

ykijgh(sgh − (sij + Eij +Wij)) ≥ 0

, ∀i, g = 1, 2, ..., N j, h = 1, 2, ..., T k = 1, 2, ...M (6)

Wij represents the potential pen changing time, the formula for Wij will be given

later. When the colors required for adjacent tasks are the same, the value of Wij is

set to 0. However, if the required colors differ before and after, Wij is assigned the

time needed to replace the corresponding pen.

Constraint (5) and Constraint (6) establish the start time duration between individ-
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Figure 3.4. Adjacent Tasks.

ual tasks within the proposed framework. Constraint (5) accounts for the potential

transport time between adjacent tasks of the same product, while Constraint (6) ad-

dresses the possible replacement time required for the pen between adjacent tasks

on the same robot. Together, these constraints encompass all scenarios pertaining

to task order and determine the appropriate start time duration.

3. To compute the pen replacement time, as specified in Constraint (6), it is necessary

to introduce the new variable. This variable is introduced to address the require-

ment of a binary variable that indicates whether two tasks are assigned to the same

robot and are adjacent to each other. The introduction of the new variable is es-

sential because the existing variable ykijgh only indicates the order of task execution

without explicitly identifying adjacency between tasks.

The newly introduced variable, zkghij , is a five-dimensional variable similar to ykghij .

When task j of product i and task h of product g are executed on the same robot,

and task h of product g is the subsequent task following task j of product i, zkghij is

set to 1. The following constraint is the definition of zkghij .

zkijgh = min

{︄
P∑︂
a

T∑︂
b

zkabij −
P∑︂
a

T∑︂
b

zkabgh − 1, 1

}︄
+ 1,

∀a, i, g = 1, 2, ..., P b, j, h = 1, 2, ..., T k = 1, 2, ...M (7)

zkijgh ≤ ykijgh ∀a, i, g = 1, 2, ..., P, b, j, h = 1, 2, ..., T k = 1, 2, ...M (8)

Within Constraint (7), the initial term in the minimum operation expression signifies

the disparity in the count of tasks that precede each specific task. As delineated in

the accompanying figure 3.4, when two tasks are contiguous, this disparity equates

to 1. In all other instances, the disparity surpasses 1. Consequently, the variable

zkijgh is assigned a value of 0 when the disparity is 1, and 1 when the disparity

exceeds 1. However, in actuality, zkijgh should indeed be 1 when tasks are adjacent,

and 0 otherwise. Hence, the inclusion of one in the formula effectively introduces a

negation (NOT) operation, whereby zkijgh becomes 1 when tasks are adjacent and 0

otherwise. There are two possible scenarios for a pair of adjacent tasks: either task

j of product i precedes task h of product g, or task h of product g precedes task j

of product i. To calculate the potential pen changing time accurately, the order of

the adjacent tasks must be specified. Consequently, Constraint (8) mandates that
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zkijgh is equal to 1 when task j of product i is the last task of task h of product g.

In summary, the mathematical model and notations are shown below:

Objective Functions (MultiObjectives) :

Minimize Makespan = Max {Ck} ,∀k = 1, 2, ...,M

Minimize WB =
1

M

M∑︂
k=1

⃓⃓
Wk − W̄

⃓⃓
,∀k = 1, 2, ...,M

Subject to (constraints) :

N∑︂
i=1

xk
ij = 1, ∀i = 1, 2, ..., N j = 1, 2, ..., T (1)

Sij ≥ 0, ∀i = 1, 2, ..., N j = 1, 2, ..., T k = 1, 2, ...,M (2)
R∑︂
k

T∑︂
j

xk
ij = T, ∀i = 1, 2, ...,M (3)

Si(j+1) − (Sij + Eij +Rij) ≥ 0, ∀i = 1, 2, ..., N j = 1, 2, ..., T − 1 (4)

ykijgh + ykghij = xk
ijx

k
gh, ∀i, g = 1, 2, ..., N j, h = 1, 2, ..., T k = 1, 2, ...M (5)

ykijgh(sgh − (sij + Eij +Wij)) ≥ 0,

∀i, g = 1, 2, ..., N, j, h = 1, 2, ..., T k = 1, 2, ...M (6)

zkijgh = min

{︄
P∑︂
a

T∑︂
b

zkabij −
P∑︂
a

T∑︂
b

zkabgh − 1, 1

}︄
+ 1,

∀a, i, g = 1, 2, ..., P b, j, h = 1, 2, ..., T k = 1, 2, ...M (7)

zkijgh ≤ ykijgh ∀i, g = 1, 2, ..., P j, h = 1, 2, ..., T k = 1, 2, ...M (8)

xk
ij, y

k
ijgh, z

k
ijgh ∈ {0, 1} , i = 1, 2, ..., N g = 1, 2, ..., N i ̸= g, h, j = 1, 2, ..., T

(9)
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Notation of objective functions :

Makespan : System makespan

Ck : Completion time of robot k

WB : Robots workload balance

Wk : Working time of robot k

W̄ : Average Working time of robot k

N : The total number of products

T : The total number of tasks of one product

M : The total number of manufacturing robots

Notation of constraints :

tij : task j of product i

Sij : Start time of tij processed on robot k

xk
ij : Equals 1 if task Tij is processed by robot k, 0 otherwise

ykijgh : Equals 1 if tij is performed before tgh on robot k, 0 otherwise

zkijgh : Equals 1 if tij is performed before tgh and tij is adjacent to tgh on robot k

, 0 otherwise

Eij : Estimated processing time of task Tij

Notation of decision variables :

sij : Strat time of task ij

xk
ij : Equals 1 if tij is performed on robot k, 0 otherwise

ykijgh : Equals 1 if tij is performed before tgh on robot k, 0 otherwise

Job Shop Scheduling Problem Solver

The model designed for the given situation results in a challenging Job Shop Scheduling

Problem. This issue involves complex connections between constraints (multiple decision

variables within a single constraint) and a significant quantity of variables. The ability to

efficiently identify the optimization within a certain time period is of utmost importance

when employing an algorithm.

To tackle this challenge, a solver has been created using the ortool library. This solver,

known as CP-SAT, employs methods like linear relaxation and Large Neighborhood Search

(LNS). To speed up the search, initial solutions are used as a starting point for further ex-

ploration.
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Figure 3.5. An example movement from one node to another. The numbers indicated on
the arrows represent the cost associated with moving from node 1 to node 6.

3.3.3 Route Planning With Time Window

The primary aim of the route planning module is to facilitate the streamlined movement of

individual pallets, each containing a distinct product, to their assigned destinations—these

destinations align with the robots as indicated by the schedule generated from the job

shop scheduling solver. This collaborative methodology fosters a unified and optimized

operational flow, fostering efficient synchronization between task scheduling and pallet

transport within the system.

Model Route Planning Problem

In the context of this optimization problem related to path-finding, the scenario involves K

pallets and T time steps, with the availability of M magnetic levitation blocks to facilitate

pallet movement.

To establish a mathematical model for path-finding, the initial step is to define the decision

variables. Illustrated in the figure 3.5, each individual block step can be treated as a node,

while the transporter navigates between these nodes.

The decision variables are defined as xk
ijt, i, j = 1, ...,M, t = 1, .., T, k = 1, ..., P . The

i and j encompass all nodes within the system, while t represents the time step and k

denotes the specific pallet. When xk
ijt is equal to 1, it signifies that pallet k is carried from

node i to node j within the time interval t. When xk
ijt is equal to 1, and i is equal to j, it

signifies that pallet k’s action at time t is to come to a halt at a particular node.

In this route planning problem, the primary objective is to formulate an optimal transporta-

tion strategy that ensures the prompt conveyance of each pallet to its assigned destina-

tion, while minimizing the total time taken for transportation.
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The definition of variable y is:∑︂
i∈Nj

xk
i,j,t = 1− yk,t j ∈ Gk, t = 1, .., T, k = 1, ..., P

− yk,t + yk,t+1 ≤ 0 t ≤ Wkq − 1, k = 1, ..., P, q = 1, ..., Q

The objective function is:

Minimize
∑︂
k

∑︂
t

yk,t i, j = 1, ...,M, t = 1, .., T, k = 1, ..., P

The first two equations impose constraints on the variable y. Specifically, when pallet k

doesn’t arrive at its destination at time step t, yk, t equals 0, and it equals 1 when pallet

k reaches its destination at time step t. The summation
∑︁

k

∑︁
t yk,t calculates the total

cost associated with transporting pallets to their destinations. The cost function is defined

as the sum of the y variables, and a smaller value indicates that less time is required to

confirm that a pallet has been successfully transported to its destination.

The constraints are more important in this scenario, they are presented from four aspects:

• Definition of decision variable x.

• Constraints about collision avoidance.

• Constraints about movement in different directions.

• Completion conditions.

1. Definition of the decision variable∑︂
j /∈Ni

xk
i,j,t = 0 i, j = 1, ...,M, t = 1, ..., T, k = 1, ..., P (1)

∑︂
i

∑︂
j

xk
i,j,t = 1 i, j = 1, ...,M, t = 1, ..., T, k = 1, ..., P (2)∑︂

j∈Ni

xk
j,i,t =

∑︂
n∈Ni

xk
i,n,t+1 i, j = 1, ...,M, t = 1, ..., T, k = 1, ..., P (3)

Ni indicates that how many notes are connected to the node i. The constraint 1

presents that the pallet can not move to the node i from nodes that are not con-

nected to the node i. The constraint (2) indicates that the pallet must and only has

one action at each time step: move to an adjacent node or stay at the same node.

The constraint (3) indicates that actions of each pallet is continuous at each time

step. In summary, the three constraints defined above restrict the basic definition
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of the variable x.

2. Collision avoidance∑︂
k

∑︂
i∈Nj

xk
i,j,t ≤ 1 j = 1, ...,M, t = 1, ..., T (4)

∑︂
k

(xk
i,j,t + xk

j,i,t) ≤ 1 i, j = 1, ...,M, t = 1, ..., T (5)

The two constraints above restrict two pallets from entering the same node, and

they cannot swap positions.

3. Movement Constraints

F k
it(

M∑︂
j∈Di

xk
j,j,t+1 +

M∑︂
j∈Di

xk
j,j,t+2) = 1 i = 1, ...,M, t = 1, ..., T, k = 1, ..., P (6)

This pallet system grants the pallet the capability to traverse horizontally, vertically,

and diagonally. Specifically, the pallet requires only one time unit for horizontal or

vertical movement, while diagonal movement necessitates two time units.

4. Start Positions

xk
Rk,Rk,0

= 1 k = 1, ..., P (7)

R defines the initial position of all pallets. At the moment 0, all pallets should be in

their initial position.

5. Completion Conditions∑︂
i∈Nj

xk
i,j,t = 1 j ∈ Gkq, t ∈ Wk, k = 1, ..., P, q = 1, ..., Q (8)

G represents a set of the goal positions of each task of each pallet.The number of

tasks of each pallet Q depends on the number of products.This constraint enforces

that the pallets must arrive at their assigned target locations at the predetermined

time. The timing is determined by the planning scheme derived from the upper-level

problem.
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In summary, the mathematical model and notations are shown below:

Notation of objective functions :

Minimize
∑︂
k

∑︂
t

yk,t i, j = 1, ...,M, t = 1, .., T, k = 1, ..., P

Subject to (constraints) :∑︂
j /∈Ni

xk
i,j,t = 0 i, j = 1, ...,M, t = 1, ..., T, k = 1, ..., P (1)

∑︂
i

∑︂
j

xk
i,j,t = 1 i, j = 1, ...,M, t = 1, ..., T, k = 1, ..., P (2)∑︂

j∈Ni

xk
j,i,t =

∑︂
n∈Ni

xk
i,n,t+1 i, j = 1, ...,M, t = 1, ..., T, k = 1, ..., P (3)∑︂

k

∑︂
i∈Nj

xk
i,j,t ≤ 1 j = 1, ...,M, t = 1, ..., T (4)

∑︂
k

(xk
i,j,t + xk

j,i,t) ≤ 1 i, j = 1, ...,M, t = 1, ..., T (5)

F k
it(

M∑︂
j∈Di

xk
j,j,t+1 +

M∑︂
j∈Di

xk
j,j,t+2) = 1 i = 1, ...,M, t = 1, ..., T, k = 1, ..., P (6)

xk
Rk,Rk,0

= 1 k = 1, ..., P (7)∑︂
i∈Nj

xk
i,j,t = 1 j ∈ Gkq, t ∈ Wk, k = 1, ..., P, q = 1, ..., Q (8)

∑︂
i∈Nj

xk
i,j,t = 1− yk,t j ∈ Gk, t = 1, .., T, k = 1, ..., P (9)

− yk,t + yk,t+1 ≤ 0 t ≤ Wkq − 1, k = 1, ..., P, q = 1, ..., Q (10)
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Notation of objective functions :

yk,t : Equals 0 if the pallet k arrives its target positions on the time step t

, 1 otherwise

P : The number of pallets

T : The number of time steps

M : The number of nodes

Notation of constraints :

xk
i,j,t : Equals 1 if the pallet k move from node i to node j on the time step t , 0 otherwise

F k
ij : Equals 1 if the pallet k move from node i to node j diagonally on the time step t

, 0 otherwise

Rk : Start positions of each pallet

Di : The set of nodes that connets to node i

G : Goal positions of each task of each pallet

W : Target time of reaching the goal position

3.3.4 Integration Of Task Allocation And Path Finding

After formulating the upper and lower problems, it becomes evident that they both belong

to the realm of mixed-integer linear programming problems. Moreover, considering the

scale of parameters within this system, traditional solving methods would prove highly

challenging, and the considerable latency could render the system inadequately respon-

sive to sudden failures. In this context, confirming the optimality of a solution becomes

extraordinarily NP-hard.

To be specific, the task of verifying a solution’s optimality is NP-hard in this context. In

conventional approaches, acquiring and employing High-Point Problem Point (HPP) be-

comes necessary within the solution algorithm. The intricacy of the constraints in both

the leader and follower optimization problems is such that constructing a High-Point Re-

laxation (HPR) can be a formidable task.

This framework for resolving two-tier optimization problems ensures that the two optimiza-

tion problems are tackled independently. The crux of merging these two problems hinges

on accurately predicting the parameters essential for the first problem. If it becomes fea-

sible to predict the transmission time for each pallet required in the first problem with pre-

cision or within a reasonable deviation range, then the bilevel problem can be addressed

separately.
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Figure 3.6. Example Route Plan 1

The Prediction of Transport Time

Initially, an assumption is made that all pallets can be transported within an ideal time-

frame, representing the transportation duration without factoring in collisions. In reality,

the transportation duration for all pallets should equal or surpass the ideal time. This

differentiation categorizes pallet transport times into "ideal transport time" and "non-ideal

transport time."

Before delving further into these two classifications, an essential observation needs high-

lighting: the concurrent existence of pallets with transport tasks should not surpass the

count of operational robots. Each product is positioned on an individual pallet, and when

managing a substantial product inventory, there may be twenty to thirty pallets present

within the system. These pallets can be segregated into two groups: those with trans-

port tasks and those without. Having a transport task signifies that, as per the planning

scheme, a robot awaits the pallet’s transportation to its designated location. Hypothet-

ically, if all ten robots are engaged in work, a maximum of ten robots could await the

transportation of the pallets and their products, leading to a maximum of ten pallets with

transport tasks. These tasks pertain to the transfer of pallets from one robot’s position to

another robot’s location.

Based on this conclusion, the following transportation scenarios are discussed:

1. Pallet’s ideal routes would not have overlapped.

In Figures 3.6 and 3.7, the black square symbolizes the pallet, while the pres-

ence of purple color arrows signifies the intended movement direction of the pal-

let. As illustrated in the figures, when the optimal pathways of the pallets remain
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Figure 3.7. Example Route Plan 2

Figure 3.8. Example Route Plan 3

non-intersecting, all the pallets can successfully reach their designated destinations

within the expected timeframe.

2. Ideal routes for pallet have intersections.

Even in scenarios where the pallet’s optimal path intersects with other paths, the

pallet can still reach its designated destination within the expected timeframe.

In Figure 3.9, the black numbers correspond to the time step at which pallet 1

reaches the present node (with time step commencing at 0), while the white num-

bers denote the time step at which pallet 2 attains the same node. Figure 3.8
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Figure 3.9. Conflict avoidance solutions.

Figure 3.10. Example Route Plan 3

exemplifies a collision avoidance path scheme, yet numerous alternative schemes

exist. As depicted, within the collision avoidance context, both pallets have adhered

to the anticipated time frame to arrive at their designated destinations. As stated

earlier, the number of pallets with simultaneous transportation tasks does not ex-

ceed the number of operating robots, so there is enough space on the system to

support the desired route for collision avoidance.

3. Ideal routes overlap.

As presented in Figure 3.10, when the routes of two pallets overlap, then at least
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Figure 3.11. Example Route Plan 4

one of the pallets will not be able to reach the location at the ideal transportation

time.

4. Ideal routes overlap and have intersections.

In the Figure 3.11, the pallet not only fails to reach its intended destination within

the desired timeframe but also necessitates the longest transit duration among all

the scenarios.

To summarize, a rule is established to predict the transportation time: when the routes of

pallets overlap, more than 2 time steps are preset as margin for these pallets.

In the following pseudocode, Algorithm 1 illustrates the prediction of transportation time

based on the departure and destination nodes. This prediction algorithm is incorporated

into the upper-level problem solver.

Algorithm 1 A function for transport time prediction.

1: function PREDICTTRANSPORTTIME(StartNodes,GoalNodes)
2: PredictTransportT ime← IdealTransportT ime(StartNodes,GoalNodes)
3: if RoutesOverlap(StartNodes,GoalNodes) then
4: PredictTransportT ime = PredictTransportT ime+ 1
5: if RoutesIntersect(StartNodes,GoalNodes) then
6: PredictTransportT ime = PredictTransportT ime+ 1
7: end if
8: end if
9: return PredictTransportT ime

10: end function

Algorithm 2 outlines the framework for solving a bilevel Mixed-Integer Linear Programming
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(MILP) problem, where the lower-level problem focuses on path finding.

Algorithm 2 A framework for solving the path finding based bilevel MILP problem.

Require: NumOfProducts,NumOfRobots, ColorSetting ← Initialise()
1: Initialization← NumOfProducts,NumOfRobots, ColorSetting
2: GoalPositions, TargetT ime← UPSolver(Initialization, PredictTransportT ime())
3: Route← LPSolver(GoalPositions, TargetT ime)
4: while IsSolutionFeasible(Route) do
5: TimeMargin← UpdatePredictTransportT ime
6: TargetT ime← TargetT ime+ TimeMargin
7: Route← LPSolver(GoalPositions, TargetT ime)
8: end while
9: return Route
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4. IMPLEMENTATION OF THE ALGORITHM

The system design presented in this paper will be implemented in FastLab and this chap-

ter presents the software implementation of that design. The system architecture is pre-

sented in Sec. 4.1. The modeling implementation including linearization is presented in

Sec. 4.2. The implementation of solvers is presented in Sec. 4.3. The implementation of

the integration is presented in Sec. 4.4.

4.1 Architecture

The three components of the system have been stated in the chapter 3 on algorithm

design and the Figure 4.1 shows how the three components have been organized in the

complete workflow, each column represents a parallel computation, assuming that all

products are divided into B batches for execution.

There are three reasons for this design:

• To decrease the dimensions of the initial problem. During the experimental phase,

the system could potentially handle a substantial influx of orders. Given the intricate

nature of the model, as the problem’s scale increases, the time required to attain

an optimal solution grows considerably. In light of this, adopting batch processing

emerges as a viable approach to mitigate the problem’s magnitude and complexity.

Nevertheless, this strategy comes at the expense of achieving sub-optimal solu-

tions as opposed to optimal ones. Therefore, the segmentation of batches must be

conducted judiciously. When the number of products to be allocated is relatively

Figure 4.1. Workflow
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modest, a small number of batches can be chosen (where a batch number of 1

resembles uniform planning for all products). On the contrary, when the number

of products to be allocated is substantial, it becomes advantageous to divide the

products into multiple batches for more manageable handling.

• Immediate response to emergencies In the event of hardware malfunction (e.g.,

pallet system breakdown, robot failure), the system must swiftly generate alterna-

tive strategies. Upon hardware failure, the initial planning scheme is discarded, and

all operations come to a halt. Subsequently, the system will devise alternatives

by leveraging the presently accessible resources. These alternatives will be de-

signed in smaller batches. Concurrently, while the alternative solution is active, the

system will proceed to generate larger batches following the optimal solution. The

alternative strategy will remain operational until the superior solution is successfully

implemented.

• Continuous data collection to improve prediction accuracy Information from each

batch is collected and employed to forecast parameters. The current data prediction

techniques are tailored to the volume of available data. Once a certain volume of

data has been amassed, alternate methods such as neural networks can be applied

for prediction purposes.

4.2 Modeling

The implementation employs the optimization library Or-tools, which is an open-source

project developed by Google. Or-tools serves as a versatile tool for Linear Optimization,

Integer Optimization, and Constraint Optimization. It proves especially apt for various

practical scenarios, such as Assignment, Packing, Scheduling, Routing, and Network

Flows, offering a range of solution strategies.

The model’s formulation is achieved through the functions provided by Or-tools. The

fundamental principles underlying model definition are as follows: 1. Strive to minimize

the count of variables to streamline the model. A higher number of variables translates

to greater computational resource demands. 2. Avert scenarios where multiple variables

become interdependent or coupled.

4.2.1 Linearization

Given that both problems are characterized as linear mixed-integer programming issues,

it’s important to note that Or-tools exclusively accommodates linear expressions for the

integer solver. Consequently, any nonlinear constraints embedded within the model ne-

cessitate linearization prior to being formulated as Or-tools expressions.

1. Product of two binary variables. Assume that there are two binary variables: x1 and
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x2, obviously, Ax1 and Bx2 are linear expression(A,B is a constant number), Ax1 +Bx2

is also a linear expression. However, the product of x1 and x2 is an nonlinear expression.

Assume y represents the multiplication value of x1 and x2, analyzing the output of the

calculations for diverse values of y = x1 ∗ x2, the following table is available:

This table shows that the upper and lower boundaries of y are restricted by the variable

x.

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

The first two equations restrict the upper bound on y to the smallest value of x1 and x2,

and the third equation restricts the lower bound on y.

2. Product of one binary variable and one continuous variable. Assume that C represents

a continuous variable and x represent an binary variable, and variable z represents the

product of C and x. The upper bound of C is a big number M and the lower bound of C

is zero. The linearization shows below:

z ≤M × x

z ≤ C

z ≥ C − (1− x)M

z ≥ 0

It’s crucial to recognize that when the variable x assumes a value of zero, the initial

inequality ensures that z also becomes zero. Additionally, it’s noteworthy that the third

inequality simply establishes that z needs to surpass a negative threshold. Conversely,

in situations where x equals one, the first inequality guarantees that z remains below

the predefined "Big M " threshold, and this constraint is further reinforced by the second

inequality. Ultimately, the last inequality dictates that z must be equal to or exceed the

value indicated by C.

3. Maximum value of two variables. Assume that there exits a constraint that needs

max {x1, x2}, a new binary decision variable y that will be equal 1 if x1 ≥ x2, otherwise
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0. The following inequality constraints enforce that X = max {x1, x2}:

X ≥ x1

X ≥ x2

X ≤ x1 +M(1− y)

X ≤ x2 +My

The first two constraints restrict that the lower bound of X is max {x1, x2}. The last two

constraints indicate that X is equal to x1 when x1 is greater than x2, X is equal to x2 if

x2 is greater than x1.

4.3 Solver

Within the realm of OR-Tools, there are two primary instruments available for addressing

integer programming quandaries: the MPSolver and the CP-SAT solver. For the imple-

mentation of this system, the CP-SAT solver is selected, primarily due to its superior

performance in tackling mixed-integer linear problems.

OR-Tools provide a python module named CpModel that contains all interface needed

for using CP-SAT solver. What follows is a diagram that describe how to solve the MILP

problem by CpModel.

4.3.1 Task Scheduling Solver

As depicted in the figure, resolving the planning problem necessitates the preliminary

definition of variables, the types of which are detailed in the accompanying table:

Constant variables are established based on the prevailing environment. Decision vari-

ables wield influence over the ultimate planning arrangement. Intermediate variables

arise from the linearization procedure, and their quantity greatly surpasses that of other

variables, constituting a principal factor impacting algorithmic speed.

Within OR-Tools, constraints are categorized into two distinct classes: hard constraints

and soft constraints. Hard constraints necessitate tight adherence to predetermined lim-

its, while soft constraints suggest that optimal compliance with these limits is desired.

Notably, for this scheduling dilemma, all constraints fall under the hard category.

The CP-SAT solver leverages a lazy clause generation mechanism built atop an SAT

solver. In the course of implementation, the primary drivers influencing the CP-SAT
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solver’s computational velocity are the meticulous formulation of constraints and vari-

ables. The solver’s intrinsic parameters have largely been configured to optimal default

settings. The cardinal parameter available for tuning pertains to the count of search work-

ers. CP-SAT encompasses rudimentary parallelism features; the initial thread defaults to

executing fundamental strategies, the second thread adheres to user-specified strategies

(if provided), threads three through six adopt variations of the fundamental approach, and

all remaining threads conduct extensive domain explorations. In this specific system, the

thread count is set to sixteen.. Concurrent linear searches for solutions are executed in

parallel, and limited data exchanges occur between threads until an optimal solution is

ascertained.

4.3.2 Path Finding Solver

The formulation of variables and constraints for the path planning problem within this sys-

tem is comparably less intricate than that of the scheduling problem. Notably, to address

the distinctive behaviors of the transporter when navigating diagonally versus moving lin-

early, the CpModel solely employs the "OnlyEnforceIf" function. This function operates

via a binary variable that dictates the activation or deactivation of specific constraints.
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5. DISCUSSION AND RESULTS

5.1 Simulation

This chapter is concerned with the software simulation of the implemented system. First

the software environment will be presented, then the simulation results for JSSP, and then

after that the simulation results for path planning will be shown.

Programming Language: Python 3.10.0 Modeling Tool: OR-Tools v9.7 Solver: OR-Tools

v9.7, Gurobi Optimizer

5.1.1 Job Shop Scheduling Problem Simulation

In the simulation experiments, six robots and six pallets were invoked with a total of six

products waiting to be produced. Each product entails three tasks. The processing dura-

tion for these tasks are specified as 50 seconds, 28 seconds, and 48 seconds, while an

additional 40 seconds are required for robot tool changeovers. It is posited that a total of

three colors – red, yellow, and blue – are at the disposal for utilization. The color requi-

sites for each task and product are illustrated in the table 5.1. The pallets are running in

a 4× 14 grid.

The figure 5.1 and 5.2 show that the text and Gantt chart planning of the scenario in the

simulation. The figure 5.3 shows that the impact of concurrent workers on the solver’s

solution discovery time. As elucidated in Section 4.3.1, the initial three threads under-

take the foundational approach and its derivations, which demonstrate comparatively less

Table 5.1. Color Requirements Of Products

Product Id Required Color for Task 1 Required Color for Task 2 Required Color for Task 3

1 Red Red Yellow

2 Yellow Blue Red

3 Blue Yellow Yellow

4 Red Blue Yellow

5 Blue Red Blue

6 Blue Red Yellow
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Figure 5.1. Task Allocation

Figure 5.2. Gantt Chart For Scheduling
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Figure 5.3. Relationship between the number of workers and the running time of the
solver.

efficiency with their usage. Upon introducing the fourth thread, a noticeable reduction

in runtime transpires. Subsequent increments in thread count further diminish execution

time, albeit with diminishing returns as the thread count grows.

5.1.2 Route Planning Simulation

Derived from the simulation outcomes of the JSSP, the pallets movement solution is for-

mulated by solving the route planning problem. The solution is shown in Figure 5.4, where

each quaternion represents (node before move, node after move, time step, pallet id).

The figure 5.5 is a path visualization made using the matplotlib library. The table 5.2 show

the target positions and time of each pallet. The initial assumption is that the starting

position for each pallet is the location designated for performing its first task. Pallet 1 is

represented by the dark green dot, Pallet 2 by the blue-green dot, Pallet 3 by the purple

dot, Pallet 4 by the blue dot, Pallet 5 by the yellow dot, and Pallet 6 by the red dot. The

figure 5.5 a shows the pallets stay in the target positions of the first task and waiting for

robots processing manufacturing jobs. The figure 5.5 b shows that pallets are moving

to positions for processing the second task. The figure 5.5 c shows that five pallets

processing the second task and one is moving.
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Figure 5.4. Route Plan

Table 5.2. Target positions and time of pallets.

Pallet Id Goal Position 1 Time(s) Goal Position 2 Time(s) Goal Position 3 Time(s)

1 (3,7) 0 (3,7) 54 (3,0) 122

2 (0,0) 0 (3,0) 54 (0,7) 122

3 (3,0) 0 (0,0) 54 (3,13) 122

4 (3,13) 0 (0,13) 54 (0,0) 122

5 (0,13) 0 (3,13) 54 (0,13) 122

6 (0,7) 0 (0,7) 54 (3,7) 122

(a) (b) (c)

Figure 5.5. Route Visualization.
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5.2 Optimality of The Solution

This section examines the optimality of the solution while considering trade-offs. The

solution is considered optimal when all products are produced in a single batch and when

transportation times can be accurately predicted.

As discussed in Chapter 3, when ideal routes overlap or intersect, the transit times may

not be ideal. In such cases, the predicted transit time includes both the ideal transit time

and a time margin. It’s important to note that the predicted transit time might be larger

than the actual transit time in such situations. The solution ceases to be optimal when the

predicted transportation time deviates from the actual time.

When the number of batches for processing products exceeds 1, the solution obtained is

not optimal, regardless of whether the transportation time can be accurately predicted or

not.

When multiple batches of products are processed, the solution for the pathfinding problem

is much faster than the production allocation problem. This allows for multiple attempts

to adjust the time margin value. Consequently, even if the predicted transportation time

doesn’t match the actual time, the resulting suboptimal solution is very close to the op-

timal solution. Sub-batch processing significantly reduces computation time but may not

achieve an optimal solution, and the number of batches is determined based on the num-

ber of products and the desired computation time.

5.3 Observation and Analysis of Results

Certainly, in such bilevel optimization scenarios, the approach to problem resolution hinges

on whether the lower-level problem exhibits convexity. When dealing with bilevel optimiza-

tion problems featuring a convex lower-level problem, it is common practice to employ

KKT conditional transformations. These transformations serve to reconfigure the lower-

level problem into a constraint applicable to the upper-level problem.

On the other hand, when the lower-level problem takes the form of an integer program-

ming problem, the academic realm has introduced various solution methods grounded

in high-point relaxation (HPR). It is worth noting that, as of now, open-source libraries

dedicated to tackling bilevel integer optimization problems in languages such as Julia or

Python are not readily available. Consequently, developing tailored algorithms for ad-

dressing the intricacies of smart manufacturing systems, encompassing both production

and transportation, is a necessity.

The complexity of the production scheduling problem is attributed to its numerous con-

straints and the intricate interplay among variables. This complexity renders HPR-based

algorithms time-intensive, and they are typically applied to problems of smaller scale. In
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the context of this thesis, we delve into the conditions dictating the attainment of optimality

in the path planning problem. Our approach adopts a sequential methodology, dissecting

the bilevel problem into separate components. Furthermore, we introduce a batch pro-

cessing mode designed to approximate the time required to solve the two-layer problem

to the time needed for addressing the upper-level problem exclusively. This strategic im-

plementation minimizes the overall solving time while enhancing the system’s adaptability

to dynamic changes.

Within the framework of the manufacturing tasks scheduling problem, the most favor-

able outcome obtained through the utilization of two solvers, namely CP-SAT and Gurobi,

amounted to a computation time of 3 minutes. Notably, by refining the modeling approach

for JSSP, a notable reduction in solution time was achieved. However, there remains

untapped potential for further enhancement in efficiency. The resolution of the JSSP is-

sue is notably impacted by the underlying hardware, specifically the central processing

unit (CPU). An adept CPU can yield a remarkable acceleration in solution speed. In a

Route Planning problem, the quantity of variables expands exponentially in proportion to

the number of time steps. Concerning linearization, the API furnished by OR-Tools for

accommodating non-linear modeling is comparatively less potent than the manual appli-

cation of linearization techniques.
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6. CONCLUSION

This thesis is dedicated to the conception and realization of a planning system designed

to generate schedules for production tasks and path planning for the pallet system. Com-

prising three integral components, this system is formulated through scenario analysis for

parameter prediction and the subdivision of a complex two-tier optimization problem.

Commencing with Chapter 1, the background, significance, desired objectives, and key

research inquiries underpinning the development of the planning system are expounded.

In Chapter 2, a comprehensive technical backdrop is outlined, encompassing discus-

sions and evaluations of diverse techniques and algorithms pertinent to solving Job Shop

Scheduling Problems (JSSP), route planning, and bi-level optimization dilemmas. This

chapter further categorizes and contrasts the merits and demerits associated with dis-

tinct solution methodologies.

Chapter 3 unveils the modeling process and solver design employed to tackle the op-

timization problem, delineating the journey from real-world scenarios to formal mathe-

matical models. Chapter 4 elaborates upon the architectural framework of the system,

elucidating the efficacy of this design in decomposing the complex problem and respond-

ing to unforeseen challenges. Furthermore, the application of nonlinear transformation

techniques in the modeling phase and the iterative refinement of the solver during the

implementation phase are duly presented.

The solution proposed in this theis, addressing the research problem presented in Chap-

ter 1, unfolds as follows: The mathematical model encompassing the scheduling and

transportation of production tasks within the system is cast as a two-layer integer opti-

mization problem. To ensure that this problem can be solved within a reasonable time-

frame, a POLICY-based integration approach is introduced. By scrutinizing the conditions

governing optimality at the lower level, this method streamlines the problem-solving pro-

cess.

Furthermore, to enhance solution efficiency and equip the system with the ability to nav-

igate unforeseen circumstances, the focus shifts from the pursuit of the optimal solu-

tion to identifying a solution that effectively addresses the optimality requirements. This

paradigm shift enables the system to adapt and respond more swiftly to dynamic chal-

lenges.
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6.1 Future work

The planning system devised within this paper can be perceived as an underpinning

infrastructure for forthcoming endeavors. Building upon the foundation laid in this study,

the following avenues for future exploration are envisioned, aiming to further enhance

solution speed:

1. Optimization of the JSSP model stands as a paramount endeavor. Given the in-

tricacies inherent in real-world scenarios, the JSSP model also exhibits a certain

level of complexity, characterized by an abundance of intermediate variables (es-

sential for linear transformations) and intricate constraints. By delving into further

refinement of the JSSP model, there lies the potential for achieving a substantial

acceleration in solution speed.

2. The pursuit of formulating dedicated algorithms for JSSP resolution emerges as

a promising avenue. While the conventional Mixed-Integer Linear Programming

(MILP) solver generally yields commendable performance in tackling JSSP within

this system, the creation of specialized algorithms tailored to this particular problem

can contribute to heightened efficiency in the solution process.

3. The exploration of parallel solving algorithms compatible with Graphics Processing

Units (GPUs) constitutes another potential research direction. Given the presence

of multi-core GPUs within FastLab’s experimental infrastructure, there exists the

opportunity to devise parallel solving algorithms that harness the full potential of

the available hardware resources.

4. This paper adopts a centralized algorithm for resolving the Route Planning problem,

but it’s also feasible to explore the development of distributed algorithms, such as

the Lagrangian relaxation method, to address the same problem.
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