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Abstract: Timely preterm labor prediction plays an important role for increasing the chance of
neonate survival, the mother’s mental health, and reducing financial burdens imposed on the family.
The objective of this study is to propose a method for the reliable prediction of preterm labor from the
electrohysterogram (EHG) signals based on different pregnancy weeks. In this paper, EHG signals
recorded from 300 subjects were split into 2 groups: (I) those with preterm and term labor EHG
data that were recorded prior to the 26th week of pregnancy (referred to as the PE-TE group), and
(II) those with preterm and term labor EHG data that were recorded after the 26th week of pregnancy
(referred to as the PL-TL group). After decomposing each EHG signal into four intrinsic mode
functions (IMFs) by empirical mode decomposition (EMD), several linear and nonlinear features
were extracted. Then, a self-adaptive synthetic over-sampling method was used to balance the feature
vector for each group. Finally, a feature selection method was performed and the prominent ones
were fed to different classifiers for discriminating between term and preterm labor. For both groups,
the AdaBoost classifier achieved the best results with a mean accuracy, sensitivity, specificity, and
area under the curve (AUC) of 95%, 92%, 97%, and 0.99 for the PE-TE group and a mean accuracy,
sensitivity, specificity, and AUC of 93%, 90%, 94%, and 0.98 for the PL-TL group. The similarity
between the obtained results indicates the feasibility of the proposed method for the prediction of
preterm labor based on different pregnancy weeks.

Keywords: preterm labor; EHG; pregnancy week; EMD; AdaBoost

1. Introduction

Preterm labor is defined as delivering a baby prior to the end of the 37th week of
pregnancy, which is the primary cause of newborn mortality [1]. Based on the World Health
Organization’s report, more than 15 million neonates are delivered prematurely each year,
and of that, almost 1 million die because of ensuing complications [2]. In the European
Union, for instance, the preterm delivery rate is between 5 and 10% [3]. Although there
are several factors that have been considered to be related to preterm labor such as anxiety,
multiple pregnancies, abortion, and short cervical length [4,5], it is still not clear to what
extent these factors are related to preterm delivery, because almost 50% of preterm births
occurred without any of the aforementioned factors [6].

Even in the case of survival, a premature neonate may face several serious com-
plications such as difficulties in breathing and vision problems due to underdeveloped
organs [7]. Furthermore, preterm labor may also have adverse influences on maternal
well-being due to the mother’s perception of her baby [8]. Moreover, the expenses related to
preterm labor healthcare inflict financial hardship on both society and family as the price of
such healthcare is five to ten times more than a term delivery [9]. Therefore, early detection
of preterm labor, in conjunction with proper medical care to avoid this phenomenon [10],
is of great importance for increasing the chance of neonate survival, the mother’s mental
health, and reducing financial burdens.
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To this end, several techniques have been presented for the prediction of preterm
labor, such as a tocodynamometer [11], ultrasound [12], fetal fibronectin [13], and internal
uterine pressure [14]. The tocodynamometer monitors the uterine contractions by a pressure
transducer placed on the fundus area. Although it is a noninvasive method, its performance
highly relies on the accurate positioning of the sensor [15]. The ultrasound is used to
measure the cervical length; however, as already mentioned, preterm labor may happen
without any changes in cervical length. Fetal fibronectin and internal uterine pressure
have also shown to be promising for the prediction of preterm labor; however, they are
both invasive. As an alternative, the electrohysterography (EHG) modality can be used
which represents the electrical activity of the uterus collected from the abdominal surface of
a pregnant woman [16]. Despite the aforementioned techniques, it is a noninvasive method
that can be automated to reduce the requirement of human expertise and is thought of as
a future long-term ambulatory telecare tool.

The Term–Preterm ElectroHysteroGram DataBase (TPEHG DB) is the most studied
dataset for the prediction of preterm labor using EHG signals. It consists of EHG signals
recorded from 300 subjects, of which 262 delivered to term [17]. The efficiency of an EHG
signal analysis for the prediction of preterm labor has been widely evidenced in the
literature using this database [18–31]. In general, the feature extraction strategies for the
EHG signal analysis can be classified into three groups: linear, nonlinear, and propagated
EHG signal-related features [32]. Linear features such as the root mean square (RMS) [33,34]
and median frequency [35] have shown to be promising to characterize EHG signals for
preterm labor prediction. In [9], the effectiveness of several nonlinear features such as
different entropy and fractal dimensions is widely investigated. Regarding the propagated
EHG signal-related features, several studies show the importance of propagation velocity
to discriminate between the term- and preterm-related EHG signals, e.g., [27].

Furthermore, due to the nonstationary and nonlinear characteristics of EHG signals,
several studies investigate the potential of nonstationary algorithms for the feature extrac-
tion. One of the widely employed methods is empirical mode decomposition (EMD) [36],
which decomposes a signal into several intrinsic mode functions (IMFs) ordered from high-
to low-frequency components. In [37], the Shannon entropy of the first ten decomposed
IMFs is used to discriminate between term and preterm EHG signals and an area under
the curve (AUC) of 0.98 is reported. In [38], several linear and nonlinear features from
IMF3 and IMF6 of the decomposed EHG signals are analyzed to classify between the
term and preterm EHG signals. By employing a balanced subset of EHG data (26 term
and 26 preterm), an accuracy of 95.70% is obtained. In [39], the EHG signals are firstly
decomposed into 11 IMFs and then each IMF is decomposed by wavelet packet decomposi-
tion to another 6 levels. After ranking the features, an accuracy of 96.25% is achieved. In
another study [40], the feature extraction is performed on the second to ninth IMFs of the
decomposed EHG signals and an accuracy of 98% is reported.

Although the time when the diagnosis is made is proven to play an important role in
subsequent pregnancy care, a majority of the mentioned studies have not investigated the
efficiency of the proposed methods in different pregnancy weeks. Indeed, the mentioned
studies only consider the term and preterm labor prediction regardless of actual fetus
maturity. However, an earlier prediction of preterm labor can provide more time for the
physician to analyze the situation, i.e., prescribe proper medications and monitor the
pregnant woman more frequently [41]. To the best of our knowledge, only few studies
address the prediction of preterm labor based on different gestational weeks. Peng et al. [42]
classify the EHG data into two groups: those which are recorded before the 26th week of
gestation (PE-TE) and after the 26th week of gestation (PL-TL). By extracting 31 linear and
nonlinear features, an accuracy of 92% and 93% for the PE-TE and PL-TL groups is achieved,
respectively. Smrdel and Jager [43] extract the median frequency and sample entropy for
both groups. After employing the data balancing method, 93 term and 93 preterm data for
the PE-TE group and 57 term and 57 preterm data for the PL-TL group are used for the
classification by quadratic discriminant analysis (QDA). The authors report an accuracy
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of 97% and 100% for the PE-TE and PL-TL groups, respectively. Ahmed et al. [44] extract
multivariate multiscale fuzzy entropy from both groups and report an accuracy of 95%
and 94% for the PE-TE and PL-TL groups, respectively. Jager et al. [35] use simultaneously
recorded EHG and tocogram data for the prediction of preterm labor for the PE-TE group
and report an accuracy of 100%.

Despite the promising results for the prediction of preterm labor using PE-TE and
PL-TL groups, there are two issues that have not been addressed in the aforementioned
studies. Firstly, the employment of nonlinear features such as sample entropy and fuzzy
entropy, which require parameter setting before computation, may threaten the generality
of the method as such tuning is performed experimentally and it is not clear how well
it works for unseen data. Secondly, with an artificially balanced dataset, the reported
sensitivity of the methods to the real preterm EHG data was not accurately investigated,
i.e., in the case of a sensitivity of 90%, it is not clear how much of that missed 10% is related
to the real preterm data.

The objective of this paper is to present a reliable method for predicting the preterm
labor based on different pregnancy weeks. For this aim, we extract several parameter-free
linear and nonlinear features from the EHG signals decomposed by EMD and then feed
them to several classifiers for the final prediction. As the uterus contractions become more
intense and frequent near the delivery, it can be expected that the EHG signal indicating
preterm labor will exhibit stronger and more frequent contractions compared to term la-
bor. In other words, the EHG signal associated with the preterm class will have a higher
presence of high-frequency components. On the other hand, the EMD technique breaks
down a signal into its frequency components from high to low, so we utilize only the initial
four IMFs for the feature extraction. The motivation for using EMD over the other decom-
position methods such as wavelet is that it does not require a predefined basis function.
Furthermore, EMD does not assume any prior knowledge about the signal, such as station-
arity or linearity. This characteristic makes EMD particularly useful when dealing with
nonstationary signals such as EHG that often exhibit complex and unpredictable behavior.

2. Dataset

In this paper, we have employed a publicly available dataset called Term–Preterm
ElectroHysteroGram DataBase (TPEHG DB) which consists of EHG signals recorded from
300 pregnant women. These data were recorded at the Department of Obstetrics and
Gynecology of the University Medical Center Ljubljana from 1997 to 2005 [17]. As displayed
in Figure 1, 4 electrodes were placed on the abdominal surface of the pregnant woman.
Using these electrodes, three bi-polar EHG channels, i.e., CH1 = E2− E1, CH2 = E2− E3,
and CH3 = E4− E3, were formed. The signals were sampled at 20 Hz and the duration of
each measurement was almost 30 min.

Figure 1. The placement of EHG electrodes, adopted from [35].



Sensors 2023, 23, 5965 4 of 13

Of these 300 EHG data, 262 were considered term and 38 were considered preterm
labor. More specifically, these 300 measurements could be divided into 2 groups based
on the gestational weeks, i.e., before and after the 26th week of pregnancy. As shown in
Table 1, 162 measurements were recorded prior to the 26th week of pregnancy, of which
143 were considered to be term labor, and 138 measurements were recorded after the
26th week of pregnancy, of which 119 were considered to be term labor. The former group
is referred to as preterm early and term early (PE-TE) and the latter group is referred to as
preterm late and term late (PL-TL). The main challenge of using the TPEHG DB is the lack
of balance between term and preterm cases. In fact, the recordings were taken prior to the
delivery without knowing the labor would be term or preterm.

Table 1. The number of term and preterm deliveries based on the pregnancy week.

Gestational Time of Recording Delivery Type

Preterm Term

Before 26th week Preterm Early (PE), n = 19 Term Early (TE), n = 143
After 26th week Preterm Later (PL), n = 19 Term Later (TL), n = 119

3. The Proposed Method

Figure 2 displays the block diagram of the proposed method for disctinction of term
and preterm labor. The details of proposed method are explained in the subsections below.

4

Frequency (Hz)
0.08

1

2. Preprocessing 3. EMD1. EHG data 4. Feature extraction

Root mean square
Mean Teager-Kaiser energy

Wavelet log entropy
Shannon’s entropy

Katz fractal dimension
Hurst exponent

8. Ensemble classification

5. Data balancing

6. Feature selection7. Data segmentation9. Output

Term labour
Preterm labour

Figure 2. The block diagram of the proposed method for the prediction of preterm labor using
EHG signals.

3.1. Preprocessing

Before starting the analysis, preprocessing the EHG signals is a necessary step to
reduce interference originating from power line noise, subject’s respiration, and fetal and
maternal electrocardiogram [45]. As the most meaningful frequency components of EHG
signals vary between 0 and 5 Hz, the signals are band-pass filtered in a range from 0.08 to
4 Hz using a fourth-order Butterworth filter. In order to avoid the transient effect of filtering,
the first and last 5 min of each measurement are discarded. Thus, the analysis is performed
on the remaining 20 min of the measurements. Figure 3 shows an example of the 60 s
filtered EHG signals.
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Figure 3. Examples of the filtered EHG signals from all three channels.

3.2. EHG Signal Decomposition

Through the sifting process, EMD decomposes the EHG signal x[n] into L number
of IMFs and one residue component where the original EHG signal can be reconstructed
as follows:

x[n] =
L

∑
i=1

IMFi[n] + r[n], (1)

The first IMF is computed using the following steps:

1. Detecting the local extrema of x[n];
2. Synthesizing the upper and lower signal’s envelopes from the detected extrema using

cubic spline;
3. Forming the local mean signal, m1[n], by averaging the upper and lower signal’s

envelopes;
4. Subtracting the local mean signal m1[n] from the original signal x[n] to acquire the

first possible IMF candidate y1[n] = x[n]−m1[n].

Now, the y1[n] must fulfill two conditions:

1. The number of zero-crossings and local extrema must either be equal or differ at most
by one.

2. The average value of the envelopes defined by the local maxima and minima is zero.

If the y1[n] does not satisfy the conditions above, it is treated as a new signal and the
whole sifting process is performed on it once again. This procedure iterates k times until
the IMF conditions are satisfied. After finding the first IMF yk[n], the residue signal r1[n] is
calculated by subtracting it from the original signal:

r1[n] = x[n]− yk[n], (2)

The second IMF is then extracted from the first residue signal using the previous steps.
In this paper, we use the first four decomposed IMFs for the feature extraction.

3.3. Feature Extraction

As the intensity and frequency of uterus contractions increase near the delivery, it can
be expected that EHG signal representing the preterm labor contains stronger and more
frequent contractions than term ones. Consequently, features that characterize strength,
energy, and complexity are well justified on physiological background. Therefore, we
extract root mean square (RMS), mean Teagar–Kaiser energy (MTKE), wavelet log entropy
(WLE), Shannon’s entropy (SE), Katz fractal dimension (KFD), and Hurst exponent (HE)
from each IMF of the EHG signal. The RMS, which can represent the strength of a signal, is
expressed as

RMS =

√√√√ 1
N

N

∑
n=1

x2[n], (3)
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The Teagar–Kaiser energy is a widely recognized tool for detecting the onsets of muscle
contraction. It computes the energy of a signal as follows:

TKE = x2[n]− x[n− 1]x[n + 1], (4)

As it is expected that EHG signal related to the preterm labor contains more contrac-
tions, we can assume that the average of TKE will be of discriminative power between term
and preterm labor.

Entropy is used to quantify the uncertainty of a signal. Because EHG signal related to
the preterm labor may have stronger and more frequent contractions, entropy measures
can be proper index for the preterm–term EHG signal discrimination. Here, we use WLE
and SE defined as follows [46]:

WLE = ∑
n

log(x[n]2), (5)

SE = −
N

∑
i=1

x[pi]× log2(x[pi]), (6)

where x[n] and pi are the signal and the probability for obtaining the value xi.
The KFD is used to quantify the signal’s crudity. It indeed represents the signal

self-similarity. Let x[n] be a signal with n = 1, 2, . . . N, and the KFD is computed as

KFD =
log(N − 1)

log(N − 1) + log(D
L )

, (7)

where L = ∑N
i=2 xi − xi−1 is the total length of the curve and D = Max(|x1 − xj|) for

j = 2, 3 . . . N is the diameter of the waveform.
The HE measures the long-term memory of a signal as follows:

HE =
log( R

S )

log(N)
, (8)

where N, R, and S stand for the signal’s length, the difference between the maximum and
minimum deviations from the mean, and the standard deviation, respectively.

3.4. Data Balancing

The occurrence of class imbalance is a common problem for medical diagnosis ap-
plication, in particular for the minor classes which are of greater interest. For the dataset
employed in this paper, almost 87% of data is related to the term labor. Several stud-
ies show that classifiers are biased toward the term labor class when using the original
database, e.g., [47]. Thus, the employment of the data balancing algorithm is necessary
for proper training of the classifiers. In this paper, we use the self-adaptive synthetic over-
sampling (SASYNO) method [48], which is shown to be superior over the state-of-the-art
data balancing methods. After extracting the features from each group, the SASYNO
is applied on them which results in a equally distributed feature set for both term and
preterm cases.

3.5. Feature Selection

In total, 72 features are extracted from the EHG data. To reduce the feature vector
dimension, Mann–Whitney U test, a non-parametric equivalent to the t-test, is performed
between the mean ± SD of all features across the PE-TE and PL-TL groups [42]. Those
features with a significant value below 0.05 are used for further analysis. This way, the
redundant and non-discriminative features, which can reduce the power of prediction of
classifier and increase the training time, are discarded.
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3.6. Data Segmentation

After reducing dimension of the feature vector, the remaining ones are normalized
between 0 and 1 and split into training–validation (70%) and testing (30%) subsets. The
training–validation is performed using a stratified 10-fold cross-validation. Nonetheless,
due to the employment of data balancing algorithm that generates artificial preterm data,
random sampling for generation of training–validation and testing subsets may lead to
misleading results [27,43,47,49]. For instance, if a classifier achieves a sensitivity of 90%
for the prediction of preterm labor after data balancing, it is not clear how much of that
wrongly classified 10% is considered to be real data. Indeed, if such an error is highly
correlated with the real EHG data, not the synthetically generated ones, the performance
may not be reliable. To overcome this issue, we have used only the generated preterm data
for training–validation step and used the real preterm data for testing. This way, the results
are more realistic and the reliability of the proposed method can be validated better.

3.7. Classification

In order to classify between term and preterm labor, we employ four classifiers, i.e.,
AdaBoost, support vector machine (SVM), decision tree (DT), and random forest (RF),
which have different learning strategies. The reason for employing the mentioned clas-
sifiers is that their reliability and robustness for the discrimination between the preterm
and term cases was proven by other authors [37,42,50,51]. The hyperparameters of each
classifier are optimized during the training–validation process using the Bayesian optimiza-
tion method [52]. In order to assess the performance of each classifier, sensitivity (Sen),
specificity (Spe), accuracy (Acc), and area under the curve (AUC) are calculated as follows:

Sen =
TP

TP + FN
× 100, (9)

Spe =
TN

TN + FP
× 100, (10)

Acc =
TP + TN

TP + TN + FN + FP
× 100, (11)

AUC =
∫

Sen(T)(1-Spe)′(T)dT, (12)

where TP and FN represent the number of correctly and wrongly classified preterm cases,
TN and FP stand for the number of correctly and wrongly classified term cases, and T is the
binary threshold of the classifier.

4. Results and Discussion

Addressing preterm prediction from an engineering point of view can be a challenging
task as there is a gap between medical sciences and mathematics. In this paper, we aimed
to extract features from EHG signals which are related to a physiologically justifiable
expectation that more intense and frequent uterus contractions near the delivery will
happen. The extracted features were a combination of measures that represent the EHG
signal’s amplitude, energy, and complexity. On one hand, more intense and frequent uterus
contractions can influence the amplitude and energy of the signal. On the other hand, such
a phenomenon can also lead to more complexity of the signal.

4.1. Selected Features

Table 2 displays the selected features for both groups after conducting the Whitney
U test. As it can be seen, most of the selected features for both groups belonged to
the CH1. Moreover, regardless of the channels, most of the features were selected from
IMF1 and IMF2. In summary, 35 and 36 features were selected for the PE-TE and PL-TL
groups, respectively.
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Table 2. Selected features for both groups.

PE-TE Group

CH1 CH2 CH3

IMF1 IMF2 IMF3 IMF4 IMF1 IMF2 IMF3 IMF4 IMF1 IMF2 IMF3 IMF4

RMS RMS WLE WLE RMS WLE WLE RMS RMS RMS RMS WLE
MTKE MTKE SE SE MTKE SE KFD KFD MTKE KFD WLE SE
WLE WLE HE KFD SE HE SE HE

SE KFD HE

PL-TL group

CH1 CH2 CH3

IMF1 IMF2 IMF3 IMF4 IMF1 IMF2 IMF3 IMF4 IMF1 IMF2 IMF3 IMF4

RMS RMS WLE WLE RMS RMS WLE RMS RMS RMS RMS WLE
MTKE MTKE SE SE KFD KFD HE SE WLE MTKE HE KFD
WLE WLE KFD KFD SE HE HE KFD

SE HE HE
HE

4.2. Classification Results

As already stated, simple random sampling for segmenting the data into training–
validating and testing sets might lead to a misleading classification result as it is not clear
how much the classifier is sensitive to the real preterm EHG data. To overcome this issue,
features related to real EHG data were separated from the feature vector and were only
used for the testing. Table 3 displays the classification results on the unseen testing dataset
for all classifiers.

Table 3. Classification results on the unseen testing subset for both groups using all classifiers.

Group PE-TE PL-TL

Classifier Sen Spe Acc AUC Sen Spe Acc AUC

AdaBoost 92% 97% 95% 0.99 90% 94% 93% 0.98
SVM 66% 99% 83% 0.93 64% 98% 81% 0.89
DT 85% 92% 88% 0.90 85% 87% 86% 0.86
RF 86% 96% 92% 0.97 84% 96% 90% 0.95

As displayed, the best classification results for the PE-TE group were obtained by
the AdaBoost classifier, with a mean Acc of 95%, Sen of 92%, Spe of 97%, and AUC of
0.99 followed by the RF classifier with a mean Acc of 92%, Sen of 86%, Spe of 96%, and
AUC of 0.97. Regarding the PL-TL group, the AdaBoost classifier again achieved the
highest mean Acc of 93%, Sen of 90%, Spe of 94%, and AUC of 0.98, followed by RF
with a mean Acc of 90%, Sen of 84%, Spe of 96%, and AUC of 0.95. Indeed, AdaBoost
outperformed the other classifiers for both the PE-TE and PL-TL groups. According to
the carried out t-test statistical analysis, there was a significant difference between the
Sen values obtained by AdaBoost and the other classifiers for both groups, indicating
better performance of AdaBoost to predict the preterm labor. Yet, although slightly better
classification results were obtained for the PE-TE group, no significant difference was found
between the classification results of the two groups (p > 0.05). In order to make sure that
our statistical analysis did not incorrectly reject the null hypothesis, we also employed
the Bonferroni–Holm correction for multiple comparisons, which confirmed the primary
results. Figure 4 shows the receiver operating characteristic (ROC) curves obtained by each
classifier for both groups.
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Figure 4. The ROC curves of all classifiers for (a) PE-TE and (b) PL-TL groups.

4.3. Sensitivity of Classifiers for Preterm Labor Based on Only Real EHG Data

Although the reported results in the previous section are somehow more realistic as
all the real EHG data related to the preterm labor were employed for the unseen testing,
the reported Sen values are based on the combination of both real and synthesized EHG
preterm data. To this aim, we also computed the Sen of each classifier based on only real
preterm EHG data (Figure 5). For both groups, the AdaBoost classifier achieved a mean
Sen of almost 89% which means at least 17 of 19 preterm cases were identified correctly.
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Figure 5. Sensitivity of all classifiers for real preterm EHG data. (a) PE-TE and (b) PL-TL groups.

4.4. Comparison against the State-of-the-Art Methods

Table 4 compares the results obtained by the proposed method to the state of the art in
terms of the Acc, Sen, Spe, and AUC. It should be noted that we only considered studies
that addressed such a prediction based on different pregnancy weeks.
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Table 4. The comparison of our study with state-of-the-art methods.

Study Group and No. of Data Classifier Acc Sen Spe AUC

Ours PE (n = 143)-TE (n = 143) AdaBoost 95% 92% 97% 0.99
PL (n = 119)-TL (n = 119) 93% 90% 93% 0.98

[42] PE (n = 135)-TE (n = 143) RF 92% 88% 96% 0.88
PL (n = 111)-TL (n = 119) 93% 89% 97% 0.80

[43] PE (n = 93)-TE (n = 93) QDA 97% 100% 95% N.A
PL (n = 57)-TL (n = 57) 100% 100% 100% N.A

[35] PE (n = 140)-TE (n = 143) QDA 100% 100% 100% 1.0

[44]
PE-TE, n is not reported.

SVM
96.5% 94% 99% 0.99

PL-TL, n is not reported. 92.5% 88% 97% 0.98

Although some studies achieved a higher accuracy than ours, they employed features
that required parameter setting before computation, e.g., sample entropy. On the other hand,
accurate parameter setting of such features plays an important role for their performance [9].
In addition, as such regulation is performed experimentally, it is not clear how well such
features work for a new set of data. On the contrary, the nonlinear features employed in
our study were parameter free. Furthermore, the reported Sen values in our study are more
realistic as all real preterm cases were unseen in the training–validating process and used
solely for testing.

4.5. Future Work

Although the proposed algorithm showed promising results, the following issues
should be addressed in future work. First, categorical features, e.g., age, height, and weight,
can be employed as extra information for classification. Second, reducing the number of
employed channels, e.g., a single EHG channel, should be investigated as welcome in long-
term home-based pregnancy monitoring systems. Third, the effectiveness of the proposed
method should be further investigated using different versions of filtered EHG signals
(e.g., 0.3 to 3 Hz) or even with different frequency ranges as suggested in [53]. Fourth,
though the selected features showed acceptable performance, it should be noted nonethe-
less that the employed strategy might not exclude the redundant features. Moreover, those
features that were considered non-discriminative may show a better performance when
combined together. Therefore, a more advanced feature selection method can be investi-
gated for future work. Fifth, it has been shown that the continuous wavelet transform is
a promising tool for analyzing EHG data [53]; thus, it can also be used to decompose EHG
signals instead of EMD. Last, we have not considered isolating bursts from the EHG to
predict preterm labor. Isolating bursts from the EHG may lead to more accurate prediction
of preterm labor, yet it requires the supervision of qualified personnel or the simultaneous
use of a tocodynamometer.

5. Conclusions

This paper presents a new method for the prediction of preterm labor using EHG
signals from different pregnancy weeks. The similarity between the obtained results for
both the PE-TE and PL-TL groups confirms the reliability of the proposed method for the
prediction of preterm labor. More importantly, the proposed method showed a high mean
of sensitivity to the real preterm EHG data in both groups.
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