
The Journal of Systems & Software 204 (2023) 111793

A
a

b

c

c
c
a
A
c
p
c
a

M
n
p
o

v

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Open tracing tools: Overview and critical comparison✩

ndrea Janes a, Xiaozhou Li b,c, Valentina Lenarduzzi c,∗
FHV Vorarlberg University of Applied Sciences, Austria
Tampere University, Finland
University of Oulu, Finland

a r t i c l e i n f o

Article history:
Received 21 July 2022
Received in revised form 16 May 2023
Accepted 22 June 2023
Available online 28 June 2023

Keywords:
Open tracing tool
Telemetry
Multivocal literature review
ChatGPT

a b s t r a c t

Background: Coping with the rapid growing complexity in contemporary software architecture,
tracing has become an increasingly critical practice and been adopted widely by software engineers.
By adopting tracing tools, practitioners are able to monitor, debug, and optimize distributed software
architectures easily. However, with excessive number of valid candidates, researchers and practitioners
have a hard time finding and selecting the suitable tracing tools by systematically considering their
features and advantages.
Objective: To such a purpose, this paper aims to provide an overview of popular Open tracing tools
via comparison.
Methods: Herein, we first identified 30 tools in an objective, systematic, and reproducible manner
adopting the Systematic Multivocal Literature Review protocol. Then, we characterized each tool
looking at the 1) measured features, 2) popularity both in peer-reviewed literature and online media,
and 3) benefits and issues. We used topic modeling and sentiment analysis to extract and summarize
the benefits and issues. Specially, we adopted ChatGPT to support the topic interpretation.
Results: As a result, this paper presents a systematic comparison amongst the selected tracing tools
in terms of their features, popularity, benefits and issues.
Conclusion: The result mainly shows that each tracing tool provides a unique combination of features
with also different pros and cons. The contribution of this paper is to provide the practitioners better
understanding of the tracing tools facilitating their adoption.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In software engineering, the outcome of the engineering pro-
ess is invisible (Brooks, 1987; Fenton and Pfleeger, 1998). As a
onsequence, it is difficult to understand progress and to reason
bout the produced output (British Computer Society and Royal
cademy of Engineering (Great Britain), 2004). This is particularly
omplicated when developing systems that consist of many com-
onents. Today’s trend of developing systems interacting with
omponents deployed in the cloud or based on microservice
rchitectures only exacerbates this problem.
One way to cope with invisibility is through measurement.

easurement enhances observability as it provides the data
eeded to understand the internal states of systems and its com-
onents (Kalman, 1960). Measurement is defined as the process
f assigning numbers or symbols to the attributes of real-world

✩ Editor: Dr. Alexander Chatzigeorgiou.
∗ Corresponding author.

E-mail addresses: andrea.janes@fhv.at (A. Janes), xiaozhou.li@oulu.fi (X. Li),
alentina.lenarduzzi@oulu.fi (V. Lenarduzzi).
ttps://doi.org/10.1016/j.jss.2023.111793
164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
entities to describe them using clearly defined rules (Finkelstein
and Leaning, 1984; Fenton and Pfleeger, 1998).

Medicine distinguishes between the measuring instruments
that need to look inside a patient and those that do not. For
example, blood pressure can be measured directly via an arterial
catheter (called invasive) or by placing a stethoscope on an artery,
pumping up a cuff placed around the arm, and reading blood
pressure on a special meter called a sphygmomanometer (such an
approach is called non-invasive). Following the same terminology,
measurement of software can be invasive or non-invasive: we can
distinguish methods that require to modify the source code of the
measured system (e.g., logging relevant events) or methods that
consider the observed system a black box and measure how it
interacts with the environment.

The two terms often used in software measurement are tracing
and telemetry. Tracing, as the word trace, means ‘‘a mark or
line left by something that has passed’’ (Merriam-Webster.com
Dictionary, 2022b), is often used by developers to log what has
happened and to understand if software is working as expected or
not. While tracing is also measurement, the term emphasizes that
relevant events are logged – together with the time of occurrence
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2023.111793
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111793&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:andrea.janes@fhv.at
mailto:xiaozhou.li@oulu.fi
mailto:valentina.lenarduzzi@oulu.fi
https://doi.org/10.1016/j.jss.2023.111793
http://creativecommons.org/licenses/by/4.0/

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

–
o

p
(
t
2
o
c
i
p
u
r
a
t
a
r
r
t
b

w
f
t
t
a
a
t
t
t

t
f
t
l
a
S
2

t

v
i
o
p
v
b
t

b
o
T
i

during the execution of software. In contrast, counting the lines
f code of a class is not tracing, it is only measurement.
The second frequent term is telemetry: the word is com-

osed by the Greek adjective tele (remote) and the word metron
measure) and means to measure something and transmitting
he results to a distant station (Merriam-Webster.com Dictionary,
022a). Such an approach is often needed when a large quantity
f data is collected and it cannot be processed in situ; or, if data is
ollected from several sources (as in a distributed system) and it
s necessary to collect the data in one place to obtain the complete
icture of what is happening in the system. Another term often
sed in a distributed context is distributed tracing, where a trace
epresents the ‘‘whole journey of a request as it moves through
ll of the services of a distributed system’’ (Mägi, 2020) and the
erm span describes the part of the trace belonging to one service:
span represents a logical unit of work in completing a user

equest within one service; combining all spans describes one
equest across all services. Distributed tracing, implicitly, includes
elemetry, since the data collected from various points needs to
e transmitted for processing to another device.
Tracing is used in a variety of cases, e.g., to locate the cause

hy a system does not meet performance requirements or where
ailures occur. It is part of the toolkit used by software engineers
o monitor, debug, and optimize distributed software architec-
ures, such as microservices or serverless functions. Researchers
nd practitioners need to be aware of the tools currently in use
nd what features they possess. Tool vendors and (potential)
ool producers need to understand how popular and adopted
heir tools are, as well as for through features they distinguish
hemselves from the competitors.

For this purpose, this paper aims to obtain an overview of
racing tools and to perform a critical comparison among them,
ocusing on those that are used among researchers and practi-
ioners and are available on the market using an Open Source
icense. To achieve this objective, we first identified 30 tools in
n objective, systematic, and reproducible manner adopting a
ystematic Multivocal Literature Review approach (Garousi et al.,
019). Then, we characterized each tool looking at:

• What the tracing tool is able to measure (distinctive fea-
tures);

• Popularity (both in peer-reviewed literature and online me-
dia);

• Advantages (benefits) disadvantages (issues) reported by
researchers and practitioners in social media articles using

1. topic modeling and sentiment analysis techniques for
the benefits and issues extraction,

2. ChatGPT 1 to support the topic interpretation.

The key results of the study shows that, among the considered
ools, the features provided vary.

Therein, 10 of them are considered popular based on the
olume of social media discussion. These are the ones we took
nto account for the benefits and issues analysis due to the lack
f data from the others. There are six main criteria on which
ractitioners mainly have opinions. The results show that only
ery limited number of tools provide all the considered features
ut none of the tools are perceived positively or negatively in all
he aspects.

To sum up, the main contribution of our work is represented
y the large analysis up to date on the overview and comparison
f the capabilities of Open Tracing Tools that implement Open
racing API. Specifically, we advanced the current state of the art
n four different manners:

1 https://chat.openai.com/?model=gpt-4
2

1. By providing results from a objective, systematic, and re-
producible approach and a detailed replication package3.4
with the data and scripts used to conduct our study and
that can be used by the research community and practi-
tioners to replicate and build upon it;

2. By providing a comparison of the distinctive features each
tool possessed, which may be used by practitioners as a
way to select the most suitable tool(s) based on the specific
project needs;

3. By providing an overview about how much each tool is
known for the researchers and practitioners considering
how long have they been on the market;

4. By investigating the benefits and issues among the con-
sidered tools, which can inform tool vendors about the
limitations of the current solutions available the market,
other than making practitioners aware of how to benefit
more from the combined capabilities of the considered
tools;

The remainder of this paper is structured as follows. Section 2
presents the process we followed to identify the Open Tracing
Tools studied in this paper, while Section 3 describes the empiri-
cal study we conducted. Section 4 describes the obtained results,
while Section 5 discusses them. Section 6 highlights the threats
to validity of this work, Section 7 the related work, and Section 8
draws conclusions and future works.

2. Systematic open tracing tools selection

To identify a list of Open Tracing Tools in an objective, sys-
tematic, and reproducible manner, we adopted the approach of
a Systematic Multivocal Literature Review (MLR) (Garousi et al.,
2019). The MLR process (Garousi et al., 2019) includes both peer
reviewed as well as gray literature and the different perspec-
tives between practitioners and academic researchers are taken
account in the results. A MLR emphasizes the inclusion of gray
literature in the data collection process for topics with a strong
interest by practitioners. MLR classifies contributions as academic
literature in case of peer-reviewed papers and as gray literature
other types of content like blog posts, white-papers, pod casts,
etc.

The process is divided into different phases with the main
steps we followed depicted in Fig. 1. We started with the def-
inition of the overall goal of the study and the formulation of
research questions. The goal and the research questions deter-
mine the selection of the data sources and the search terms. The
literature review is executed searching the literature and per-
forming snowballing (Wohlin, 2014). After reviewing the initial
set of documents, applying the inclusion/exclusion criteria, and
evaluating the quality and credibility of sources, we obtained
41 documents. Based on a defined data extraction scheme, we
extracted data useful to answer the defined research questions,
and – through data synthesis and interpretation – we obtained
the answers to the research questions.

Formulated as a GQM measurement goal (Basili et al., 2014),
the objective of this paper can be described as follows: ‘‘Analyze
the current literature about Open tracing tools for the purpose
of characterization, with respect to its distinctive features, its
popularity, and benefits and issues, from the point of view of
a software developer in the context of a software development
organization’’.

Following the guidelines to formulate questions along the
GQM (goal, question, metric) paradigm (Basili et al., 1994), we de-
vise the below research questions operationalizing ‘‘utility’’ into
four dimensions: ability to measure, popularity, benefits, issues.
Consequently, we formulated the following research questions:

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

R
R
R

t
d
f
t
e
t
w
p
(
d
s

w
a

v
w
s

Fig. 1. Overview of the followed MLR process.
Source: Adapted from Fig. 7 in Garousi et al.
(2019).

RQ1: Which distinctive features do the tools possess?
Q2: How popular are the identified tools?
Q3: Which benefits do the identified tools claim to achieve?
Q4: Which issues do the identified tools introduce?

With RQ1, we aimed at characterizing each tool with respect
o their distinctive features to provide a clear comparison of the
ifferences between them. Though many tools provide similar
unctionalities, each one also provides unique features compared
o the others. Then, in RQ2, we investigated the popularity of
ach tool in terms of adoption both in academia and among
he developers communities considering when the firs version
as released on the market. Once characterized each tool, we
roceeded with a finer-grained investigation considering benefits
RQ3) and issues (RQ4) to understand the unique advantages and
rawbacks of each tool so that they can adopt the ones best
uiting their needs.
To obtain a high recall and include as many papers as possible,

e used the following broad search string to retrieve literature
bout open tracing tools:
(opentracing OR ‘‘open tracing’’) AND tool*
We used the asterisk character (*) to capture possible term

ariations such as plurals and verb conjugations. The search terms
ere applied to all the fields (i.e. title, abstract, and keywords),
o as to include as many works as possible.
3

Peer-reviewed literature search. We considered the papers
indexed by several bibliographic sources, namely: ACM digital
Library,2 IEEEXplore Digital Library,3 Science Direct,4 Scopus,5
Google Scholar,6 CiteseerX,7 Inspec,8 and Springer link.9 The
search was conducted in November 2022 and all raw data are
presented in the replication package (Section 3.4).

Gray literature search. We adopted the same search terms
for retrieving gray literature from online sources as we did for
peer-reviewed ones. We performed the search using four search
engines: Google Search,10 Twitter,11 Reddit.12 and Medium13 The
search results consisted in books, blog posts, forums, websites,
videos, white-paper, frameworks, and podcasts. This search was
performed in November 2022.

Snowballing. Snowballing refers to using the reference list
of a paper or the citations to the paper to identify additional
papers (Wohlin, 2014). We applied backward-snowballing to the
academic literature to identify relevant papers from the refer-
ences of the selected sources. Moreover, we applied backward-
snowballing for the gray literature following outgoing links of
each selected source.

Application of inclusion and exclusion criteria. Based on
guidelines for Systematic Literature Reviews (Kitchenham and
Charters, 2007), we defined inclusion and exclusion criteria. We
included tools that implement Open Tracing APIs because of their
importance for tool providers and in particular, for tools aiming
at architectural reconstruction and observavility. We excluded
tools that could not be downloaded or installed, tools with no
documentation on how to install or deploy them, as well as tools
without a web site.

Evaluation of the quality and credibility of sources. Dif-
ferently than peer-reviewed literature, gray literature does not
go through a formal review process, and therefore its quality
is less controlled. To evaluate the credibility and quality of the
selected gray literature sources and to decide whether to include
a gray literature source or not, we extended and applied the
quality criteria proposed by Garousi et al. (2019) considering the
authority of the producer, the applied methodology, objectivity,
date, novelty, and impact.

Two authors assessed each source using the aforementioned
criteria, with a binary or three-point Likert scale, depending in
the criteria itself. In case of disagreement, we discussed the
evaluation with the third author that helped to provide the final
assessment.

Table 1 lists the outcome of the systematic tool selection,
i.e., the tools that we identified through the above described
process.

3. Tool analysis

The following steps – based on the research goal and derived
questions described in Section 1 – describe the study context,
the data extraction and analysis, and describe its verifiability and
replicability following the approach suggested by Wohlin et al.
(2012).

2 https://dl.acm.org
3 https://ieeexplore.ieee.org
4 https://www.sciencedirect.com
5 https://www.scopus.com
6 https://scholar.google.com
7 https://citeseer.ist.psu.edu
8 https://iee.org/Publish/INSPEC/
9 https://link.springer.com/

10 https://www.google.com/
11 https://twitter.com/
12 https://www.reddit.com/
13 https://medium.com

https://dl.acm.org
https://ieeexplore.ieee.org
https://www.sciencedirect.com
https://www.scopus.com
https://scholar.google.com
https://citeseer.ist.psu.edu
https://iee.org/Publish/INSPEC/
https://link.springer.com/
https://www.google.com/
https://twitter.com/
https://www.reddit.com/
https://medium.com

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

i
t

3

c
s

a
f

r
e
t
c
M
a
r
c
T
c
d

i
c

Table 1
The 30 retrieved tools.
Tool name Web site

Appdash https://github.com/sourcegraph/appdash
Appdynamics https://www.appdynamics.com/
Containiq https://www.containiq.com/
Datadog https://www.datadoghq.com/
Dynatrace https://www.dynatrace.com/
Elasticapm https://www.elastic.co/
Grafana tempo https://grafana.com/oss/tempo/
Haystack https://expediadotcom.github.io/haystack/
Honeycomb.io https://www.honeycomb.io/
Hypertrace https://www.hypertrace.org/
Instana https://www.instana.com/
Jaeger https://www.jaegertracing.io/
Kamon https://kamon.io/
Lightstep https://lightstep.com/
Logit.io https://logit.io/
Lumigo https://lumigo.io/
New relic https://newrelic.com/
Ocelot https://www.inspectit.rocks/
Opencensus https://opencensus.io/
Opentelemetry https://opentelemetry.io/
Sentry https://sentry.io/welcome/
Skywalking https://skywalking.apache.org/
Site24 × 7 https://www.site24x7.com/
Signoz https://signoz.io/
Splunk https://www.splunk.com/
Stagemonitor https://www.stagemonitor.org/
Tanzu https://tanzu.vmware.com/tanzu
Uptrace https://uptrace.dev/
Victoriametrics https://victoriametrics.com/
Zipkin https://zipkin.io/

3.1. Study context

We considered the eleven open tracing tools retrieved accord-
ng the process described in Section 2. Table 1 shows the selected
ools with their respective web site.

.2. Data extraction

In this section, for each research question, we describe the
ollected data, i.e., the data we extracted from the retrieved
earch results.
Distinctive features of each tool (RQ1). We extracted char-

cteristics about the identified tools and grouped them into the
ollowing categories:

1. General information: the links to the source code repository,
the chosen licenses, the adopted programming languages,
and the different price types;

2. Deployment: the components contained in each tool, also
in comparison to the suggested architecture defined by the
Open Application Performance Management (OpenAPM)
initiative (Novatec Consulting, 2022f) and their supposed
deployment;

3. Usage: the suggested steps to use the tools, i.e., to setup
data collection and to use the collected data;

4. Data: the actual data that can be collected with each tool,
also compared to what the OpenTelemetry (The Open-
Telemetry Authors, 2022) standard suggests: traces, met-
rics, and logs;

5. Interoperability: aspects that are important to guarantee
a high degree of operability: the availability of an API,
support for OpenTelemetry (The OpenTelemetry Authors,
2022), and if self-hosting is possible.

Tool popularity (RQ2). We evaluated the popularity in terms
of how much the tools are mentioned in public online sources.
The following sources were investigated:
4

• Peer-reviewed literature: Using the same sources as in Sec-
tion 2, we investigated the popularity of each tool by apply-
ing the following search string on all fields including title,
abstract, body, and references: (‘‘tool Name’’ OR ‘‘tool url’’)
AND (*opentracing* OR ‘‘open tracing’’). In the case of tools
with different names, we considered all variants in the ‘‘OR’’
term. Two authors independently evaluated the relevance of
each publication reported by Google Scholar and Scopus, so
as to exclude papers not written in English, false positives,
or from different domains. In case of disagreement, a third
author provided his/her opinion

• Online media: Using the same sources as in Section 2, we
collected eventual posts, tags, users, groups or websites
pertaining to the tools. In particular, we searched the tools’
own communities, eventual groups present on LinkedIn and
Google groups, as well as the number of appearances in
commonly used communities and discussion forums such
as: StackOverflow, Reddit, DZone, and Medium.

Benefits and issues (RQ3 and RQ4) To get the different opin-
ions, especially on the advantages and problems of each tool, we
extracted the corresponding content of the discussion threads
from popular technology forums, including StackOverflow,Medium
and DZone. StackOverflow is the largest forum of technology-
elated questions and answers (Q&As) for developers and tech-
nthusiasts. Compared to StackOverflow, DZone is also one of
he world’s largest online communities for developers but fo-
uses more on new tech-trends, e.g., DevOps, AI and big data,
icroservices, etc. Furthermore, similar to DZone, Medium is
lso a well-known technology forum that provides tutorials and
eviewing articles. Comparatively, articles on Medium are more
ommon-reader-friendly and written in a non-technical style.
hese three platforms are the largest tech communities that
an be considered to cover a representative school of opinions
escribed in different styles.
Due to a different availability of APIs and different crawl-

ng policies of these three platforms, we applied different data
rawling strategies for each platform accordingly:

• StackOverflow. We applied API-based content crawling using
the StackExchange API to retrieve the questions and answers
regarding each selected tracing tool. Specifically, we used
the advanced search API14 to extract all the questions that
contain the name of the tool in either the title or the body
of the question, together with the according answers. Please
note, due to the daily query limitation of the API, the pa-
gesize parameter was set to the maximum (i.e., 100 results
shown per query) to minimize the crawling time.

• Medium: We adopted a manual crawling approach to respect
Medium’s policy of not allowing web crawling with tools
like BeautifulSoup.15 First, we searched the name of each
tool and obtained all the articles about the tool. For each
article, we manually copy/pasted the content into an indi-
vidual text file named with the tool name and a sequence
number.

• DZone: We adopted a hybrid crawling approach combining
manual search and the use of BeautifulSoup. Different from
Medium, Dzone allows crawling with BeautifulSoup within
each individual article but not within the list of search
results. Hence, we conducted a hybrid crawling strategy by
manually collecting all article URLs for each tool and then
automatically crawled the article content for each URL using
BeautifulSoup.

14 https://api.stackexchange.com/docs/advanced-search
15 https://www.crummy.com/software/BeautifulSoup/

https://github.com/sourcegraph/appdash
https://www.appdynamics.com/
https://www.containiq.com/
https://www.datadoghq.com/
https://www.dynatrace.com/
https://www.elastic.co/
https://grafana.com/oss/tempo/
https://expediadotcom.github.io/haystack/
https://www.honeycomb.io/
https://www.hypertrace.org/
https://www.instana.com/
https://www.jaegertracing.io/
https://kamon.io/
https://lightstep.com/
https://logit.io/
https://lumigo.io/
https://newrelic.com/
https://www.inspectit.rocks/
https://opencensus.io/
https://opentelemetry.io/
https://sentry.io/welcome/
https://skywalking.apache.org/
https://www.site24x7.com/
https://signoz.io/
https://www.splunk.com/
https://www.stagemonitor.org/
https://tanzu.vmware.com/tanzu
https://uptrace.dev/
https://victoriametrics.com/
https://zipkin.io/
https://api.stackexchange.com/docs/advanced-search
https://www.crummy.com/software/BeautifulSoup/

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

3

t

p
f
t
w
t
t
t
g
o
i
n
l
t
d
s

.3. Data analysis

In this Section, we report the data analysis protocol adopted
o answer the research questions.

Distinctive features (RQ1). We inspected the documentation
and the website of each tool and mapped the different features.
Then, we created a Table that reports which features is available
for each tool.

Tool popularity (RQ2). We use the statistics from both sci-
entific sources and media sources to interpret and compare the
popularity of the selected tools.

Benefits and issues (RQ3 and RQ4). Fig. 2 depicts the ap-
roach overview of how to elicit the benefits and the issues
or the users regarding open tracing tools adoption based on
he analysis of social media articles. For all the retrieved tools
e crawled the gray literature data from the previously iden-
ified sources, and compare the total number of articles of all
he tools. Due to the difference in their popularity (the answer
o RQ2), the retrieved textual data volume for each tool varies
reatly. Sufficient data volume is highly necessary in order to
btain meaningful interpretation of practitioners’ collective opin-
ons. According to practitioners’ experience, a potential minimum
umber of articles of 600 is required for Latent Dirichlet Al-
ocation (LDA) modeling on news articles while 5k to 10k for
weets (Naushan, 2020). In terms of the characteristics of the
ata for this study, we adopt the same threshold to verify the
ufficiency and representativeness of the data.
The rest of the process is composed of five main steps:

• Step 1: Preprocessing: This step pre-processes the raw text
data and prepares them for further analysis. First, we divide
texts from the dataset into sentence-level instances since
each text can contain multiple topics and various senti-
ments. Second, we build the bigram and trigram models,
which means we identify the common phrases (e.g., New
York instead of new and york). Subsequently, for each sen-
tence, a series of text processing activities are required,
including transforming text into lower cases, removing non-
alpha-numeric symbols, screening stop-words, eliminating
extra white spaces, and lemmatization.

• Step 2: Filtering: This step is to filter out the noninformative
sentences with a trained text classifier. By doing so, we
shall identify the sentences that contain useful information
and screen out those not relevant. Aiming to answer RQ3
and RQ4, the informative sentences shall contain an explicit
description on the benefits or issues regarding the tracing
tools. For example, ‘‘In fact, with automated instrumentation
as part of AppDynamics, metric data is produced consistently
and comprehensively across all teams.’’ is informative by de-
scribing the benefit of using; ‘‘I checked the source code.’’ is
non-informative and should be filtered out.

• Step 3: Topic Modeling: Herein, we detect the main topics
of the informative sentences identified from the previous
step. Using topic modeling techniques, we shall identify the
aspects which the articles are discussing. Especially, we use
ChatGPT to support the effective summarization of each
topic based on the according keywords.

• Step 4: Topic Mapping: In this step, using the topic model
built with the informative texts, we can map each piece of
text, which is about one particular tool, to one or multiple
topics. By doing so, we shall know regarding each tool which
topics are discussed in social media and how frequently each
topic.

• Step 5: Opinion Mining: Finally, using opinion mining tech-
niques on the texts, we can also know the collective senti-
ment from the social media concerning each topic for each
5

Fig. 2. Approach to detect benefits and issues from analyzing social media texts
(RQ3 and RQ4).

tool. Therefore, the outcome shall provide a detailed reflec-
tion on the percentage of positiveness and negativeness for
each topic for each tool.

Based on the approach described above, the benefits of each
tool can be obtained analyzing the detected topics in which
the tool is discussed positively, based on the collected opinions,
which shall answer RQ3. Similarly, the issues of each tool can
be summarized by the according topics in which the tool is
mentioned negatively, which answers RQ4.

3.4. Verifiability and replicability

To allow our study to be replicated, we have published the
complete raw data in the replication package.16

4. Results

In this Section, we report the obtained results by applying the
steps described in the previous sections.

16 https://figshare.com/s/8aa40eea5d50ed27d347

https://figshare.com/s/8aa40eea5d50ed27d347

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

4

t
d

a
m
T

.1. Distinctive features (RQ1)

To answer RQ1, we studied each tool to extract its distinctive
features. The results are as follows.

General information. Table 2, for each tool summarizes the
licenses we found in the repositories of the application, the re-
ported programming languages, and the reference to the reposi-
tory. We use the license identifiers defined by the SPDX work-
group (SPDX Workgroup, 2022). Please note that not all tools
are entirely open: AppDynamics, Datadog, Instana, LightStep, and
Wavefront have proprietary parts (e.g., the backend) but release
agents or libraries (see below) using an Open Source license. The
reported programming languages for each tool are only taken
from the repositories with an Open Source license. We also in-
vestigated the different pricing strategies of all the selected tools
(shown in Table 2). Among the 30 retrieved tools, 12 are open-
sourced fully and 6 of these 12 provide free version with limited
features. Moreover, we reported the age of each tool by means of
the year when the firs version was released on the market.

To understand the level of support each tool can provide to
a development team, Table 2 lists the supported programming
languages, but this is only one aspect. The results described below
complete the picture: the identified architectural components
listed in Table 3 help developers to understand how a tool needs
to be integrated in their context; the type of collected metrics
listed in Table 4 illustrate which type of metrics can be col-
lected with the various tools, and Table 5 compares the degree
of interoperability each tool offers.

Table 2 lists those programming languages for which we found
support in the relative repositories on GitHub and within the doc-
umentation. Those programming languages that are starred (*),
support non-invasive instrumentation, i.e., the automated modifi-
cation of the code so that tracing information is sent to the Agent.
Such non-invasive instrumentation is called in different ways by
the producers, e.g., Datadog calls it ‘‘Auto Instrumentation’’.

Deployment. To better understand how each tool is supposed
to be used in a tracing scenario, we studied the documentation
of each tool to extract the suggested deployment configuration.
However, before looking at how the various tools are deployed,
it is useful to define the typical components of a tracing tool.
We use the terminology defined by the Open Application Perfor-
mance Management (OpenAPM) initiative (Novatec Consulting,
2022f) (see Fig. 3):

• Libraries are used in source code to send data to an agent
or directly to the collection component. In some scenarios,
agents are able to modify the application automatically so
that it sends data to an agent without necessary source code
changes (e.g., instrumenting Java byte code).

• Agents are responsible for collecting data from a particular
context, e.g., an application, the operating system, a mobile
app, a database, or a web site. They usually run as part of
applications or as an independent process and forward the
data to collection components.

• Storage: After the data is collected, it needs to be stored.
To improve performance, this can occur through a transport
component that can fulfill routing or caching tasks. Collectors
receive data from agents or other data sources and persist it
to Storage components, e.g., a time-series database.

• Data processing components elaborate incoming data ac-
cording to the analysis goals and prepare it for being used;
the OpenAPM initiative distinguishes visualizations (e.g., in
form of charts), dashboarding, and alerting.

Fig. 3 depicts a generalized deployment scenario of the var-
ious components using the terminology of the OpenAPM ini-
tiative. The architecture depicted in Fig. 3 also corresponds to
6

Fig. 3. APM components according to the OpenAPM initiative (Novatec
Consulting, 2022f) and their typical communication data flow.

the suggested architecture by the OpenTelemetry project (The
OpenTelemetry Authors, 2022) (see below).

By studying the documentation of all the selected tools, we
noted that only 7 out of the 30 tools (i.e., Dynatrace, Jaeger, New
Relic, Sentry, Signoz, SkyWalking, and Tanzu) explicitly comply
with the architecture described in Fig. 3. For majority of the tools,
clear description of the ‘‘Transport’’ features is missing. Mean-
while, a large majority of the tools contain their own UI while
some tools, e.g., Ocelot, require visualization tools, e.g., Grafana
to display the tracing outcomes. Furthermore, a majority of the
tools also provide libraries, agents, collectors, storage and data
processing capabilities.

Table 3 lists each retrieved tool, its type, the identified com-
ponents using the terminology suggested by the OpenAPM ini-
tiative, and the source (next to the name of the tool), where we
obtained this information. When a tool uses a different term for a
component, we mention this below the table. Please note that this
table contains the components that are explicitly mentioned in
the documentation. The absence of a component, e.g. an explicit
transport component, does not mean that such a component does
not exist in the platform but rather that this component might
be contained in another component, e.g. the agent. Table 3 also
shows that the used terminology is not standardized and that
different producers and teams call components in different ways.

Usage. Regarding the usage of the tracing tools, we studied
heir installation and setup requirements, as described in the
ocumentation.
All tools (except Ocelot and StageMonitor, which are Agents)

re based on a similar setup, based on the suggested measure-
ent architecture that tracing tools are based on (see Fig. 3).
herefore, using tracing tools always involves the following steps:

1. Backend installation: If the tool is installed on premise
(as e.g., ElasticAPM (Elastic, 2022b), SkyWalking (Apache
Skywalking contributors, 2022g), or Zipkin (Zipkin contrib-
utors, 2022d)): installing the tool following the documen-
tation;

2. Backend setup: Preparing the backend to receive data: this
step might involve creating an account for the organiza-
tion (also called tenant in AppDynamics (AppDynamics,

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793
Table 2
Features about each identified tool (RQ1).
Tool License Programming language Repo. Pricing Created

Appdash MIT (AppDash, 2023a) Go*, Python*, Ruby* (AppDash,
2023a,b)

AppDash (2023a) Free 2014

AppDynamics Proprietary, Apache-2.0, GPL-3.0,
MIT (Appdynamics, 2022a)

Java*, Shell, .NET*, Python*,
JavaScript, Go*, C/C++*, PHP*,
NodeJS* (Appdynamics, 2022a,b)

Appdynamics (2022a) $6/60/90/167 per month, per CPU
Core; $.06 per month, per 1000
tokens; Quote

2008

Containiq Proprietary (ContainIQ, 2023c) C/C++*, Go*, Rust*, Python*, Ruby*,
NodeJS* (ContainIQ, 2023e)

ContainIQ (2023c) $20 per node, per month OR $.50
per GB of log data ingested; Quote

2021

Datadog Proprietary, Apache-2.0,
BSD-3-Clause, GPL-2.0, MIT,
MPL-2.0 (DataDog, 2022a)

Go*, Python*, Ruby*, JavaScript,
Node.js*, Java*, .NET* (DataDog,
2022a, 2023)

DataDog (2022a) Free; $15/23 Per host, per month 2010

Dynatrace Apache-2.0 (Dynatrace, 2023c) C++*, .NET*, Erlang*, Go*, Java*,
NodeJS*, Python*, Ruby*, Rust*
(Dynatrace, 2023c,e)

Dynatrace (2023c) $22/74/+15 per month for 8GB per
Host; $11 per month for 10K
annual DEM Units; $25 per month
for 100k annual DDU; $0.10 per
CAU

2005

ElasticAPM Apache-2.0, BSD-2-Clause,
BSD-3-Clause, Elastic-2.0, MIT
(Elastic APM-Server contributors,
2022)

Go*, Python*, iOS*, Java*, NodeJS*,
PHP*, Ruby*, Gherkin (Elastic
APM-Server contributors, 2022;
ElasticAPM, 2022)

Elastic APM-Server
contributors (2022)

$95/109/125/175 per month 2012

Grafana tempo AGPL-3.0-only (Tempo, 2023a) Java*, Go*, .NET*, Python*, NodeJS*
(Tempo, 2023a,b)

Tempo (2023a) Free 2020

Haystack Apache-2.0 (Haystack, 2023a) Java*, NodeJS*, Python*, Go*, HCL,
Shell, Smarty (Haystack, 2023a,b)

Haystack (2023a) Free 2017

Hypertrace Traceable Community License
Agreement (1.0)(Hypertrace, 2023a)

Java*, Go*, Python*, NodeJs*, C++*,
.NET* (Hypertrace, 2023a,b)

Hypertrace (2023a) Free 2020

Honeycomb.io Apache-2.0, MIT (Honeycomb.io,
2023b)

Go*, Java*, .NET*, NodeJS*, Python*,
Ruby*, JavaScript, Python
(Honeycomb.io, 2023b,d)

Honeycomb.io (2023b) Free; Quote 2016

Instana Proprietary, Apache-2.0, GPL-2.0,
MIT (Instana, 2022e)

Shell, JavaScript, Go, Java*, Python*,
.NET*, Clojure*, Kotlin*, Python*,
PHP*, Scala*, NodeJS*,
Ruby* (Instana, 2022e,c)

Instana (2022e) $75/93.80 per host, per month 2015

Jaeger Apache-2.0 (Jaeger contributors,
2022e)

Go*, Java*, NodeJS*, Python*, C++*,
C#* (Jaeger contributors, 2022e;
Jaeger, 2023)

Jaeger contributors
(2022e)

Free 2016

Kamon Apache-2.0 (Kamon, 2023b) Java*, Scala* (Kamon, 2023b,f) Kamon (2023b) Free; $89/299 per month; Quote 2017

LightStep Proprietary, Apache-2.0,
BSD-2-Clause, BSD-3-Clause,
CC-BY-SA-4.0, MIT (Lightstep,
2022e)

Go*, JavaScript, Python*, Java*, HCL,
.NET*, NodeJS* (Lightstep, 2022e,
2023)

Lightstep (2022e) Free; $100 per active service per
month; Quote

2015

Logit.io MIT (Logit.io, 2023b) .NET*, Go*, NodeJS*, Python*,
Ruby*, JavaScript, Shell (Logit.io,
2023b,a)

Logit.io (2023b) $0.74 per GB; $5 per million spans
per month; $2.80 per 1000 DPM

2013

Lumigo Apache-2.0(Lumigo, 2023b) Python*, NodeJS*, Java, Go (Lumigo,
2023b,a)

Lumigo (2023b) $99/299 per month; Quote 2018

New Relic Apache-2.0 (Relic, 2023a) C*, Go*, Java*, .NET*, NodeJS*,
PHP*, Python*, Ruby*, JavaScript,
Shell (Relic, 2023a,b)

Relic (2023a) $0.30 per GB Standard Ingest Cost
Beyond Free Limits; + 0.50 per GB
Data Plus Ingest Cost; +$49 per
month Core Users; +Quote

2008

Ocelot Apache-2.0 (Novatec Consulting,
2022b)

Java*, JavaScript (Novatec
Consulting, 2022b; Ocelot, 2023)

Novatec Consulting
(2022b)

Free 2018

OpenCensus Apache-2.0 (OpenCensus, 2023b) Python*, NodeJS*, Go*, C#*, C++*,
Erlang*, Java* (OpenCensus,
2023b,c)

OpenCensus (2023b) Free 2017

OpenTelemetry Apache-2.0 (The OpenTelemetry
Authors, 2022)

C++*, .NET*, Erlang*, Go*, Java*,
JavaScript*, PHP*, Python*, Ruby*,
Rust*, Swift* (The OpenTelemetry
Authors, 2022; OpenTelemetry,
2023a)

The OpenTelemetry
Authors (2022)

Free 2019

Sentry BSL-1.1 (Sentry, 2023b) .NET*, JavaScript*, NodeJS*,
Python*, PHP*, Rust*, Java*, Go*
(Sentry, 2023b,f)

Sentry (2023b) $0/26/80 per month; Quote 2012

Splunk Apache-2.0 (Splunk, 2023a) Python*, Java*, NodeJS*, .NET*, Go*,
Ruby*, PHP* (Splunk, 2023a,b)

Splunk (2023a) $15 per host/month 2003

Signoz MIT (SigNoz, 2023a) Java*, Python*, JavaScript*, Go*,
PHP*, .NET*, Ruby*, Elixir*, Rust*
(SigNoz, 2023a,b)

SigNoz (2023a) Free; $200 per month; Quote 2020

Site24 × 7 BSD-2-Clause, MIT (Site24x7,
2023d)

Java*, .NET*, Ruby*, PHP*, NodeJS*,
Python* (Site24x7, 2023d,b)

Site24x7 (2023d) e9/39/99/225 per month 2006

SkyWalking Apache-2.0 (Apache SkyWalking
contributors, 2022)

Java*, Python*, NodeJS*, Lua*,
JavaScript*, Rust*, PHP* (Apache
SkyWalking contributors, 2022;
Apache SkyWalking, 2023)

Apache SkyWalking
contributors (2022)

Free 2015

StageMonitor Apache-2.0 (Stagemonitor
contributors, 2022a)

Java*, HTML,
JavaScript (Stagemonitor
contributors, 2022a; Stagemonitor,
2023)

Stagemonitor
contributors (2022a)

Free 2013

(continued on next page)
7

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793
Table 2 (continued).
Tool License Programming language Repo. Pricing Created

Tanzu Apache-2.0 (Tanzu, 2023a) Java*, C++*, Go*, .NET*, Python*
Ruby Tanzu (2023a,b)

Tanzu (2023a) Free 2019

Uptrace BSD-2-Clause, Apache-2.0 (UpTrace,
2023a)

Go*, NodeJS*, .NET*, Ruby*, Python*
(UpTrace, 2023a,d)

UpTrace (2023a) $0.10/0.09/0.08/0.07/0.06/0.05 per
GB for 50/1000/2500/4250
/6000/8000GB with $5+/100+
/200+/300+/400+/500+ budget

2021

Victoriametrics Apache-2.0 (VictoriaMetrics, 2023c) Go*, JavaScript* (VictoriaMetrics,
2023c,b)

VictoriaMetrics (2023c) Free; Quote 2018

Zipkin Apache-2.0 (Zipkin contributors,
2022b)

C#*, Go*, Java*, JavaScript*, Ruby*,
Scala*, PHP* (Zipkin contributors,
2022b; Zipkin, 2023)

Zipkin contributors
(2022b)

Free 2012
Table 3
Identified architectural components.

Tool Li
br
ar
ie
s

Ag
en

t

Tr
an

sp
or
t

Co
lle

ct
or

St
or
ag

e

D
at
a
pr

oc
es
si
ng

U
I

Appdash ✕ ✕ ✕ ✕

AppDynam-
ics(AppDynamics,
2022c)

✕a ✕ ✕b ✕b ✕b ✕b

Containiq ✕ ✕

Datadog(Datadog,
2022b)

✕ ✕ ✕c ✕c ✕c ✕

Dynatrace ✕ ✕ ✕ ✕ ✕ ✕ ✕

ElasticAPM(Elastic,
2022a)

✕d ✕ ✕e ✕ ✕ ✕

Grafana tempo ✕r ✕r ✕ ✕ ✕

Haystack ✕ ✕ ✕ ✕

Hypertrace ✕g ✕ ✕ ✕ ✕

Honeycomb.io ✕g ✕ ✕ ✕

Instana(Instana,
2022g)

✕f ✕ ✕c ✕ ✕ ✕

Jaeger(Jaeger
contributors, 2022b)

✕g ✕ ✕ ✕ ✕ ✕ ✕

Kamon ✕ ✕ ✕ ✕

LightStep(Lightstep,
2022f)

✕g ✕h ✕i ✕i ✕i ✕i

Logit.io ✕ ✕ ✕

Lumigo ✕ ✕ ✕ ✕ ✕

New Relic ✕ ✕ ✕ ✕ ✕ ✕ ✕

Ocelot(Novatec
Consulting, 2022c)

✕

OpenTelemetry ✕ ✕ ✕ ✕

Sentry ✕ ✕ ✕ ✕ ✕ ✕ ✕

Splunk ✕ ✕ ✕ ✕ ✕ ✕

Signoz ✕ ✕ ✕ ✕ ✕ ✕ ✕

Site24 × 7 ✕ ✕ ✕ ✕ ✕

SkyWalking(Apache
Skywalking
contributors, 2022d)

✕j ✕ ✕ ✕k ✕ ✕l ✕

StageMoni-
tor(Stagemonitor
contributors, 2022b)

✕ ✕m

(continued on next page)

2022d)), selecting a data collection site to respect privacy
regulations (as for, e.g., Datadog (Datadog, 2022c)) and
setting up a project. In the case of ElasticAPM, which uses a
combination of tools within the backend, these tools have
to be configured and connected with each other.
8

Table 3 (continued).

Tool Li
br
ar
ie
s

Ag
en

t

Tr
an

sp
or
t

Co
lle

ct
or

St
or
ag

e

D
at
a
pr

oc
es
si
ng

U
I

Tanzu (VMware,
2022b)

✕a ✕ ✕n ✕o ✕ ✕ ✕

Uptrace ✕ ✕ ✕ ✕

Victoriametrics ✕ ✕

Zipkin(Zipkin
contributors, 2022a)

✕ ✕p ✕q ✕q ✕q

acalled SDK
bcalled Controller
ccalled Backend
dcalled Tracer API
ecalled APM Integration
fdepending on the technology to monitor, the documentation calls the data
collection component library, sensor, tracing SDK, or collector
grelies on the APIs and SDKs provided by the OpenTelemetry project (The
OpenTelemetry Authors, 2022)
hcalled Microsatellites
icalled Engine
jcalled Probes
kcalled Receiver cluster
lcalled Aggregator cluster
mcalled Widget, only in web applications, for debugging purposes
ncalled Proxy
ocalled Service
pcalled Reporter
qcalled Server
rrelies on Grafana Agent

3. Agent setup and application instrumentation: All tools re-
quire the installation of agents and their configuration (Ap-
pDynamics, 2022d; Datadog, 2022c; IBM, 2022a; Lightstep,
2022c; Elastic, 2022b; Jaeger contributors, 2022d; Apache
Skywalking contributors, 2022g; Wavefront, 2022a; Zipkin
contributors, 2022f). All tools offer a variety of agents that
are able to either (a) automatically instrument an appli-
cation or (b) allow developers to manually instrument it.
Automatic instrumentation means that the target applica-
tion is modified in such a way that it logs and transmits the
required data to the agent without manual work, manual
instrumentationmeans that the developer has to modify the
code manually using the provided library to send what is
needed to the agent. The agents have to be configured that
they send the data to the backend, linking the data to a
particular project. Ocelot and StageMonitor are agents and
require the configuration of a backend, e.g., InfluxDB.17

4. Data processing: once the data collection is in place, the
various tools (see Fig. 3) allow three different types of

17 https://www.influxdata.com

https://www.influxdata.com

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

s
m

Table 4
Metrics collected by the identified tools (RQ1).

Tool Tr
ac
es

M
et
ri
cs

Lo
gs

Appdash ✕(AppDash, 2023a) ✕(AppDash, 2023a)
AppDynamics ✕(AppDynamics, 2022e) ✕(AppDynamics, 2022f) ✕(AppDynamics, 2022g)
Containiq ✕(ContainIQ, 2023b) ✕(ContainIQ, 2023b) ✕(ContainIQ, 2023b)
Datadog ✕(Datadog, 2022d) ✕(Datadog, 2022e) ✕(Datadog, 2022f)
Dynatrace ✕(Dynatrace, 2023b) ✕(Dynatrace, 2023g) ✕(Dynatrace, 2023f)
ElasticAPM ✕(Elastic, 2022c) ✕(Elastic, 2022d) ✕(Elastic, 2022e)
Grafana tempo ✕(Tempo, 2023c) ✕(Tempo, 2023c) ✕(Tempo, 2023c)
Honeycomb.io ✕(Honeycomb.io, 2023a) ✕(Honeycomb.io, 2023e) ✕(Honeycomb.io, 2023g)
Hypertrace ✕(Hypertrace, 2023d)
Haystack ✕(Haystack, 2023c) ✕(Haystack, 2023d) ✕(Haystack, 2023e)
Instana ✕(Instana, 2022d) ✕(Instana, 2022b) ✕(Instana, 2022f)
Jaeger ✕(Jaeger contributors, 2022f) ✕(Jaeger contributors, 2022g) ✕(Jaeger contributors, 2022h)
Kamon ✕(Kamon, 2023h) ✕(Kamon, 2023e) ✕(Kamon, 2023c)
LightStep ✕(Lightstep, 2022a) ✕(Lightstep, 2022d) ✕(Lightstep, 2022b)
Logit.io ✕(Logit.io, 2023d) ✕(Logit.io, 2023e) ✕(Logit.io, 2023f)
Lumigo ✕(Lumigo, 2023f) ✕(Lumigo, 2023d) ✕(Lumigo, 2023c)
New Relic ✕(Relic, 2023g) ✕(Relic, 2023f) ✕(Relic, 2023e)
Ocelot ✕(Novatec Consulting, 2022g) ✕(Novatec Consulting, 2022e) ✕(Novatec Consulting, 2022d)
Opencensus ✕(OpenCensus, 2023e) ✕(OpenCensus, 2023d)
OpenTelemetry ✕(OpenTelemetry, 2023d) ✕(OpenTelemetry, 2023c) ✕(OpenTelemetry, 2023b)
Sentry ✕(Sentry, 2023h) ✕(Sentry, 2023d) ✕(Sentry, 2023c)
Splunk ✕(Splunk, 2023e) ✕(Splunk, 2023c)
SkyWalking ✕(Apache Skywalking contributors, 2022e) ✕(Apache Skywalking contributors, 2022b) ✕(Apache Skywalking contributors, 2022a)
Site24 × 7 ✕(Site24x7, 2023c) ✕(Site24x7, 2023e) ✕(Site24x7, 2023f)
Signoz ✕(SigNoz, 2023e) ✕(SigNoz, 2023c)
StageMonitor ✕(Stagemonitor contributors, 2022a) ✕(Stagemonitor contributors, 2022d) ✕(Stagemonitor contributors, 2022c)
Tanzu ✕(VMware, 2022c) ✕(VMware, 2022a) ✕(Wavefront, 2022b)
Uptrace ✕(UpTrace, 2023c) ✕(UpTrace, 2023f) ✕(UpTrace, 2023e)
Victoriametrics ✕(VictoriaMetrics, 2023f) ✕(VictoriaMetrics, 2023d)
Zipkin ✕(Zipkin contributors, 2022b)
data processing: (a) exploratory data analysis querying the
collected data or visualizing it in charts (b) pre-defining fre-
quently needed queries and charts and storing and present-
ing them in form of dashboards (c) pre-defining queries
and defining thresholds to obtain alerts if certain condi-
tions are met.

Data. As mentioned in the introduction, distributed tracing
aims to track requests as they flow through the services of a
distributed system. Therefore, foremost, distributed tracing tools
collect data about textittraces, i.e., how a request traverses dif-
ferent services. In addition, tracing tools often also collect (The
OpenTelemetry Authors, 2022) metrics and logs: metrics are mea-
urements that describe the state of the observed system, e.g., the
emory utilization at timestamp 2022-07-03T18:53:55Z of

microservice 1. Logs are messages that developers emit with
their code to inform about important events, e.g., that the event
ItemDeleted was initiated by user 7 and occurred with the
timestamp 2022-07-03T18:53:55Z.

Table 4 reports which of the three aspects – tracing, metrics,
and logs – are collected by the analyzed tools. All tools collect
traces, which is obvious as we are looking at tracing tools, and
all tools except Appdash, Hypertrace, Signoz and Zipkin allow
the additional collection of metrics. Regarding log data, only Hy-
pertrace, Opencensus, Splunk, Victoriametrics and Zipkin do not
provide log data. These additional data is linked to the component
in which the current trace was recorded and can be helpful when
observing a trace. Next to each cross we provide the point in
the documentation describing the presence of a particular data
collection capability.

Interoperability. To evaluate interoperability, we looked at
three aspects: the presence of a documented API, the support for
OpenTelemetry (The OpenTelemetry Authors, 2022), and if it is
possible to self-host the tool, i.e., to install everything locally.
9

OpenTelemetry is a ‘‘vendor-neutral open-source Observabil-
ity framework for instrumenting, generating, collecting, and ex-
porting telemetry data such as traces, metrics, logs (The Open-
Telemetry Authors, 2022)’’. We found that it is supported by all
tools except StageMonitor.

The results are reported in Table 5. The gray crosses indicate
that self-hosting is implicitly possible because the entire tool is
provided with an OpenSource license. Please note, that it might
be complex to perform a local installation, but technically, it is
possible.

From the point of view of interoperability, also the data pro-
vided in Table 2 can be of relevance: this table describes the used
licenses of the tool and the used programming languages.

4.2. Tool popularity (RQ2)

Tool popularity based on peer-reviewed literature. For each
tool, we searched the Peer-reviewed publications that mentioned
it. We found that only three Open Tracing Tools have been cited
by more than 10 papers: Zipkin 29 times, Jaeger 18 times, and
LightStep 10 times. The other considered tools have been cited
less than 10 times.

Tool popularity based on Online Media. Shown in Fig. 4, the
search results from three different technology-based social media
platforms, i.e., StackOverflow, Medium, and DZone on each tool
reflect their varied popularity.

First of all, Splunk, among the 30 tools, is the most popu-
lar considering the collective volume of the textual data from
the three sources. The second and third most popular tools are
Haystack and Sentry, which have similar levels of data volume
compared to Splunk. New Relic and Datadog are also considerably
popular and rank at 4th and 5th. However, the tools from 6th to
10th, i.e., Zipkin, Jaeger, OpenTelemetry, Dynatrace, and AppDy-
namics have only no more than 1/3 of data volume compared
to the top ones. Furthermore, the bottom 20 tools have very

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

l
i
a

t
o
o
m
q
o
d
t
a
l

4

i
t
l

s

d
e
p
s

Table 5
Features about interoperability (RQ1).

Tool API O
pe

nT
el
em

et
ry

su
pp

or
t

Se
lf-

ho
st
in
g

Appdash ✕(AppDash, 2023a)
AppDynamics ✕(AppDynamics, 2022h) ✕(AppDynamics, 2022i) ✕(AppDynamics, 2022j)
Containiq ✕(ContainIQ, 2023a) ✕(ContainIQ, 2023d)
Datadog ✕(Datadog, 2022g) ✕(Datadog, 2022h)
Dynatrace ✕(Dynatrace, 2023a) ✕(Dynatrace, 2023h) ✕(Dynatrace, 2023d)
ElasticAPM ✕(Elastic, 2022f) ✕(Elastic, 2022g) ✕

Grafana tempo ✕(Tempo, 2023e) ✕(Tempo, 2023d)
Honeycomb.io ✕(Honeycomb.io, 2023c) ✕(Honeycomb.io, 2023f)
Hypertrace ✕(Hypertrace, 2023c)
Haystack ✕(Haystack, 2023f)
Instana ✕(Instana, 2022a) ✕(IBM, 2022b) ✕(IBM, 2022c)
Jaeger ✕(Jaeger contributors, 2022a) ✕(Jaeger contributors, 2022c) ✕

Kamon ✕(Kamon, 2023a) ✕(Kamon, 2023g)
LightStep ✕(Lightstep, 2022a) ✕(Lightstep, 2022d) ✕(Lightstep, 2022b)
Logit.io ✕(Logit.io, 2023c) ✕(Kamon, 2023d)
Lumigo ✕(Lumigo, 2023e)
New Relic ✕(Relic, 2023c) ✕(Relic, 2023d)
Ocelot ✕(Novatec Consulting, 2022a) ✕

Opencensus ✕(OpenCensus, 2023a) ✕

OpenTelemetry ✕ ✕

Sentry ✕(Sentry, 2023a) ✕(Sentry, 2023e) ✕(Sentry, 2023g)
Splunk ✕(Splunk, 2023d) ✕(Sentry, 2023h)
SkyWalking ✕(Apache Skywalking contributors, 2022f) ✕b (Apache Skywalking contributors, 2022c) ✕

Site24 × 7 ✕(Site24x7, 2023a) ✕c (Site24x7, 2023g)
Signoz ✕(SigNoz, 2023d)
StageMonitor ✕(Stagemonitor contributors, 2022a) ✕

Tanzu ✕(Wavefront, 2022d) ✕(Wavefront, 2022c)
Uptrace ✕(UpTrace, 2023b)
Victoriametrics ✕(VictoriaMetrics, 2023a) ✕d (VictoriaMetrics, 2023e)
Zipkin ✕(Zipkin contributors, 2022e) ✕a ✕

aOpenTelemetry data can be exported to Zipkin Zipkin contributors (2022c).
bMetrics can be reported to the OpenTelemetry receiver or imported using OpenTelemetry exporter; Traces and logs are not supported.
cSite24 × 7’s support for OpenTelemetry is currently in development.
dOpenTelemetry support is requested within an issue.
imited social media coverage and have at best about 300 articles
n all three sources. There are 14 tools having no more than 100
rticles/posts in total.
In Fig. 4, we reported the social media content distribution for

he 30 retrieved tools. As we can see, 10 out of 30 take up 90.2%
f the articles of all the tools (Fig. 4). However, when checking the
btained data volume for each tool, we found only 10 tools have
ore than 600 data points (Naushan, 2020). The discussion fre-
uency (number of questions or answers each month) of each tool
n Stack Overflow shows that only the selected tools have been
rawing noticeable attention (shown in Fig. 5). Unfortunately, 6
ools (i.e., ContainIQ, Hypertrace, Logit.io, Lumigo, OpenCensus
nd Sentry.io) did not provide available data points. The reason is
ikely due to the lack of discussion and their limited popularity.

.3. Benefit and issues (RQ3 and RQ4)

According to the social media content distribution described
n Fig. 4, we proceeded to answer to RQ3 and RQ4 only for the
ools with sufficient data (as explained in Section 3.3). The final
ist is reported in Table 6.

Following the approach described in Section 3, here we de-
cribe the obtained results for each step.
Step 1: Preprocessing. We pre-processed the crawled textual

ata by retaining only the natural language sentences. Herein we
liminated unnecessary content, such as the source code, URLs,
ublishing date and author info, etc. For Medium articles, we
tarted eliminating the heading of the article that includes the
10
Table 6
The 10 tools considered for RQ3 and RQ4 .
Tool name Web site

AppDynamics https://www.AppDynamics.com
Datadog https://www.Datadoghq.com/
Dynatrace https://www.Dynatrace.com/
Haystack https://www.Haystackteam.com/
Jaeger https://www.Jaegertracing.io
New Relic https://opensource.newrelic.com/
OpenTelemetry https://opentelemetry.io/
Sentry https://Sentry.io/
Splunk https://dev.Splunk.com/
Zipkin https://zipkin.io

publishing date and author info by splitting the string at the
common last character of the part ‘‘min read’’ and selecting the
later part. Subsequently, we used the sentence tokenizer from the
Natural Language Toolkit (NLTK)18 to obtain the list of sentences
from each article. As the tokenizer does not identify the source
code or URLs, we eliminated them by selecting only the sentences
ending with a period, an exclamation mark, or a question mark.

First, we crawled data from social media, including, Stack-
Overflow (16223 questions and 17811 answers), Medium (2028
articles), and Dzone (1 623 posts). We used langdetect Python
package.19 to filter the non-English texts and obtained 37685

18 http://www.nltk.org/
19 https://pypi.org/project/langdetect/

https://www.AppDynamics.com
https://www.Datadoghq.com/
https://www.Dynatrace.com/
https://www.Haystackteam.com/
https://www.Jaegertracing.io
https://opensource.newrelic.com/
https://opentelemetry.io/
https://Sentry.io/
https://dev.Splunk.com/
https://zipkin.io
http://www.nltk.org/
https://pypi.org/project/langdetect/

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

Fig. 4. Social media content distribution (RQ2).

Fig. 5. The latest discussion frequency on stack overflow for each tool.

11

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793
Fig. 6. Testing informative text classifier accuracy (RQ3 and RQ4).
text data points, including 17572 StackOverflow questions and
16079 answers, 1 790 Medium articles and 1623 Dzone posts.
Furthermore, we filter the source code and html markdowns
from each text using adapted html2text package.20 We obtained
338070 sentences using the NLTK sentence tokenizer (Stack-
Overflow questions: 110524, answers: 65038, Medium: 65632,
Dzone: 106876).

Step 2: Filtering. Herein, we identified the informative sen-
tences using a Naïve Bayes (NB) classifier and the Expectation
Maximization for Naïve Bayes (EMNB) classifier (Nigam et al.,
2000). The selection shall be based on the accuracy comparison
of these two classifiers with the obtained dataset. First, we man-
ually labeled a sufficient number of training data including 50%
informative sentences and 50% half non-informative ones. The
selection criteria of informative sentences are that the sentence
must explicitly present: (1) the benefits/features of the tools or
(2) the issues of the tools. With an increasing number of training
and testing data, the two classifiers shall be respectively trained
and compared with the F1-score using a 5-fold cross validation.

In this study, from the 338070 sentences obtained previously,
we manually selected 3000 training data, including 1500 infor-
mative sentences and 1500 non-informative ones. To evaluate
the performance of informativeness filtering, with a series of
experiments, we compared the results of the NB algorithm and
the EMNB algorithm with 3000 training data. We inspected the
accuracy comparison of the two classifiers with different amounts
of data starting from 200 to 3000 with an incremental step of
20. The test data ratio is set as default (0.25). Fig. 6 shows that
with the given training data, NB performs better than EMNB with
the accuracy can reach as high as 0.76. Thus, we adopted the
NB classifier for filtering the informative sentences. Using the
classifier trained by the 3000 training data, we obtained 158219
informative sentences.

Step 3: Topic Modeling. To detect the topics of a set of text
using an LDA topic modeling approach (Blei et al., 2003), a num-
ber of preprocessing steps are required, which include: removing
punctuation, removing extra space, restoring the word to its root
form (lemmatization), remove stopwords, and build the bigram
and trigram models.

Furthermore, to find the best topic number for each review
subset, we conducted a series of experiments for each set testing

20 https://pypi.org/project/html2text/
12
with the topic numbers ranging from 2 to 40. We used topic
coherence to represent the quality of the topic models. Topic
coherence measures the degree of semantic similarity between
high scoring words in the topic. A high coherence score for a topic
model indicates the detected topics are more interpretable. Thus,
by finding the highest topic coherence score, we can decide the
most fitting topic number. Herein, we use c_v coherence measure,
which is based on a sliding window, one-set segmentation of
the top words, and an indirect confirmation measure that uses
normalized pointwise mutual information (NPMI) and the cosine
similarity (Syed and Spruit, 2017). Note that we pick the model
that has the highest c_v value before flattening out or a major
drop, in order to prevent the model from over-fitting.

Shown in Fig. 7, we built topic models using LDA with the
number of topics from 2 to 20 for text data. A clear turning point
from the local highest value is at 6. It is possible the coherence
score reaches even higher when selecting topic numbers larger
than 20. However, such a phenomenon is caused by the over-
fitting models and shall be ignored. Thus, the topic number was
determined as 6.

Therefore, with the LDA topic model, we detected the 6 topics
as follows: based on the allocated keywords in probability order,
together with the overall term frequency as a reference, two
domain experts synthesized their interpretation of the topics. The
extracted topics are: Usability, Development, Architecture, Tracing,
Measurement, Deployment & Integration.

The list of topics and the according lists of indicator keywords
are shown in Table 7.

Step 4: Topic Mapping. With the obtained LDA topic model,
we then mapped each of the informative sentences to one of the
topics to which it was most likely related. Shown in Fig. 8, the
numbers of topic-related sentences from the articles on each tool
are summarized. Compared with Fig. 4, the number of informative
sentences for each tool correlated to that of the article crawled
proportionally. To be noted, we obtained much fewer informative
sentences on Haystack than Splunk although they have a similar
amount of article-level data points. The reason is that ‘‘needle in
a Haystack’’ is a classic algorithm problem metaphor for ‘‘check-
ing a string contains another string’’, which has drawn heated
discussion in StackOverflow. Meanwhile, ‘‘Haystack’’ can also be
linked to the modular search for Django.21 All such texts should

21 http://Haystacksearch.org/

https://pypi.org/project/html2text/
http://Haystacksearch.org/

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793
Fig. 7. Topic number detection (RQ3 and RQ4).
+
–

i
T

t
a
t
n
a

Table 7
Topic interpretation with indicator keywords (RQ3 and RQ4).
Topic Indicator keywords

Usability ’user’, ’support’, ’developer’, ’security’, ’build’,
’performance’, ’production’, ’design’, ’use’,
’need’, etc.

Development ’spring’, ’team’, ’software’, ’development’,
’implement’, ’issue’, ’develop’, ’time’, ’handle’,
’process’, etc.

Architecture ’architecture’, ’distribute’, ’scale’, ’observability’,
’business’, ’customer’, ’solution’, ’pattern’,
’release’, ’feature’, etc.

Tracing ’trace’, ’source’, ’code’, ’framework’, ’message’,
’open’, ’follow’, ’alert’, ’spring_boot’,
’transaction’, etc.

Measurement ’microservice’, ’application’, ’request’, ’log’, ’use’,
’event’, ’metric’, ’server’, ’kubernete’, ’api’, etc.

Deployment & Integration ’application’, ’service’, ’monitor’, ’cloud’,
’deploy’, ’deployment’, ’infrastructure’,
’integration’, ’manage’, ’environment’, etc.

have been classified as ‘‘non-informative’’. Displayed in Fig. 8
Deployment & Integration is the most dominant topic for Datadog
and New Relic. For some other tools, e.g., Haystack, Dynatrace and
AppDynamics, Usability topic is concerned the most.

Step 5: Opinion Mining. Using the VADER method (Gilbert
and Hutto, 2014), we can assess the sentiment of each infor-
mative sentence and furthermore the overall sentiment of each
tool in terms of each topic. Herein, we take into account the
percentage of positive, neutral, and negative sentences without
considering the according sentiment strength. The percentage
sentences in different sentiments for each tool on each topic is
shown in Fig. 9. To determine the benefits and issues in terms
of each extracted aspect, i.e., topic, we compared each set of
sentiment percentages to the average sentiment percentage of all
sentences.

Shown in Table 8, the percentage of the different sentiments
for each tool was used as the reference. Therefore, we determined
each topic for each tool being either a benefit, an issue, or a
neutral opinion according to the following criteria.

• If the percentage of positive sentences is higher than aver-
age and the percentage of negative ones lower than average,
the topic is considered as a benefit for the tool.
 c

13
Table 8
Topic sentiment average percentage for each tool (RQ3 and RQ4).
Tool Positive Neutral Negative

AppDynamics 47.4% 36.6% 16.0%
Datadog 43.3% 42.2% 14.6%
Dynatrace 45.7% 39.7% 14.6%
Haystack 38.0% 40.3% 21.7%
Jaeger 40.8% 46.6% 12.6%
New Relic 32.5% 47.4% 20.1%
OpenTelemetry 41.9% 46.2% 11.9%
Sentry 30.8% 36.6% 32.6%
Splunk 44.7% 40.1% 15.2%
Zipkin 41.1% 45.8% 13.1%

Table 9
Benefits and issues for each tool regarding topics (RQ3 and RQ4).

Criteria Ap
pD

yn
am

ic
s

D
at
ad

og

D
yn

at
ra
ce

H
ay

st
ac
k

Ja
eg

er

N
ew

Re
lic

O
pe

nT
el
em

et
ry

Se
nt
ry

Sp
lu
nk

Zi
pk

in

Architecture + + + + + + + + + +
Deployment & Integration + + +
Development – – – – – –
Measurement – – – – – – – – – –
Tracing – – – –
Usability + + + + + + +
Benefit.
Issue.

• If the percentage of positive sentences is lower than average
and the percentage of negative ones higher than average, the
topic is considered as an issue for the tool.

• For any other circumstances, the topic is considered dis-
puted.

Thus, according to the criteria, the according benefits and
ssues for each tool in terms of the topics can be summarized as
able 9, which answers RQ3 and RQ4.
We want to point out, that the ‘‘benefits’’ and ‘‘issues’’ ob-

ained through the analysis of sentiments and discussion topics
re complementary to the distinctive features of each tool (RQ1):
he actual benefit or issue of using a tool in a given environment
eeds to be decided to know the context and the requirements of
given project. The benefits and issues identified in this section
omplement the picture and want to advise the practitioner that

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

t
e
s
t
m
s
w
t

o
t
e
o
d
m
m
C
t
f
i
L

r

Fig. 8. Topic frequency for each tool (RQ3 and RQ4).
Table 10
Sub-topic numbers for each topic of each tool.

Criteria Ap
pD

yn
am

ic
s

D
at
ad

og

D
yn

at
ra
ce

H
ay

st
ac
k

Ja
eg

er

N
ew

Re
lic

O
pe

nT
el
em

et
ry

Se
nt
ry

Sp
lu
nk

Zi
pk

in

Architecture 4 6 2 5 4 2 4 8 7 2
Deployment & Integration 3 3 6 6 2 4 5 2 3 6
Development 7 5 2 2 4 4 4 8 2 7
Measurement 3 3 6 4 4 2 6 2 3 3
Tracing 3 9 5 4 4 3 3 3 4 2
Usability 9 4 3 4 3 4 4 8 3 6

intends to use a given tool, to put particular care into the aspects
we identified.

To further investigate the benefits and issues of each selected
ool with details, we continued to use LDA topic modeling to
xtract the latent topics in each of the six criteria. For each
ubset of texts for each criterion of each tool (i.e., 6 topics × 10
ools = 60 subsets), We adopted the same ‘‘topic-modeling-and-
apping’’ procedure as previously described. By conducting the
ame experiments to find the best topic number for each subset,
e found the topic numbers (shown in Table 10 and trained the
opic model for each subset.

Same as the previous topic modeling step, we obtained a set
f keywords sorted by the relevance for each of the 60 sub-
opic. In addition, we used ChatGPT (OpenAI, 2023) to support the
ffective interpretation and summarization of the topics based
n these keywords. ChatGPT is an artificial intelligence chatbot
eveloped by OpenAI, which uses foundational large language
odels (LLMs) and is fine-tuned via supervised and reinforce-
ent learning techniques. Though a newly emerging technique,
hatGPT has quickly gained overwhelmingly world-wide atten-
ion from both industry and academia. Specifically, regarding the
acilitation of text summarization, many early-stage studies have
nvestigated the use of ChatGPT for such tasks (Yang et al., 2023;
uo et al., 2023).
Herein, for this topic extraction task, we adopted the newly

eleased GPT-4 model.22 Compared to the legacy GPT-3.5 model,

22 https://openai.com/product/gpt-4
14
the new model has much higher reasoning capacity and con-
ciseness. We initiate the topic extraction by entering a series of
structured requests formatted as follows.

‘‘Extract a short <MAIN TOPIC>-related topic for each of these lines
of keywords.

<1st LINE OF KEYWORDS>
...

<nth LINE OF KEYWORDS>’’

The replies received were also structured, corresponding to
the requests above as follows.

‘‘<1st TOPIC>: <Explanation>
...

<nth TOPIC>: <Explanation>’’

For the purpose of validation, the first author and third author
compare the AI-extracted topics and the original keyword lists.
The sub-topics of each of the subsets are summarized in Tables 11
and 12.

4.3.1. RQ3. What benefits are achieved by adopting Open Tracing
Tools?

The results, summarized in Table 9, show that all the se-
lected tools provide benefits in terms of Architecture based on
the collective opinions of practitioners. On the other hand, 7 of
the 10 tools, i.e., Datadog, Haystack, Jaeger, New Relic, Open-
Telemetry, Sentry, and Zipkin, are positively received in terms
of Usability. Haystack, Jaeger, and Sentry also receive positive
feedback regarding Deployment & Integration. However, in terms
of Development, Tracing, and Measurement, the opinions are more
neutral or negative for all tools. To be emphasized, it does not
mean none of these tools has any benefits for these aspects. It
shows that the practitioners reflect more on their issues than the
benefits regarding these aspects.

Furthermore, by adopting another round of topic modeling, we
further investigated each tool’s collectively positive and negative
opinions regarding each main topic. By doing so, we can intu-
itively compare each tool’s benefits in more detail. The benefits
of each tool summarized by the practitioners’ collective opinions
are shown in the green texts of Tables 11 and 12.

https://openai.com/product/gpt-4

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

c
c
s
n
s
p
a
a
a

Fig. 9. Topic sentiment for each tool (RQ3 and RQ4).
Architecture. Shown in the Table 9, all tools are considered
omparatively positively received, though some tools also re-
eived proportionally negative opinions on certain aspects. As
hown in Tables 11 and 12, AppDynamics is the only tool that has
o significant issues. Especially, considering the keywords of the
ub-topics, AppDynamics has the benefits regarding architecture
atterns and addressing the challenges of scaling, security, and
doption in microservice-based business applications by lever-
ging design principles, cloud technologies, and containerization,
s well as enhancing user experiences of mobile apps. Datadog
15
is considered to perform well for microservice architecture in
general and especially in tackling challenges and responsibilities
in building distributed software systems with DevOps and mon-
itoring tools. Comparatively, Jaeger is received more positively
in terms of the balancing cost and performance in managing
resources and complexity in large-scale enterprise deployments
and also the enhanced observability in a distributed microser-
vice architecture. Similarly, OpenTelemetry and Zipkin also have
benefits in building distributed observability solutions. Sentry

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793
Table 11
Sub-topics for each topic of each tool (Part 1).

Usability Development Architecture Tracing Measurement Deployment&Integration

AppD
ynam

ics

1) Tool production; 2)
User performance; 3)
App development
pipeline; 4) Downtime
reduction; 5) Security in
application architecture;
6) Flexible data
configuration; 7)
Microservice
implementation; 8)
Performance testing; 9)
Scalability and reliability;

1) Microservice
development; 2) Software
testing processes; 3)
Performance
troubleshooting; 4)
DevSecOps evolution; 5)
Monitoring tools in
DevOps; 6) Service
integration and
communication; 7)
Reducing load times and
costs;

1) Microservice
architecture patterns; 2)
Mobile app customer
experience; 3)
Cloud-based product
architecture; 4)
Observability in business
applications;

1) Distributed tracing in
microservices; 2) Alerting
and logging; 3)
Application performance
and transaction tracing;

1) API and microservice
metrics; 2) Measuring
database and transaction
performance; 3)
Application performance
monitoring;

1) Cloud and container
deployment; 2)
Application monitoring
and integration; 3)
Performance testing and
continuous integration;

D
atadog

1) Tool usability testing;
2) Performance
monitoring and
optimization; 3) Data
pipeline management;
Security and scalability
in development
environments;

1) DevOps and Team
Collaboration; 2)
Performance Issue
Management; 3)
Optimizing Kubernetes
Resource Usage; 4)
Automation in
Deployment Processes; 5)
Cloud-native Security
Testing;

1) Microservices
Architecture; 2) Latency
Optimization in
Distributed Tracing; 3)
API Reliability and
Observability; 4)
Scalability and
Observability in
Customer-focused
Services; 5)
Containerization and
Enterprise Growth; 6)
Resource Management in
High-Usage Environments

1) Integrating Tracing
Frameworks; 2)
Distributed Tracing 3)
Incident Notification and
Response; 4) Alert
Configuration and
Threshold Management;
5) Tracing in
Containerized
Environments; 6)
Open-source Event
Tracing with Prometheus;
7) Chaos Engineering and
Observability; 8) User
Request Tracing and
Performance Testing; 9)
Error Tracing and
Debugging in Kubernetes;

1) Kubernetes Metrics
and Logging; 2)
Measuring Service
Performance in
Microservices; 3)
Request-based Event
Measurement;

1) Cloud Deployment and
Performance Monitoring;
2) Chaos Engineering in
Multi-layer Monitoring;
3) Kubernetes
Deployment and Datadog
Integration;

D
ynatrace

1) Tool use and user
performance 2)
Performance management
in software development
3) Security and
continuous development

1) DevOps culture and
collaboration 2) Proactive
troubleshooting in
software development

1) Cloud and open
platform architectures 2)
High-performance
architecture for business
applications

1) Opentelemetry in
observability 2)
Distributed tracing for
optimizing response time
3) Automated alerting
and incident
management 4)
Microservices and
transaction tracing 5)
Open-source tracing tools
for performance analysis

1) Performance
measurement in
microservices 2)
Improving API
performance with test
metrics 3) Monitoring
and optimizing
end-to-end service
request time 4)
Cross-platform
performance
measurement 5) Log
analysis and event rate
limiting in distributed
systems 6) Enhancing
app performance with
load balancing and error
management

1) Deployment and
monitoring of enterprise
applications 2)
Comparing application
performance management
(APM) tools 3)
Cloud-native application
deployment and
integration 4) Load and
performance testing in
continuous integration 5)
Dynatrace for telemetry
and reporting 6)
Deployment and
monitoring with
Dynatrace

H
aystack

1) Enhancing Customer
Experience 2) Solving
Usability Problems 3)
Cybersecurity in Usability
4) Implementing Search
Indexes

1) Addressing Memory
Leaks and Performance
2) Improving Error
Handling and Search
Functionality

1) Scalability in Cloud
Architecture 2) Balancing
Performance and Security
in Enterprise Architecture
3) Enhancing Search
Capabilities in Modern
Applications 4)
Customer-centric
Architectures for
AI-powered Applications
5) Embracing
Microservices in Mobile
Application Development

1) Visualizing User
Interactions 2) Tracing
Code Execution and Error
Handling 3) Integrating
Elasticsearch and
Haystack for Enhanced
Search 4) Monitoring
Email and Alert Response
Times

1) Measuring API
Performance 2)
Evaluating Database
Search Efficiency 3)
Analyzing Server
Performance and Error
Impact 4) Monitoring
Microservices and
Application Metrics

1) Custom Service
Deployment Challenges
2) Integrating
Elasticsearch with Django
3) Optimizing Query
Performance 4) Validator
Integration and
Performance 5) Deploying
and Integrating Search
Functionality 6)
Monitoring and Scaling
Deployment in Hadoop
Environments

Jaeger

1) Enhancing user and
developer experience
with microservices 2)
Security and performance
in application
development 3) Efficient
software development

1) Memory management
and CPU control in
development
environments 2)
Streamlining the software
development lifecycle 3)
Building scalable,
cloud-native applications
4) Addressing challenges
in software development

1) Balancing cost and
performance in
cloud-native architecture
2) Evaluating integration
strategies and vendor
solutions in architectural
design 3) Achieving high
availability and scalability
in distributed data
services 4) Enhancing
observability in
distributed microservice
architectures

1) Implementing Jaeger
for performance
monitoring and tracing
2) Enhancing request
tracking in applications
3) Leveraging
open-source tracing tools
for distributed systems
4) Identifying and
addressing errors in
microservices

1) Analyzing end-to-end
communication in
service-based
architectures 2)
Evaluating application
performance with log
events and metrics 3)
Measuring
Kubernetes-based
microservices
performance 4) Assessing
distributed service
communication in
microservice architectures

1) Streamlining
cloud-native application
deployment 2)
Integrating and deploying
Jaeger with Kubernetes
for distributed tracing
has benefits on adaptable data architecture in terms of develop-
ing flexible data models and storage solutions to accommodate
changing customer needs and market demands while ensur-
ing seamless access and integration for developers and users,
community-driven frameworks for business applications towards
developing scalable and adaptable business applications with a
focus on observability, user experience, and seamless online inte-
gration, and automated build and release processes. Splunk is also
received positively for the development process for complex sys-
tems, leveraging agile methodologies and cross-functional teams
16
to effectively manage complex software projects and rapidly
adapt to changing industry requirements, as well as the opti-
mization of resource estimation in software development via
employing data-driven models and analytics to improve project
management, technology infrastructure, and resource allocation
for on-time, cost-effective software delivery.

Deployment & Integration. Regarding deployment and in-
tegration, many tools, e.g., AppDynamics, DataDog, Dynatrace,
receive positive opinions on cloud and container deployment

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793
Table 12
Sub-topics for each topic of each tool (Part 2).

Usability Development Architecture Tracing Measurement Deployment&Integration

N
ew

Relic

1) Enhancing tool
performance in
applications 2)
Simplifying error
resolution 3)
Streamlining
problem-solving with
New Relic 4) Optimizing
user experience in
real-time production
environments

1) Enhancing site
performance and error
handling 2) Monitoring
memory and CPU usage
for server optimization
3) Streamlining software
development with New
Relic 4) Identifying and
resolving performance
issues in applications

1) Optimizing app
architecture for high
scalability 2)
Implementing modern
architecture with New
Relic

1) Enhancing function
tracing with metrics 2)
Leveraging transaction
tracing for error
detection 3) Analyzing
page load times and
tracing issues with New
Relic

1) Monitoring application
performance with New
Relic metrics 2)
Identifying and resolving
error causes through
measurement

1) Enhancing application
performance with New
Relic and Azure
integration 2)
Streamlining large-scale
deployments with New
Relic 3) Ensuring smooth
deployment through
containerization and
team collaboration 4)
Integrating New Relic
agents for better
monitoring and alerting

O
penTelem

etry

1) Environment support
and health 2) Application
performance and
observability 3) End-user
management in cloud
architecture 4)
Open-source tools for
resource optimization

1) Cloud infrastructure
development 2) Adapting
to changing needs in
development 3)
Troubleshooting in
microservice architecture
4) Optimizing time and
cost in DevOps

1) Navigating change in
technology and
deployment 2) Scaling
microservice architecture
3) Leveraging
OpenTelemetry for
enhanced observability 4)
Building distributed
observability solutions

1) Enhancing user
experience with tracing
2) Adopting open-source
tracing tools 3)
Integrating Jaeger and
OpenTelemetry in data
collection

1) Monitoring distributed
microservices 2) Utilizing
OpenTelemetry exporters
for data collection 3)
Error management and
Opentelemetry metrics 4)
Comprehensive metric
collection in observability
5) Enhancing database
performance with tracing
6) Optimizing database
usage in microservices

1) Zero-downtime
deployment with Jaeger
and OpenTelemetry 2)
Open-source tools for
application testing and
deployment 3)
Streamlining cloud-native
application management
4) Monitoring AWS
services with custom
metrics 5) Adopting new
monitoring platforms for
enhanced observability

Sentry

1) Environment and
Usability 2) Developer
Tools 3) Error Resolution
4) API Integration 5)
Data Management 6)
Security Testing 7)
Performance Optimization
8) Scalable Security
Solutions

1) Efficient App
Development 2) Scrum
and Automation 3) Error
Handling in React
Applications 4) Memory
Management and
Debugging 5)
Device-Optimized
Development 6) Scalable
Infrastructure 7)
Collaborative
Development and
Security 8) Continuous
Integration and DevOps

1) Adaptable Data
Architecture 2) Scalable
and Resilient Table
Architecture 3)
Community-driven
Frameworks for Business
Applications 4) Secure
Data Management and
Analytics 5) Cloud-based
App Development 6)
Technology Selection and
Tracking 7)
Performance-driven
Solution Development 8)
Automated Build and
Release Processes

1) Real-time Function
Tracing 2) Error
Monitoring and
Communication 3)
Open-source Tracing and
Logging

1) Error Measurement
and Monitoring 2)
Performance Metrics in
API Services

1) Seamless Application
Deployment and
Integration 2) Scalable
Data Storage and
Management

Splunk

1) Streamlining
Continuous Deployment
2) Enhancing User
Experience 3) Balancing
Performance and Security

1) Optimizing Application
Performance 2)
Advancing Agile DevOps

1) Big Data and
High-Performance
Architecture 2)
Enhancing Observability
in Software Architectures
3) Handling Massive
Data Sets 4) Scalable
Enterprise DevOps 5)
Agile Development for
Complex Systems 6)
Building Robust and
Adaptable Applications 7)
Optimizing Resource
Estimation in Software
Development

1) Automated Alert and
Notification Systems 2)
Pinpointing Errors in
Complex Systems 3)
Open Source Tracing in
DevOps 4) Real-time
Data Visualization and
Monitoring

1) Evaluating Test
Efficiency 2) Monitoring
and Analysis of
Microservices 3)
Analyzing API and
Service Performance

1) Optimizing Test
Performance in
Deployment 2) Adapting
to Emerging Technologies
and Custom Workloads
3) Streamlining
Cloud-Based Application
Deployment and
Integration

Zipkin

1) Ensuring a healthy
build pipeline 2)
Organizational data
ownership 3) Scalability
and reliability in service
architecture 4) Defining
and measuring user
metrics 5) Microservice
support tools 6)
Managing production
aspects in service
environments

1) Centralized monitoring
tools 2) Exploring Spring
framework and graph
databases 3) Spring Boot
for fast microservice
development 4)
Troubleshooting
distributed microservices
5) Optimizing server and
application performance
6) Automating
development and
deployment in the cloud
7) Cross-functional team
collaboration in software
development

1) Observability in
distributed microservice
architecture 2) Scaling
data-driven applications

1) Error handling and
tracing in service
requests 2) Distributed
tracing with Jaeger in
Spring Boot applications

1) Monitoring and
measuring application
performance 2)
Measuring microservice
communication
performance 3) Assessing
microservice scalability
and resource usage

1) Cloud-based
microservice deployment
and monitoring 2)
Integrating RESTful
services in public and
private cloud
environments 3)
Simplifying cloud
application deployment
with Spring Boot and
JHipster 4) Testing and
monitoring microservices
in production 5)
Enhancing service
deployment with Istio
and Envoy sidecars 6)
Kubernetes and Docker
for streamlined
microservice deployment
in general. Especially, according to the topic keywords, AppDy-
namics leans more towards the benefit of managing secure and
efficient deployment of microservices in cloud-based and con-
tainerized infrastructure while Datadog focues on Streamlining
application testing, deployment, and integration in scalable cloud
environments to optimize the user experience. Dynatrace has the
benefit of automating and managing containerized services with
Kubernetes and continuous integration tools for secure, scalable,
and efficient infrastructure management. Haystack has benefits in
deploying and integrating search functionality. Jaeger, New Relic,
17
and Splunk also have the benefits of streamlining deployment
where Jaeger and New Relic are more praised for leveraging
Kubernetes, containerization, and serverless architectures for ef-
ficient infrastructure management while New Relic for utilizing
data from test reports, instance requests, and customer cases.
On the other hand, OpenTelemetry is received more positively
regarding leveraging Kubernetes, cloud vendors, and open-source
resources for managing services and environments, while en-
hancing integration and traceability in development workflows,
as well as Leveraging telemetry data and diverse software tools

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

f
e

or comprehensive infrastructure analysis while integrating with
xisting services and pipelines for seamless access and operation.
Development. Though shown in Table 9, many tools are re-

ceived negatively in terms of development, which does not mean
there are no positive aspects at all. For example, several tools
have benefits regarding DevOps and collaboration (Dynatrace and
DataDog), DevSecOps evolution (AppDynamics), and Advancing
Agile DevOps (Splunk). Specifically, based on the topic keywords,
many specific aspects of DevOps are considered the benefits
of these tools, including addressing security challenges, infras-
tructure management and cost optimization, automation tools,
and processes etc. Sentry and Zipkin also have the benefit of
collaborative development and security as well as scalability.
Furthermore, for Zipkin, its benefits also include centralized mon-
itoring tools, specifically concerning leveraging hardware and
software solutions for monitoring traffic, alerting, and simplifying
the management of logs and operational data in Azure-based
applications, as well as the use of the Spring Boot platform to
create efficient and scalable applications, with a focus on reactive
data management and extending software design goals.

Measurement. Similarly, several benefits can also be found
for each tool in the obtained sub-topics, though all tools are per-
ceived relatively negatively regarding measurement. Surprisingly,
for nearly all tools, monitoring and measuring the performance
of microservice architecture via application metrics, in general,
is still positively perceived. Especially, OpenTelemetry also has
benefits in the comprehensive metric collection in observability.
Haystack and Sentry also have the benefits of measuring API
performance.

Tracing. Regarding tracing, several tools have the benefits
of distributed tracing (e.g., AppDynamics and Zipkin) and trac-
ing for distributed systems (e.g., Jaeger). For these tools, using
open-source tracing frameworks for monitoring and visualizing
distributed microservices and enhancing observability and visu-
alization are the benefits. On the other hand, real-time function
tracing and real-time data visualization and monitoring are the
benefits of Sentry and Splunk. Specifically, they enable leveraging
free tools and alerts to trace function calls and state changes
in real-time, optimizing query execution and exception han-
dling, as well as interactive visualizations and tracking system
performance in real-time enabling proactive incident response.

Usability. Regarding usability aspect, many tools are per-
ceived more positively (shown in Table 9. For AppDynamics,
the benefits include tool production (enhancing developer pro-
ductivity through feature-rich development platforms) downtime
reduction (minimizing downtime, comparing and track system
health), and scalability and reliability. Several tools have benefits
regarding security, including AppDynamics, Datadog, Dynatrace,
Haystack, Jaeger, Sentry and Splunk. The reason for security topics
appearing under the usability aspect is likely due to the fact they
are commonly mentioned simultaneously. On the other hand,
DataDog has the benefit of tool usability testing (evaluating the
effectiveness of feature design and user experience in application
development) while Dynatrace also has the benefit of perfor-
mance management (ensuring and improving user experience
through end-to-end testing and performance monitoring in a
DevOps business environment). Similarly, New Relic, Sentry, and
Splunk are also perceived positively regarding tool performance
optimization (implementing new usability features in monitoring
tools to support end-user teams and improve customer expe-
rience through effective design and browser alerts) and man-
agement as well as the balancing between performance and
security (leveraging tools and best practices in DevOps and risk
management to maintain application security without sacrificing
performance or customer satisfaction).
18
4.3.2. RQ4. Do Open Tracing Tools introduce any issues?
Similarly, the issues introduced by each of the open tracing

tools are also shown in Table 9. We identify the issues from
the tools that received more negative opinions than positive
ones. Regarding Development, AppDynamics, Dynatrace, Jaeger,
Haystack, New Relic, and Sentry are perceived more negatively
than the average. For Tracing perspective, only Datadog, Dyna-
trace, New Relic, and Sentry are considered. Furthermore, all
tools are perceived slightly negatively regarding Measurement.
Similarly, by adopting another round of topic modeling, we can
further compare each tool’s issues with more details. The issues
of each tool summarized by the practitioners’ collective opinions
are shown in the red texts of Tables 11 and 12. Apparently, as
shown in the tables, it is likely there are still sub-topics that are
perceived positively in those aspects.

Architecture. Datadog is poorly perceived regarding latency
optimization in distributed tracing and resource management in
high-usage environments. Jaeger has issues regarding evaluating
integration strategies and vendor solutions and achieving high
availability and scalability in distributed data services. New Relic
and Zipkin also suffer from scalability-related issues regarding
app architecture optimization and data-driven applications. For
OpenTelemetry, the issue lies in navigating change in technol-
ogy and deployment, that is, exploring the impact of release
and deployment on observability, developer productivity, and
key technology advancements while supporting user experience
and tech leadership in API development. For Sentry, secure data
management and analytics is the issue, that is, utilizing modern,
open-source tools and APIs to develop secure, distributed data
management systems with powerful analytics capabilities, ensur-
ing efficient and safe handling of large-scale data across different
platforms. Splunk’s issues lie in big data and high-performance as
well as robustness and adaptability.

Deployment & Integration . Regarding deployment and in-
tegration, surprisingly, all tools have issues in deployment, in-
tegration and monitoring in general. Specifically, Jaeger has an
issue regarding deployment with Kubernetes for distributed trac-
ing. New Relic has issue in agents for monitoring and alerting.
OpenTelemetry falls short regarding zero-downtime deployment
when Sentry is perceived negatively regarding seamless applica-
tion deployment. Zipkin has issues in streamlined microservice
deployment and also in testing and monitoring microservices in
production.

Development. Regarding the development aspect, AppDy-
namics is perceived negatively on microservice development
(navigating the complexities of microservice applications to im-
prove team productivity, implement AI-powered operations, and
maintain a scalable and efficient development environment),
performance troubleshooting (monitoring memory usage, CPU,
and server metrics to identify, diagnose, and resolve performance
issues), service integration and communication (efficient ser-
vice integration, coordinated communication, and proactive issue
resolution in complex engineering environments), and reducing
load times and costs. Datadog has issues regarding Kubernetes
resource optimization and deployment process automation. Dy-
natrace and Zipkin have issues in proactive troubleshooting when
Haystack and New Relic are in error handling. Jaeger and Sen-
try are perceived negatively regarding memory management.
OpenTelemetry, Splunk and Zipkin also suffer from performance
optimization.

Measurement. In terms of measurement, AppDynamics suf-
fers from negative opinions on API and microservice metrics,
specifically about monitoring and aggregating API requests, user
interactions, and error logs to optimize microservice performance,
ensure reliability, and manage resource usage. Datadog has is-
sues regarding request-based event measurement, that is, ana-
lyzing response times, errors, and resource usage in Azure and

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

P
r
m
r
S
S
s
t
a
i
l
e

,

l
r

c
c
i
p
d
c
s
c
M
p
c

t
c
a
p
w

i
t
c

r
t
s
t

m
q
t
t
p
p
m
i
m
t
i
t
l
i
T
t
m
m
a

t
Z
p
Z
t
M
i
i
T
p
t
t
d
d
i
p

t
e
f
u
f
a
a
t
o
i
i
t
c
o
1
2
e
s
c

a

rometheus to optimize endpoint performance and user expe-
ience. Dynatrace is perceived negatively mainly on API perfor-
ance improvement with test metrics and log analysis and event

ate limiting in distributed systems. Haystack, New Relic, and
entry have issues in error management through measurement.
plunk also has issues in analyzing API and service performance,
pecifically, using real-time data, event logs, and query analysis
o monitor and improve the response times and reliability of APIs
nd other service endpoints in complex systems. Zipkin has issues
n monitoring and measuring application performance, analyzing
ogs and metrics at various levels to identify errors, and tracing
vents.
Tracing. Regarding the tracing aspect, error monitoring, and

handling is a common issue for many tools, e.g., Datadog,
Haystack, Jaeger, Sentry, and Zipkin. Meanwhile, both Datadog
and Splunk have issues with incident notifications and automated
alerts. AppDynamics has issues in performance and transaction
tracing, i.e., capturing and analyzing transaction data to identify
slow response times, execution bottlenecks, and other perfor-
mance issues in business applications. Dynatrace and New Relic
have issues in response time optimization and analysis.

Usability. Several tools have issues in app development and
data pipeline management, including AppDynamics, Datadog,
and Zipkin. The issues lie in the following aspects respectively:
streamlining app development and release processes to create
efficient, secure, and scalable applications using modern cod-
ing patterns and technologies; enhancing the usability of data
pipelines with access controls, pattern compliance, and
organization-wide sharing; complete audits and checks for cru-
cial application deployment plans, with a focus on security and
continuous production control. AppDynamics also has issues with
flexible data configuration and microservice adoption towards
system performance enhancement in general. Dynatrace, Haystack
Jaeger and Splunk are criticized for usability and user experi-
ence problems in general. New Relic has issues in simplifying
error resolution and streamlining problem-solving. OpenTeleme-
try has issues in environment support and health, specifically
about optimizing traceability in microservices for better team col-
laboration, ensuring security, and addressing problems through
policy changes in the production pipeline, while managing costs
and time. Sentry has issues with error resolution, specifically
proactive error detection, and simplified solutions.

5. Discussion

The analysis of the results revealed interesting insights that
et us distill a number of lessons and/or implications both for
esearchers and practitioners.

How to select a tool? Based on the comparative results, we
annot conclude that any of these tracing tool candidates is
learly better than the others. According to the results obtained
n our study, and specifically for RQ1, different Open tracing tools
rovide different features that suit users and organizations with
ifferent preferences. For example, users who value complete
ontrol over their data will more likely choose a self-hosted
olution; users who prefer a commercial solution with commer-
ial support, will choose a tool like AppDynamics or Datadog.
ost of the time, the availability of an agent or library for the
rogramming language used within the team will be a important
riteria to choose a specific tool.
Please note that questions about run-time behavior like

hroughput, resource usage, and performance impact are also of
oncern for engineers, but were not discussed in this paper. The
ctual run-time behavior of a given tool depends on the adopted
rogramming language, the context in which the observed soft-
are is deployed, and on the level of granularity with which data
19
s collected. We therefore suggest to first select tools based on
he required functionality and then to validate in the concrete
ontext, which tool satisfies more requirements.
We compared the 30 selected open tracing tools in details

egarding licensing, programming languages, deployment, usage,
he collected data, and interoperability. We hope that these re-
ults will ease the effort of the teams in selecting a tool according
o their needs.

Which tools are best for what? The outcome of opinion
ining from the gray literature (RQ3 and RQ4) shows the tools’
uality reflected by the practitioners in the six key aspects for
he 10 most popular tools. Therein, the results show that none of
hese tools are perceived positively in all aspects. Especially, the
ractitioners reflect more positive opinions on the architecture
erspective of all these tools; however, more negative on the
easurement perspective. To be emphasized, such results only

ndicate, for example, there are more negative opinions on tools’
easurement than positive. It does not mean the deficit in these

ools’ measurement quality. It is depending on the teams’ main
nterests and their criticality criteria that a selected tool can help
hem the most with its provided benefits. To be noted, it is highly
ikely there are certain amount of irrelevant data being taken
nto account due to the limitation in the data extraction strategy.
he filtering procedure shall help to eliminate the influence yet
he outcome can still contain distraction. Nonetheless, including
ore data sources, such as, forum posts, blogs, and tweets, and
ore facilitation from human expert shall enrich the opinion pool
nd further reduce the influence of irrelevant data.
Which tools are popular? We observed that the communi-

ies behind the analyzed tools differ significantly. In particular,
ipkin and Jaeger are the most cited tools in peer-reviewed
ublications, while Splunk, Haystack, Sentry, New Relic, Datadog,
ipkin, Jaeger, OpeneTelemetry, Dynatrace and AppDynamics are
he most discussed tools in the selected online media (RQ2).
oreover, the community behind Splunk is the most responsive

n term of questions answered in the online media channels
nvesting in supporting the community by creating posts and tags.
he other nine popular tools also have reasonably active sup-
orting communities responding to technical issues. To be noted,
here is a clear gap in terms of community discussion between
he top 10 popular tools and the other tools. However, it certainly
oes not reflect their quality or usefulness to the customers. The
ifference in popularity may result from marketing strategies,
nvestment in promotion, personal preferences, or simply the
sychology of conformity.
To be noted, the different expectation levels of the tool users

ogether with their various requirements can lead to the in-
vitable difference in their opinions. As the expectation of in-
ormation system users is ‘‘a set of beliefs held by the targeted
sers of an information system associated with the eventual per-
ormance and with their performance using the system (Szajna
nd Scamell, 1993)’’. The initial expectation is formed towards
particular product or service (in our case, tracing tools) by

he practitioners. After using the tool, they form the perception
f the quality. When such perceived quality is assessed accord-
ng to their expectation, the extent to which the expectation
s confirmed is determined (Bhattacherjee, 2001). The satisfac-
ion is formed based on the expectation and the corresponding
onfirmation. In this case, we assume the collective expectation
f the practitioners towards each tracing tool is equal, because
) the main feature of the tools can be seen as identical and
) we collected statistically representative amount of data to
ven the deviation. Therefore, we assume the collective perceived
entiment of the practitioners towards the tools can be directly
ompared regardless of the expectation factor.
What is still missing? It is difficult to identify the benefits

nd issues in details regarding each identified aspect using the

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

t
t
f
t
s
t
i
p
p

6

o
t
l
d
I
w
v

i
t
t
T
t
s

b
s
l
t
w
c
D
p
t
p
s
p
d
p
i
2

t
i
s
e
a
t
c
t
b
o
e
f
A
p
b
t
i

a
2
a

opic modeling and sentiment analysis method. Surveys and in-
erviews of the practitioners or domain expects shall facilitate the
urther investigation. On the other hand, it is also worthwhile
o investigate the in-depth reasons for the high popularity of
ome tools, e.g., Datadog and AppDynamics. Furthermore, from
he perspective of software evolution, it is also interesting to
nvestigate the changes of these tools over time in terms of the
rovided features, user perceived benefits and issues, and their
opularity.

. Threats to validity

Our paper might suffer from threats related to the inaccuracy
f the data extraction, a possible incomplete set of results due
o limitation of the search terms, bibliographic sources and gray
iterature search engine, and possible subjectivity related to the
efinition and the application of the exclusion/inclusion criteria.
n the this section, we discuss these threats and the strategies
e adopted to mitigate them, based on the standard checklist for
alidity threats proposed in Wohlin et al. (2012).
Construct validity. Construct validities are concerned with

ssues that to what extent the object of study truly represents
heory behind the study (Wohlin et al., 2012). The RQs and
he classification schema adopted might suffer of this threat.
o limit this threat, the authors reviewed independently and
hen discussed collaboratively RQs and the related classification
chema.
To be noted, such the NLP-based approach of detecting the

enefits and issues of open tracing tools (RQ3–RQ4) may fall
horts due to the potential data abundance. For some particu-
ar tools, e.g., Ocelot, SkyWalking and StageMonitor, the related
ext data is not sufficient compared to that of the other tools,
hich shall likely result in the lack of reliability in the related
onclusion. On the other hand, the selected data sources, such as,
zone and Medium, aim to introduce and promote emerging or
revailing technologies rather than to criticize them. As a result,
he number of texts with negative sentiment is far lower than
ositive or neutral ones. It is recommended to include more data
ources that covers the opinions from the forum end users who
rovide more unbiased comments and feedback. Furthermore,
ue to the limitation of LDA topic modeling on short texts, the
erformance of the approach can be further enhanced by adopt-
ng other techniques, such as the Biterm topic model (Cheng et al.,
014), which shall be included in the future work.
Internal Validity. The source selection approach adopted in

his work is described in Section 2. In order enable the replicabil-
ty of our work, we carefully identified and reported bibliographic
ources adopted to identify the peer-review literature, search
ngines, adopted for the gray literature, search strings as well
s inclusion and exclusion criteria. Possible issues in the selec-
ion process are related to the selection of search terms that
ould have lead to a non complete set of results. To mitigate
his risk, we applied a broad search string. This was possible
ecause of the novelty of the topic. To overcome the limitation
f the search engines, we queried the academic literature from
ight bibliographic sources, while we included the gray literature
rom Google, Medium Search, Twitter Search and Reddit Search.
dditionally, we applied a snowballing process to include all the
ossible sources. The application of inclusion and exclusion can
e affected by researchers’ opinion and experience. To mitigate
his threat, all the sources were evaluated by at least two authors
ndependently.

Conclusion validity. Conclusion validity is related to the reli-
bility of the conclusions drawn from the results (Wohlin et al.,
012). To ensure the reliability of our treatments, the terminology
dopted in the schema has been reviewed by the authors to avoid
20
ambiguities. All primary sources were reviewed by at least two
authors to mitigate bias in data extraction and each disagreement
was resolved by consensus, involving the third author.

External Validity. External validity is related to the general-
izability of the results of our multivocal literature review. In this
study, we map the literature on Open Tracing Tools, considering
both the academic and the gray literature. However, we cannot
claim to have screened all the possible literature, since some
documents might have not been properly indexed, or possibly
copyrighted or, even not freely available.

7. Related work

Among the literature, we identified only one study that – as a
primary research goal – compares tools to understand their suit-
ability in different contexts: Li et al. (2022) conduct an industrial
survey regarding the different adoption strategies of distributed
tracing tools. Covering ten different tools and ten different com-
panies, the study finds that the companies’ tracing and analysis
pipelines are similar and that companies choose different tools
based on different concerns and focuses caused by their company
size.

More often, researchers compare tracing tools in their state-of-
the-art section to point out a research gap and then propose their
own approach. For example, Bento et al. (2021) propose using
tracing data to extract service metrics, dependency graphs and
work-flows with the objective of detecting anomalous services
and operation patterns. Therein, the authors reflect on advantages
and disadvantages of the tools Jaeger and Zipkin and point out
their lack of automated analysis and processing functionality.
Along the same lines, Song et al. (2019) propose ASTracer, a
tracing tool for the Apache Hadoop23 distributed file system. The
authors point out the shortcomings of tracing tools like Zipkin,
Jaeger and Htrace,24 e.g., not considering the execution of differ-
ent call trees or not being able to adapt its sampling rate during
execution.

Some researchers discuss the use of a varying sampling rate
when collecting data so that a tool can collect more data when
a problem arises and fewer data otherwise. For example, Berg
et al. (2021) propose Snicket, a distributed tracing system, in
which database-style queries are used to express the analysis
the developer wants to perform on the trace data. This query
is then used to generate microservice extensions that intercept
the needed data. The authors compare tracing tools such as
Dapper (Sigelman et al., 2010), Jaeger, and Canopy (Kaldor et al.,
2017), and point out that they may miss important unusual trace
information with a uniform, up-front decided sampling rate. They
also mention LightStep, which prioritizes latest unusual traces
with dynamic tracing and sampling. Also Las-Casas et al. (2019)
propose Sifter, a general-purpose distributed tracing framework
that is able to adapt the sampling rate in case of anomalous and
outlier executions. Sifter integrates with X-Trace (Fonseca et al.,
2007), Jaeger and Zipkin to obtain tracing samples.

Another frequent type of paper is when researchers use trac-
ing tools to obtain traces, which are then used in their research.
For example, Gorige et al. (2020) propose a privacy risk detec-
tion framework based on distributed tracing, to identify privacy
and security risks in microservices. They use Jaeger to col-
lect the required data. Iurman et al. (2021) propose a unified
solution combining in-band telemetry (an approach to collect
data about the network state without affecting network per-
formance) and Application Performance Management. In their

23 https://hadoop.apache.org
24 http://htrace.org

https://hadoop.apache.org
http://htrace.org

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

s
l
P
b
i

t
a
a
c
t
g
m
i
(
T
h
t
g

8

a
e
b
b
s
t

e
w
t
f
a
t

C

L
S

D

c
t

D

A

b
n ’.
olution, Jaeger and other tracing tools can be used to col-
ect application level information. Avritzer et al. (2021b) propose
PTAM, a set of tools for performance testing and performance-
ased application monitoring. They also extend their approach
n Avritzer et al. (2021a) to detect performance anti-patterns.

In summary, within the identified literature, we observe that
racing tools are mentioned to (a) develop innovative tracing
pproaches or (b) to enhance existing tools, e.g., allowing an
daptive sampling rate. Moreover, often (c) researchers use the
ollected tracing data to obtain other research goals, e.g., iden-
ifying anti-patterns. Rarely, in fact we identified only one, a
eneral-purpose comparison of various tools available on the
arket is the research goal. Such information can be found often

n gray literature, such as blogs or online articles, e.g., Barker
2018), where Barker compares Zipkin, Jaeger, and Appdash.25

herefore, to obtain an overview over the available tools, a study
as to (1) systematically collect the tools discussed in the litera-
ure and (2) consider both white and gray literature. This research
ap is addressed in this paper.

. Conclusion

In this work, we compared 30 Open Tracing Tools identified by
dopting the Systematic Multivocal Literature Review process. For
ach tool, we investigated the measured features, the popularity
oth in peer-reviewed literature and online media, and derived
enefits and issues. Specially, we adopted topic modeling and
entiment analysis for topic extraction and analysis with ChatGPT
o support effective topic interpretation.

The achieved results provided interesting insights among the
leven tools investigated in this study. The deepest comparison
e conducted did not allow us to clearly identify a ‘‘silver bullet’’
ool for any usage. Each tool has different implications under dif-
erent conditions. Moreover, it is difficult to identify the benefits
nd issues in detail regarding each identified aspect using the
opic modeling and sentiment analysis method.

RediT authorship contribution statement

Andrea Janes: Study design, Data analysis, Writing. Xiaozhou
i: Data collection, Data analysis, Writing. Valentina Lenarduzzi:
upervision, Writing, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgments

The research presented in this article has been partially funded
y : the ‘‘Software Rejuvenation’’ project funded by Ulla Tuomi-
en Foundation by Academy of Finland project ‘‘MUFANO/349488’

25 https://github.com/sourcegraph/appdash
21
References

Apache SkyWalking, 2023. Agent. https://skywalking.apache.org/docs/#Agent.
(Accessed on 14 January 2023).

Apache SkyWalking contributors, 2022. Github repository of Apache SkyWalking.
https://github.com/apache/skywalking. (Accessed on 07 July 2022).

Apache Skywalking contributors, 2022a. Log collection and analysis. https://
skywalking.apache.org/docs/main/latest/en/setup/backend/log-analyzer/. (Ac-
cessed on 07 July 2022).

Apache Skywalking contributors, 2022b. Meter receiver. https://skywalking.
apache.org/docs/main/latest/en/setup/backend/backend-meter. (Accessed on
07 July 2022).

Apache Skywalking contributors, 2022c. OpenTelemetry receiver. https:
//skywalking.apache.org/docs/main/latest/en/setup/backend/opentelemetry-
receiver. (Accessed on 07 July 2022).

Apache Skywalking contributors, 2022d. Overview. https://skywalking.apache.
org/docs/main/v9.0.0/en/concepts-and-designs/overview. (Accessed on 07
July 2022).

Apache Skywalking contributors, 2022e. Overview . https://skywalking.apache.
org/docs/main/latest/en/concepts-and-designs/overview/. (Accessed on 07
July 2022).

Apache Skywalking contributors, 2022f. Protocol documentation. https://
skywalking.apache.org/docs/skywalking-banyandb/latest/api-reference. (Ac-
cessed on 07 July 2022).

Apache Skywalking contributors, 2022g. SkyWalking 9.x showcase. https://
skywalking.apache.org/docs/skywalking-showcase/latest/readme/. (Accessed
on 07 July 2022).

AppDash, 2023a. Github repository of AppDash. https://github.com/sourcegraph/
appdash. (Accessed on 11 January 2023).

AppDash, 2023b. Language support - Github repository of AppDash. https:
//github.com/sourcegraph/appdash#language-support. (Accessed on 11 Jan-
uary 2023).

Appdynamics, 2022a. Github repository of . https://github.com/Appdynamics.
(Accessed on 07 July 2022).

Appdynamics, 2022b. Agent installation by type. https://docs.appdynamics.com/
appd/22.x/latest/en/application-monitoring/install-app-server-agents#id-
.InstallAppServerAgentsv22.1-AgentInstallationbyType. (Accessed on 07 July
2022).

AppDynamics, 2022c. Architecture. https://docs.appdynamics.com/display/
PRO14S/Architecture. (Accessed on 07 July 2022).

AppDynamics, 2022d. Getting started. https://docs.appdynamics.com/appd/22.x/
latest/en/appdynamics-essentials/getting-started. (Accessed on 07 July 2022).

AppDynamics, 2022e. What is distributed tracing? https://www.appdynamics.
com/topics/distributed-tracing. (Accessed on 07 July 2022).

AppDynamics, 2022f. Extensions and custom metrics. https://docs.appdynamics.
com/appd/21.x/21.7/en/infrastructure-visibility/machine-agent/extensions-
and-custom-metrics. (Accessed on 07 July 2022).

AppDynamics, 2022g. Log analytics. https://www.appdynamics.com/product/
how-it-works/application-analytics/log-analytics. (Accessed on 07 July
2022).

AppDynamics, 2022h. AppDynamics APIs. https://docs.appdynamics.com/appd/
21.x/21.7/en/extend-appdynamics/appdynamics-apis. (Accessed on 07 July
2022).

AppDynamics, 2022i. AppDynamics for OpenTelemetry. https://www.
appdynamics.com/product/opentelemetry. (Accessed on 07 July 2022).

AppDynamics, 2022j. Get started with AppDynamics on-premise. https://
docs.appdynamics.com/display/PRO39/Get+Started+with+AppDynamics+On-
Premise. (Accessed on 07 July 2022).

Avritzer, A., Britto, R., Trubiani, C., Russo, B., Janes, A., Camilli, M., van Hoorn, A.,
Heinrich, R., Rapp, M., Henß, J., 2021a. A multivariate characterization
and detection of software performance antipatterns. In: Proceedings of the
ACM/SPEC International Conference on Performance Engineering. ICPE ’21,
Association for Computing Machinery, New York, NY, USA, pp. 61–72.

Avritzer, A., Camilli, M., Janes, A., Russo, B., Jahič, J., Hoorn, A.v., Britto, R.,
Trubiani, C., 2021b. PPTAMλ: What, where, and how of cross-domain scala-
bility assessment. In: 2021 IEEE 18th International Conference on Software
Architecture Companion. ICSA-C, pp. 62–69.

Barker, D., 2018. 3 open source distributed tracing tools. https://opensource.com/
article/18/9/distributed-tracing-tools. (Accessed on 07 July 2022).

Basili, V.R., Caldiera, G., Rombach, H.D., 1994. The Goal Question Metric
Approach. In: Encyclopedia of Software Engineering, John Wiley & Sons.

Basili, V.R., Trendowicz, A., Kowalczyk, M., Heidrich, J., Seaman, C., Münch, J.,
Rombach, D., 2014. Aligning organizations through measurement: The
GQM+Strategies approach. The Fraunhofer IESE Series on Software and
Systems Engineering, Springer International Publishing.

Bento, A., Correia, J., Filipe, R., Araujo, F., Cardoso, J., 2021. Automated analysis
of distributed tracing: Challenges and research directions. J. Grid Comput.
19 (1), 1–15.

Berg, J., Ruffy, F., Nguyen, K., Yang, N., Kim, T., Sivaraman, A., Netravali, R.,
Narayana, S., 2021. Snicket: Query-driven distributed tracing. In: ACM
Workshop on Hot Topics in Networks. pp. 206–212.

https://github.com/sourcegraph/appdash
https://skywalking.apache.org/docs/#Agent
https://github.com/apache/skywalking
https://skywalking.apache.org/docs/main/latest/en/setup/backend/log-analyzer/
https://skywalking.apache.org/docs/main/latest/en/setup/backend/log-analyzer/
https://skywalking.apache.org/docs/main/latest/en/setup/backend/log-analyzer/
https://skywalking.apache.org/docs/main/latest/en/setup/backend/backend-meter
https://skywalking.apache.org/docs/main/latest/en/setup/backend/backend-meter
https://skywalking.apache.org/docs/main/latest/en/setup/backend/backend-meter
https://skywalking.apache.org/docs/main/latest/en/setup/backend/opentelemetry-receiver
https://skywalking.apache.org/docs/main/latest/en/setup/backend/opentelemetry-receiver
https://skywalking.apache.org/docs/main/latest/en/setup/backend/opentelemetry-receiver
https://skywalking.apache.org/docs/main/latest/en/setup/backend/opentelemetry-receiver
https://skywalking.apache.org/docs/main/latest/en/setup/backend/opentelemetry-receiver
https://skywalking.apache.org/docs/main/v9.0.0/en/concepts-and-designs/overview
https://skywalking.apache.org/docs/main/v9.0.0/en/concepts-and-designs/overview
https://skywalking.apache.org/docs/main/v9.0.0/en/concepts-and-designs/overview
https://skywalking.apache.org/docs/main/latest/en/concepts-and-designs/overview/
https://skywalking.apache.org/docs/main/latest/en/concepts-and-designs/overview/
https://skywalking.apache.org/docs/main/latest/en/concepts-and-designs/overview/
https://skywalking.apache.org/docs/skywalking-banyandb/latest/api-reference
https://skywalking.apache.org/docs/skywalking-banyandb/latest/api-reference
https://skywalking.apache.org/docs/skywalking-banyandb/latest/api-reference
https://skywalking.apache.org/docs/skywalking-showcase/latest/readme/
https://skywalking.apache.org/docs/skywalking-showcase/latest/readme/
https://skywalking.apache.org/docs/skywalking-showcase/latest/readme/
https://github.com/sourcegraph/appdash
https://github.com/sourcegraph/appdash
https://github.com/sourcegraph/appdash
https://github.com/sourcegraph/appdash#language-support
https://github.com/sourcegraph/appdash#language-support
https://github.com/sourcegraph/appdash#language-support
https://github.com/Appdynamics
https://docs.appdynamics.com/appd/22.x/latest/en/application-monitoring/install-app-server-agents#id-.InstallAppServerAgentsv22.1-AgentInstallationbyType
https://docs.appdynamics.com/appd/22.x/latest/en/application-monitoring/install-app-server-agents#id-.InstallAppServerAgentsv22.1-AgentInstallationbyType
https://docs.appdynamics.com/appd/22.x/latest/en/application-monitoring/install-app-server-agents#id-.InstallAppServerAgentsv22.1-AgentInstallationbyType
https://docs.appdynamics.com/appd/22.x/latest/en/application-monitoring/install-app-server-agents#id-.InstallAppServerAgentsv22.1-AgentInstallationbyType
https://docs.appdynamics.com/appd/22.x/latest/en/application-monitoring/install-app-server-agents#id-.InstallAppServerAgentsv22.1-AgentInstallationbyType
https://docs.appdynamics.com/display/PRO14S/Architecture
https://docs.appdynamics.com/display/PRO14S/Architecture
https://docs.appdynamics.com/display/PRO14S/Architecture
https://docs.appdynamics.com/appd/22.x/latest/en/appdynamics-essentials/getting-started
https://docs.appdynamics.com/appd/22.x/latest/en/appdynamics-essentials/getting-started
https://docs.appdynamics.com/appd/22.x/latest/en/appdynamics-essentials/getting-started
https://www.appdynamics.com/topics/distributed-tracing
https://www.appdynamics.com/topics/distributed-tracing
https://www.appdynamics.com/topics/distributed-tracing
https://docs.appdynamics.com/appd/21.x/21.7/en/infrastructure-visibility/machine-agent/extensions-and-custom-metrics
https://docs.appdynamics.com/appd/21.x/21.7/en/infrastructure-visibility/machine-agent/extensions-and-custom-metrics
https://docs.appdynamics.com/appd/21.x/21.7/en/infrastructure-visibility/machine-agent/extensions-and-custom-metrics
https://docs.appdynamics.com/appd/21.x/21.7/en/infrastructure-visibility/machine-agent/extensions-and-custom-metrics
https://docs.appdynamics.com/appd/21.x/21.7/en/infrastructure-visibility/machine-agent/extensions-and-custom-metrics
https://www.appdynamics.com/product/how-it-works/application-analytics/log-analytics
https://www.appdynamics.com/product/how-it-works/application-analytics/log-analytics
https://www.appdynamics.com/product/how-it-works/application-analytics/log-analytics
https://docs.appdynamics.com/appd/21.x/21.7/en/extend-appdynamics/appdynamics-apis
https://docs.appdynamics.com/appd/21.x/21.7/en/extend-appdynamics/appdynamics-apis
https://docs.appdynamics.com/appd/21.x/21.7/en/extend-appdynamics/appdynamics-apis
https://www.appdynamics.com/product/opentelemetry
https://www.appdynamics.com/product/opentelemetry
https://www.appdynamics.com/product/opentelemetry
https://docs.appdynamics.com/display/PRO39/Get+Started+with+AppDynamics+On-Premise
https://docs.appdynamics.com/display/PRO39/Get+Started+with+AppDynamics+On-Premise
https://docs.appdynamics.com/display/PRO39/Get+Started+with+AppDynamics+On-Premise
https://docs.appdynamics.com/display/PRO39/Get+Started+with+AppDynamics+On-Premise
https://docs.appdynamics.com/display/PRO39/Get+Started+with+AppDynamics+On-Premise
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb22
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb23
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb23
https://opensource.com/article/18/9/distributed-tracing-tools
https://opensource.com/article/18/9/distributed-tracing-tools
https://opensource.com/article/18/9/distributed-tracing-tools
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb25
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb25
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb25
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb26
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb26
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb26
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb26
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb26
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb26
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb26
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb27
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb28
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb28
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb28
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb28
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb28

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

B

B

B

B

C

C

C

C

C

C

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

E

E

E

E

E

E

E

hattacherjee, A., 2001. Understanding information systems continuance: An
expectation-confirmation model. MIS Q. 351–370.

lei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022.

ritish Computer Society and Royal Academy of Engineering (Great Britain),
2004. The Challenges of Complex IT Projects: The Report of a Working Group
from the Royal Academy of Engineering and the British Computer Society.
Royal Academy of Engineering.

rooks, 1987. No silver bullet essence and accidents of software engineering.
Computer 20 (4), 10–19.

heng, X., Yan, X., Lan, Y., Guo, J., 2014. Btm: Topic modeling over short texts.
IEEE Trans. Knowl. Data Eng. 26 (12), 2928–2941.

ontainIQ, 2023a. Automatic instrumentation and OpenTelemetry | Tutorial.
https://www.containiq.com/post/auto-instrumentation-and-opentelemetry.
(Accessed on 12 January 2023).

ontainIQ, 2023b. ContainIQ overview. https://docs.containiq.com/containiq-
overview. (Accessed on 12 January 2023).

ontainIQ, 2023c. Github repository of ContainIQ. https://github.com/containiq/
containiq-deployment. (Accessed on 11 January 2023).

ontainIQ, 2023d. Requirements. https://docs.containiq.com/requirements. (Ac-
cessed on 12 January 2023).

ontainIQ, 2023e. Using ContainIQ. https://docs.containiq.com/using-containiq#
osSa5. (Accessed on 11 January 2023).

ataDog, 2022a. Github repository of DataDog. https://github.com/DataDog.
(Accessed on 07 July 2022).

atadog, 2022b. Set up datadog APM. https://docs.datadoghq.com/tracing/setup_
overview. (Accessed on 07 July 2022).

atadog, 2022c. Getting started. https://docs.datadoghq.com/getting_started/.
(Accessed on 07 July 2022).

atadog, 2022d. Distributed tracing overview. https://www.datadoghq.com/
knowledge-center/distributed-tracing/. (Accessed on 07 July 2022).

atadog, 2022e. Metrics. https://docs.datadoghq.com/metrics/. (Accessed on 07
July 2022).

atadog, 2022f. Visualize key log metrics. https://www.datadoghq.com/dg/logs/
log-metrics/. (Accessed on 07 July 2022).

atadog, 2022g. API reference. https://docs.datadoghq.com/api/latest. (Accessed
on 07 July 2022).

atadog, 2022h. OpenTelemetry and OpenTracing. https://docs.datadoghq.com/
tracing/setup_overview/open_standards/. (Accessed on 07 July 2022).

ataDog, 2023. Auto instrumentation. https://www.datadoghq.com/auto-
instrumentation/. (Accessed on 12 January 2023).

ynatrace, 2023a. Applications API. https://www.dynatrace.com/support/help/
dynatrace-api/environment-api/topology-and-smartscape/applications-api.
(Accessed on 12 January 2023).

ynatrace, 2023b. Distributed traces. https://www.dynatrace.com/support/help/
how-to-use-dynatrace/diagnostics/diagnostic-distributed-traces. (Accessed
on 12 January 2023).

ynatrace, 2023c. Github repository of Dynatrace. https://github.com/Dynatrace.
(Accessed on 11 January 2023).

ynatrace, 2023d. Hosted self-monitoring environment. https://www.dynatrace.
com/support/help/setup-and-configuration/dynatrace-managed/self-
monitoring/hosted-self-monitoring. (Accessed on 12 January 2023).

ynatrace, 2023e. Instrument your service with OpenTelemetry. https:
//www.dynatrace.com/support/help/extend-dynatrace/opentelemetry/
opentelemetry-traces/opentelemetry-ingest#instrument-service. (Accessed
on 11 January 2023).

ynatrace, 2023f. Log management and analytics. https://www.dynatrace.
com/support/help/how-to-use-dynatrace/log-management-and-analytics.
(Accessed on 12 January 2023).

ynatrace, 2023g. Metrics. https://www.dynatrace.com/support/help/how-to-
use-dynatrace/metrics. (Accessed on 12 January 2023).

ynatrace, 2023h. Send data to dynatrace with OpenTelemetry. https://www.
dynatrace.com/support/help/extend-dynatrace/opentelemetry. (Accessed on
12 January 2023).

lastic, 2022a. Components and documentation. https://www.elastic.co/guide/en/
apm/guide/current/apm-components.html. (Accessed on 07 July 2022).

lastic, 2022b. Quick start. https://www.elastic.co/guide/en/apm/guide/current/
apm-quick-start.html. (Accessed on 07 July 2022).

lastic, 2022c. Distributed tracing. https://www.elastic.co/guide/en/apm/guide/
current/apm-distributed-tracing.html. (Accessed on 07 July 2022).

lastic, 2022d. Metrics. https://www.elastic.co/guide/en/apm/guide/current/data-
model-metrics.html. (Accessed on 07 July 2022).

lastic, 2022e. How to easily correlate logs and APM traces for bet-
ter observability. https://www.elastic.co/blog/how-to-easily-correlate-logs-
apm-traces-for-better-observability-elastic-stack. (Accessed on 07 July
2022).

lastic, 2022f. API. https://www.elastic.co/guide/en/apm/guide/current/api.html.
(Accessed on 07 July 2022).

lastic, 2022g. OpenTelemetry integration. https://www.elastic.co/guide/en/apm/
guide/current/open-telemetry.html. (Accessed on 07 July 2022).
22
Elastic APM-Server contributors, 2022. Github repository of the elastic
APM-server. https://github.com/elastic/apm-server. (Accessed on 07 July
2022).

ElasticAPM, 2022. Instrument applications with APM. https://www.elastic.
co/guide/en/observability/8.6/instrument-apps.html#instrument-apps.
(Accessed on 07 July 2022).

Fenton, N.E., Pfleeger, S.L., 1998. Software Metrics: A Rigorous and Practical
Approach, second ed. PWS Publishing Co., Usa.

Finkelstein, L., Leaning, M., 1984. A review of the fundamental concepts of
measurement. Measurement 2 (1), 25–34.

Fonseca, R., Porter, G., Katz, R.H., Shenker, S., 2007. X-Trace: A pervasive network
tracing framework. In: 4th USENIX Symposium on Networked Systems
Design & Implementation. NSDI 07, USENIX Association, Cambridge, MA, pp.
271–284.

Garousi, V., Felderer, M., Mäntylä, M.V., 2019. Guidelines for including grey liter-
ature and conducting multivocal literature reviews in software engineering.
Inf. Softw. Technol. 106, 101–121.

Gilbert, C., Hutto, E., 2014. Vader: A parsimonious rule-based model for senti-
ment analysis of social media text. In: Eighth International Conference on
Weblogs and Social Media, Vol. 81. ICWSM-14, p. 82.

Gorige, D., Al-Masri, E., Kanzhelev, S., Fattah, H., 2020. Privacy-risk detection
in microservices composition using distributed tracing. In: 2020 IEEE Eura-
sia Conference on IOT, Communication and Engineering. ECICE, Ieee, pp.
250–253.

Haystack, 2023a. Github repository of haystack. https://github.com/
ExpediaDotCom/haystack. (Accessed on 11 January 2023).

Haystack, 2023b. Clients deployment. https://expediadotcom.github.io/haystack/
docs/deployment/deployment_clients.html. (Accessed on 11 January 2023).

Haystack, 2023c. Traces. https://expediadotcom.github.io/haystack/docs/
subsystems/subsystems_traces.html. (Accessed on 12 January 2023).

Haystack, 2023d. Metrics. https://expediadotcom.github.io/haystack/docs/about/
clients.html#metrics. (Accessed on 12 January 2023).

Haystack, 2023e. Introduction. https://expediadotcom.github.io/haystack/docs/
about/introduction.html#the-problem. (Accessed on 12 January 2023).

Haystack, 2023f. Haystack client. https://expediadotcom.github.io/haystack/docs/
about/clients.html#haystack-agent. (Accessed on 12 January 2023).

Honeycomb.io, 2023a. Explore distributed trace data. https://docs.honeycomb.io/
working-with-your-data/tracing/. (Accessed on 12 January 2023).

Honeycomb.io, 2023b. Github repository of Honeycomb.io. https://github.com/
honeycombio. (Accessed on 11 January 2023).

Honeycomb.io, 2023c. Honeycomb via API. https://docs.honeycomb.io/api/.
(Accessed on 12 January 2023).

Honeycomb.io, 2023d. Instrument your code. https://docs.honeycomb.io/getting-
data-in/#instrument-your-code. (Accessed on 11 January 2023).

Honeycomb.io, 2023e. Metrics overview. https://docs.honeycomb.io/getting-
data-in/metrics/. (Accessed on 12 January 2023).

Honeycomb.io, 2023f. OpenTelemetry. https://docs.honeycomb.io/getting-data-
in/opentelemetry-overview/. (Accessed on 12 January 2023).

Honeycomb.io, 2023g. OpenTelemetry logs. https://docs.honeycomb.io/getting-
data-in/logs/opentelemetry/. (Accessed on 12 January 2023).

Hypertrace, 2023a. Github repository of Hypertrace. https://github.com/
hypertrace/hypertrace. (Accessed on 11 January 2023).

Hypertrace, 2023b. Instrumentation. https://docs.hypertrace.org/
instrumentation/. (Accessed on 11 January 2023).

Hypertrace, 2023c. OpenTelemetry collector architecture. https://docs.hypertrace.
org/architecture/data-collection/. (Accessed on 12 January 2023).

Hypertrace, 2023d. UI and platform overview - traces. https://docs.hypertrace.
org/platform-ui/#traces. (Accessed on 12 January 2023).

IBM, 2022a. Getting started with Instana. https://www.ibm.com/docs/en/instana-
observability/current?topic=references-getting-started-instana. (Accessed on
07 July 2022).

IBM, 2022b. OpenTelemetry. https://www.ibm.com/docs/en/obi/current?topic=
apis-opentelemetry. (Accessed on 07 July 2022).

IBM, 2022c. Self-hosted Instana backend on docker (on-premises).
https://www.ibm.com/docs/en/obi/current?topic=instana-self-hosted-
backend-docker-premises. (Accessed on 07 July 2022).

Instana, 2022a. Agent REST API. https://instana.github.io/openapi/#section/
Agent-REST-API. (Accessed on 07 July 2022).

Instana, 2022b. Application metrics. https://instana.github.io/openapi/#tag/
Application-Metrics. (Accessed on 07 July 2022).

Instana, 2022c. Automatic instrumentation. https://www.ibm.com/docs/
en/instana-observability/current?topic=references-tracing-in-instana#
automatic-instrumentation. (Accessed on 07 July 2022).

Instana, 2022d. Distributed tracing for microservice applications. https://www.
instana.com/automatic-distributed-tracing-and-analysis/. (Accessed on 07
July 2022).

Instana, 2022e. Github repository of Instana. https://github.com/instana.
(Accessed on 07 July 2022).

Instana, 2022f. LogDNA. https://www.instana.com/supported-technologies/
logdna/. (Accessed on 07 July 2022).

http://refhub.elsevier.com/S0164-1212(23)00188-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb29
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb30
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb30
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb30
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb31
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb31
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb31
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb31
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb31
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb31
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb31
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb32
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb33
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb33
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb33
https://www.containiq.com/post/auto-instrumentation-and-opentelemetry
https://docs.containiq.com/containiq-overview
https://docs.containiq.com/containiq-overview
https://docs.containiq.com/containiq-overview
https://github.com/containiq/containiq-deployment
https://github.com/containiq/containiq-deployment
https://github.com/containiq/containiq-deployment
https://docs.containiq.com/requirements
https://docs.containiq.com/using-containiq#osSa5
https://docs.containiq.com/using-containiq#osSa5
https://docs.containiq.com/using-containiq#osSa5
https://github.com/DataDog
https://docs.datadoghq.com/tracing/setup_overview
https://docs.datadoghq.com/tracing/setup_overview
https://docs.datadoghq.com/tracing/setup_overview
https://docs.datadoghq.com/getting_started/
https://www.datadoghq.com/knowledge-center/distributed-tracing/
https://www.datadoghq.com/knowledge-center/distributed-tracing/
https://www.datadoghq.com/knowledge-center/distributed-tracing/
https://docs.datadoghq.com/metrics/
https://www.datadoghq.com/dg/logs/log-metrics/
https://www.datadoghq.com/dg/logs/log-metrics/
https://www.datadoghq.com/dg/logs/log-metrics/
https://docs.datadoghq.com/api/latest
https://docs.datadoghq.com/tracing/setup_overview/open_standards/
https://docs.datadoghq.com/tracing/setup_overview/open_standards/
https://docs.datadoghq.com/tracing/setup_overview/open_standards/
https://www.datadoghq.com/auto-instrumentation/
https://www.datadoghq.com/auto-instrumentation/
https://www.datadoghq.com/auto-instrumentation/
https://www.dynatrace.com/support/help/dynatrace-api/environment-api/topology-and-smartscape/applications-api
https://www.dynatrace.com/support/help/dynatrace-api/environment-api/topology-and-smartscape/applications-api
https://www.dynatrace.com/support/help/dynatrace-api/environment-api/topology-and-smartscape/applications-api
https://www.dynatrace.com/support/help/how-to-use-dynatrace/diagnostics/diagnostic-distributed-traces
https://www.dynatrace.com/support/help/how-to-use-dynatrace/diagnostics/diagnostic-distributed-traces
https://www.dynatrace.com/support/help/how-to-use-dynatrace/diagnostics/diagnostic-distributed-traces
https://github.com/Dynatrace
https://www.dynatrace.com/support/help/setup-and-configuration/dynatrace-managed/self-monitoring/hosted-self-monitoring
https://www.dynatrace.com/support/help/setup-and-configuration/dynatrace-managed/self-monitoring/hosted-self-monitoring
https://www.dynatrace.com/support/help/setup-and-configuration/dynatrace-managed/self-monitoring/hosted-self-monitoring
https://www.dynatrace.com/support/help/setup-and-configuration/dynatrace-managed/self-monitoring/hosted-self-monitoring
https://www.dynatrace.com/support/help/setup-and-configuration/dynatrace-managed/self-monitoring/hosted-self-monitoring
https://www.dynatrace.com/support/help/extend-dynatrace/opentelemetry/opentelemetry-traces/opentelemetry-ingest#instrument-service
https://www.dynatrace.com/support/help/extend-dynatrace/opentelemetry/opentelemetry-traces/opentelemetry-ingest#instrument-service
https://www.dynatrace.com/support/help/extend-dynatrace/opentelemetry/opentelemetry-traces/opentelemetry-ingest#instrument-service
https://www.dynatrace.com/support/help/extend-dynatrace/opentelemetry/opentelemetry-traces/opentelemetry-ingest#instrument-service
https://www.dynatrace.com/support/help/extend-dynatrace/opentelemetry/opentelemetry-traces/opentelemetry-ingest#instrument-service
https://www.dynatrace.com/support/help/how-to-use-dynatrace/log-management-and-analytics
https://www.dynatrace.com/support/help/how-to-use-dynatrace/log-management-and-analytics
https://www.dynatrace.com/support/help/how-to-use-dynatrace/log-management-and-analytics
https://www.dynatrace.com/support/help/how-to-use-dynatrace/metrics
https://www.dynatrace.com/support/help/how-to-use-dynatrace/metrics
https://www.dynatrace.com/support/help/how-to-use-dynatrace/metrics
https://www.dynatrace.com/support/help/extend-dynatrace/opentelemetry
https://www.dynatrace.com/support/help/extend-dynatrace/opentelemetry
https://www.dynatrace.com/support/help/extend-dynatrace/opentelemetry
https://www.elastic.co/guide/en/apm/guide/current/apm-components.html
https://www.elastic.co/guide/en/apm/guide/current/apm-components.html
https://www.elastic.co/guide/en/apm/guide/current/apm-components.html
https://www.elastic.co/guide/en/apm/guide/current/apm-quick-start.html
https://www.elastic.co/guide/en/apm/guide/current/apm-quick-start.html
https://www.elastic.co/guide/en/apm/guide/current/apm-quick-start.html
https://www.elastic.co/guide/en/apm/guide/current/apm-distributed-tracing.html
https://www.elastic.co/guide/en/apm/guide/current/apm-distributed-tracing.html
https://www.elastic.co/guide/en/apm/guide/current/apm-distributed-tracing.html
https://www.elastic.co/guide/en/apm/guide/current/data-model-metrics.html
https://www.elastic.co/guide/en/apm/guide/current/data-model-metrics.html
https://www.elastic.co/guide/en/apm/guide/current/data-model-metrics.html
https://www.elastic.co/blog/how-to-easily-correlate-logs-apm-traces-for-better-observability-elastic-stack
https://www.elastic.co/blog/how-to-easily-correlate-logs-apm-traces-for-better-observability-elastic-stack
https://www.elastic.co/blog/how-to-easily-correlate-logs-apm-traces-for-better-observability-elastic-stack
https://www.elastic.co/guide/en/apm/guide/current/api.html
https://www.elastic.co/guide/en/apm/guide/current/open-telemetry.html
https://www.elastic.co/guide/en/apm/guide/current/open-telemetry.html
https://www.elastic.co/guide/en/apm/guide/current/open-telemetry.html
https://github.com/elastic/apm-server
https://www.elastic.co/guide/en/observability/8.6/instrument-apps.html#instrument-apps
https://www.elastic.co/guide/en/observability/8.6/instrument-apps.html#instrument-apps
https://www.elastic.co/guide/en/observability/8.6/instrument-apps.html#instrument-apps
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb65
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb65
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb65
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb66
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb66
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb66
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb67
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb68
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb68
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb68
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb68
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb68
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb69
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb70
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb70
https://github.com/ExpediaDotCom/haystack
https://github.com/ExpediaDotCom/haystack
https://github.com/ExpediaDotCom/haystack
https://expediadotcom.github.io/haystack/docs/deployment/deployment_clients.html
https://expediadotcom.github.io/haystack/docs/deployment/deployment_clients.html
https://expediadotcom.github.io/haystack/docs/deployment/deployment_clients.html
https://expediadotcom.github.io/haystack/docs/subsystems/subsystems_traces.html
https://expediadotcom.github.io/haystack/docs/subsystems/subsystems_traces.html
https://expediadotcom.github.io/haystack/docs/subsystems/subsystems_traces.html
https://expediadotcom.github.io/haystack/docs/about/clients.html#metrics
https://expediadotcom.github.io/haystack/docs/about/clients.html#metrics
https://expediadotcom.github.io/haystack/docs/about/clients.html#metrics
https://expediadotcom.github.io/haystack/docs/about/introduction.html#the-problem
https://expediadotcom.github.io/haystack/docs/about/introduction.html#the-problem
https://expediadotcom.github.io/haystack/docs/about/introduction.html#the-problem
https://expediadotcom.github.io/haystack/docs/about/clients.html#haystack-agent
https://expediadotcom.github.io/haystack/docs/about/clients.html#haystack-agent
https://expediadotcom.github.io/haystack/docs/about/clients.html#haystack-agent
https://docs.honeycomb.io/working-with-your-data/tracing/
https://docs.honeycomb.io/working-with-your-data/tracing/
https://docs.honeycomb.io/working-with-your-data/tracing/
https://github.com/honeycombio
https://github.com/honeycombio
https://github.com/honeycombio
https://docs.honeycomb.io/api/
https://docs.honeycomb.io/getting-data-in/#instrument-your-code
https://docs.honeycomb.io/getting-data-in/#instrument-your-code
https://docs.honeycomb.io/getting-data-in/#instrument-your-code
https://docs.honeycomb.io/getting-data-in/metrics/
https://docs.honeycomb.io/getting-data-in/metrics/
https://docs.honeycomb.io/getting-data-in/metrics/
https://docs.honeycomb.io/getting-data-in/opentelemetry-overview/
https://docs.honeycomb.io/getting-data-in/opentelemetry-overview/
https://docs.honeycomb.io/getting-data-in/opentelemetry-overview/
https://docs.honeycomb.io/getting-data-in/logs/opentelemetry/
https://docs.honeycomb.io/getting-data-in/logs/opentelemetry/
https://docs.honeycomb.io/getting-data-in/logs/opentelemetry/
https://github.com/hypertrace/hypertrace
https://github.com/hypertrace/hypertrace
https://github.com/hypertrace/hypertrace
https://docs.hypertrace.org/instrumentation/
https://docs.hypertrace.org/instrumentation/
https://docs.hypertrace.org/instrumentation/
https://docs.hypertrace.org/architecture/data-collection/
https://docs.hypertrace.org/architecture/data-collection/
https://docs.hypertrace.org/architecture/data-collection/
https://docs.hypertrace.org/platform-ui/#traces
https://docs.hypertrace.org/platform-ui/#traces
https://docs.hypertrace.org/platform-ui/#traces
https://www.ibm.com/docs/en/instana-observability/current?topic=references-getting-started-instana
https://www.ibm.com/docs/en/instana-observability/current?topic=references-getting-started-instana
https://www.ibm.com/docs/en/instana-observability/current?topic=references-getting-started-instana
https://www.ibm.com/docs/en/obi/current?topic=apis-opentelemetry
https://www.ibm.com/docs/en/obi/current?topic=apis-opentelemetry
https://www.ibm.com/docs/en/obi/current?topic=apis-opentelemetry
https://www.ibm.com/docs/en/obi/current?topic=instana-self-hosted-backend-docker-premises
https://www.ibm.com/docs/en/obi/current?topic=instana-self-hosted-backend-docker-premises
https://www.ibm.com/docs/en/obi/current?topic=instana-self-hosted-backend-docker-premises
https://instana.github.io/openapi/#section/Agent-REST-API
https://instana.github.io/openapi/#section/Agent-REST-API
https://instana.github.io/openapi/#section/Agent-REST-API
https://instana.github.io/openapi/#tag/Application-Metrics
https://instana.github.io/openapi/#tag/Application-Metrics
https://instana.github.io/openapi/#tag/Application-Metrics
https://www.ibm.com/docs/en/instana-observability/current?topic=references-tracing-in-instana#automatic-instrumentation
https://www.ibm.com/docs/en/instana-observability/current?topic=references-tracing-in-instana#automatic-instrumentation
https://www.ibm.com/docs/en/instana-observability/current?topic=references-tracing-in-instana#automatic-instrumentation
https://www.ibm.com/docs/en/instana-observability/current?topic=references-tracing-in-instana#automatic-instrumentation
https://www.ibm.com/docs/en/instana-observability/current?topic=references-tracing-in-instana#automatic-instrumentation
https://www.instana.com/automatic-distributed-tracing-and-analysis/
https://www.instana.com/automatic-distributed-tracing-and-analysis/
https://www.instana.com/automatic-distributed-tracing-and-analysis/
https://github.com/instana
https://www.instana.com/supported-technologies/logdna/
https://www.instana.com/supported-technologies/logdna/
https://www.instana.com/supported-technologies/logdna/

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

I

I

J

J

J

J

J

J

J

J

J

K

K

K

K

K

K

K

K

K

K

K

L

L

L

L

L

L

L

L

L

L

L

L

L

nstana, 2022g. Setting up and managing Instana. https://www.ibm.com/docs/en/
obi/current?topic=setting-up-managing-instana. (Accessed on 07 July 2022).

urman, J., Brockners, F., Donnet, B., 2021. Towardss cross-layer telemetry. In:
Applied Networking Research Workshop. pp. 15–21.

aeger, 2023. Client library features. https://www.jaegertracing.io/docs/1.41/
client-features/. (Accessed on 11 January 2023).

aeger contributors, 2022a. APIs. https://www.jaegertracing.io/docs/1.36/apis/.
(Accessed on 07 July 2022).

aeger contributors, 2022b. Architecture. https://www.jaegertracing.io/docs/1.36/
architecture/. (Accessed on 07 July 2022).

aeger contributors, 2022c. Deprecating jaeger clients. https://www.jaegertracing.
io/docs/1.35/client-libraries/#deprecating-jaeger-clients. (Accessed on 07
July 2022).

aeger contributors, 2022d. Getting started. https://www.jaegertracing.io/docs/1.
36/getting-started/. (Accessed on 07 July 2022).

aeger contributors, 2022e. Github repository of Jaeger. https://github.com/
jaegertracing/jaeger. (Accessed on 07 July 2022).

aeger contributors, 2022f. Introduction. https://www.jaegertracing.io/docs/1.36/.
(Accessed on 07 July 2022).

aeger contributors, 2022g. Introduction. https://www.jaegertracing.io/docs/1.36/.
(Accessed on 07 July 2022).

aeger contributors, 2022h. Troubleshooting. https://www.jaegertracing.io/docs/
1.36/troubleshooting/. (Accessed on 07 July 2022).

aldor, J., Mace, J., Bejda, M., Gao, E., Kuropatwa, W., O’Neill, J., Ong, K.W.,
Schaller, B., Shan, P., Viscomi, B., Venkataraman, V., Veeraraghavan, K.,
Song, Y.J., 2017. Canopy: An end-to-end performance tracing and anal-
ysis system. In: Symposium on Operating Systems Principles. Sosp ’17,
Association for Computing Machinery, New York, NY, USA, pp. 34–50.

alman, R., 1960. On the general theory of control systems. IFAC Proc. Vol. 1 (1),
491–502, 1st International IFAC Congress on Automatic and Remote Control,
Moscow, USSR, 1960.

amon, 2023a. Core APIs. https://kamon.io/docs/latest/core/#core-apis. (Ac-
cessed on 12 January 2023).

amon, 2023b. Github repository of Kamon. https://github.com/kamon-io/
Kamon. (Accessed on 11 January 2023).

amon, 2023c. Logging trace ID and context information. https://kamon.io/docs/
latest/guides/how-to/log-trace-id-and-context-info/#logging-trace-id-and-
context-information. (Accessed on 12 January 2023).

amon, 2023d. Logit.io FOR opentelemetry. https://logit.io/platform/
observability/opentelemetry-otel/. (Accessed on 12 January 2023).

amon, 2023e. Metrics. https://kamon.io/docs/latest/core/metrics/#metrics. (Ac-
cessed on 12 January 2023).

amon, 2023f. Monitoring Akka HTTP applications with Kamon. https://kamon.
io/docs/latest/guides/installation/akka-http/. (Accessed on 11 January 2023).

amon, 2023g. Service overview. https://kamon.io/docs/latest/apm/services/
service-details/#service-overview. (Accessed on 12 January 2023).

amon, 2023h. Trace details. https://kamon.io/docs/latest/apm/traces/trace-
details/#trace-details. (Accessed on 12 January 2023).

itchenham, B., Charters, S., 2007. Guidelines for Performing Systematic Litera-
ture Reviews in Software Engineering. Technical Report Ebse 2007-001, Keele
University and Durham University Joint Report.

as-Casas, P., Papakerashvili, G., Anand, V., Mace, J., 2019. Sifter: Scalable
sampling for distributed traces, without feature engineering. In: Symposium
on Cloud Computing. pp. 312–324.

i, B., Peng, X., Xiang, Q., Wang, H., Xie, T., Sun, J., Liu, X., 2022. Enjoy your
observability: an industrial survey of microservice tracing and analysis.
Empir. Softw. Eng. 27 (1), 1–28.

ightstep, 2022a. Distributed tracing: A complete guide. https://lightstep.com/
distributed-tracing. (Accessed on 07 July 2022).

ightstep, 2022b. Find correlated areas of latency and errors. https://docs.
lightstep.com/docs/find-correlated-areas-of-latency. (Accessed on 07 July
2022).

ightstep, 2022c. Get started. https://docs.lightstep.com/get-started. (Accessed on
07 July 2022).

ightstep, 2022d. Get started with lightstep observability. https://docs.lightstep.
com/docs/welcome-to-lightstep. (Accessed on 07 July 2022).

ightstep, 2022e. Github repository of lightstep. https://github.com/lightstep.
(Accessed on 07 July 2022).

ightstep, 2022f. Lightstep architecture explained. https://lightstep.com/blog/
lightstep-xpm-architecture-explained. (Accessed on 07 July 2022).

ightstep, 2023. Quick start: Tracing instrumentation. https://docs.lightstep.com/
otel/quick-start-instrumentation. (Accessed on 14 January 2023).

ogit.io, 2023a. All sources - Languages & Libraries. https://logit.io/sources/
search/. (Accessed on 11 January 2023).

ogit.io, 2023b. Github repository of Logit.io. https://github.com/logit-io.
(Accessed on 11 January 2023).

ogit.io, 2023c. How do I use the HTTP/s logit ingestion API? https://help.logit.io/
en/articles/3402534-how-do-i-use-the-http-s-logit-ingestion-api. (Accessed
on 12 January 2023).

ogit.io, 2023d. Monitoring solutions from Logit.io. https://logit.io/solutions/
monitoring/. (Accessed on 12 January 2023).
23
Logit.io, 2023e. The best solutions for handling metrics. https://logit.io/platform/
metrics/. (Accessed on 12 January 2023).

Logit.io, 2023f. The best solutions for logging. https://logit.io/platform/logging/.
(Accessed on 12 January 2023).

Lumigo, 2023a. AWS lambda auto-tracing. https://docs.lumigo.io/docs/auto-
instrumentation. (Accessed on 11 January 2023).

Lumigo, 2023b. Github repository of Lumigo. https://github.com/lumigo-io.
(Accessed on 11 January 2023).

Lumigo, 2023c. Logs. https://docs.lumigo.io/docs/logs. (Accessed on 12 January
2023).

Lumigo, 2023d. Metrics. https://docs.lumigo.io/docs/function-drilldown-view#
metrics. (Accessed on 12 January 2023).

Lumigo, 2023e. OpenTelemetry support. https://docs.lumigo.io/docs/
opentelemetry. (Accessed on 12 January 2023).

Lumigo, 2023f. Trace details. https://docs.lumigo.io/docs/trace-details. (Accessed
on 12 January 2023).

Luo, Z., Xie, Q., Ananiadou, S., 2023. Chatgpt as a factual inconsistency evaluator
for abstractive text summarization. arXiv preprint arXiv:2303.15621.

Mägi, I., 2020. Distributed tracing for dummies. https://plumbr.io/blog/
monitoring/distributed-tracing-for-dummies. (Accessed on 07 July 2022).

Merriam-Webster.com Dictionary, 2022a. Telemeter. https://www.merriam-
webster.com/dictionary/telemeter. (Accessed on 07 July 2022).

Merriam-Webster.com Dictionary, 2022b. Trace. https://www.merriam-webster.
com/dictionary/trace. (Accessed on 07 July 2022).

Naushan, H., 2020. Topic modeling with latent Dirichlet allocation.
https://towardssdatascience.com/topic-modeling-with-latent-dirichlet-
allocation-e7ff75290f8. (Accessed on 29 December 2022).

Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T., 2000. Text classification from
labeled and unlabeled documents using EM. Mach. Learn. 39 (2–3), 103–134.

Novatec Consulting, 2022a. Breaking changes in 2.0.0. https://inspectit.github.
io/inspectit-ocelot/docs/breaking-changes/Breaking%20Changes#breaking-
changes-in-200. (Accessed on 07 July 2022).

Novatec Consulting, 2022b. Github repository of inspectIT Ocelot. https://github.
com/inspectIT/inspectit-ocelot. (Accessed on 07 July 2022).

Novatec Consulting, 2022c. Hello world. https://inspectit.github.io/inspectit-
ocelot/docs/doc1.(Accessed on 07 July 2022).

Novatec Consulting, 2022d. Log correlation. https://inspectit.github.io/inspectit-
ocelot/docs/tracing/log-correlation. (Accessed on 07 July 2022).

Novatec Consulting, 2022e. Metrics recorders. https://inspectit.github.io/
inspectit-ocelot/docs/metrics/metric-recorders. (Accessed on 07 July 2022).

Novatec Consulting, 2022f. OpenAPM. https://openapm.io. (Accessed on 07 July
2022).

Novatec Consulting, 2022g. Tracing. https://inspectit.github.io/inspectit-ocelot/
docs/tracing/tracing. (Accessed on 07 July 2022).

Ocelot, 2023. Instrumentation. https://inspectit.github.io/inspectit-ocelot/docs/
instrumentation/instrumentation. (Accessed on 14 January 2023).

OpenAI, 2023. Chatgpt. https://chat.openai.com/?model=gpt-4. (Accessed on 4
May 2023).

OpenCensus, 2023a. API documentation. https://opencensus.io/api/python/trace/
api/index.html. (Accessed on 12 January 2023).

OpenCensus, 2023b. Github repository of OpenCensus. https://github.com/
census-instrumentation. (Accessed on 11 January 2023).

OpenCensus, 2023c. Github repository of OpenCensus. https://github.com/
census-instrumentation. (Accessed on 11 January 2023).

OpenCensus, 2023d. Stats/metrics. https://opencensus.io/stats/. (Accessed on 12
January 2023).

OpenCensus, 2023e. Tracing. https://opencensus.io/tracing/. (Accessed on 12
January 2023).

OpenTelemetry, 2023a. Instrumentation. https://opentelemetry.io/docs/
instrumentation/. (Accessed on 11 January 2023).

OpenTelemetry, 2023b. Logs. https://opentelemetry.io/docs/concepts/signals/
logs/. (Accessed on 12 January 2023).

OpenTelemetry, 2023c. Metrics. https://opentelemetry.io/docs/concepts/signals/
metrics/. (Accessed on 12 January 2023).

OpenTelemetry, 2023d. Traces. https://opentelemetry.io/docs/concepts/signals/
traces/. (Accessed on 12 January 2023).

Relic, N., 2023a. Github repository of New Relic. https://github.com/newrelic.
(Accessed on 11 January 2023).

Relic, N., 2023b. Introduction to APM. https://docs.newrelic.com/docs/apm/new-
relic-apm/getting-started/introduction-apm/. (Accessed on 11 January 2023).

Relic, N., 2023c. Introduction to new relic APIs. https://docs.newrelic.com/docs/
apis/intro-apis/introduction-new-relic-apis/. (Accessed on 12 January 2023).

Relic, N., 2023d. Introduction to OpenTelemetry with new relic. https:
//docs.newrelic.com/docs/more-integrations/open-source-telemetry-
integrations/opentelemetry/opentelemetry-introduction/. (Accessed on
12 January 2023).

Relic, N., 2023e. Introduction to the log API. https://docs.newrelic.com/docs/logs/
log-api/introduction-log-api/. (Accessed on 12 January 2023).

Relic, N., 2023f. Introduction to the metric API. https://docs.newrelic.com/docs/
data-apis/ingest-apis/metric-api/introduction-metric-api/. (Accessed on 12
January 2023).

https://www.ibm.com/docs/en/obi/current?topic=setting-up-managing-instana
https://www.ibm.com/docs/en/obi/current?topic=setting-up-managing-instana
https://www.ibm.com/docs/en/obi/current?topic=setting-up-managing-instana
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb98
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb98
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb98
https://www.jaegertracing.io/docs/1.41/client-features/
https://www.jaegertracing.io/docs/1.41/client-features/
https://www.jaegertracing.io/docs/1.41/client-features/
https://www.jaegertracing.io/docs/1.36/apis/
https://www.jaegertracing.io/docs/1.36/architecture/
https://www.jaegertracing.io/docs/1.36/architecture/
https://www.jaegertracing.io/docs/1.36/architecture/
https://www.jaegertracing.io/docs/1.35/client-libraries/#deprecating-jaeger-clients
https://www.jaegertracing.io/docs/1.35/client-libraries/#deprecating-jaeger-clients
https://www.jaegertracing.io/docs/1.35/client-libraries/#deprecating-jaeger-clients
https://www.jaegertracing.io/docs/1.36/getting-started/
https://www.jaegertracing.io/docs/1.36/getting-started/
https://www.jaegertracing.io/docs/1.36/getting-started/
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://github.com/jaegertracing/jaeger
https://www.jaegertracing.io/docs/1.36/
https://www.jaegertracing.io/docs/1.36/
https://www.jaegertracing.io/docs/1.36/troubleshooting/
https://www.jaegertracing.io/docs/1.36/troubleshooting/
https://www.jaegertracing.io/docs/1.36/troubleshooting/
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb108
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb108
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb108
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb108
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb108
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb108
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb108
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb108
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb108
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb109
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb109
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb109
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb109
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb109
https://kamon.io/docs/latest/core/#core-apis
https://github.com/kamon-io/Kamon
https://github.com/kamon-io/Kamon
https://github.com/kamon-io/Kamon
https://kamon.io/docs/latest/guides/how-to/log-trace-id-and-context-info/#logging-trace-id-and-context-information
https://kamon.io/docs/latest/guides/how-to/log-trace-id-and-context-info/#logging-trace-id-and-context-information
https://kamon.io/docs/latest/guides/how-to/log-trace-id-and-context-info/#logging-trace-id-and-context-information
https://kamon.io/docs/latest/guides/how-to/log-trace-id-and-context-info/#logging-trace-id-and-context-information
https://kamon.io/docs/latest/guides/how-to/log-trace-id-and-context-info/#logging-trace-id-and-context-information
https://logit.io/platform/observability/opentelemetry-otel/
https://logit.io/platform/observability/opentelemetry-otel/
https://logit.io/platform/observability/opentelemetry-otel/
https://kamon.io/docs/latest/core/metrics/#metrics
https://kamon.io/docs/latest/guides/installation/akka-http/
https://kamon.io/docs/latest/guides/installation/akka-http/
https://kamon.io/docs/latest/guides/installation/akka-http/
https://kamon.io/docs/latest/apm/services/service-details/#service-overview
https://kamon.io/docs/latest/apm/services/service-details/#service-overview
https://kamon.io/docs/latest/apm/services/service-details/#service-overview
https://kamon.io/docs/latest/apm/traces/trace-details/#trace-details
https://kamon.io/docs/latest/apm/traces/trace-details/#trace-details
https://kamon.io/docs/latest/apm/traces/trace-details/#trace-details
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb118
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb118
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb118
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb118
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb118
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb119
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb119
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb119
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb119
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb119
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb120
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb120
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb120
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb120
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb120
https://lightstep.com/distributed-tracing
https://lightstep.com/distributed-tracing
https://lightstep.com/distributed-tracing
https://docs.lightstep.com/docs/find-correlated-areas-of-latency
https://docs.lightstep.com/docs/find-correlated-areas-of-latency
https://docs.lightstep.com/docs/find-correlated-areas-of-latency
https://docs.lightstep.com/get-started
https://docs.lightstep.com/docs/welcome-to-lightstep
https://docs.lightstep.com/docs/welcome-to-lightstep
https://docs.lightstep.com/docs/welcome-to-lightstep
https://github.com/lightstep
https://lightstep.com/blog/lightstep-xpm-architecture-explained
https://lightstep.com/blog/lightstep-xpm-architecture-explained
https://lightstep.com/blog/lightstep-xpm-architecture-explained
https://docs.lightstep.com/otel/quick-start-instrumentation
https://docs.lightstep.com/otel/quick-start-instrumentation
https://docs.lightstep.com/otel/quick-start-instrumentation
https://logit.io/sources/search/
https://logit.io/sources/search/
https://logit.io/sources/search/
https://github.com/logit-io
https://help.logit.io/en/articles/3402534-how-do-i-use-the-http-s-logit-ingestion-api
https://help.logit.io/en/articles/3402534-how-do-i-use-the-http-s-logit-ingestion-api
https://help.logit.io/en/articles/3402534-how-do-i-use-the-http-s-logit-ingestion-api
https://logit.io/solutions/monitoring/
https://logit.io/solutions/monitoring/
https://logit.io/solutions/monitoring/
https://logit.io/platform/metrics/
https://logit.io/platform/metrics/
https://logit.io/platform/metrics/
https://logit.io/platform/logging/
https://docs.lumigo.io/docs/auto-instrumentation
https://docs.lumigo.io/docs/auto-instrumentation
https://docs.lumigo.io/docs/auto-instrumentation
https://github.com/lumigo-io
https://docs.lumigo.io/docs/logs
https://docs.lumigo.io/docs/function-drilldown-view#metrics
https://docs.lumigo.io/docs/function-drilldown-view#metrics
https://docs.lumigo.io/docs/function-drilldown-view#metrics
https://docs.lumigo.io/docs/opentelemetry
https://docs.lumigo.io/docs/opentelemetry
https://docs.lumigo.io/docs/opentelemetry
https://docs.lumigo.io/docs/trace-details
http://arxiv.org/abs/2303.15621
https://plumbr.io/blog/monitoring/distributed-tracing-for-dummies
https://plumbr.io/blog/monitoring/distributed-tracing-for-dummies
https://plumbr.io/blog/monitoring/distributed-tracing-for-dummies
https://www.merriam-webster.com/dictionary/telemeter
https://www.merriam-webster.com/dictionary/telemeter
https://www.merriam-webster.com/dictionary/telemeter
https://www.merriam-webster.com/dictionary/trace
https://www.merriam-webster.com/dictionary/trace
https://www.merriam-webster.com/dictionary/trace
https://towardssdatascience.com/topic-modeling-with-latent-dirichlet-allocation-e7ff75290f8
https://towardssdatascience.com/topic-modeling-with-latent-dirichlet-allocation-e7ff75290f8
https://towardssdatascience.com/topic-modeling-with-latent-dirichlet-allocation-e7ff75290f8
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb145
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb145
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb145
https://inspectit.github.io/inspectit-ocelot/docs/breaking-changes/Breaking%20Changes#breaking-changes-in-200
https://inspectit.github.io/inspectit-ocelot/docs/breaking-changes/Breaking%20Changes#breaking-changes-in-200
https://inspectit.github.io/inspectit-ocelot/docs/breaking-changes/Breaking%20Changes#breaking-changes-in-200
https://inspectit.github.io/inspectit-ocelot/docs/breaking-changes/Breaking%20Changes#breaking-changes-in-200
https://inspectit.github.io/inspectit-ocelot/docs/breaking-changes/Breaking%20Changes#breaking-changes-in-200
https://github.com/inspectIT/inspectit-ocelot
https://github.com/inspectIT/inspectit-ocelot
https://github.com/inspectIT/inspectit-ocelot
https://inspectit.github.io/inspectit-ocelot/docs/doc1
https://inspectit.github.io/inspectit-ocelot/docs/doc1
https://inspectit.github.io/inspectit-ocelot/docs/doc1
https://inspectit.github.io/inspectit-ocelot/docs/tracing/log-correlation
https://inspectit.github.io/inspectit-ocelot/docs/tracing/log-correlation
https://inspectit.github.io/inspectit-ocelot/docs/tracing/log-correlation
https://inspectit.github.io/inspectit-ocelot/docs/metrics/metric-recorders
https://inspectit.github.io/inspectit-ocelot/docs/metrics/metric-recorders
https://inspectit.github.io/inspectit-ocelot/docs/metrics/metric-recorders
https://openapm.io
https://inspectit.github.io/inspectit-ocelot/docs/tracing/tracing
https://inspectit.github.io/inspectit-ocelot/docs/tracing/tracing
https://inspectit.github.io/inspectit-ocelot/docs/tracing/tracing
https://inspectit.github.io/inspectit-ocelot/docs/instrumentation/instrumentation
https://inspectit.github.io/inspectit-ocelot/docs/instrumentation/instrumentation
https://inspectit.github.io/inspectit-ocelot/docs/instrumentation/instrumentation
https://chat.openai.com/?model=gpt-4
https://opencensus.io/api/python/trace/api/index.html
https://opencensus.io/api/python/trace/api/index.html
https://opencensus.io/api/python/trace/api/index.html
https://github.com/census-instrumentation
https://github.com/census-instrumentation
https://github.com/census-instrumentation
https://github.com/census-instrumentation
https://github.com/census-instrumentation
https://github.com/census-instrumentation
https://opencensus.io/stats/
https://opencensus.io/tracing/
https://opentelemetry.io/docs/instrumentation/
https://opentelemetry.io/docs/instrumentation/
https://opentelemetry.io/docs/instrumentation/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://github.com/newrelic
https://docs.newrelic.com/docs/apm/new-relic-apm/getting-started/introduction-apm/
https://docs.newrelic.com/docs/apm/new-relic-apm/getting-started/introduction-apm/
https://docs.newrelic.com/docs/apm/new-relic-apm/getting-started/introduction-apm/
https://docs.newrelic.com/docs/apis/intro-apis/introduction-new-relic-apis/
https://docs.newrelic.com/docs/apis/intro-apis/introduction-new-relic-apis/
https://docs.newrelic.com/docs/apis/intro-apis/introduction-new-relic-apis/
https://docs.newrelic.com/docs/more-integrations/open-source-telemetry-integrations/opentelemetry/opentelemetry-introduction/
https://docs.newrelic.com/docs/more-integrations/open-source-telemetry-integrations/opentelemetry/opentelemetry-introduction/
https://docs.newrelic.com/docs/more-integrations/open-source-telemetry-integrations/opentelemetry/opentelemetry-introduction/
https://docs.newrelic.com/docs/more-integrations/open-source-telemetry-integrations/opentelemetry/opentelemetry-introduction/
https://docs.newrelic.com/docs/more-integrations/open-source-telemetry-integrations/opentelemetry/opentelemetry-introduction/
https://docs.newrelic.com/docs/logs/log-api/introduction-log-api/
https://docs.newrelic.com/docs/logs/log-api/introduction-log-api/
https://docs.newrelic.com/docs/logs/log-api/introduction-log-api/
https://docs.newrelic.com/docs/data-apis/ingest-apis/metric-api/introduction-metric-api/
https://docs.newrelic.com/docs/data-apis/ingest-apis/metric-api/introduction-metric-api/
https://docs.newrelic.com/docs/data-apis/ingest-apis/metric-api/introduction-metric-api/

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

R

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

elic, N., 2023g. Introduction to the trace API. https://docs.newrelic.com/
docs/distributed-tracing/trace-api/introduction-trace-api/. (Accessed on 12
January 2023).

entry, 2023a. API reference. https://docs.sentry.io/api/. (Accessed on 12 January
2023).

entry, 2023b. Github repository of Sentry. https://github.com/getsentry/sentry.
(Accessed on 11 January 2023).

entry, 2023c. Logging. https://docs.sentry.io/product/relay/options#logging.
(Accessed on 12 January 2023).

entry, 2023d. Metrics. https://docs.sentry.io/product/performance/transaction-
summary/#metrics. (Accessed on 12 January 2023).

entry, 2023e. OpenTelemetry support. https://docs.sentry.io/platforms/python/
guides/aws-lambda/performance/instrumentation/opentelemetry/. (Accessed
on 12 January 2023).

entry, 2023f. Platforms. https://docs.sentry.io/platforms/. (Accessed on 11
January 2023).

entry, 2023g. Self-hosted support. https://docs.sentry.io/platforms/dotnet/
migration/#self-hosted-support. (Accessed on 12 January 2023).

entry, 2023h. Tracing. https://docs.sentry.io/product/sentry-basics/tracing/. (Ac-
cessed on 12 January 2023).

igelman, B.H., Barroso, L.A., Burrows, M., Stephenson, P., Plakal, M., Beaver, D.,
Jaspan, S., Shanbhag, C., 2010. Dapper, a Large-Scale Distributed Systems
Tracing Infrastructure. Technical Report, Google, Inc..

igNoz, 2023a. Github repository of SigNoz. https://github.com/SigNoz/signoz.
(Accessed on 11 January 2023).

igNoz, 2023b. Instrument your application. https://signoz.io/docs/
instrumentation/. (Accessed on 11 January 2023).

igNoz, 2023c. Logs management overview. https://signoz.io/docs/userguide/
logs/. (Accessed on 12 January 2023).

igNoz, 2023d. OpenTelemetry operator usage. https://signoz.io/docs/tutorial/
opentelemetry-operator-usage/. (Accessed on 12 January 2023).

igNoz, 2023e. View traces. https://signoz.io/docs/userguide/traces/. (Accessed on
12 January 2023).

ite24x7, 2023a. API documentation. https://www.site24x7.com/help/api/. (Ac-
cessed on 12 January 2023).

ite24x7, 2023b. Application performance monitoring for Site24x7. https://www.
site24x7.com/help/apm.html. (Accessed on 11 January 2023).

ite24x7, 2023c. Distributed tracing. https://www.site24x7.com/help/apm/
distributed-tracing.html. (Accessed on 12 January 2023).

ite24x7, 2023d. Github repository of Site24x7. https://github.com/site24x7.
(Accessed on 11 January 2023).

ite24x7, 2023e. Metric profile. https://www.site24x7.com/help/aws/metric-
profile.html. (Accessed on 12 January 2023).

ite24x7, 2023f. Upload logs from logstash to Site24x7 AppLogs. https://www.
site24x7.com/help/log-collectors/logstash.html. (Accessed on 12 January
2023).

ite24x7, 2023g. What is OpenTelemetry: A guide to understanding Open-
Telemetry and the way forward. https://www.site24x7.com/blog/what-is-
opentelemetry. (Accessed on 12 January 2023).

ong, Y., Li, Y., Wu, S., Yang, H., Li, W., 2019. ASTracer: An efficient tracing
tool for HDFS with adaptive sampling. In: IFIP International Conference on
Network and Parallel Computing. Springer, pp. 107–119.

PDX Workgroup, 2022. SPDX license list. https://spdx.org/licenses/. (Accessed
on 07 July 2022).

plunk, 2023a. Github repository of Splunk. https://github.com/splunk. (Accessed
on 11 January 2023).

plunk, 2023b. Instrument back-end applications to send spans to Splunk
APM. https://docs.splunk.com/Observability/gdi/get-data-in/application/
application.html#nav-Instrument-back-end-services-and-applications.
(Accessed on 11 January 2023).

plunk, 2023c. Metrics metadata. https://dev.splunk.com/observability/reference/
api/metrics_metadata/latest. (Accessed on 12 January 2023).

plunk, 2023d. Reference documentation. https://dev.splunk.com/observability/
reference. (Accessed on 12 January 2023).

plunk, 2023e. Send APM traces. https://dev.splunk.com/observability/docs/apm/
send_traces/. (Accessed on 12 January 2023).

tagemonitor, 2023. Installation. https://github.com/stagemonitor/stagemonitor/
wiki/Installation. (Accessed on 14 January 2023).

tagemonitor contributors, 2022a. Github repository of stagemonitor. https:
//github.com/stagemonitor/stagemonitor. (Accessed on 07 July 2022).

tagemonitor contributors, 2022b. Installation. https://github.com/stagemonitor/
stagemonitor/wiki/Installation. (Accessed on 07 July 2022).

tagemonitor contributors, 2022c. Logging dashboard. https://github.com/
stagemonitor/stagemonitor/wiki/Logging-Dashboard. (Accessed on 07 July
2022).

tagemonitor contributors, 2022d. Track your own metrics. https://github.com/
stagemonitor/stagemonitor/wiki/Track-your-own-metrics. (Accessed on 07
July 2022).

yed, S., Spruit, M., 2017. Full-text or abstract? Examining topic coherence scores
using latent dirichlet allocation. In: 2017 IEEE International Conference on
Data Science and Advanced Analytics. DSAA, Ieee, pp. 165–174.
24
Szajna, B., Scamell, R.W., 1993. The effects of information system user
expectations on their performance and perceptions. Mis Q. 493–516.

Tanzu, 2023a. Github repository of Tanzu. https://github.com/vmware-tanzu.
(Accessed on 11 January 2023).

Tanzu, 2023b. Instrumenting your app for tracing. https://docs.wavefront.com/
tracing_instrumenting_frameworks.html. (Accessed on 11 January 2023).

Tempo, G., 2023a. Github repository of grafana tempo. https://github.com/
grafana/tempo. (Accessed on 11 January 2023).

Tempo, G., 2023b. Instrumentation references. https://grafana.com/docs/tempo/
latest/getting-started/instrumentation/. (Accessed on 11 January 2023).

Tempo, G., 2023c. OpenTelemetry. https://grafana.com/docs/?plcmt=footer.
(Accessed on 12 January 2023).

Tempo, G., 2023d. OpenTelemetry. https://grafana.com/docs/opentelemetry/
?plcmt=footer. (Accessed on 12 January 2023).

Tempo, G., 2023e. Tempo API. https://grafana.com/docs/tempo/latest/api_docs/.
(Accessed on 12 January 2023).

The OpenTelemetry Authors, 2022. OpenTelemetry. https://opentelemetry.io/
docs/. (Accessed on 07 July 2022).

UpTrace, 2023a. Github repository of UpTrace. https://github.com/uptrace.
(Accessed on 11 January 2023).

UpTrace, 2023b. OpenTelemetry. https://uptrace.dev/opentelemetry/. (Accessed
on 12 January 2023).

UpTrace, 2023c. OpenTelemetry distributed tracing. https://uptrace.dev/
opentelemetry/distributed-tracing.html. (Accessed on 12 January 2023).

UpTrace, 2023d. OpenTelemetry instrumentations. https://uptrace.dev/
opentelemetry/instrumentations/. (Accessed on 11 January 2023).

UpTrace, 2023e. OpenTelemetry logs. https://uptrace.dev/opentelemetry/logs.
html. (Accessed on 12 January 2023).

UpTrace, 2023f. OpenTelemetry metrics. https://uptrace.dev/opentelemetry/
metrics.html. (Accessed on 12 January 2023).

VictoriaMetrics, 2023a. API docs. https://docs.victoriametrics.com/operator/api.
html. (Accessed on 12 January 2023).

VictoriaMetrics, 2023b. CodeQL support for VictoriaMet-
rics. https://github.com/VictoriaMetrics/VictoriaMetrics/blob/
b4e6460d2f92f712c3338e4d065e521592d862da/.github/workflows/codeql-
analysis.yml. (Accessed on 12 January 2023).

VictoriaMetrics, 2023c. Github repository of VictoriaMetrics. https://github.com/
VictoriaMetrics/VictoriaMetrics. (Accessed on 11 January 2023).

VictoriaMetrics, 2023d. Metrics explorer. https://docs.victoriametrics.com/Single-
server-VictoriaMetrics.html#metrics-explorer. (Accessed on 12 January
2023).

VictoriaMetrics, 2023e. OTLP support in VictoriaMetrics? #2424. https://github.
com/VictoriaMetrics/VictoriaMetrics/issues/2424. (Accessed on 12 January
2023).

VictoriaMetrics, 2023f. Query tracing. https://docs.victoriametrics.com/#query-
tracing. (Accessed on 12 January 2023).

VMware, 2022a. App metrics for vmware Tanzu. https://docs.vmware.com/
en/App-Metrics-for-VMware-Tanzu/2.1/app-metrics/GUID-index.html.
(Accessed on 07 July 2022).

VMware, 2022b. Enterprise grade on day 1. https://tanzu.vmware.com/content/
vmware-tanzu-observability-features/enterprise-grade-on-day-1. (Accessed
on 07 July 2022).

VMware, 2022c. Microservices observability with distributed tracing.
https://tanzu.vmware.com/content/vmware-tanzu-observability-features/
microservices-observability-with-distributed-tracing. (Accessed on 07 July
2022).

Wavefront, 2022a. Getting started pages. https://docs.wavefront.com/label_
getting%20started.html. (Accessed on 07 July 2022).

Wavefront, 2022b. Log data integration. https://docs.wavefront.com/log.html.
(Accessed on 07 July 2022).

Wavefront, 2022c. Send OpenTelemetry data. https://docs.wavefront.com/
opentelemetry_tracing.html. (Accessed on 07 July 2022).

Wavefront, 2022d. Wavefront REST API. https://docs.wavefront.com/wavefront_
api.html. (Accessed on 07 July 2022).

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In: International Conference on
Evaluation and Assessment in Software Engineering. Ease ’14, Association
for Computing Machinery, New York, NY, USA, pp. 1–10.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., 2012.
Experimentation in Software Engineering. pp. 1–236.

Yang, X., Li, Y., Zhang, X., Chen, H., Cheng, W., 2023. Exploring the limits
of chatgpt for query or aspect-based text summarization. arXiv preprint
arXiv:2302.08081.

Zipkin, 2023. Tracers and instrumentation. https://zipkin.io/pages/tracers_
instrumentation.html. (Accessed on 14 January 2023).

Zipkin contributors, 2022a. Architecture. https://zipkin.io/pages/architecture.
html. (Accessed on 07 July 2022).

Zipkin contributors, 2022b. Github repository of zipkin. https://github.com/
openzipkin/zipkin. (Accessed on 07 July 2022).

https://docs.newrelic.com/docs/distributed-tracing/trace-api/introduction-trace-api/
https://docs.newrelic.com/docs/distributed-tracing/trace-api/introduction-trace-api/
https://docs.newrelic.com/docs/distributed-tracing/trace-api/introduction-trace-api/
https://docs.sentry.io/api/
https://github.com/getsentry/sentry
https://docs.sentry.io/product/relay/options#logging
https://docs.sentry.io/product/performance/transaction-summary/#metrics
https://docs.sentry.io/product/performance/transaction-summary/#metrics
https://docs.sentry.io/product/performance/transaction-summary/#metrics
https://docs.sentry.io/platforms/python/guides/aws-lambda/performance/instrumentation/opentelemetry/
https://docs.sentry.io/platforms/python/guides/aws-lambda/performance/instrumentation/opentelemetry/
https://docs.sentry.io/platforms/python/guides/aws-lambda/performance/instrumentation/opentelemetry/
https://docs.sentry.io/platforms/
https://docs.sentry.io/platforms/dotnet/migration/#self-hosted-support
https://docs.sentry.io/platforms/dotnet/migration/#self-hosted-support
https://docs.sentry.io/platforms/dotnet/migration/#self-hosted-support
https://docs.sentry.io/product/sentry-basics/tracing/
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb179
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb179
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb179
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb179
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb179
https://github.com/SigNoz/signoz
https://signoz.io/docs/instrumentation/
https://signoz.io/docs/instrumentation/
https://signoz.io/docs/instrumentation/
https://signoz.io/docs/userguide/logs/
https://signoz.io/docs/userguide/logs/
https://signoz.io/docs/userguide/logs/
https://signoz.io/docs/tutorial/opentelemetry-operator-usage/
https://signoz.io/docs/tutorial/opentelemetry-operator-usage/
https://signoz.io/docs/tutorial/opentelemetry-operator-usage/
https://signoz.io/docs/userguide/traces/
https://www.site24x7.com/help/api/
https://www.site24x7.com/help/apm.html
https://www.site24x7.com/help/apm.html
https://www.site24x7.com/help/apm.html
https://www.site24x7.com/help/apm/distributed-tracing.html
https://www.site24x7.com/help/apm/distributed-tracing.html
https://www.site24x7.com/help/apm/distributed-tracing.html
https://github.com/site24x7
https://www.site24x7.com/help/aws/metric-profile.html
https://www.site24x7.com/help/aws/metric-profile.html
https://www.site24x7.com/help/aws/metric-profile.html
https://www.site24x7.com/help/log-collectors/logstash.html
https://www.site24x7.com/help/log-collectors/logstash.html
https://www.site24x7.com/help/log-collectors/logstash.html
https://www.site24x7.com/blog/what-is-opentelemetry
https://www.site24x7.com/blog/what-is-opentelemetry
https://www.site24x7.com/blog/what-is-opentelemetry
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb192
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb192
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb192
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb192
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb192
https://spdx.org/licenses/
https://github.com/splunk
https://docs.splunk.com/Observability/gdi/get-data-in/application/application.html#nav-Instrument-back-end-services-and-applications
https://docs.splunk.com/Observability/gdi/get-data-in/application/application.html#nav-Instrument-back-end-services-and-applications
https://docs.splunk.com/Observability/gdi/get-data-in/application/application.html#nav-Instrument-back-end-services-and-applications
https://dev.splunk.com/observability/reference/api/metrics_metadata/latest
https://dev.splunk.com/observability/reference/api/metrics_metadata/latest
https://dev.splunk.com/observability/reference/api/metrics_metadata/latest
https://dev.splunk.com/observability/reference
https://dev.splunk.com/observability/reference
https://dev.splunk.com/observability/reference
https://dev.splunk.com/observability/docs/apm/send_traces/
https://dev.splunk.com/observability/docs/apm/send_traces/
https://dev.splunk.com/observability/docs/apm/send_traces/
https://github.com/stagemonitor/stagemonitor/wiki/Installation
https://github.com/stagemonitor/stagemonitor/wiki/Installation
https://github.com/stagemonitor/stagemonitor/wiki/Installation
https://github.com/stagemonitor/stagemonitor
https://github.com/stagemonitor/stagemonitor
https://github.com/stagemonitor/stagemonitor
https://github.com/stagemonitor/stagemonitor/wiki/Installation
https://github.com/stagemonitor/stagemonitor/wiki/Installation
https://github.com/stagemonitor/stagemonitor/wiki/Installation
https://github.com/stagemonitor/stagemonitor/wiki/Logging-Dashboard
https://github.com/stagemonitor/stagemonitor/wiki/Logging-Dashboard
https://github.com/stagemonitor/stagemonitor/wiki/Logging-Dashboard
https://github.com/stagemonitor/stagemonitor/wiki/Track-your-own-metrics
https://github.com/stagemonitor/stagemonitor/wiki/Track-your-own-metrics
https://github.com/stagemonitor/stagemonitor/wiki/Track-your-own-metrics
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb204
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb204
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb204
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb204
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb204
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb205
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb205
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb205
https://github.com/vmware-tanzu
https://docs.wavefront.com/tracing_instrumenting_frameworks.html
https://docs.wavefront.com/tracing_instrumenting_frameworks.html
https://docs.wavefront.com/tracing_instrumenting_frameworks.html
https://github.com/grafana/tempo
https://github.com/grafana/tempo
https://github.com/grafana/tempo
https://grafana.com/docs/tempo/latest/getting-started/instrumentation/
https://grafana.com/docs/tempo/latest/getting-started/instrumentation/
https://grafana.com/docs/tempo/latest/getting-started/instrumentation/
https://grafana.com/docs/?plcmt=footer
https://grafana.com/docs/opentelemetry/?plcmt=footer
https://grafana.com/docs/opentelemetry/?plcmt=footer
https://grafana.com/docs/opentelemetry/?plcmt=footer
https://grafana.com/docs/tempo/latest/api_docs/
https://opentelemetry.io/docs/
https://opentelemetry.io/docs/
https://opentelemetry.io/docs/
https://github.com/uptrace
https://uptrace.dev/opentelemetry/
https://uptrace.dev/opentelemetry/distributed-tracing.html
https://uptrace.dev/opentelemetry/distributed-tracing.html
https://uptrace.dev/opentelemetry/distributed-tracing.html
https://uptrace.dev/opentelemetry/instrumentations/
https://uptrace.dev/opentelemetry/instrumentations/
https://uptrace.dev/opentelemetry/instrumentations/
https://uptrace.dev/opentelemetry/logs.html
https://uptrace.dev/opentelemetry/logs.html
https://uptrace.dev/opentelemetry/logs.html
https://uptrace.dev/opentelemetry/metrics.html
https://uptrace.dev/opentelemetry/metrics.html
https://uptrace.dev/opentelemetry/metrics.html
https://docs.victoriametrics.com/operator/api.html
https://docs.victoriametrics.com/operator/api.html
https://docs.victoriametrics.com/operator/api.html
https://github.com/VictoriaMetrics/VictoriaMetrics/blob/b4e6460d2f92f712c3338e4d065e521592d862da/.github/workflows/codeql-analysis.yml
https://github.com/VictoriaMetrics/VictoriaMetrics/blob/b4e6460d2f92f712c3338e4d065e521592d862da/.github/workflows/codeql-analysis.yml
https://github.com/VictoriaMetrics/VictoriaMetrics/blob/b4e6460d2f92f712c3338e4d065e521592d862da/.github/workflows/codeql-analysis.yml
https://github.com/VictoriaMetrics/VictoriaMetrics/blob/b4e6460d2f92f712c3338e4d065e521592d862da/.github/workflows/codeql-analysis.yml
https://github.com/VictoriaMetrics/VictoriaMetrics/blob/b4e6460d2f92f712c3338e4d065e521592d862da/.github/workflows/codeql-analysis.yml
https://github.com/VictoriaMetrics/VictoriaMetrics
https://github.com/VictoriaMetrics/VictoriaMetrics
https://github.com/VictoriaMetrics/VictoriaMetrics
https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#metrics-explorer
https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#metrics-explorer
https://docs.victoriametrics.com/Single-server-VictoriaMetrics.html#metrics-explorer
https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2424
https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2424
https://github.com/VictoriaMetrics/VictoriaMetrics/issues/2424
https://docs.victoriametrics.com/#query-tracing
https://docs.victoriametrics.com/#query-tracing
https://docs.victoriametrics.com/#query-tracing
https://docs.vmware.com/en/App-Metrics-for-VMware-Tanzu/2.1/app-metrics/GUID-index.html
https://docs.vmware.com/en/App-Metrics-for-VMware-Tanzu/2.1/app-metrics/GUID-index.html
https://docs.vmware.com/en/App-Metrics-for-VMware-Tanzu/2.1/app-metrics/GUID-index.html
https://tanzu.vmware.com/content/vmware-tanzu-observability-features/enterprise-grade-on-day-1
https://tanzu.vmware.com/content/vmware-tanzu-observability-features/enterprise-grade-on-day-1
https://tanzu.vmware.com/content/vmware-tanzu-observability-features/enterprise-grade-on-day-1
https://tanzu.vmware.com/content/vmware-tanzu-observability-features/microservices-observability-with-distributed-tracing
https://tanzu.vmware.com/content/vmware-tanzu-observability-features/microservices-observability-with-distributed-tracing
https://tanzu.vmware.com/content/vmware-tanzu-observability-features/microservices-observability-with-distributed-tracing
https://docs.wavefront.com/label_getting%20started.html
https://docs.wavefront.com/label_getting%20started.html
https://docs.wavefront.com/label_getting%20started.html
https://docs.wavefront.com/log.html
https://docs.wavefront.com/opentelemetry_tracing.html
https://docs.wavefront.com/opentelemetry_tracing.html
https://docs.wavefront.com/opentelemetry_tracing.html
https://docs.wavefront.com/wavefront_api.html
https://docs.wavefront.com/wavefront_api.html
https://docs.wavefront.com/wavefront_api.html
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb233
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb233
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb233
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb233
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb233
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb233
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb233
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb234
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb234
http://refhub.elsevier.com/S0164-1212(23)00188-7/sb234
http://arxiv.org/abs/2302.08081
https://zipkin.io/pages/tracers_instrumentation.html
https://zipkin.io/pages/tracers_instrumentation.html
https://zipkin.io/pages/tracers_instrumentation.html
https://zipkin.io/pages/architecture.html
https://zipkin.io/pages/architecture.html
https://zipkin.io/pages/architecture.html
https://github.com/openzipkin/zipkin
https://github.com/openzipkin/zipkin
https://github.com/openzipkin/zipkin

A. Janes, X. Li and V. Lenarduzzi The Journal of Systems & Software 204 (2023) 111793

Z

Z

Z

Z

A
(
a
c
a
m
m
a
o
H
p
c
v
s
s
2
c
e
2
a
w

ipkin contributors, 2022c. Opentelemetry zipkin exporter. https://open-
telemetry.github.io/opentelemetry-python/exporter/zipkin/zipkin.html. (Ac-
cessed on 07 July 2022).

ipkin contributors, 2022d. Quickstart. https://zipkin.io/pages/quickstart.html.
(Accessed on 07 July 2022).

ipkin contributors, 2022e. Server extensions and choices. https://zipkin.io/
pages/extensions_choices.html. (Accessed on 07 July 2022).

ipkin contributors, 2022f. Tracers and instrumentation. https://zipkin.io/pages/
tracers_instrumentation.html. (Accessed on 07 July 2022).

ndrea Janes is senior lecturer at FHV Vorarlberg University of Applied Sciences
Austria). His research activity is related to the area of software maintenance
nd development. In particular, his research involves the identification of
ost-efficient software production techniques, quality assurance methodologies,
s well as the application of foundational aspects of software engineering
ethods such as testing and software process improvement. He received the
aster’s in computer science from the Technical University of Vienna, Austria
nd the doctorate in computer science (with distinction) from the University
f Klagenfurt (Austria). He was a visiting researcher at the Research Center
agenberg (Austria) and the Tampere University (Finland). He was an assistant
rofessor at the Free University of BolzanoBozen (Italy). He served as a program
ommittee member of various international conferences and as a reviewer for
arious international journals (e.g., TSE, EMSE, JSS, and IST) in the field of
oftware engineering. He has been Doctoral Symposium co-chair of PROFES 2022,
hort papers and poster co-chair of EASE 2023, program co-chair of PROFES
023, Journal First and Special Issue chair of QUATIC 2023, and industrial papers
o-chair of ESOCC 2023 and SANER 2024. He organized several workshops and
vents for practitioners focused on the application of research in industry. Since
017, he is also involved in technology transfer within Smart Data Factory,
group within the NOI technology park with the goal of technology transfer
ithin the local industry.
25
Xiaozhou Li is a postdoctoral researcher in Empirical Software Engineering in
Software, Systems and Services (M3S) Research Group at Faculty of Information
Technology and Electrical Engineering (ITEE), University of Oulu, Finland. Li
received his Ph.D. in computer science from Tampere University. His research
interests include microservice degradation, microservice organization network,
open source software quality, software maintenance and evolution, user review
opinion mining, and computational game studies.

Valentina Lenarduzzi is an Assistant Professor (tenure track) in Empirical
Software Engineering in Software, Systems and Services (M3S) Research Group at
Faculty of Information Technology and Electrical Engineering (ITEE), University
of Oulu (Finland). Her research activities are related to contemporary software
development practices and methodologies, including data analysis in software
engineering, software quality, software maintenance and evolution, focusing on
Technical Debt as well as code and architectural smells. She got the Ph.D.
in Computer Science in 2015 and was a postdoctoral researcher at the Free
University of Bozen-Bolzano, (Italy), at the Tampere University (Finland), and
LUT University (Finland). Moreover, she was visiting researcher at the University
of Kaiserslautern (TUK) and the Fraunhofer Institute for Experimental Software
Engineering IESE (Germany). She is Finnish consortium leader in the COST Action
EUGAIN European Network For Gender Balance in Informatics. She served as
a program committee member of various international conferences (e.g., ICSE,
ICSME, ESEM), and for various international journals (e.g., TSE, EMSE, JSS, IST)
in the field of software engineering. She has been program co-chair of OSS
2021, TechDebt 2022, SEAA2023, PROFES 2023, and QUATIC2023. Moreover, she
served in different organization roles (i.e. short papers, emerging results, and
publicity chair) in several conferences such as ESEM 2021, SANER 2022, PROFES
2022, EASE2023, ESEM2023, ESOCC 2023, and SANER 2024. Dr. Lenarduzzi is
recognized by the Journal of Systems and Software (JSS) as one of the most
active SE researcher in top-quality journals in the period 2013 to 2020.

https://open-telemetry.github.io/opentelemetry-python/exporter/zipkin/zipkin.html
https://open-telemetry.github.io/opentelemetry-python/exporter/zipkin/zipkin.html
https://open-telemetry.github.io/opentelemetry-python/exporter/zipkin/zipkin.html
https://zipkin.io/pages/quickstart.html
https://zipkin.io/pages/extensions_choices.html
https://zipkin.io/pages/extensions_choices.html
https://zipkin.io/pages/extensions_choices.html
https://zipkin.io/pages/tracers_instrumentation.html
https://zipkin.io/pages/tracers_instrumentation.html
https://zipkin.io/pages/tracers_instrumentation.html

	Open tracing tools: Overview and critical comparison
	Introduction
	Systematic Open Tracing Tools Selection
	Tool analysis
	Study context
	Data extraction
	Data Analysis
	Verifiability and replicability

	Results
	Distinctive features (RQ1)
	Tool popularity (RQ2)
	Benefit and issues (RQ3 and RQ4)
	RQ3. What benefits are achieved by adopting Open Tracing Tools?
	RQ4. Do Open Tracing Tools introduce any issues?

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

