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Abstract—Radio frequency sensor networks can be utilized for
locating and tracking people within coverage area of the network.
The technology is based on the fact that humans alter properties
of the wireless propagation channel which is observed in the
channel estimates, enabling tracking without requiring people
to carry any sensor, tag or device. Considerable efforts have
been made to model the human induced perturbations to the
channel and develop flexible models that adapt to the unique
propagation environment to which the network is deployed in.
This paper proposes a noteworthy conceptual shift in the design
of passive localization and tracking systems as the focus is shifted
from channel modeling to filter design. We approach the problem
using random finite set theory enabling us to model detections,
missed detections, false alarms and unknown data association in
a rigorous manner. The Bayesian filtering recursion applied with
random finite sets is presented and a computationally tractable
Gaussian sum filter is developed. The development efforts of the
paper are validated using experimental data and the results imply
that the proposed approach can decrease the tracking error up
to 48% with respect to a benchmark solution.

Index Terms—Received signal strength, RF sensor network,
localization and tracking, random finite set, Gaussian sum filter

I. INTRODUCTION

Ubiquitous radio frequency (RF) sensing technologies have
experienced a surge of interest over the past decade and are
considered as a potential candidate to be used in smart homes.
We envision that future smart homes would not only regulate
the heating, lighting and ventilation, but also monitor its
inhabitants. In this regard, RF sensing is particularly suitable
for realizing such system capabilities and over the past years,
various radio technologies have been demonstrated for vital
sign monitoring [1], activity and gesture recognition [2], and
localization and tracking [3]. The abundant information that
can be extracted with RF sensing can be exploited in various
ways including: the smart home could be controlled using
our gestures, the vital sign information could be used to
enhance our health-awareness, and heating and lighting could
be automatically adjusted based on our location.

RF sensing technologies are built upon the fact that humans
alter the propagation characteristics of radio signals and at
the receiver, these changes can be quantified using the radio
channel estimates. Research has demonstrated the use of vari-
ous channel estimates for inference, including time delay [1],
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phase [2], and signal strength [3]; and these have been used
for various purposes as mentioned above. Most notably, the
technology is non-invasive and does not require the person to
carry any electronic device. Moreover, the technology can be
realized with received signal strength (RSS) channel estimates
that are ubiquitously available in nearly all receivers. In this
paper, we consider narrowband wireless devices that provide
the RSS and we utilize the RSS for passive localization and
tracking (PLT) in indoor environments.

The performance of PLT systems is significantly influenced
by the model that describes the RSS as a function of a person’s
location. Typically, elaborate modeling [4]–[6], supervised
training [7]–[9] or unsupervised parameter estimation [10]–
[12] are used to tune the model since the model has an
immediate impact on localization and tracking accuracy. As an
example, PLT can be implemented using a two-step approach
in which radio tomographic imaging (RTI) [13] is first used
to reconstruct an image description of the human-induced
propagation changes within the monitored area and thereafter,
a position detector is used to localize the person from the
image and a Kalman filter (KF) to track the person as time
evolves [14]. With an ideal model, the person can always be
detected from the image and the images do not contain any
anomalies that would generate false detections. In practice
however, the RSS model will always have inaccuracies and
localizing the person accurately from the reconstructed images
at all times is difficult. Since the detections are used as input
to the KF, inaccurate localization also has a direct impact on
tracking performance.

This paper proposes a noteworthy conceptual shift in the
design of PLT systems as the focus is shifted from RSS
modeling to filter design. First of all, we utilize a simplistic
RSS model together with RTI to reconstruct the images. To
cope with modeling inaccuracies and noisy RTI images, a new
position detector is developed that detects multiple candidate
positions corresponding to peaks of the RTI image. Similar
approaches have been proposed for multi-target localization
but instead of processing the data during the detection phase
to come up with a correct number of detections [15], [16],
we handle all candidate positions in the tracking filter. The
candidate positions are simply referred to as measurements
from now on.

In this paper, the measurements are modeled using a random
finite set (RFS) based approach since the number of measure-



ments and their locations are unknown. An element of the
RFS has three alternatives: (i) a detection if the measurement
is generated by the person; (ii) clutter if the measurement is
a false detection; (iii) a misdetection if the person does not
generate a measurement and the element is empty. In other
words, a detection is a peak in the RTI image that is nearby the
actual location of the person, clutter measurements correspond
to peaks of the RTI image that are far away from the person,
and a misdetection occurs if the RTI image does not have a
peak near the person.

To solve the single-object tracking (SOT) in clutter prob-
lem we resort to RFS theory [17] which provides a solid
mathematical foundation to handle the challenges introduced
by the proposed position detector. A measurement model for
PLT is presented that incorporates detections, misdetections,
clutter, and data association (DA) uncertainty into the measure-
ment likelihood function. Thereafter, Bayesian filtering equa-
tions applied with RFSs are presented and a computationally
tractable Gaussian sum filter (GSF) is developed to track the
person using cluttered measurements. The considered problem
is closely related to multi-object tracking (MOT) for which
the RFS framework is widely used to model the problem in a
Bayesian way [17], [18].

The development efforts of the paper are demonstrated using
commodity narrowband wireless transceivers that operate on
the 2.4 GHz ISM band. The experiments are conducted in
a downtown residential apartment and in an open indoor
environment. Using the experimental data, it is shown that
the proposed approach can decrease the tracking error up
to 48% with respect to a benchmark solution. Thus, the
experimental results validate the research premise that the
presented approach can deal with larger RSS modeling errors
due to the filters ability to handle clutter measurements,
missing measurements and DA uncertainty. This paper makes
the following contributions:

1) A new position detector is developed that detects multiple
candidate positions corresponding to peaks of the RTI
image.

2) The detected peaks, referred to as measurements, are
modeled using a RFS and a measurement likelihood
function is presented that account for detections, misde-
tections, clutter, and DA uncertainty.

3) A computationally tractable GSF is developed and it
is demonstrated that the filter outperforms the KF in a
variety of experiments.

The rest of the paper is organized as follows. Section II
introduces the widely utilized models for PLT and summarizes
the typical RTI+KF approach for tracking. The RFS approach
to PLT is presented in Section III. Section IV introduces the
conducted experiments and the results are presented in Section
V. Thereafter, conclusions are drawn in Section VI.

II. PASSIVE LOCALIZATION AND TRACKING

Imaging-based PLT is a two-step process. In the first step,
RTI is used to reconstruct an image description of the spatial
field describing the RSS changes of the monitored area [13].

In the second step, a position detector is used to localize the
person from the RTI image and the detections are utilized as
input to a tracking filter [19].

A. Received Signal Strength Model

Let us consider a geographical area indexed by the closed
and convex set A ⊂ R2 and a wireless link ℓ between a RF
transmitter (TX) located at pℓ,TX ∈ A and an RF receiver (RX)
located at pℓ,RX ∈ A. Let us also consider a single person
located within the monitored area at p(t) ∈ A. Assuming
zero-mean Gaussian noise, the human-induced RSS changes
of wireless link ℓ at time t follows

p(ỹℓ(t) | ∆ℓ,p(t)) = N (ỹℓ(t);h(∆ℓ,p(t),ϕℓ), σ
2
ℓ (t)) (1)

where ∆ℓ,p(t) is the excess path length, and the mean and
variance of the Gaussian model are given by h(∆ℓ,p(t),ϕℓ)
and σ2

ℓ (t), respectively. The excess path length is defined as

∆ℓ,p(t) ≜ dℓ,TX + dℓ,RX − dℓ (2)

in which dℓ,TX = ∥pℓ,TX − p(t)∥ and dℓ,RX = ∥pℓ,RX − p(t)∥
are the distances from p(t) to the TX and RX for link ℓ, and
dℓ = ∥pTX − pRX∥ is the distance between the transceivers.
The exponential model is given by [20]

h(∆ℓ,p(t),ϕℓ) = µℓ + κℓ exp (−∆ℓ,p(t)/γℓ), (3)

where ϕℓ = [µℓ, κℓ, γℓ] are the model parameters in which
µℓ is the baseline RSS, κℓ the measurement gain and γℓ the
decay rate.

B. Image Reconstruction

If N is the total number of transceivers in the RF sensor
network, then the total number of wireless links is L =
N × (N − 1). Now, considering all L links simultaneously,
RTI reconstructs a discretized image description of the RSS
changes within the considered geographical area. The RSS for
every link is acquired over time window, T = {t | (k−1) τ <
t ≤ k τ}, in which k denotes the sample number and τ
duration of the time window. Now, the considered problem
can be described by the following linear model [13]

yk = Ωbk + rk, (4)

where yk ∈ RL is the mean-removed RSS at time k, bk ∈ RM

is the discretized image to be estimated, Ω ∈ RL×M is an
L × M time-invariant weighting matrix and rk ∈ RL is a
zero-mean Gaussian noise vector. The linear model in (4) is
related to (1) via {yk}ℓ = ỹℓ(t) − µℓ and rk ∼ N (0,Σr)
in which Σr = diag(σ2

1 , . . . , σ
2
L). Furthermore, for link ℓ and

pixel m located at pm ∈ A, elements of the weighting matrix
are given by [12]

{Ω}ℓ,m = κ̄ℓ exp (−∆ℓ,pm
/γℓ), (5)

where κ̄ℓ = κℓ/|κℓ| normalizes the measurement gain to one
so that the links are weighted equally.

With zero-mean Gaussian image prior b ∼ N (0,Σb), the
weighted least squares estimate for the model in (4) is [19]

b̂k = Πyk, (6)



where
Π =

(
Ω⊤Σ−1

r Ω+Σ−1
b

)−1

Ω⊤Σ−1
r . (7)

Covariance of the image prior between pixels i and j is defined
as [21]

{Σ}i,j = σ2
b exp (−∥pi − pj∥/δd), (8)

where σ2
b is the pixel variance and δd the correlation distance.

C. Position Detector and Tracking Models

In the second step of imaging-based PLT, a position detector
is used to localize the person from the image and the obtained
position estimates are used as input to a tracking filter. The
location of the person at time k can be estimated by finding
the voxel of the RTI image that has the maximum value [14],
[19]

zk = pj , where j = argmax
M

b̂k (9)

and pj is the position of voxel j. From now on, we refer
to the position estimate simply as measurement or position
measurement, since it is used as a measurement input to a
tracking filter.

In this paper, the RF network is the sensor and it is used for
determining position and velocity of a person over time. The
dynamics of the target and measurements are most naturally
combined using an optimal filter and in the following, the
underlying models utilized by the filter are introduced. The
state of the system in the 2D Euclidean space can be defined
as

xk =
[
xk ẋk yk ẏk

]⊤
, (10)

where xk and yk denote the coordinates and ẋk and ẏk denote
the velocity components. The evolution of the state can be
represented using a Gaussian transition density

p(xk | xk−1) = N (xk | Fk−1xk−1,Qk−1), (11)

where Fk−1 is the state transition matrix and Qk−1 covariance
of the process noise. A common choice for the transition
model in PLT is the second-order kinematic model [5], [19],
given by [22]

Fk = I⊗
[
1 τk
0 1

]
, Qk = I⊗ q

[
1
3τ

3
k

1
2τ

2
k

1
2τ

2
k τk

]
, (12)

where I is a 2 × 2 identity matrix, ⊗ denotes the Kronecker
product, q is the power spectral density of the process noise
and τk is the sampling interval. In the considered problem,
Fk, Qk and τk are time-variant since the sampling interval
contains jitter.

The connection between the measurements and the state is
represented using a Gaussian measurement likelihood

p(zk | xk) = N (zk | Hxk,R), (13)

where H is a linear measurement matrix and R is the
measurement noise covariance, given by

H = I⊗
[
1 0

]
and R = σ2

rI (14)

in which σ2
r is variance of the measurement noise.

D. Bayesian Filtering

Recursive Bayesian filtering computes the marginal pos-
terior distribution of the state xk at time step k, given the
sequence of measurements z1:k = {z1, . . . , zk} up to time
instant k

p(xk | z1:k). (15)

The recursive equations to compute the marginal posterior
distribution is given by the following Bayesian filtering
equations. The recursion starts from the prior distribution
p(xk−1 | z1:k−1) = p(x0) at k = 0. The prediction step
of the Bayesian filtering recursion can be computed using the
Chapman-Kolmogorov equation [23]

p(xk | z1:k−1) =

∫
p(xk | xk−1)p(xk−1 | z1:k−1)dxk−1,

(16)
in which p(xk | xk−1) is the transition density. Once mea-
surement zk is available at time k, the predictive distribution
can be updated using the Bayes’ rule [23]

p(xk | z1:k) =
p(zk | xk)p(xk | z1:k−1)

p(zk | z1:k−1)
, (17)

where p(zk | xk) is the likelihood function and the term in the
denominator is the normalization constant p(zk | z1:k−1) =∫
p(zk | xk)p(xk | z1:k−1)dxk.
1) Kalman Filter: Typically in PLT [12], [14], [19], the

posterior is represented using a Gaussian

p(xk | z1:k) = N (xk | mk,Pk), (18)

which is parameterized by the mean mk and covariance Pk.
Since p(xk | z1:k) is Gaussian, and the models in (11) and
(13) are linear Gaussian, the KF is the closed form solution
to the Bayesian filtering equations. The distributions in (16)
and (17) are Gaussian and given by [23]

p(xk | z1:k−1) = N (xk | mk|k−1,Pk|k−1), (19)
p(xk | z1:k) = N (xk | mk|k,Pk|k), (20)

p(zk | z1:k−1) = N (xk | Hmk|k−1,Sk|k−1). (21)

The parameters of the predictive distribution in (19) are given
by prediction step of the KF

mk|k−1 = Fk−1mk−1|k−1, (22)

Pk|k−1 = Fk−1Pk−1|k−1F
⊤
k−1 +Qk−1. (23)

Respectively, parameters of the posterior distribution in (20)
are given by update step of the KF

Sk|k−1 = HPk|k−1H
⊤ +R, (24)

Kk|k−1 = Pk|k−1H
⊤S−1

k|k−1, (25)

mk|k = mk|k−1 +Kk|k−1

(
zk −Hmk|k−1

)
, (26)

Pk|k = Pk|k−1 −Kk|k−1Sk|k−1K
⊤
k|k−1. (27)



(a) Low clutter image (b) High clutter image

Fig. 1. Example RTI images in a low clutter scenario (a) and in a high clutter scenario (b). In the images, the true position of the person is illustrated with
the white square, estimate computed using (9) presented with white circle and estimates obtained using (31) shown with white crosses.

III. A RANDOM FINITE SET APPROACH TO PLT

An RTI image representing the situation in which one
person is located in the monitored area should ideally show a
single peak in the image and the pixel with highest intensity
should locate near the object as illustrated in Fig. 1a. However,
due to noise in the RSS and the complex nature of the indoor
radio propagation channel, the RTI images are often noisy,
contain spurious peaks that do not correspond to the actual
object and the peak with the highest intensity is not always
the one that is closest to the person as illustrated in Fig. 1b.
For this reason, a peak detector is developed that finds all
the local maxima in the image and a Bayesian filter based on
RFS theory is implemented to track the person using cluttered
measurements.

A. Peak Detector and Measurement Model

Ideally, each peak in the RTI image is a smooth point spread
function (PSF) resembling a 2D Gaussian but in reality, the
images can contain additive noise such that each PSF peak can
have multiple small peaks. To suppress the noise and small
peaks, the images are filtered so that there will be only one
pixel in each peak that will correspond to the actual maxima
of the PSF. As in [15], the images are smoothed using a 2D
Gaussian filter

B(x, y) =
exp(− 1

2σ2
B
(x2 + y2))∑

x

∑
y exp(−

1
2σ2

B
(x2 + y2))

, (28)

where σ2
B = 0.25 is the variance and elements of the utilized

3× 3 filter are

B(x, y) ≈

0.0000 0.0003 0.0000
0.0003 0.9987 0.0003
0.0000 0.0003 0.0000

 . (29)

The low-pass filtered RTI image is then calculated as

b̃k = b̂k ∗B(x, y), (30)

where ∗ represents the 2D convolution operator and it is
assumed that the estimated image vector, b̂k ∈ RM , has been
converted to a 2D image above.

The locations of all the peaks at time k are modeled using
a RFS with random cardinality and random elements, given
by

Zk = {z1k, . . . , z
mk

k }, (31)

where mk is the total number of valid peaks and zjk = pi

is the position of voxel i. Pixel pi contains a peak if b̃i,k

is larger than the eight surrounding pixels. Furthermore, we
only consider pixels with intensity higher than αB, where
B = max(b̃k) denotes the maximum component of b̃k and
α = 0.75 is a threshold. The threshold is a tuning parameter
between two extremes: if α = 0 all peaks are taken into
account and if α = 1 only a single peak is accounted for,
and we have empirically found that α = 0.75 provides a good
overall performance.

Since the peak detector in (31) gives rise to multiple
measurements, the problem can be formulated as SOT in
clutter [24], [25], which is a special case of MOT [17],
[18]. With respect to conventional Bayesian filtering there
are new challenges that must be considered and these are:
missed detections, clutter detections and unknown DAs. The
main difference with respect to the problem introduced in the
previous section is the underlying measurement model and in
the following, a likelihood function that account for the new
challenges is introduced.

The probability that an object is detected by the sensor
is represented by detection probability PD(xk) ∈ [0, 1] and
respectively, 1 − PD(xk) is the probability of misdetection.
The detection process is Bernoulli distributed with probability
PD(xk) and if the object is detected, the measurements follow
the likelihood function in (13). The clutter measurements
form a mc

k-subset of Zk, denoted as Ck ⊆ Zk, where
Ck = {c1k, . . . c

mc
k

k }. The subset is proper if the object is



detected (mk = mc
k+1) and the sets are equal if the object is

undetected (mk = mc
k). The clutter measurements are modeled

using a Poisson point process (PPP) [24]

p(Ck) =
exp(−λ̄c)

mc
k!

mc
k∏

i=1

λc(c
i
k), (32)

where mc
k ∼ Po(λ̄c) is the number of clutter measurements

and it follows a Poisson distribution with rate parameter
λ̄c ∈ [0,∞). The clutter is assumed i.i.d. cik ∼ pc(c), where
pc(c) describes the spatial probability distribution function
(PDF) and the clutter is parameterized using intensity function
λc(c

i
k) = λ̄cpc(c). To describe the DA we use θk = 0, if the

object is undetected and θk = i, if zik is an object detection.
The complete measurement likelihood can now be expressed
as [24], [25]:

p(Zk | xk) =

mk∑
θk=0

p(Zk,mk, θk | xk) (33)

=

mk∑
θk=0

p(Zk | mk, θk,xk)p(mk, θk | xk)

= (1− PD(xk))
exp(−λ̄c)

mk!

mk∏
i=1

λc(z
i
k)

+

mk∑
θk=1

PD(xk)
p(zθkk | xk)

λc(z
θk
k )

exp(−λ̄c)

mk!

mk∏
i=1

λc(z
i
k).

In the above equation, the sum over θk = {0, . . . ,mk}
accounts for all possible DAs, terms on the third line account
for misdetection and clutter, and the terms on the last line
account for detection, the distribution of the detection and
clutter.

B. Filtering Recursion

Let the sequence of measurements and DA hypotheses up
to time k be denoted as Z1:k = {Z1, . . . ,Zk} and θ1:k =
{θ1, . . . , θk}, respectively. In SOT, the posterior distribution
at time k can be expressed as the summation over all possible
data association sequences up to time k [25]

p(xk | Z1:k) =
∑
θ1:k

wθ1:kp(xk | θ1:k,Z1:k), (34)

where p(xk | θ1:k,Z1:k) is the density of the object state con-
ditioned on the measurements and a specific DA hypotheses
sequence, wθ1:k = Pr(θ1:k | Z1:k) denotes the probability of
the DA hypotheses sequence and∑

θ1:k

=

m1∑
θ1=0

m2∑
θ2=0

· · ·
mk∑
θk=0

. (35)

The filtering recursion of SOT in clutter follows the con-
ventional prediction and update steps of Bayesian filtering
presented in Section II-D, but now the posterior is a mixture
density and the likelihood function is different. Let us denote

the posterior at the previous time step as p(xk−1 | Z1:k−1),
the prediction step of the filter can be computed using [25]

p(xk | Z1:k−1) =

∫
p(xk | xk−1)p(xk−1 | Z1:k−1)dxk−1,

=
∑

θ1:k−1

wθ1:k−1
p(xk | θ1:k−1,Z1:k−1), (36)

where predicted density of the object state is computed using
the Chapman-Kolmogorov equation

p(xk | θ1:k−1,Z1:k−1) =

∫
p(xk | xk−1)

× p(xk−1 | θ1:k−1,Z1:k−1)dxk−1. (37)

During the prediction step, the weights remain the same and
the density of every hypotheses is predicted using the standard
Bayesian filtering prediction step. The update step of the filter
is computed using the Bayes’ rule and once measurement set
Zk is available at time k, the posterior is updated using [25]

p(xk | Z1:k) ∝
∑

θ1:k−1

wθ1:k−1
p
θ1:k−1

k|k−1 (xk)(1− PD(xk))

+
∑

θ1:k−1

mk∑
θk=1

PD(xk)

λc(z
θk
k )

wθ1:k−1
p
θ1:k−1

k|k−1 (xk)p(z
θk
k | xk), (38)

where the predicted density is denoted as p
θ1:k−1

k|k−1 (xk) =

p(xk | θ1:k−1,Z1:k−1) for brevity. It is to be noted that
every state density is updated by a misdetection and by every
measurement, such that the number of hypotheses grows by a
factor of mk + 1 when the posterior is updated.

C. Gaussian Sum Filter

The filtering recursion presented in Section III-B is in-
tractable since the number of hypotheses grows according to∏k

i=1(mi+1). To obtain a computationally feasible algorithm,
the posterior in (34) is approximated using a Gaussian mixture
model (GMM) with fewer components similar to the works in
[26] and [27]. The GMM is given by

p(xk | Z1:k) ≈
Hk∑

hk=1

whk

k N (xk | mhk

k ,Phk

k ), (39)

where Hk is the number of hypotheses at time k and hk

the hypotheses index. For linear Gaussian models given in
Section II-C and assuming constant detection probability PD,
the distributions in (36) and (38) are Gaussian mixtures and
given by [25]

p(xk | Z1:k−1) =

Hk−1∑
hk−1=1

w
hk−1

k|k−1N (xk | mhk−1

k|k−1,P
hk−1

k|k−1), (40)

p(xk | Z1:k) =

Hk∑
hk=1

whk

k|kN (xk | mhk

k|k,P
hk

k|k), (41)

where Hk = Hk−1 × (mk +1) and the above equations form
the filtering recursion of the proposed GSF. It is to be noted
that the presented GSF recursion is similar to the works in [26]



and [27], with the difference that the weights are calculated
differently due to the different likelihood functions.

Parameters of the predictive distribution in (40) are

w
hk−1

k|k−1 = w
hk−1

k−1|k−1, (42)

m
hk−1

k|k−1 = Fk−1m
hk−1

k−1|k−1, (43)

P
hk−1

k|k−1 = Fk−1P
hk−1

k−1|k−1F
⊤
k−1 +Qk−1. (44)

Parameters of the posterior distribution in (41) for misdetec-
tion, θk = 0, are whk

k|k ∝ (1 − PD)w
hk−1

k|k−1, mhk

k|k = m
hk−1

k|k−1

and Phk

k|k = P
hk−1

k|k−1. Respectively, parameters of the updated
posterior for the detected components, θk ∈ {1, . . .mk}, are

whk

k|k ∝ PD

λc(z
θk
k )

w
hk−1

k|k−1N (zθkk ;Hm
hk−1

k|k−1,S
hk−1

k|k−1), (45)

mhk

k|k = m
hk−1

k|k−1 +K
hk−1

k|k−1(z
θk
k −Hm

hk−1

k|k−1), (46)

Phk

k|k = P
hk−1

k|k−1 −K
hk−1

k|k−1S
hk−1

k|k−1(K
hk−1

k|k−1)
⊤. (47)

where S
hk−1

k|k−1 and K
hk−1

k|k−1 are computed using (24) and (25),
respectively. During the update step, a new hypotheses hk is
obtained for every old hypotheses hk−1 and θk, and the new
hypotheses is assigned the index hk = hk−1 + Hk−1θk to
assure a unique mapping. After every update step, the weights
are normalized, whk

k|k = whk

k|k/
∑Hk

hk=1 w
hk

k|k, and the state
estimate used for evaluation purposes is computed using the
minimum mean square error (MMSE) estimate of the posterior
mean, given by

mk|k =

Hk∑
hk=1

whk

k mhk

k|k. (48)

To obtain a computationally feasible algorithm and constrain
the exponential growth of Gaussian components, the hypothe-
ses reduction algorithm presented in [18] is used to reduce
the number of Gaussian components that are propagated
to the next time step. The hypotheses reduction algorithm
discards components with weights below a pruning threshold.
Thereafter, it merges components that are close together and
approximates them using a single Gaussian. Lastly, it truncates
the Gaussian mixture and only keeps a certain number of
components with highest weights. In the experiments, the fol-
lowing parameter values are used in the hypotheses reduction
algorithm: pruning threshold is 10−6, merging threshold is 5
and truncating threshold is Hmax = 10.

IV. EXPERIMENTS

A. Experiment Description

The development efforts of this paper are demonstrated
using narrowband wireless transceivers. The utilized sensors
are Texas Instruments CC2531 USB dongle nodes [28] which
operate on the 2.4 GHz ISM band according to the IEEE
802.15.4 standard [29]. The wireless nodes communicate using
a round-robin schedule on four frequency channels F ∈
{11, 16, 21, 26}. In the transmitted packets, the nodes include
the most recent RSS, associated with the transmissions of other

nodes. After transmission, the turn is assigned to the next node
in the schedule. The time interval between two successive
transmission is τ̄ ≈ 2.9 ms. A gateway that overhears all
the traffic extracts the RSS from the packets and relays them
to a computer through UART for centralized processing. The
readers are referred to [30] for a more elaborate description
of the communication protocol.

The experiments are carried out in a downtown residen-
tial apartment and in an open indoor environment. In both
experiments, 20 nodes are deployed as illustrated in Fig. 2.
The time window T during which each node transmits once
is approximately τk = 20× τ̄ ≈ 58 ms defining the sampling
interval of the system. In the apartment, the nodes are deployed
by the electric sockets so they could be powered from the
mains. The size of the apartment is 82 m2 and distance of
the electric sockets from the ground varied from shin to
belly height. In the open environment, the nodes are deployed
around a 75 m2 area and they are set on top of podiums at a
height of 0.9 m.

In the experiments, reference positions were marked (see
Fig. 2) and the test person was given directions to walk
along the imaginary lines connecting the different reference
positions. During the experiment, the person walked from
one reference position to another after which they stopped
and remained stationary for a few seconds. Thereafter, the
person walked to the next reference positions. The person
was carrying a video camera and in post-processing, the RSS
and video streams were synchronized and the video was
used to define the ground truth trajectory. The experiments
were repeated three times in both environments and each
trial was approximately three minutes long. In each trial,
every reference position was visited at least once and the
person followed no specific order when visiting the reference
positions.

There were several co-existing Wi-Fi networks in both
environments but the developed system can tolerate occasional
packet drops and furthermore, frequency channel diversity
partially mitigates interference issues. It is also to be noted that
the developed system could be implement using any device
capable of measuring the RSS including Wi-Fi, Bluetooth and
RFID.

B. System Calibration

In the results section, we consider two different system cal-
ibration methods. In the first method, an empty-room calibra-
tion period is used to compute the reference RSS for every link
[13]. The empty-room calibration period is approximately two
minutes long and an independent calibration period precedes
each trial. The reference RSS is computed using

µℓ =
1

K

K∑
k=1

ỹℓ,k, (49)

where K is the number of samples. The other model param-
eters of (3) are: κl = −5 dB, γl = 0.04 m and σ2

l = 1 dB2.



(a) Open environment (b) Apartment

Fig. 2. The experimental layouts in which the nodes ( ) and the reference positions ( ) are illustrated.

In the second method, the model parameters are estimated
using supervised training [7]. The parameter estimates are
obtained by minimizing the cost function

J(ϕℓ) =

K∑
k=1

(
ỹℓ,k − h(∆ℓ,p(t),ϕℓ))

)2
, (50)

where p(t) is ground truth location of the person, ϕℓ =
[µℓ, κℓ, γℓ] are the model parameters and h(∆ℓ,p(t),ϕℓ) is
given in (3). In this paper, a nonlinear least-squares solver
based on the interior-reflective Newton method described in
[31] is used to find the minimum of J(ϕℓ) and thereafter, the
maximum likelihood estimate of σ2

ℓ is computed.
The two calibration methods reflect the two extremes of

RTI. When using the empty-room calibration period, the model
parameters are fixed apart from µℓ and it is expected that the
estimated images are noisy with multiple local maxima making
it difficult to locate the person. On the other hand, supervised
training can be used to adjust the model parameters to the
specific propagation environment so that the estimated images
reflect the changes in the environment more accurately. As a
result, the images are expected to have less noise and typically
they only have one maxima so that the person is easier to
localize. Thus, the empty-room calibration method depicts a
high clutter scenario whereas the supervised training method
depicts a low clutter scenario.

C. Experimental Evaluation

The proposed system is evaluated with respect to a system
that utilizes a KF which is the de facto choice for tracking in
imaging-based PLT systems [10], [14], [19]. The benchmark
system is implemented as described in Section II and the
system is simply referred to as KF from now on. The system
proposed in this paper is described in Section III and it is
referred to as GSF for brevity from now on. Both systems use
RTI for estimating the changes in the propagation environment
and the difference lies in the position detector and tracking
filter.

TABLE I
EXPERIMENTAL PARAMETERS

Parameter
Pixel Variance σ2

b 0.005 (dB2)
Correlation distance δd 0.5 (m)
Pixel width δp 0.25 (m)
Process noise q 0.05 (m2/s3)
Measurement noise σ2

r 0.25 (m2)

Detection probability PD 0.9

Clutter intensity λc 10

The filters are evaluated using the root mean squared error
(RMSE)

RMSE =

√√√√ 1

K

K∑
k=1

∥pk − p̂k∥22, (51)

where K is the total number of estimates, pk denotes the
ground truth position, p̂k = Hmk the estimate, and ∥·∥22 the
square of the Euclidean norm.

D. Initialization and Experimental Parameters

Occupancy assessment is an important problem in PLT [11]
but for simplicity, we assume we know the time instances
when the person has entered the monitored area and is
stationary at the first reference position. The tracking filters
are initialized using an RTI image as follows.

• GSF – Let Z0 = {z10, . . . , zJ0 } denote the set of po-
sition estimates computed using (31). For every mea-
surement zj0, the mean is initialized using mj

0 = zj0 ⊗[
1 m 0 m/s

]⊤
and the covariance as Pj

0 = I4. Thus,
the position of the mixture components are initialized to
the peaks of the image, the velocity is set to zero and the
initial uncertainty is equal to identity.

• KF – The benchmark system is initialized in a similar
manner but only using one measurement. Let z0 denote



Fig. 3. Example tracking performance in the open environment under the high clutter scenario. On the top and in the middle, the x and y coordinate estimates
using KF ( ) and GSF ( ). The ground truth coordinates are illustrated using ( ), Zk computed using (31) shown using transparent red dots and
the position measurement with the highest pixel intensity computed using (9) illustrated with ( ). On the bottom, the positioning error for KF ( ) and GSF
( ) as a function of time.

the position estimate obtained using (9). The mean is ini-
tialized to m0 = z0⊗

[
1 m 0 m/s

]⊤
and the covariance

as Pj
0 = I4.

The parameters used in the experiments are given in Table I.

V. RESULTS

A. High Clutter Scenario

In the high clutter scenario, the model parameters are the
same for every wireless link and therefore, the model is unable
to capture the RSS changes accurately. As a consequence,
the images are noisy with multiple peaks and it is common
that the pixel that has the highest intensity is far away from
the actual location of the person as illustrated in Fig. 1b.
Since the KF utilizes the pixel with highest intensity as the
measurement in the update step, the performance of the filter
is inevitably affected by the inaccurate position measurements.
On the other hand, the multiple peaks can be considered as
different location hypotheses and either the peak corresponds
to clutter or a detection. The clutter measurements are not
related to the actual position of the person whereas a detection
corresponds to a measurement that is generated by the person.
The GSF incorporates the clutter measurements and detections
in the tracking filter and it can track multiple hypotheses over
time. Furthermore, it is expected that the filter converges to the
correct track since typically the image has a local maxima near
the person’s true location whereas the clutter measurements

follow a PPP and are randomly located within the monitored
area.

Example tracking performance in the open environment
experiment is illustrated in Fig. 3 and as shown, the images
in the high clutter scenario are very noisy since majority of
the images produce multiple position measurements. More-
over, the position measurements with the highest intensity
is typically inaccurate as shown in the figure. The KF does
not use the entire set of measurements for tracking, only
the peak with the highest intensity. The inaccurate position
measurements utilized by the KF result to satisfactory tracking
performance as illustrated in the figure. The GSF utilizes all
the measurements and its ability to track multiple hypotheses
over time is very beneficial in the high clutter scenario. As
shown, the filter converges to the correct trajectory and tracks
the person with high accuracy even with very cluttered position
measurements. In the example scenario, the RMSE of the
Kalman filter is 107 cm and the RMSE of the proposed
Gaussian sum filter is 56 cm. Thus, the GSF is able to decrease
the RMSE by 48%

B. Low Clutter Scenario

In the low clutter scenario, supervised training is utilized
to estimate the model parameters for every wireless link. This
allows adapting the model to the particular propagation envi-
ronment so that it captures the RSS changes more accurately.
As a consequence, the quality of the image estimates improve
which leads to enhanced position measurements. Moreover,



Fig. 4. Example tracking performance in the open environment under the low clutter scenario. On the top and in the middle, the x and y coordinate estimates
using KF ( ) and GSF ( ). The ground truth coordinates are illustrated using ( ), Zk computed using (31) shown using transparent red dots and
the position measurement with the highest pixel intensity computed using (9) illustrated with ( ). On the bottom, the positioning error for KF ( ) and GSF
( ) as a function of time.

the clutter decreases and commonly, the image only contains
one global maxima that is close to the actual location of
the person as illustrated in Fig. 1a. With better position
measurements, the performance of both filters improve.

Example tracking performance in the open environment
experiment is illustrated in Fig. 4 and as shown, the images in
the low clutter scenario have much less noise compared to the
high clutter scenario. Moreover, the position measurements
with the highest intensity are typically much closer to the
actual location of the person as shown in Fig. 4. Now the
two filters yield comparative performance most of the time
and the reason is obvious; there is either only one position
measurement or the position measurement with highest image
intensity is the one closest to the person and there is no benefit
of considering multiple hypotheses. However, there are also
time instances when the GSF is more accurate, for example
at time = 55− 61 s. During this time interval, the images are
cluttered resulting to position measurements that are inaccurate
and due to the reasons outlined in the previous section, the
GSF is superior to the KF. Thus, even in low clutter scenarios,
the GSF outperforms the KF. More quantitatively, the RMSE
of the Kalman filter is 40 cm and the RMSE of the proposed
Gaussian sum filter is 26 cm. Thus, even in the low clutter
scenario, the GSF is able to decrease the RMSE by 35%.

C. Filter Performance

The performance of the filters in the two environments
and with different calibration schemes are summarized in

Fig. 5. As expected, the accuracy of both filters improve using
supervised training and the performance gain is larger the
longer the training period is. However, diminishing returns are
already visible at the two minute mark and it is not expected
that either filter would greatly benefit from a longer training
period. The reason being, the used models cannot capture the
human-induced RSS changes nor the dynamics of the person
precisely. The used models are sufficient for localization and
can be calibrated with a relatively short calibration period.
However, the accuracy of the model cannot be improved
indefinitely by just using more data and it is expected that
the positioning sensor will always have imperfections since
the indoor radio propagation channel is very complex. The
results imply that the GSF can cope better with the imperfect
positioning sensor and that it can be calibrated with less
data. These two properties are desired in practical real-world
deployments.

VI. CONCLUSIONS

This paper presents a RFS approach to RSS-based PLT.
By modeling the measurements as a RFS, allows rigorous
treatment of detections, misdetections, clutter and unknown
DA. A new position detector is developed, a measurement
likelihood function based on RFS theory is presented and a
computationally tractable GSF for tracking is implemented.
Analysis was carried out using two experimental indoor data
sets. Results demonstrated the accuracy and robustness of the



(a) Open environment (b) Apartment

Fig. 5. Filter performance in the open environment and apartment experiment using empty-room calibration and different length supervised training (TS)
periods. The whiskers illustrate the one standard deviation of the positioning errors.

proposed method, as well as, improved performance with re-
spect to a benchmark system. Furthermore, the newly proposed
RFS approach to RSS-based PLT admits numerous possibil-
ities of future research into other RFS filters. For example,
the probability hypotheses density (PHD) and Poisson multi-
Bernoulli mixture (PMBM) filters could be utilized for MOT
which is a difficult problem in RSS-based PLT.
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