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Abstract—Nowadays, machine vision applications play an
essential role in our everyday life. With the emergence of
technologies like smart cities, Internet of things (IoT), and 5G,
the amount of produced video data at the edges and remote
nodes has exploded. Since for a considerable portion of the
captured video the target is a machine learning task, rather than
a human audience, transmission of videos in such applications
requires efficient video compression tailored for machine vision.
However, existing compression solutions are optimized for
human vision. This paper presents a methodology to optimize an
existing video compression standard, HEVC, for a machine
vision task, Object Detection (OD). To this end, (1) a dataset of
compressed videos, including several compression-ratios and
their corresponding OD performance is collected to enable
modeling, (2) A trade-off point (knee-point) between bitrate and
OD performance is defined, that finds the point after which no
major improvements will be achieved, (3) an extensive set of
features were extracted and studied to model this point, via a
practical machine learning method. The resulting solution can
predict the knee-point with MAE=1.28, resulting in a ΔRecall of
only 0.012 and bitrate reduction of 86.56%, compared to OD
with very high-quality video.

Keywords—Video coding, Video coding for machine (VCM),
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I. INTRODUCTION

Computer vision and image/video processing play a vital
role in modern intelligent world. Enabling technologies, such
as smart cities, the Internet of Things (IoT), autonomous
driving, and AR/VR, leverage the state-of-the-art computer
vision algorithm to thrive. In most cases, the recording devices
are placed at the edges and the compressed video is transmitted
over the network for further processing - as sensor nodes often
poses limited processing power, and/or analysis should be done
centrally. Computing paradigms like edge-to-cloud [1] and
collaborative intelligence [2] are among such cases which, first
compress the videos by standard video codecs at the edge and
then transmit them to a cloud server or other nodes. This
paradigm is called Compress-then-Analyze[3].

With the advent of emerging technologies, most videos will
be consumed by machine vision, which processes videos
different way than human vision. However, algorithms used in
existing video standards are based on Human Visual System
(HVS). These computer vision systems usually require
efficient power and energy consumption and operate in

bandwidth-limited environments. This led to the emergence of
the Video Coding for Machines ad-hoc group in 2019 in the
MPEG standardization group [4]. The quest is to develop and
standardize new video compression standards, suitable for
machine vision. Since the introduction of VCM, new
architectures and algorithms have been proposed. Yang et al.
[5] categorized the proposed solutions in two broad categories:
improving existing codecs to comply with VCM objectives, or
developing end-to-end learned codecs for VCM usage.
Developing video compression algorithms for Object Detection
(OD) is among the efforts in the first category. In [7] and [8]
saliency map-based video coding schemes were presented to
efficiently compress videos while preserving object detector
performance. In [9], a novel bit allocation strategy for HEVC
was proposed to adaptively allocate bits based on saliency for
yolov3 [10]. Authors in [11] present an algorithm to adjust the
quantization for blocks of VVC based on the contents of each
block, to efficiently compress videos for OD. While these
methods achieve some improvements, (1) they need to adjust
or modify codecs, and (2) they do not consider the bitrate-
performance trade-off in existing codecs, which leads to sub-
optimum compression. Moreover, developing new
standards/codecs (1) take considerable time for practical
deployment (2) may require spending extra costs as royalty
fees, and (3) requires developing hardware/software to comply
with the new standard.

With this motivation, this paper aims to provide an efficient
video coding solution for machine vision, which is based on
existing standards and can be deployed with minimum effort
and cost. A methodology is proposed to set the rate-distortion
parameter (CRF) of an existing codec to a Near-optimal
Compression point, for Object Detection (NCOD). As video
compression is quite content-dependent, it affects OD on
different videos differently. To solve this problem, (1) a dataset
is collected that includes several video scenes compressed with
different HEVC configurations, and their corresponding OD
performance using yolov4 [6], (2) bitrate-performance curves
have been studied and the “knee-points” have been identified
and formulated as an intuitive trade-off point between rate and
OD performance, (3) extensive features have been extracted
and their correlation to the task has been investigated. Feature
selection and reduction techniques were used to find the best
feature set, (4) finally, a machine learning model has been
trained to accurately predict the knee-point for each video. The
contributions of the paper are summarized as follows:
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 A dataset of compressed video scenes, their corresponding
OD performance, and various representative features, is
developed that facilitates studying compression for the OD
task. The dataset consists of an overall of 4148 data points
and will be released on the project webpage:
https://github.com/researchVCM/NCOD.

 The knee-point definition is suggested for OD, that defines
the compression point above which no considerable gain of
performance can be achieved.

 The choice of features for modeling the knee-point is
studied, and feature extraction, selection, and reduction
techniques are used to find the best set of features.

 The knee-point prediction is solved as a regression task.
The final solution is able to configure HEVC codec to a
near-optimum point, just receiving the input video, with no
modifications required for the encoder or decoder.

The rest of this paper is organized as follows. Section II
details the proposed methodology. Section III presents the
experimental results. Finally, Section IV concludes the paper.

II. METHODOLOGY

A. Overview
The main goal of this work is to model the best trade-off

point between bitrate and OD performance, using intrinsic
features of raw video sequences. To do so, we select the CRF
(which loosely corresponds to the Quantization Parameter
value - widely used to control bitrate in video compression) as
the main knob to configure the compression intensity. Libx265
[12] is used as a widely used open-source HEVC codec. In
many cases, object detection models fail to detect several
objects in a video and compression artifacts tend to intensify
this [1]. In such a condition, precision is not the best metric to
measure the performance, and recall becomes a more intuitive
metric. Hence, we select recall as the main accuracy metric, for
modeling. To find a good trade-off between bitrate and
performance, we define the knee-point, as the compression
point after which no major gain of performance can be
achieved. We demonstrate that this point is highly content-
dependent. Hence, to build a model that can predict this point
for each video, first, a dataset is collected through exhaustive
experiments on SFU-HW-Objects-v1[13] videos. To build a
more thorough dataset and enable a robust learning, the dataset
is augmented to include modified versions of each video. Then,
the knee-points are identified for each case, and the final

dataset is used for model training. An extensive set of features
corresponding to various video characteristics are extracted.
Then, feature selection and reduction techniques are used to
reduce the feature size to comply with the data size. Finally,
the knee-points are modeled and predicted in a regression task.
The following steps, detail different parts of this methodology.

B. Rate-Performance Trade-off and Knee-points
Fig. 1 depicts the achieved recall of yolov4 [6] across different
bitrates (different CRFs), for some videos in SFU-HW-
Objects-v1 dataset. Bitrate-Recall curves depict how
decreasing the bitrate reduces OD performance. It can be
observed that for each video, there is a certain CRF point after
which recall starts to decline rapidly. This point, named Knee-
point, differs for each video and is highly content-dependent.

To predict the knee-point of a curve, these curves require to
be Pareto Efficient [14][15]. To make this applicable, we
compute the convex hull of the Bitrate-Recall curves, as in
[15]. Then we apply piecewise cubic Hermite interpolation

Fig. 1. Rate-Recall Curves Fig. 2. Convex Hull of Rate-Recall for BQMall Sequence

TABLE I. Details of Selected Video Sequences

Video Name Resolution Frame Count    Frame Rate
Traffic 2560x1600 150 30

PeopleOnStreet 2560x1600 150 30
BasketballDrive 1920x1080 500 50

Cactus 1920x1080 500 50
ParkScene 1920x1080 240 24
BQMall 832x480 600 60

BasketballDrill 832x480 500 50
PartyScene 832x480 500 50
BQSquare 416x240 600 60

BasketballPass 416x240 500 50
BlowingBubbles 416x240 500 50
KristenAndSara 1280x720 600 60

Johnny 1280x720 600 60

TABLE II. Selected Video Features

Source Features
VCA[20] avgU, energyU, avgV, energyV, Spatial complexity (E),

Temporal complexity (h), Brightness (L)
AGH[21] Interlace, Noise, Blockloss, Spatial Activity, Blur,

Flickering, Contrast, TemporalAct, Blockiness, Exposure
SITI[22] Spatial information (SI), Temporal information (TI)

CAMBI[23] Cambi
Quat[24] Noise, Blur, Blockiness, Colorfulness, contrast,

cubrow.[0, 0.3, 0.5, 0.6, 1.0], cubcol.[0, 0.3, 0.5, 0.6, 1.0],
FFT, Movement, Saturation, Staticness, Temporal, Tone,

Similarity to half resolution
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[19] to estimate the interim points of the curve. The convex
hull of a set of points results in a subset of the points which
wraps a band around all the points. Fig. 2 depicts the convex-
hull for BQMall. Each green dot corresponds to bitrate and
recall at a specific CRF value. The orange line shows the
convex hull of the encoding points.

Next, the knee-point of the convex hull should be
computed. The term “Knee-point” in cost-benefit analysis
refers to a point at which enhancing some adjustable
parameters no longer yields significant performance
improvement [16]. Authors in [16] provide the mathematical
definition of this point, and present an algorithm called
“Kneedle” to find the point in an application-independent
manner. In Fig. 2 the blue dot with the value of 26 is the knee-
point. It suggests that encoded videos with CRF values below
26 (all points right of the knee-point) do not improve recall in a
cost-efficient way. Intuitively speaking, a CRF value of 26 is
“good enough” for this video to achieve a highly compressed
video and yet near-optimum OD performance. The difference
between the recall of CRF=26 and CRF=10 (representing very
high-quality video) is only 0.012 while bitrate reduction is
92.48%. These numbers for the average of all data are 0.027
and 89.82%, respectively.

C. Dataset Collection
To collect a dataset of compressed videos and their

corresponding OD performance, exhaustive encodings across
multiple CRF values were performed to achieve low-
compressed to highly compressed samples. Thirteen video
sequences of SFU-HW-Objects-v1 (the main dataset
recommended in VCM development, containing raw video
quality) were used for this. We skipped five other videos in this
dataset due to very poor yolov4 performances. Table I lists the
details of these videos.

Developing an accurate machine-learning model requires
more than thirteen data points. To solve this issue, we largened
our dataset with two data augmentation techniques. First, all of
these thirteen sequences were segmented into 100-frames-
length videos, leading to 60 videos. Next, to mimic the intrinsic
noises of a camera, we blurred these frames with three different
blurring filters using OpenCV v4.6.0 [17] and FFMPEG [18].
The BilateralFilter from OpenCV is used with filter parameters
set to (11, 21, 7), (11, 41, 21), and (11, 61, 39), where the
numbers in sets represent diameter, sigma color, and sigma
space of the filter, respectively. After these steps, we achieve
244 videos, which we call video chunks.

Each video chunk is compressed and decompressed with
CRF values between 10 to 42 with a step size of 2. This results
in 17 videos for each of the 244 video chunks, i.e., 4148
videos. Next, each of the decoded videos were processed with
the yolov4 model with the non-maximum suppression
parameters of Confidence=0.6 and Threshold=0.8; and IoU
Threshold=0.7. Relevant metrics such as bitrate, OD recall and
precision, as well as encoding and decoding times were
collected for all video chunks, and convex hull and knee-points
were obtained as described in II. B. Fig. 3 shows the
distribution of the knee-points for all 244 video chunks. Due to
the lack of knee-points outside the range of (23, 30), we select

only videos within this range for the train and the test stages.
This shows that the existing datasets in academia for research
on VCM are not diverse in spatial and temporal characteristics.

D. Machine Learning Flow
Feature Extraction: In order to predict the CRF value
corresponding to the knee-point in the Rate-Recall curves, we
first need to extract Spatio-temporal features of raw videos. We
explored 42 features from 5 different sources widely used in
the literature, including Video Complexity Analyzer (VCA)
[20], video quality indicators (AGH) [21], SITI [22], CAMBI
[23], and the Quat Analysis Tools (QUAT) [24]. Table II lists
all these features. Due to the resolution dependency of these
features, uncompressed videos were scaled to 1920x1080
resolution prior to feature extraction. Each feature estimates
one value per frame, therefore we use temporal pooling to
extract the features for each video. For each feature, we
compute mean, standard deviation, skewness, kurtosis,
interquartile range, 0.25 quantile, 0.75 quantile, the first and
last value, and the minimum and maximum values over all
frames of a video sequence. This leads to 11 pooled values per
feature resulting in 462 values per video. Fig. 4 shows the
distribution of SI and TI as two examples, demonstrating that
the dataset covers a wide variety of video content.

Feature Selection and Reduction: To prevent overfitting, we
select 100 features with the highest Pearson correlation
coefficient value with the dependent variable (CRF value of the
knee point). After that, the multicollinearity among these
features is removed and using the Principal Component
Analysis (PCA), the 30 components with the highest amount of
information are selected for model training.

Model Training: After evaluating multiple classifications and
regression methods, we observe that regression performs better
for predicting the knee-points. We selected the AdaBoost
regressor [25] as the best method with the lowest mean
absolute error (MAE). The AdaBoost is a meta-algorithm that
boosts the performance of base estimators, in our case
decision-tree, by ensemble learning. Video chunks
corresponding to 10 out of 13 original video scenes (and all
corresponding processed versions, total 128 video chunks)
were used for training, and three original video scenes
(BasketballPass, BasketballDrill, and BlowingBubbles) were
kept only for final evaluations. We trained a model using 10-
fold cross-validation, making sure each video chunk and its

Fig. 3. Distribution of Knee-points
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blurred versions appear in the same fold for fair results during
the cross-validation. We also used chunks from a video
sequence only in one of the test or train set to avoid leaking
information from the test set to the train set. For training, 50
estimators are ensembled, using a linear combination of losses
for boosting [26], and a learning rate of 1.0.

III. EXPERIMENTAL RESULTS

As mentioned before, 54 video chunks corresponding to
three video scenes are considered as test video sequences. The
evaluations are performed as follows.

Model Accuracy: We tested the model on the test video
chunks. The prediction error for knee-points can be observed in
Fig. 5. For the test set, MAE is 1.28, and RMSE is 1.66 on
average, which indicates a very high prediction accuracy. To
further assess the quality of the predicted points we measured
the difference between the bitrate and recall of the predicted
knee-points, and those of the ground truth knee-points, namely
ΔRate and ΔRecall respectively. On average, ΔRate and
ΔRecall are only 0.73% and 0.132, respectively. Please note
that an ideal predictor results in zero delta values.

Method Performance: Bitrate, recall, precision, decoding
time, and encoding time are selected as the comparison
metrics. As the proposed methodology predicts the optimal
CRF points, the ground truth knee-point is set as the baseline.
Also, the following comparisons with existing solutions are
considered: (1) Just Noticeable Difference (JND) [27] aims to
find the compression point after which distortions become
noticeable; however for human and not machines. The JND
prediction method presented in [27] is selected for comparing
the OD performance, (2) Most computer vision systems
perform OD on raw videos or very high bitrate compressed
videos, to get high accuracy. Hence, we compare the bitrate
required for OD task, with the high-quality case of CRF=10.
This point corresponds to a very high-quality image, after
which no fluctuations on the bitrate-recall curves are observed.
Hence, it could be considered similar to uncompressed video
performance, but with lower bitrate. As already mentioned in
section II, the OD performance of the knee-point is only 0.027
smaller than those of CRF=10.

Table III compares NCOD and JND, against the ground
truth knee-point, for ΔRecall and ΔPrecision. As the knee-point
is considered as the optimum point of compression for OD,
ΔRecalls and ΔPrecisions closer to zero are better. It can be
observed that NCOD achieves on average 0.012 ΔRecall and
0.007 ΔPrecision, which are the smallest among the two. It is
important to note that (1) the model has been trained on recall
and not precision; hence, a small ΔPrecision confirms the
generalization of the model, and (2) as mentioned earlier,
precision changes unpredictably with CRF. Hence, ΔPrecision
does not fully reflect the performance.

Table IV compares NCOD and JND against CRF10 w.r.t
bitrate reduction, encoding time, and decoding time. It can be
observed that NCOD achieves 86.56% bitrate reduction with
the baseline of CRF=10. Moreover, as encoding and decoding
are less complex in lower bitrates, encoding and decoding of
NCOD are 46.14% and 54.88% faster. JND gains similar
results with NCOD, however, with lower OD performance.

IV. CONCLUSION

This paper presented a methodology to optimize video
compression for a machine vision task, namely object
detection. A trade-off point (knee-point) between bitrate and
OD performance has been defined, that finds the point after
which no major improvements will be achieved. A dataset was
collected that enables learning a model, to predict the knee-
points. Finally, the problem was solved as a regression task,
where several features were used to model the knee-point. It
was observed that (1) recall is a better choice for modeling the
performance, as compression artifacts affect the precision
unpredictably, (2) the knee-point achieve a recall very close to
the uncompressed, while requiring a much lower bitrate, (3)
knee-point is content dependent and hence, several video
features have been used for accurate modeling. The final
method can predict the knee-point with an average MAE of
only 1.28, which leads to a ΔRecall of only 0.012, while

Fig. 4. Temporal and Spatial Distribution of the Dataset

           Fig. 5. Prediction Error of the Model

TABLE III. Results of NCOD and JND against Knee-point

Video Sequence ΔRecall ΔPrecision
NCOD JND NCOD JND

BasketballDrill 0.008 0.031 0.010 0.014
BasketballPass 0.016 0.020 0.008 0.010

BlowingBubbles 0.015 0.023 0.007 0.005
Average(all chunks) 0.012 0.223 0.007 0.011

TABLE IV. Results of NCOD and JND against CRF-10

Video Sequence
Birate

Reduction%
EncTime

Reduction%
DecTime

Reduction%
NCOD JND NCOD JND NCOD JND

BasketballDrill 87.73 91.81 49.61 55.33 57.56 62.71
BasketballPass 87.01 86.29 42.62 41.89 55.80 54.93

BlowingBubbles 87.92 90.44 55.5 59.04 63.87 67.04
Average(all chunks) 86.56 88.48 46.14 48.4 54.88 57.08
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reducing the bitrate by 86.56% compared to baseline methods
that use a CRF-10.

Extending the collected dataset with (1) more video
samples and (2) covering more diverse spatial and temporal
complexities is considered as an effective future step.
Moreover, we believe similar methodology can be applied for
other machine vision tasks, such as object tracking and
segmentation. More investigations are required to study
different aspects of such extension.
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