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Abstract—Trusted Execution Environments (TEEs) provide an
additional layer of trust for applications. This means that modern
central processing units (CPUs) can protect a process and its data
from other processes and even the operating system (OS). The
CPU acts as a gatekeeper when an application is running inside
the TEE system. Other programs, including the hypervisor and
the OS, see only encrypted memory data. The purpose of this
article is to assist the reader in understanding TEEs, including
when, why, and how they are used.
To understand TEE utilisation, we compile academic and practi-
cal examples by collecting a total of 0 references for this review.
We summarise the literature and provide a publication timeline.
We discover that the academic and practical work on TEE
fit well under the categories of review, framework, container,
and application, all of which are growing trends according to
our analysis. Similarly, we categorise TEE use cases into major
groups to better understand their application domains.

Index Terms—Trusted Execution Environment; TEE; Trusted
Computing; Confidential Computing; Privacy and Confidential-
ity; Remote Attestation; Usability; Application Security; Trust
model

I. INTRODUCTION

Often, sensitive data is processed on potentially compro-
mised devices. Typically, when a device is compromised, the
data and code are also compromised [1]. For instance, if an
adversary takes control of an IoT device or a cloud instance,
the adversary can also access the software processes [1, 2].

For the additional privacy, protection, and authenticity of
data in process, Trusted Execution Environments (TEEs) sat-
isfy all these requirements. TEEs protect processes from other
processes running in the Rich Execution Environment (REE),
including the high-level operating system (OS).

A TEE is a component of the main CPU that ensures
the confidentiality and integrity of the code and data loaded
inside. Remote attestation is accomplished through the use of
trusted firmware. When an application is attested, the untrusted
component loads the trusted component into memory: the
trusted application is then protected against modification.

Different hardware security features separate the TEE and
REE: the TEE is trusted, whereas the REE is not protected
with the same rigour by the hardware [3].

TEE implementations are available from a variety of hard-
ware vendors, including AMD Platform Security Processor
(PSP), ARM TrustZone, Google Titan M, Intel Software Guard
Extensions (SGX), Apple Secure Enclave Processor (SEP),
and RISC-V Keystone [4].

Even with appropriate domain expertise, it is challenging to
provide direction for TEE application development. To address
this, we take the software developer’s perspective and review
TEE development tools and use cases for Trusted Applications
(TAs).
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Fig. 1. Literature related to TEEs placed under the categories of review,
framework, container, and application. Ordered by year.

Our research questions (RQs) are:
RQ1. What are the applications of TEEs?
RQ2. Which TEE software tools are available for TA

development?
RQ3. What types of TEE containers are available for

TA packaging?
The scope of this review is to understand practical TEE

deployments. Figure 1 illustrates our references, categorised
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and ordered by year. In case of multiple references for the
same topic, we list the most peer-reviewed one.

We collected a total of 0 references between 2022-03-11
and 2022-06-07 for this review. Our TEE reference search
methodology encompasses both academic and applied activity.
We discover that the publications fit well under the categories
of review, framework, container, and application. The selection
of these categories is based on the references’ natural fit within
them.

We notice that publication velocity increases after 2015.
Between 2013 and 2015, there are few publications, but the
rate of publication began rising in 2016. The number of
publications in 2018 remained almost unchanged from the
previous year. In 2019, the number of publications nearly
doubled, and it has continued to rise in 2020 and 2021.
There are more publications in 2021 than ever before, and we
speculate this trend will continue in 2022 and the foreseeable
future.

Two-thirds of the publications demonstrate applications.
Almost one-third of articles cover frameworks and containers.
Few publications are reviews, including surveys and systema-
tisations of knowledge.

This provides the motivation for our article: systematisation
of knowledge is required because there are numerous articles
but few reviews. These reviews have a limited perspective,
typically cover only one piece of hardware, and do not
seek real usage examples. Our knowledge systematisation
assists software developers and encompasses heterogeneous
hardware.

This preliminary categorisation of TEE papers shows how
academic literature focuses on application demonstrations, and
helps form a basis for our research questions. It is the initial
beginning of our extensive systematisation of knowledge.

A. Related work

As there is prior work on systematising TEE knowledge, we
began studying publications and resources that organise TEE
utilisation. These data sources cover the following topics.

Development frameworks. Each CPU vendor has its own
TEE. To assist TA development, there are numerous frame-
works and containers that aid the software developer [5]. Intel
Software Guard Extensions SDK, OP-TEE, etc. intend to make
the development easier.

Trusted containers (tcons). To execute an application within
a TEE, a developer must apply framework-specific modi-
fications to the original application, which can be a time-
consuming operation. Trusted containers (tcons) solve this
usability issue by allowing direct execution of unmodified
binary code within a TEE, or for performing automated
transformations on source code prior to loading it into a
TEE executable [96]. Certain tcons support multiple hardware
backends, eliminating the need for the software developer to
make hardware design selections at the code level [5]. We
utilise the existing work on TEE containers by Liu et al.
[5] in our categorisations in Table III and Table IV. Their
work provides a comprehensive analysis of 15 existing tcon

solutions’ designs and implementations, highlighting the most
common security pitfalls. We are not evaluating containers in
terms of security, but rather analysing the software wrapper
stack and hardware support of 20 containers. Additionally, we
check which containers are open source.

Applications of TEEs. Tamrakar [48] covers several appli-
cations of TEEs, including attestation and access control. Our
categorisation of TEE utilisation in Figure 2 is not based on
said work, yet we included the applications presented therein.
We also used the study of attestation mechanisms for TEEs
by Ménétrey et al. [145] for systemising knowledge of TEE
attestation applications.

Curated lists of TEE publications. Schiavoni [146] main-
tains a curated list of SGX papers while Novella [147]
maintains a similar list for TrustZone publications. Whereas
the former aims to list all peer-reviewed publications regarding
SGX, the latter focuses on attacks against TrustZone-based
TEEs and is primarily composed of technical reports, blog
postings, and hacking conference presentations.

Attacks against TEEs. There are also other surveys on TEEs
not directly relevant to our work, for example, how TEEs
reduce attack surface, but do not eliminate it. Zhao et al. [15]
systemise knowledge of hardware security support for TEEs.
Numerous attacks have been launched against TEE protection
mechanisms and TA implementations [148]. Researchers and
practitioners target security flaws and propose solutions for
real-world applications, for example, Cerdeira et al. [149] and
Koutroumpouchos et al. [150] present a security analysis of
popular TrustZone-assisted TEE systems.

TEE technology provides a variety of use situations in which
code, data, or an application requires hardware protection. The
following are the most prevalent usage scenarios [48].

Digital rights management. Copyright holders frequently
use TEEs to prevent consumers from copying video or audio
[125]. TEEs protect digitally encoded media on connected
devices including smartphones, tablets, and high-definition
televisions [151, 152]. Along with the fact that the TEE and
the device’s display are connected via a protected hardware
channel, this prohibits the device’s owner from reading stored
secrets.

Online payments. Mobile wallets, peer-to-peer payments,
cryptocurrency wallets, and the use of a mobile device as a
point of sale terminal all have well-defined security require-
ments. Blockchain systems use lightweight clients, which out-
source the computational and storage load over full blockchain
nodes [49]. It is possible to use a TEE to protect privacy of
the light clients without compromising the performance of
the assisting full nodes [49]. TEEs can be used as trusted
backend systems to provide the necessary security to facilitate
financial transactions. This may necessitate the entry of a PIN,
password, or biometric identifier by the user.

Authentication. TEEs are commonly used to implement bio-
metric identity methods (facial recognition, fingerprint sensor,
and voice authorisation). For instance, the Android OS saves
fingerprint biometrics in the TEE because it is inaccessible and
encrypted from the ordinary OS environment [153]. Often, bio-
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metric identifications are convenient to use and more difficult
to steal than PINs and passwords. TEEs are utilised to protect
the biometric identification method. Similarly to biometric
identification information, cryptographic private keys can also
be stored in the TEE. Combining the biometric identification
information and the private keys allows passwordless authen-
tication standards such as Apple’s passkeys [144].

Trusted cloud. Typically, when a cloud (the server or the
backend) is compromised, the adversary gains access to the
cloud’s processes and data. TEEs provide protection against
compromised infrastructure: the adversary is unable to access
selective parts of the TA, which safeguards sensitive code and
data.

Privacy-preserving data analysis. Machine learning has be-
come an essential part of data processing in several application
domains such as healthcare, stock prediction, and artificial
intelligence. Sometimes these applications process sensitive
data, and to protect said data a TEE-based solution can be use
to maintain the integrity of the machine learning process and
prevent attacks [154].

Runtime integrity. TEEs can be used for runtime integrity,
such as real-time kernel protection. If an attacker targets kernel
binaries, the security monitoring service can shut down if it is
isolated in a secure environment [155].

Secure modular programming. As it decouples functionali-
ties into small, self-contained modules, modular programming
is an efficient way to build software architectures for software
assets that encourages reuse. In this instance, each module
contains everything necessary to perform its intended function,
and the TEE permits execution of the module while protecting
it from the vulnerabilities of other modules.

II. METHODOLOGY

A. Collecting references for the review
We begin our search for scientific literature with Google

Scholar1, arXiv open-access archive2, the DBLP computer sci-
ence bibliography3, ACM Digital Library4, and IEEE Xplore5

using TEE-related search terms, such as “TEE”, “Trusted
Execution Environment”, “OP-TEE”, “TrustZone”, “(Intel)
SGX”, “AMD SEV”, “confidential computing”, etc. While
this paints an overall picture of TEE-related scholarly work,
it does not cover more applied aspects such as toolkits and
deployments.

To address this gap, we then mined real source code using
the Sourcegraph6 search engine, to find examples of practical
TEE utilisation. Sourcegraph covers GitLab, GitHub, and
BitBucket, as well as other public software source repositories.
Table I details our search terms regarding Sourcegraph, with
examples7. The most difficult aspect of the mining process was

1https://scholar.google.com/
2https://arxiv.org/
3https://dblp.org/
4https://dl.acm.org/
5https://ieeexplore.ieee.org/
6https://sourcegraph.com/
7https://sourcegraph.com/search?q=context:global+Op-TEE&patternType=

literal

locating appropriate TEE applications, development frame-
works, and container repositories. Typically, a keyword search
yields thousands of repositories. These repositories contain
OSs and kernels, as well as forks and projects with work-
in-progress status. In addition to specifying the search type
as code, the first strategy for searching repositories was to
provide meaningful keywords. Then, sort or filter the results to
identify the most relevant ones, and finally, manually examine
the results.

We based our selection of important phrases on the con-
stants, variables, and functions utilised in the source code
of each TEE-based application. The alternative method for
picking specific search phrases was to consult the documen-
tation of various TEE-based frameworks and containers, such
as the GlobalPlatform API [156]. It reveals applications and
other frameworks, containers, and repositories. However, this
required manually combing through each repository to obtain
the desired results.

B. Dimensions for knowledge systematisation
Based on related work and our observations while gathering

and reviewing the publications, we organise the TEE literature
and practical work as follows.

In Section III we address RQ1. Our goal is to assist the
reader in comprehending TEEs, how they are utilised, and
when, how, and why they could be used. To accomplish this,
we tag the applications with 91 distinct keywords, which we
merge into 17 primary category keywords based on initial
similarities. We discover that the primary 17 drivers for
using TEE for data protection in application development
are privacy, machine learning, integrity, confidentiality, cryp-
tography, content sharing, cloud computing, access control,
finance, secure storage, blockchain, secure channels, attesta-
tion, network security, medical data, computer games, and
smart contracts. See Figure 2 for an approximate hierarchy
of the primary categories. Applications fall under these cat-
egories, and frequently many of them overlap. Consequently,
this is the classification we utilise while reviewing existing TA
demonstrations and practical implementations in Table II.

In Section IV we address RQ2. We compare the software
frameworks targeting developers. It is difficult to compare TEE
software development tools due to lack of similar work and
public information about their features. Hence, we compile
Table III detailing the available tools, their software licences,
and the hardware they support.

In Section V we address RQ3. We organise the TEE con-
tainers for the developers. Again, it is difficult to directly
compare TEE container tools due to the absence of shared
and unique characteristics. In addition, some containers are not
actively developed, while others, such as the Enarx container,
are updated every month with new features. In response, we
compile Table IV, which details the available tools, interfaces,
software licences, and hardware supported by each vendor.

C. Limitations and bias
Lack of documentation of closed source proprietary sys-

tems. Companies that own proprietary solutions utilising TEEs
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TABLE I
USING THE SOURCEGRAPH SEARCH ENGINE, WE COMPILE REAL-WORLD APPLICATIONS OF TEES WITH THE PROVIDED SEARCH TERMS.

Search terms Applications Containers Frameworks

SGX_CREATE_ENCLAVE_EX_PCL_BIT_IDX 1[139] 1[157] 2[52, 58]
TEEC_InvokeCommand 5[31, 39, 42, 80, 158] 0 1[18]
SGX_CREATE_ENCLAVE_EX_SWITCHLESS 3[159–161] 0 2[7, 9]
TEEC_MEMREF_TEMP_OUTPUT 3[162–164] 0 0
sgx_enclave_id_t 2[25, 36] 1[165] 1[63]
TEEC_RegisterSharedMemory 0 0 1[166, 167]
enarx 2[35, 116] 0 0

typically withhold information about their systems from the
public. Therefore, it is difficult to find detailed information re-
garding closed source proprietary solutions that employ TEEs.
Because of this, the data we collected may be biased towards
open source data and may not provide an all-encompassing
viewpoint of reality. For instance, there may be many more
proprietary closed source applications and development frame-
works for ARM TrustZone than we presented in this paper.

Date of initial release. It is often difficult to discover when a
specific application, framework, or container was first released.
Due to this, the publication year information in Figure 1 may
not be entirely accurate.

Manual keyword search. The likelihood of omitting relevant
repositories is the most significant shortcoming of manual
search. Although using Sourcegraph as a repository search
engine simplifies the search process, it also generates a large
number of irrelevant results, and there is a chance of missing
other applications, development frameworks, and containers
that employ different keywords not on our list.

III. APPLICATION SCENARIOS FOR TEE

RQ1: What are applications of TEE?
The TEE isolates and protects the TA code and data in terms

of confidentiality and integrity. While we may be unaware, a
large number of gadgets around us, most notably smartphones,
set-top boxes, videogame consoles, and Smart TVs, utilise a
TEE. The number of gadgets utilising a TEE and designed
for many different purposes results in a wide range of use
cases. These use cases vary from everyday user applications to
backend services, such as mobile financial services and cloud
services [48].

In Figure 2, we create an approximate hierarchy of the key
use cases. To address RQ1, Table II combines TEE application
scenarios based on our categorisation. We gathered a total of
95 application use cases in Table II.

According to Table II, the vast majority of TEE applications
operate on Intel SGX, ARM TrustZone, or both. Only a
minority of applications operate on other platforms such as
AMD SEV, RISC-V, or GPU TEEs. All of the references we
collected fit within the 17 categories outlined in Section II.
The categories and the number of references corresponding to
each category are the following:

1) Privacy: 33 references

TEE

USE

Cloud computing

Machine learning

Medical data

Integrity

Confidentiality

Cryptography
Access control

Content sharing

Finance
Blockchain Secure Storage

Attestation

Smart contracts

Privacy

Computer games

Secure channels

Network security

Fig. 2. We define which classification aggregates the usage examples in a
meaningful way after reviewing the TEE example applications. This is an
approximate hierarchy of the key use cases.

2) Integrity: 30 references
3) Confidentiality: 24 references
4) Machine learning: 19 references
5) Attestation: 14 references
6) Cloud computing: 14 references
7) Access control: 13 references
8) Content sharing: 11 references
9) Blockchain: 10 references

10) Cryptography: 10 references
11) Finance: 8 references
12) Secure storage: 7 references
13) Secure channels: 6 references
14) Smart contracts: 5 references
15) Computer games: 4 references
16) Medical data: 3 references
17) Network security: 2 references

On this basis, the majority of TEE applications aim to
secure user privacy. The protection of data integrity and
confidentiality is another important feature of TEEs. Use
cases based on machine learning and attestation are also
common. Cloud computing is frequently associated with ma-
chine learning applications, and is a quite prevalent category
of TEE use cases. Application domains surrounding access
control, content sharing, blockchain, cryptography, finance,
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TABLE II
WE CLASSIFIED TEE APPLICATION SCENARIOS INTO 17 GROUPS.

Privacy
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C
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M
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C
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A
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B
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M
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ork
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Intel
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X

A
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M
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one

O
pen

source
R

eal
deploym

ents

≤
2015

AdAttester: Secure Online Mobile Advertisement Attestation Using TrustZone [137] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
SeCReT: Secure Channel between Rich Execution Environment and TEE [127] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦
Using TEEs in Two-factor Authentication: comparing approaches [135] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
VC3: Trustworthy Data Analytics in the Cloud Using SGX [118] • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

2016

A Case for Protecting Computer Games With SGX [128] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦
Oblivious Multi-Party Machine Learning on Trusted Processors [111] • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Screen after Previous Screens: Spatial-Temporal Recreation of Android App Displays from Memory Images [103, 163] ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •
Secure Content-Based Routing Using Intel Software Guard Extensions [119, 168] • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Town Crier: An Authenticated Data Feed for Smart Contracts [138, 169] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • •

2017

A Formal Foundation for Secure Remote Execution of Enclaves [97] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Enhancing Security and Privacy of Tor’s Ecosystem by Using TEEs [79, 170] • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Establishing Mutually Trusted Channels for Remote Sensing Devices with TEEs [129] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
IRON: Functional Encryption using Intel SGX [120] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Komodo: Using verification to disentangle secure-enclave hardware from software [73, 171] ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • •
MIPE: a practical memory integrity protection method in a TEE [67] ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
Private Contact Discovery Service [139] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Securing Data Analytics on SGX with Randomization [91, 172] • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
SGX-BigMatrix: A Practical Encrypted Data Analytic Framework With Trusted Processors [104] • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
SGX-Log: Securing System Logs With SGX [112, 173] ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
TrustJS: Trusted Client-side Execution of JavaScript [85] ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

2018

CYCLOSA: Decentralizing Private Web Search through SGX-Based Browser Extensions [121] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
DelegaTEE: Brokered Delegation Using TEEs [92] ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Graviton: TEEs on GPUs [105] ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
LibSEAL: revealing service integrity violations using trusted execution [130, 174] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Obscuro: A Bitcoin Mixer using TEEs [140, 175] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
PubSub-SGX: Exploiting TEEs for Privacy-Preserving Publish/Subscribe Systems [98, 176] • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
SafeBricks: Shielding Network Functions in the Cloud [113, 177] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦ • •
SafeKeeper: Protecting Web Passwords using TEEs [86, 178] ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
TizenFX [80] ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •

2019

BITE: Bitcoin Lightweight Client Privacy using Trusted Execution [49] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Clemmys: towards secure remote execution in FaaS [59] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Forward and Backward Private Searchable Encryption with SGX [99] • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Fuzzing OP-TEE with AFL [45, 162] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •
LightBox: Full-stack Protected Stateful Middlebox at Lightning Speed [131, 179] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • ◦ • •
NeXUS: Practical and Secure Access Control on Untrusted Storage Platforms using Client-Side SGX [106, 180] ◦ • • ◦ • ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • •
OPERA: Open Remote Attestation for Intel’s Secure Enclaves [141] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
OP-TEE based keymaster and gatekeeper HIDL HAL [42] ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •
PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming [75] • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
SDK for the Valve Steam Link [39] ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • •
SecTEE: A Software-based Approach to Secure Enclave Architecture Using TEE [122] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
ShieldStore: Shielded In-memory Key-value Storage with SGX [93, 159] • • • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware [81, 181] • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
StreamBox-TZ: Secure Stream Analytics at the Edge with TrustZone [54] • ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
Teechain: a secure payment network with asynchronous blockchain access [69, 182, 183] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Trust more, serverless [64] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Using TEEs for Secure Stream Processing of Medical Data - (Case Study Paper) [2] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦
WebAssembly Micro Runtime (WAMR) [36] ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ • •
ZLiTE: Lightweight Clients for Shielded Zcash Transactions Using Trusted Execution [87] ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦

2020

BDTF: A Blockchain-Based Data Trading Framework with TEE [70, 184] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦
BlackMirror: Preventing Wallhacks in 3D Online FPS Games [132] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦
Custos: Practical Tamper-Evident Auditing of Operating Systems Using Trusted Execution [65] ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
CVShield: Guarding Sensor Data in Connected Vehicle with TEE [107] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
DarkneTZ: towards model privacy at the edge using TEEs [76, 158] • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Design and Implementation of Hardware-Based Remote Attestation for a Secure Internet of Things [34] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
Fine-Grained Access Control-Enabled Logging Method on ARM TrustZone [46] • ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
GOAT: GPU Outsourcing of Deep Learning Training With Async. Probabilistic Integrity Verification [40] ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Keybuster [31, 102] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •
MAGE: Mutual Attestation for a Group of Enclaves without Trusted Third Parties [43, 161] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
MobileCoin: Private payments for mobile devices [25, 185] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Privacy-preserving Payment Channel Networks using TEE [88] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
ProximiTEE: Hardened SGX Attestation by Proximity Verification [114] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Reboot-Oriented IoT: Life Cycle Management in TEE for Disposable IoT devices [142] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
SafeTrace: COVID-19 Self-reporting with Privacy [28] • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • •
Secure Cloud Storage with Client-side Encryption using a TEE [123] ◦ • • ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
secureTF: A Secure TensorFlow Framework [82] • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
SeGShare: Secure Group File Sharing in the Cloud using Enclaves [94] ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
SENG, the SGX-Enforcing Network Gateway: Authorizing Communication from Shielded Clients [50, 160] ◦ • ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Telekine: Secure Computing with Cloud GPUs [60] ◦ • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Towards Formalization of Enhanced Privacy ID (EPID)-based Remote Attestation in Intel SGX [100] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
TZ4Fabric: Executing Smart Contracts with ARM TrustZone: (Practical Experience Report) [55, 186] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • • •
TZ-MRAS: A Remote Attestation Scheme for the Mobile Terminal Based on ARM TrustZone [37] ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦

2021

Atlas: Automated Scale-out of Trust-Oblivious Systems to TEEs [124, 187] ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Building Enclave-Native Storage Engines for Practical Encrypted Databases [41] ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Distributed Learning in TEE: A Case Study of Federated Learning in SGX [89] • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Enarx Shim SGX [35] • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Formal Verification of a TEE-Based Architecture for IoT Applications [47] • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
IceClave: A TEE for In-Storage Computing [83] ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
IvyCross: A Trustworthy and Privacy-preserving Framework for Blockchain Interoperability [51] • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦
MeetGo: A TEE for Remote Applications on FPGA [66] ◦ • • • • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Memory-Efficient Deep Learning Inference in TEEs [95] • ◦ • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Poster: FLATEE: Federated Learning Across TEEs [101] • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
PPFL: privacy-preserving federated learning with TEEs [77, 164] • • ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
Privacy-preserving genotype imputation in a TEE [38, 188] • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ •
S2Dedup: SGX-enabled secure deduplication [71, 189] • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • •
ShuffleFL: gradient-preserving federated learning using TEE [108] ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
TEEKAP: Self-Expiring Data Capsule using TEE [6, 115] • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Tora: A Trusted Blockchain Oracle Based on a Decentralized TEE Network [133, 190] • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ • •
Toward a Secure, Rich, and Fair Query Service for Light Clients on Public Blockchains [143] • ◦ ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦
Trustzone-based secure lightweight wallet for hyperledger fabric [44] ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
TZ-Container: protecting container from untrusted OS with ARM TrustZone [61] ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦
TZMon: Improving mobile game security with ARM trustzone [56, 191] ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • •

2022

Exploring Widevine for Fun and Profit [125] ◦ • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ •
MMLedger: A ledger for confidential computing shims for tracking memory management system calls [116] ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •
OLIVE: Oblivious and Differentially Private Federated Learning on TEE [134] • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Supporting Passkeys [144] ◦ • • ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
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and secure storage are also somewhat prominent, albeit they
are noticeably less prevalent than the use cases previously
stated. TEEs are also used to improve the security of smart
contracts and harden secure channels. Anti-cheat safeguards
for computer games, medical data protection, and network
security hardening are examples of highly specific TEE uses
with few existent applications.

The number of applications utilising TEEs has steadily
increased since 2015. Approximately half of the references
we collected are from 2020 or after. Only about half of the
reference applications have been deployed to actual users,
according to our study. The vast majority of reference ap-
plications deployed to actual users are licenced under an open
source licence. Notably, despite this, a large number of propri-
etary applications with closed source licences comparable to
the Widevine DRM component [125] utilise TEEs. Typically,
these proprietary applications are not accompanied by any
public documentation or scholarly studies, hence they are
largely absent from our work. Therefore, Table II should not
be misconstrued as providing an accurate representation of all
applications that employ TEEs.

IV. TOOLS FOR DEVELOPING TEE SOFTWARE

RQ2: Which TEE software tools are available for TA
development?

TABLE III
TEE SOFTWARE DEVELOPMENT TOOLS.

Framework

Intel
SG

X

A
M

D
SE

V

A
R

M
TrustZ

one

R
ISC

-V

O
pen

source

Asylo [63] • • ◦ ◦ •
Edgeless RT [13] • ◦ ◦ ◦ •
Intel SGX SDK [72] • ◦ ◦ ◦ •
Keystone [11, 192] ◦ ◦ ◦ • •
Occlum’s fork of Intel SGX SDK [9] • ◦ ◦ ◦ •
Open-TEE [110] • • • ◦ •
OP-TEE [136, 166] ◦ ◦ • ◦ •
Open Enclave SDK [58] • ◦ • ◦ •
QSEE SDK [117, 193, 194] ◦ ◦ • ◦ ◦
Samsung Knox SDK [53] ◦ ◦ • ◦ ◦
Samsung Knox Tizen SDK [21] ◦ ◦ • ◦ ◦
Samsung mTower [18] ◦ ◦ • ◦ •
Samsung TEEGRIS SDK [57] ◦ ◦ • ◦ ◦
Sanctum [84, 195, 196] ◦ ◦ ◦ • •
SecGear [7] • ◦ ◦ ◦ •
Teaclave SGX SDK [52] • ◦ ◦ ◦ •
Teaclave TrustZone SDK [8] ◦ ◦ • ◦ •
TEEKAP [6] • ◦ ◦ ◦ •
Confidential Consortium [24] • ◦ ◦ ◦ •
Trustonic TEE SDKs [10, 167, 197] ◦ ◦ • ◦ ◦
Trusty TEE [78] • ◦ • ◦ •
Webinos [126, 198] ◦ ◦ • ◦ •

TAs entail establishing a distinction between the normal
and secure worlds. Because software cannot protect software,
hardware serves as a barrier between the two realms. This
is a radically different approach to application development
for software engineers. Numerous middleware frameworks
are available to assist developers with TEE development,
deployment, and maintenance. These frameworks permit the

development of TEE-enabled applications without requiring
the developer to master a specific low-level CPU TEE API.
To address RQ2, Table III combines tools for developing TEE
software.

Developers have a good variety of frameworks available for
them in different categories, which are glanced as an overview
in this paper. The referenced frameworks are available as
open source or can be brand focused commercial solutions
by different manufacturers, like the C and C++ application-
focused Open Enclave SDK or Samsung Knox SDK for
Samsung Android devices [53, 58]. However, the majority
of the referred frameworks focus on Intel SGX or ARM
TrustZone, as Table III shows.

The frameworks are made to address a variety of practical
purposes to smoothen development efforts. Several frame-
works focus on mobile devices and wearables, where the
intent is to provide ready-made APIs to support application
development [21, 53, 57]. The framework references are also
focused on IoT devices or web applications, but due to the
wide range of programming language support, the frameworks
cover also many other areas [24, 126, 197, 198]. Some of the
frameworks are focused on or support very niche areas, like
Trustonic’s Kinibi-520a SDK [10], where Symmetric-Multi-
Processing enables development on biometric functions, like
fingerprint scanning and face recognition.

The choice of development framework by the developer
is usually severely constrained by the hardware architecture.
For instance, mobile application developers are restricted to
options that are compatible with ARM TrustZone. We find
that open source development frameworks such as OP-TEE
[136], Open Enclave SDK [58], Teaclave TrustZone SDK
[8], and Trusty TEE [78] support TrustZone at least in some
capacity and are still actively maintained. These frameworks
may provide open source alternatives for mobile application
developers, who have traditionally been limited to proprietary
closed source frameworks such as the Samsung Knox SDK
[53] or Trustonic’s TEE SDKs [10, 167, 197]. Nevertheless,
many open source frameworks only support specific platforms,
so proprietary SDKs may remain the only option for devel-
opers on unsupported platforms. Some of the open source
frameworks such as Open-TEE [110] and Webinos [198] are
deprecated and/or no longer under active development.

V. MIDDLEWARE TEE CONTAINERS

RQ3: What types of TEE containers are available for TA
packaging?

For an application to function on any TEE technology,
the development process must adhere to required framework
changes so that it may execute within TEE. This makes the
procedure difficult and time-intensive for application devel-
opers. In addition, attestation must be implemented because
it is the TEE’s verification process prior to trusting the
application. For addressing the usability issue on different TEE
technologies, a set of Trusted containers (tcons) enables either
direct execution of unmodified binary code inside a TEE or
automatic transformation of source code prior to loading it
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TABLE IV
TEE CONTAINERS.

Container

libc
w

rapper

L
ibO

S

W
A

SI

Intel
SG

X

A
M

D
SE

V

O
pen

source

AccTEE [33, 199] ◦ ◦ • • ◦ •
Anjuna [74] ◦ • ◦ • • ◦
Apache Teaclave [16] ◦ ◦ • • ◦ •
Chancel [26] • ◦ ◦ • ◦ ◦
Decentriq [20] ◦ • ◦ • ◦ ◦
Deflection [32, 200] • ◦ ◦ • ◦ •
EGo SDK [17] • ◦ ◦ • ◦ •
Enarx [14] ◦ ◦ • • • •
Fortanix EDP [90] ◦ • ◦ • ◦ •
GOTEE [30, 201] ◦ ◦ ◦ • ◦ •
Gramine [62, 202] ◦ • ◦ • ◦ •
MesaPy [19, 203] ◦ ◦ ◦ • ◦ •
Mystikos [12] ◦ • ◦ • ◦ •
Occlum [22, 165] ◦ • ◦ • ◦ •
Ratel [23, 204] • ◦ ◦ • ◦ •
Ryoan [68, 205] • ◦ ◦ • ◦ •
SCONE [96, 206] • ◦ ◦ • ◦ •
SGX-LKL [27, 207] ◦ • ◦ • ◦ •
Twine [29, 157] ◦ ◦ • • ◦ •
vSGX [109] ◦ ◦ ◦ ◦ • •

into a TEE executable [5]. In order to address RQ3, Table IV
enumerates middleware TEE containers. We collect 20 distinct
containers, in addition to identifying supporting hardware and
the application middleware interface.

We discover that the bulk of tcons are developed for Intel
SGX, yet still a few support AMD SEV. In addition, we find
no tcons that support TrustZone TEE technology, confining
mobile application developers to frameworks. There are just
three tcons available for AMD SEV, limiting the number of
possible tcon-based development approaches.

The majority of tcons utilise wrappers around the C standard
library (libc) as an application middleware interface. Further-
more, a library OS (LibOS) removes the traditional boundary
between kernel and user space, allowing applications to access
system resources directly with much lower overhead. The
LibOS concept predates TEE technologies by at least a decade,
motivated by applications in the embedded space due to severe
resource constraints [208]. A LibOS typically has extremely
restricted functionality, which is in fact conducive to the TEE
concept by reducing both the Trusted Computing Base (TCB)
and attack surface.

To this end, most TEE containers provide a software shim
between libc or the tcon’s LibOS and unmodified applications:
the goal is to intercept and control the function calls (including
system calls) issued by binary code in order to arbitrate the
application’s interactions with the underlying OS. Moreover,
the WebAssembly System Interface can also be used in a
similar fashion [5]. Another compelling aspect is all the
tcons included in our study are open source except three,
thus enabling easy access for setup and usage. Comparing
the year of debut for the majority of tcons, 2021 is the

pinnacle. In addition to the mentions of review, application,
and framework, Figure 1 depicts the reference publication
of the containers across different years. The most important
security aspect of TEE containers is to ensure execution in an
isolated environment and to achieve complete attestation.

A recent trend seems to be containers that support multiple
hardware architectures. The objective is to allow developers
to adapt the same program to many platforms without having
to alter the source code. Enarx [14] is a good example of
such a tcon. Recently published vSGX [109] supports directly
running SGX-enabled applications inside AMD SEV.

VI. CONCLUSION

This article organised the history and current state of TEE
applications (use cases), frameworks, containers, and reviews.
We collected a total of 0 references for this review between
2022-03-11 and 2022-06-07 and organised the knowledge.
This includes both academic and applied work on TEE tech-
nologies.

The following are our key conclusions:
1. The rate of TEE publications is increasing. We discovered

that the rate of publication accelerates after 2015. The number
of publications has continued to rise in 2019, 2020, and 2021.
Approximately half of the references we collected are from
2020 or after. This illustrates the recent surge in the academic
interest in TEE technologies.

2. Intel SGX and ARM TrustZone are the most researched.
Most of the publications are demonstrating application use
cases, and Intel SGX is the most popular hardware. Indeed, the
vast majority of TEE applications operate on Intel SGX, ARM
TrustZone, or both. Only a minority of applications operate on
other platforms such as AMD SEV, RISC-V, or GPU TEEs.

3. Privacy is the primary motivation for open source TAs.
Additionally, we analysed the primary elements of the exe-
cution and data people attempt to secure with their TAs. We
gathered a total of 95 application use cases in Table II. Privacy
(33 references), Integrity (30 references), Confidentiality (24
references) and Machine learning (19 references) are the
most common of the 17 primary drivers to use TEE for
data protection in application development. Interestingly, only
about half of the reference applications are available to actual
users.

4. Open source TEE frameworks help TA creation. Typically,
a developer must make laborious framework-specific modifi-
cations to the original application in order for it to run within
a TEE. Many of the development frameworks are open source
and available for free. We listed 22 middleware frameworks
available to aid developers with TEE deployment, out of which
17 are open source.

5. Open source TEE tcons are gaining popularity. A trusted
container (tcon) solves the usability issue raised in the previous
paragraph by enabling either the direct execution of unmodi-
fied binary code within a TEE or the automatic transformation
of source code prior to loading a TEE executable. Most of the
tcons are free and open source. We provided a list of 20 tcons
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that eliminate the need for software developers to write TEE-
related code, out of which 17 are open source.

6. Current tcons support primarily Intel SGX or AMD
SEV. The choice of development framework and tcon by the
developer is severely constrained by the hardware architecture.
For instance, mobile application developers are restricted to
options that are compatible with ARM TrustZone, which
means there are no tcons available and a limited number of
frameworks to choose from, the majority of which are closed
source proprietary frameworks. Some recent tcons, such as
Enarx [14] and vSGX [109], enable the execution of the
same application within TEEs based on multiple hardware
architectures without requiring code modifications. Typically,
though, tcons only support Intel SGX, AMD SEV, or both.

A. Future work

1. Real world security of TEE implementations. There are
frequently discrepancies between ideal systems and real-world
implementations, as real-world implementations are often sus-
ceptible to side-channel attacks (SCAs). As we mentioned in
Section I-A, Fei et al. [148] previously systematised knowl-
edge of real-world SCAs against Intel SGX, whereas Cerdeira
et al. [149] and Koutroumpouchos et al. [150] provided
similar systemisations for ARM TrustZone. To our knowledge,
however, there have been no surveys that combine knowledge
of SCAs against various hardware architectures into a single
survey.

In addition, if we observe the security properties of tcons,
they might fail to achieve all their security goals in ideal
systems. The majority of tcons lack meaningful documen-
tation concerning API protection mechanisms, including the
arguments provided and values returned from the OS which
might result in information leaks [5]. Another challenge for
containers is maintaining isolated execution in the presence
of SCA-enabled attackers. In order to comprehend the ef-
fectiveness of containers against these non-exhaustive attack
varieties, we believe that further research is required. That
is, research which unifies attacks and defences against dif-
ferent architectures under select threat models would benefit
developers who wish to employ TEEs by providing a holistic
view of the security of TEEs in the real world. Additionally,
it would be useful to know whether current applications that
utilise TEEs implement SCA mitigations or are susceptible to
them.

2. TrustZone TEE technology and containers. In Section V,
to our surprise we discovered no tcons supporting TrustZone
TEE technology. We speculate this is mostly due to the dras-
tically different application domains between the embedded
space (e.g., ARM architectures) and the server space (e.g.,
Intel architectures). TEE deployments leveraging TrustZone
are often highly vendor specific, and the scope of tasks
performed by TrustZone-based TEEs usually encompasses
not only trusted execution of applications, but also broader
platform security. In summary, vendors of TrustZone-based
TEEs seem scantly concerned with making it easier for third

parties to execute unmodified or instrumented code leveraging
TEEs.

3. RISC-V, Sanctum, and Keystone. According to academic
references, RISC-V TEE technologies are interesting, but
few publications are available about them. The scientific
community is ideally suited to pursue the objective of open
source hardware, which is undeniably a concrete development
step. The objective is to create a secure and trustworthy
hardware-backed enclave for RISC-V that is freely available
under open source licences. Sanctum [84] and Keystone [11]
are seminal steps in this direction, yet we are unaware of
any deployments. This lack of mainstream hardware inhibits
growth of the surrounding software ecosystem, somewhat anal-
ogous to TrustZone-based TEE technologies such as On-board
Credentials (ObC) [209] in the 2000s: it is clear ObC predates
unified TEE software architectures such as the GlobalPlatform
API [156], yet such standardisation and unification efforts
arguably emerged too late to prevent fragmentation of the
software ecosystem. In summary, as a community we should
steer TA software development in a consistent and narrow
fashion, and to do that we need mainstream hardware available
with TEE-relevent hardware-assisted security features that are
open and accessible to developers.

4. Comparison between TEEs and other privacy-preserving
computing techniques. TEE is one method to achieve private
computing, but there are other options. For example, in 2014,
Signal App developers wrestled with the practical question,
“How do we determine which contacts are registered with a
service, without revealing the contacts to the service?”8. In
2017, after evaluating potential solutions to the problem, they
resolved contact discovery using the Intel SGX TEE service9.
Prior to that, they considered a variety of alternatives, includ-
ing hashing, bloom filters, encrypted bloom filters, sharded
bloom filters, private information retrieval, and private set
intersection.

There are additional technologies available to application
developers, such as homomorphic encryption (a type of en-
cryption that enables users to perform computations on its
encrypted data without first decrypting it), secure multi-party
computation (computation of a function over inputs while
maintaining their confidentiality), and functional encryption
(restricted secret keys that enable a key holder to learn a
specific function of encrypted data while learning nothing
else).

Considering how challenging it is to compare solutions,
even for the relatively basic case of private contact discovery,
It would be very beneficial and practical to provide guidelines
for: How should a developer choose between these technolo-
gies? What are their trust and threat models? What are their
security limitations? How can they be securely combined?
Under what circumstances are they feasible choices?

Thus, research to resolve these practical questions and
help developers in selecting TEE-related technologies and

8https://signal.org/blog/contact-discovery/
9https://signal.org/blog/private-contact-discovery/
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developing their TAs (or not using it and selecting other
technical methods!) would immediately generate more secure
and privacy-centric technical solutions.
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