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ABSTRACT 
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Cache replacement policies play a significant role in the performance of cache memories. This 
thesis aims to find new replacement algorithm options for an existing RISC-V multicore processor 
design, the HPC subsystem of the Ballast System-on-Chip. HPC is a dual core design with two 
64-bit CVA6 cores, and it features an L2 cache. The cache was originally designed with a simple 
but popular LRU replacement algorithm. 

This work first looks at the cache replacement algorithms used by other existing RISC-V sys-
tems, and then at other research that has been carried out on the topic. Three algorithms are 
implemented as part of the HPC L2 cache: PLRUm, EBR, and Mockingjay. 

The performance of these algorithms is evaluated in RTL simulation with a set of benchmark 
programs. The results show that more complex EBR and Mockingjay algorithms have a concrete 
performance improvement over LRU-based solutions in most cases, but the LRU algorithms do 
have an edge on a few benchmarks. The performance improvement provided by more advanced 
algorithm comes at a cost, as they require more memory and registers. 
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Välimuistien korvausalgoritmeilla on huomattava vaikutus välimuistin suorituskyvylle. Tämän 
diplomityön tavoitteena on löytää uusia korvausalgoritmivaihtoehtoja aiemmin toteutetulle RISC-
V moniydinprosessorille, Ballast-järjestelmäpiirin HPC-alijärjestelmälle. HPC on 64-bittisiä CVA6-
ytimiä käyttävä kaksiydinprosessori, joka sisältää myös L2-välimuistin. Välimuisti suunniteltiin 
alun perin yksinkertaista, mutta suosittua LRU-algoritmia käyttäen. 

Diplomityö tarkastelee ensin muiden RISC-V-järjestelmien käyttämiä korvausalgoritmeja, ja 
sen jälkeen myös muissa tutkimustöissä esitettyjä algoritmeja. Algoritmeista kolme toteutetaan 
osaksi HPC:n L2-välimuistia: PLRUm, EBR ja Mockingjay. 

Näiden algoritmien suorituskyky arvioidaan RTL-simulaattorilla testiohjelmia käyttäen. Tulok-
set näyttävät, että monimutkaisemmat EBR- ja Mockingjay-algoritmit parantavat suorituskykyä 
huomattavasti useimmissa testeissä, mutta joissain tapauksissa LRU-pohjaiset algoritmit suoriu-
tuvat paremmin. Paremman suorituskyvyn hintana on edistyneempien algoritmien suuremmat 
vaatimukset muisteille ja rekistereille. 
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1 INTRODUCTION 

Memory use continues to be a bottleneck in processor performance due to long access 

times. Decreasing the required amount of read and writes to memory can provide a real 

performance increase for most systems. Caches have been long used to mitigate this 

issue. 

Cache architecture has a lot of variables which can be tuned to modify their behaviour, 

and this thesis focuses on one of them: the cache replacement algorithm. The purpose 

of a replacement algorithm, ultimately, is to maximize the accuracy of the cache by at-

tempting to keep the most valuable regions of memory cached. 

This thesis investigates how much performance can be gained with different replacement 

algorithms on a 64-bit RISC-V subsystem of a recently developed system-on-chip. Dif-

ferent algorithms are investigated, then implemented as part of the hardware description, 

and finally simulated with a set of benchmark programs. 

The first chapter introduces the background and motivation of the thesis. In the second 

chapter, the most important features and design decisions of caches are explained in 

more detail. The third chapter provides more information on the Ballast SoC and its HPC 

subsystem, on which this thesis focuses on. 

Previous related works are explored in the fourth chapter. This includes a look at other 

64-bit RISC-V processors that have been designed, and the kinds of caches they feature. 

Cache replacement algorithms are also investigated in general, beyond the RISC-V ar-

chitecture. 

Chapter five introduces the methodology of this work, mainly focusing on the benchmark-

ing setup and the criteria used in comparing the replacement algorithms. The actual 

compared algorithms are introduced in chapter six, and their implementation details are 

explained in chapter seven.  

The results of the algorithm comparisons are shown in the eight chapter. And finally in 

chapter nine, the conclusions and some of the limitations of the work are discussed. 
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2 CACHES 

Caches’ purpose is to speed up memory access times, as fetching data from memory is 

very slow relative to the execution speed of processors. Caches can be used to store 

data as well as instructions. In terms of memory hierarchy, caches are between the pro-

cessor and the memory of the system. [1], [2] 

Figure 1 shows examples of typical memory hierarchies. Memories close to the top of 

the pyramid are closer to the processor and are faster to access. Further away memories 

are slower but can be implemented in larger sizes. [2] 

Sizes of different memories are limited by their per-bit cost. If not for this cost, the whole 

memory would be implemented in the fastest available memory technology. However, 

this is not economical. Instead, a memory hierarchy is used to find a balance between 

cost and performance. [1], [2] 

A system can have multiple levels of caches. As with other memories in the hierarchy, 

high level caches i.e., ones closest to the core, are faster to access but also smaller. 

 Figure 1: Memory Hierarchy, adapted from [2] 
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Conversely lower levels of caches are larger but slower to access. When the processor 

accesses a memory address, the data is always fetched from the closest level of the 

memory hierarchy that has the desired data at that moment. [1], [2] 

The event in which a desired address is found at a particular level of memory hierarchy 

is called a hit. The opposite of hit is a miss. The ratio of hits to all accesses is called a hit 

ratio, a number which can be used to measure the performance of a cache. [1], [2] 

Caches generally handle data as larger blocks that are called cache lines or cache 

blocks. A cache line’s size in the magnitude of tens of bytes. [1], [2] 

One additional consideration with caches is coherence, making sure that all caches 

match the data held by the memory [1], [2]. This is a challenge both in multiprocessor 

systems, where there can be both shared and processor-specific caches and memories, 

but also in systems with input-output devices [1]. 

2.1 Design 

As caches are smaller than the memory, they cannot always hold all the information that 

is related to the current program context. Instead, attempts are made so that the cached 

data is from addresses that are likely to be handled soon. To achieve this, caches rely 

on a concept called the principle of locality [1], [2].  

Principle of locality is divided into two separate types: spatial locality and temporal local-

ity. According to spatial locality, when a particular memory address is handled during a 

program, there is an increased likelihood that the other addresses close to that address 

will also be soon accessed. According to temporal locality, on the other hand, memory 

addresses that have been recently accessed, will also be more likely accessed again in 

the near future. [1], [2] 

There are multiple ways in which memory address can be mapped to caches, the most 

common ones being direct-mapped caches, set-associative caches, and fully associative 

caches [2], [3]. One example of a less frequently mentioned cache design are subset 

caches [1]. 
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In direct-mapped caches (Figure 2) each memory address maps to only one cache lo-

cation, i.e. when a particular memory address’ contents are cached, the data is always 

placed in the same location in the cache [3]. The cache line that is to be used for an 

address is determined by the index, the address’ lowest significant bits (excluding pos-

sible byte and word offset, as can be seen in Figure 2) [1], [3]. Index is also called line in 

some literature [2]. 

The remaining most significant bits of the address, the tag, is then used when data in the 

cache is accessed, to identify whether the memory location stored in the cache line is 

the correct one, or if it’s holding the contents of another address that shares the same 

index [2]. In addition to the tag and the actual data, the cache line can have status fields, 

like a valid bit to indicate that the cache has anything in that index [3], and a clean/dirty 

bit to indicate that the data held in the cache is still matching with the data in the memory 

[2].  

 Figure 2: a direct-mapped cache, adapted from [3]  
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The benefit of direct-mapped caches is that is only one location of the cache needs to 

be checked for presence of the desired data, but as a downside, multiple memory ad-

dresses will compete for the same cache line [2]. This means that if a program is, for 

example, frequently accessing two addresses that both happen to map to the same 

cache line, only one of them can be kept in the cache at a time. 

Set-associative caches offer some remedy to this issue as they have cache lines in mul-

tiple banks, called ways [2], [3]. Set-associative caches are named according to the num-

ber of ways they have [2]. For example, 4-way set-associative cache (Figure 3) would 

allow simultaneous caching of up to four memory addresses that have the same index. 

The set of cache blocks that share the same index can also be called a row [1].  

As seen from Figure 2 and Figure 3, the downside of set-associative caches is that every 

added way also adds more complexity, as they all require comparison logic for the tag 

[3]. 

Fully associative caches don’t have the placement limitations of direct-mapped and set-

associative caches, instead, any memory address can be stored in any location of the 

 Figure 3: a 4-Way Set-Associative Cache, adapted from [3] 
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cache [2], [3]. This means that there is no indexing [3], but every cache line’s tag needs 

to be checked when accessing memory [1], [2]. Because of this increased need for com-

parison logic, fully associative caches are rarely used [1].  

Caches also have other design choices that affect their functionality. Write misses can 

be handled in two ways, either no-write-allocate or write-allocate. When a write miss 

occurs in a cache that uses no-write-allocate, only the memory of the system is updated, 

and the address in question remains uncached. Conversely in write-allocate caches, 

once the write operation has modified the memory, the data is then also stored in the 

cache. [1], [3] 

The way write hits are treated is determined by write policy. Write policies can be cate-

gorized as either write-back, write-through or posted write aka. deferred write [1]–[3].  

In write-back caches a write does not go past the cache to the lower-level memory, until 

the written cache line must be replaced by another location. Instead, when a cache line 

is modified it’s marked as dirty by setting a flag bit. When the cache line is replaced, the 

dirty bit can then be used to determine if the contents need to be written to memory. [1]–

[3] 

Write-back caches improve performance by reducing the amount memory accesses [1], 

[3], but they do also have some weaknesses. There is an increased access time when a 

dirty cache line gets replaced, as it needs to be first written to the memory [3]. Cache 

coherence needs to be also taken into account [1], [3].  

Unlike write-back caches, write-through caches modify both the cache line as well as the 

memory location on every write. To avoid delay from continuous writes to the memory, 

a write buffer can be added to the cache. The buffer then takes care of the writes, and 

next operations can be started while memory is still being written. [1], [3]  

In posted write caches writes are done immediately to the cache. The write to the 

memory is done once the memory bus is free [1], [2]. 

2.2 Replacement policy 

As caches intermittently get filled and have to make space for new data, it is necessary 

to have mechanism for deciding which older data is evicted. This is the responsibility of 

a replacement policy. [2], [3]  

According to Belady [4], an optimal replacement policy would be one which always 

chooses for replacement the block of memory that won’t be needed for the longest time 

to the future. This algorithm, called MIN, would require first a pre-run of the program to 
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analyse the memory accesses, and as such is not practical in most cases. However, it 

can be used for example as a baseline for measuring performance of other replacement 

algorithms. Conversely to MIN, a worst case for replacement would be to evict a cache 

line that is used immediately after the eviction. 

When it comes to more practical solutions, there are a few of commonly used replace-

ment algorithms which vary in complexity and performance. Such algorithms are Least 

Recently Used (LRU), Least Frequently Used (LFU), First-In-First-Out (FIFO), and ran-

dom replacement [2], [3]. Round-robin is also mentioned in some literature [2]. 

Least Recently Used always replaces the cache line that has not been used in the long-

est time [1]. In two-way set associative caches an LRU algorithm can be implemented 

with simple flag bits, which are toggled according to the use [3].   

For more complex caches, a stack can be used for LRU bookkeeping. Whenever a cache 

line is accessed, it’s number is pushed back to the top of the stack, simultaneously shift-

ing other line numbers down the stack. When a line has to be evicted, the number at the 

bottom of the stack indicates the line to be replaced. [1], [2] 

There are also pseudo-LRU algorithms which approximate true LRU, by attempting to 

mimic the algorithm while requiring less hardware or being easier to implement. One 

example is using a binary tree for storing the recency information, instead of the stack. 

[5], [6]  

A FIFO replacement algorithm naturally uses a first-in-first-out buffer, and unlike with 

LRU, line numbers are not pushed back to the top of buffer if they are used again. An 

older line will get pushed to the bottom of the FIFO even if it has been accessed multiple 

times after its initial use. As a result, its performance is worse than LRU for cache lines 

that are accessed continuously. [2] 

An LFU replacement algorithm replaces the line that been used least frequently, and as 

the implementation requires counters and comparison logic, it is more complex in hard-

ware [2], [3]. As a benefit its performance is also very good [2]. 

A random replacement policy picks the replaced line at random. It is easy to implement 

as it doesn’t require any bookkeeping. Despite this its performance is relatively good. [2], 

[3]  

Round-robin is a cyclic replacement policy, which replaces each way in turn. It’s said to 

be easy to implement but to not be very efficient for small caches. [2] 

As direct-mapped caches have only one cache line to which a memory location is 

mapped to, there is no need for a replacement policy [3]. 
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In addition to these more established replacement policies, that are common enough to 

appear in computer engineering books, there are also other more recently developed 

algorithms. Some of these are explored in the Related Works chapter, along with an 

investigation into the specifics of RISC-V cache replacement policies. 
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3 PROJECT AND PLATFORM 

SoC Hub is a consortium project started by Tampere University in collaboration with 

founding partner companies Nokia, CoreHW, VLSI Solution, Siru Innovations, TTTEch 

Flexibilis, Procemex, Wapice and Cargotec. SoC Hub officially launched on 27th of Feb-

ruary in 2021, and received funding from Business Finland. [7] 

The SoC Hub ecosystem aims to collect and spread expertise of SoC development 

among industry professionals, students, and researchers [8]. The goal is to create three 

chips, and the first them, Ballast, was taped out near the end of 2021 [7]. 

3.1 Ballast 

Ballast’s design and implementation was finished near the end of 2021, when it was 

taped out. Samples of the chip were received in June of 2022, with a successful wake-

up two days later. [7], [8] 

At the top level, Ballast (Figure 4) consists of eight subsystems all of which are connected 

via AXI interconnects. The subsystems are SysCtrl (System Control subsystem), MPC 

(Medium Performance Computing subsystem), HPC (High Performance Computing sub-

 Figure 4: Ballast SoC [9] 
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system), AI (Artificial Intelligence subsystem), DSP (Digital Signal Processing subsys-

tem), Ethernet subsystem, C2C (Chip-to-chip subsystem), and a top-level peripherals 

subsystem. [9] 

This work focuses on the HPC subsystem. Performance measurements simulate use 

cases where a single CVA6 core from HPC subsystem uses an SDRAM memory which 

would be located behind the Chip-to-Chip subsystem. Communications between HPC 

and C2C happen on the High-Performance Interconnect (HP ICN), which is a 64bit in-

terconnect using an AXI protocol. [9] 

3.2 HPC Subsystem 

HPC subsystem is built around two CVA6 cores (CORE-V Application Class, 6-Stage 

Core) [10], [11]. CVA6 is 64-bit RISC-V core that implements an RV64GC instruction set 

[12]. The core was designed at ETH Zurich, and it was originally called Ariane [12]. In 

2020 the core was handed over to OpenHW Group for verification, maintenance, and 

documentation, and it was renamed to CVA6 [13]. For the sake of clarity this thesis uses 

the newer name. The CVA6 cores in the subsystem are identical, except for minor con-

figurable details such as their internal ID code. 

The RV64GC architecture of the core includes implementations of the integer, multipli-

cation and division, atomic, single-precision floating point, double-precision floating 

point, and compressed instruction extensions of the RISC-V ISA specification [14].  

The core has out-of-order execution, but in-order commits [13]. It’s Linux-capable, and 

among other features it has a branch-predictor, a memory management unit, and L1 

instruction and data caches. CVA6 pipeline, depicted in Figure 5, has 6 stages: PC gen-

eration, instruction fetch, instruction decode, issue, execute, and commit [15]. 

The L1 data caches in HPC’s two CVA6 cores are configured as 32kB 8-way-associative 

with 128-bit cache lines. The L1 instruction caches are 16kB 4-way-associative with 256-

bit cache lines. Both caches have a random replacement policy, which uses a linear-

feedback shift register to generate pseudo-random numbers. In Figure 5, data cache 

(D$) and instruction cache (I$) are highlighted in blue. 

The interface that connects the CVA6 cores to the L2 cache is based on CPU-Cache 

Crossbar (CCX), which was used by OpenSPARC T1 [16], and more recently by Open-

Piton [17]. CCX uses packets for requests and responses. CVA6 does not use all the 

features of the packets, leaving some of the fields unused.  
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HPC’s interfaces are routed through the L2 Cache Subsystem, which implements the L2 

cache itself, as well as a bypass module which is used if the L2 is disabled. The L2 cache 

in HPC is an 8-way-associative 256kB cache, and it provides cache coherence. Both the 

L2 and the cache bypass are controlled by finite state machines, which process the CCX 

requests coming from the core.  

From the L2 cache forward, the subsystem uses AXI protocol for communication. In ad-

dition to controlling the state of the L2, the state machines implement the necessary logic 

for atomic requests, and they are responsible for the CCX-to-AXI and AXI-to-CCX pro-

tocol conversions. A separate state machine controls the cache coherence logic. The L2 

cache uses a write-back policy, which reduces the need for constant AXI transfers to 

memory.  

 Figure 5: CVA6 processor pipeline [11], modified 
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The replacement policy originally implemented in the L2 cache is a simple LRU imple-

mented with a stack. This LRU is used as the baseline for comparing the performance 

of other replacement policies implemented in this work. 

In addition to the two cores, the HPC subsystem (Figure 6) has a set of peripherals which 

include CLINT (Core-local Interrupt Controller with an RTC timer), PLIC (Platform-Level 

Interrupt Controller), a set of APB timers, a debug module with JTAG interface, and an 

SRAM memory (Bootram). Additionally, there are configuration registers for the subsys-

tem, and separately for the L2 cache. 

 

 Figure 6: HPC subsystem, adapted from [9] 



  13 
 

4 RELATED WORKS 

As the goal of this thesis is comparison of cache replacement algorithms, the research 

to related works had a main goal of identifying potential candidates to be used in the 

comparison. First stage in this was to study whether any relevant works had been done 

specifically with CVA6. This required looking for any platforms which had used CVA6, 

and which also had implemented an L2 cache with a replacement policy algorithm that 

is of some interest.  

Since the replacement policy used by the HPC subsystem L2 was an LRU, comparison 

with additional standard LRU implementations was not meaningful. Additionally, the fo-

cus was on finding algorithms that are more accurate than LRU, meaning that algorithms 

that perform worse, such as FIFO [2], were not of much interest either.  

4.1 CVA6 

One project that has utilized CVA6 in combination with an L2 is ESP (Embedded Scala-

ble Platforms), which is described as a “open-source research platform for heterogenous 

system-on-chip (SoC) design and programming”. SoCs built with ESP use a tile-based 

design, and there are four types of tiles available: processor, accelerator, memory, and 

auxiliary. For the processor tile, two core choices are available: CVA6 and LEON3. Re-

gardless of which core is used, the tile also includes an L2 cache. [18] 

The L2 caches on ESP’s processor tiles are private write-back caches, and they use a 

MESI cache-coherence protocol. Additionally, the memory tiles of ESP feature a last 

level cache (LLC) [18], [19]. The LLC’s replacement policy is described as “FIFO-like” 

[20]. L2 cache’s policy is not specified by documentation but appears similar based on 

reviewing the code. 

Another tiled platform that has used CVA6 is OpenPiton [21]. Though originally built on 

using the OpenSPARC T1 core [22], OpenPiton+Ariane was later developed together 

with the PULP team from ETH Zürich [21]. Further, OpenPiton has “Bring Your Own 

Core” (BYOC) architecture, which enables using other processors with different archi-

tectures [17]. In addition to OpenSPARC and CVA6, the platform has been used for 

example with PicoRV32, ao486, and BlackParrot.  

OpenPiton is described as a “tiled-manycore architecture” with “extreme scalability”. 

Each of the tiles includes a processor core, an L1.5 cache, an L2 cache, and three Net-
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work-on-Chip routers. The NoC routers are used for cache operations, and for connect-

ing each tile to its adjacent tiles to form a 2D mesh. Together the connected tiles form 

what OpenPiton calls a chip. Within the chip, the L1.5 and L2 caches and networks-on-

chip form a cache coherence system called P-Mesh. Each chip connects through a chip 

bridge to a chipset, which is where DRAM and I/O are found. Chipsets are connected to 

other chipsets which allows for inter-chip communication. [17] 

When it comes to cache replacement algorithms, according to the source code Open-

Piton uses an LRU algorithm for L1.5 caches, and a pseudo-LRU implementation for L2 

caches [23].  

A third platform that supports using CVA6, among many other cores, is the Chipyard 

framework. Chipyard uses Rocket Chip and other generators to create RTL for SoC de-

signs, and it also bundles together different libraries, simulators, and other tools. [24] [25] 

Chipyard’s default implementation for L2 caches is to use SiFive’s InclusiveCache gen-

erator [25]. Due to being a generated design the details of the cache depend on the 

configuration parameters. However, regardless of the other details, the generated 

caches always use a random replacement policy. As with CVA6’s L1 caches, an LFSR 

is used for generating pseudo-random numbers. [26], [27] 

Wistoff et al. [28] utilized CVA6 in a study of timing channels, a type of security hazard. 

The work features an L2 cache, however the details of the implementation are covered 

by a thesis [29] that is not publicly available.  

In addition to the works there are multiple other works which have used CVA6, but which 

do not particularly relate to caches or specify any kind of details of replacement policies. 

Such cases include researching alternatives to standard floating-point representations 

[30], run-time variable floating-point precision [31] and logic-locking for increased hard-

ware security [32].  

There is also a commercial processor, Mig-V, which uses a CVA6 core [33]. Mig-V is 

described as a logic-encrypted general-purpose processor. According to the brochure 

the processor has instruction and data caches, but it is not explicitly stated if these are 

the same caches CVA6 includes by default [34]. The replacement policies used by these 

caches are not mentioned. 

As such, there are no significant findings when it comes to replacement policies and the 

CVA6 core specifically. However, other RISC-V designs and their cache implementa-

tions were also investigated. 
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4.2 Other RV64 implementations 

As the RISC-V space is very populated by a large number of different designs [35], the 

focus was limited specifically to 64-bit cores which have close to the same extension set 

as CVA6. One 64-bit RISC-V design is BlackParrot, which is another tile-based SoC 

generator [36]. It implements the RV64G ISA, and the C extension is planned [37]. In 

BlackParrot’s architecture, following tiles are available: core, L2 extension, coherent ac-

celerator, streaming accelerator, I/O, and DRAM Controller [36]. The tiles form 2D mesh 

via BedRock, which is network that each of the tiles is connected to. 

The L2 cache in BlackParrot is distributed. Each of the core tiles has an L2 slice, and if 

there is need for more capacity, the L2 extension tiles can be used. Core tiles have L1 

instruction and data caches. The BedRock network implements cache coherency and 

supports VI, MSI and MESI coherency protocols. [36]  

The replacement policy in L1 instruction and data caches of BlackParrot is a tree pseudo-

LRU from the BaseJump Standard Template Library. Core tile L2 slices and L2 extension 

tiles use a cache implementation which is also from BaseJump. These L2s are set as-

sociative, write-back, write-allocate caches, and they use the same tree pseudo-LRU 

replacement policy as L1. [37]–[39] 

RiscyOO is an out-of-order RISC-V processor which implements the RV64G 

(RV64IMAFD) architecture. A multicore system using RiscyOO processors has been im-

plemented on FPGA with an “uncore” which contains an L2 cache, DRAM wrapper for 

the FPGA’s DRAM, MMIO platform, Boot ROM, and a Memory Loader for loading data 

from a host system. The L2 is a shared cache, which connects to the cores’ L1 data and 

instruction caches with FIFO interfaces. [40]  

The L2 implementation in RiscyOO’s uncore is an LL cache [41], and it uses a random 

replacement policy [40]. The L1 data and L1 instruction caches use an LRU replacement 

policy [41]. 

Another 64-bit RISC-V core is the NOEL-V. It implements an RV64GC instruction set, 

and it is part of the GRLIB IP Library. GRLIB is an open-source library which includes a 

variety of different IP, such as the LEON SPARC processors, timer units, and SRAM, 

USB and I2C controllers. The library also includes L2 cache controller implementations, 

and the L2C-Lite variation of the cache is compatible with NOEL-V processors. The L2C-

Lite line and way sizes are modifiable, and the cache is configurable as either direct-

mapped or set-associative. Replacement policy can be selected either as pseudo-ran-

dom or pseudo-LRU. [42], [43] 
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There is also Lagarto I, a core with a RV64IMA instruction set, which utilizes the Open-

Piton architecture. However, the core was not implemented with new cache designs, 

rather it reuses the L1 from CVA6, and L1.5. and L2 from OpenPiton. [44] 

Shakti is a family of multiple different processor designs. The processors are organized 

into three base classes, three multicore classes, and additionally two experimental clas-

ses. The bases designs include a low-power embedded E-Class, a mid-range Linux-

capable C-Class, and a high performance out-of-order I-Class. The multicore designs 

are M-Class, S-Class, and H-Class, and they use different combinations of processors 

from the C- and I- base classes. The experimental processors are security and fault 

tolerant T- and F-Class. Most information is available on the E-Class and C-Class pro-

cessors, which have also been taped out with different configurations. [45] 

The C-Class processor has configurable instruction and data caches. The configurability 

extends to replacement policy, which can be set as either random, pseudo-LRU, or 

round-robin. [46] 

Overall, there appears to be little diversity in replacement algorithms, at least in the field 

of 64-bit RISC-V processors. Most systems discovered in this research implement either 

a random policy, FIFO, or some variation of LRU. This notion is somewhat corroborated 

by Ghasemzadeh and Fatemi [47], who state that there have been numerous studies on 

various replacement algorithms, but only a few of them get regularly implemented on 

hardware.  

4.3 Cache replacement algorithms 

It was considered that there may be good reasons for the perceived lack of variation in 

replacement algorithms in existing implementations. Possibly the mentioned algorithms 

perform well enough, and there is no appreciable increase in performance when using 

other algorithms. Another possibility was that there may be a notable performance in-

crease, but that the implementation of better performing algorithms is not worth the re-

quired effort or cost.  

To study this, further research into alternative replacement algorithms was carried out. 

As strong candidates for the algorithm comparison were not identified from other RISC-

V systems, they would need to be discovered from other research.  

As already presented in this chapter, the LRU algorithm is very popular. In further inves-

tigation it was found that there have been multiple attempts to increase LRU accuracy 

by augmenting the basic least-recently-used philosophy with additional features. 
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One such work is presented by Wong & Baer [48], who modify LRU by introducing more 

temporal locality into the replacement decision. Cache lines on the LRU stack are divided 

into two categories, those which display “sustained temporal locality”, and those which 

do not. Cache lines with sustained temporal locality are preferred to be kept in the cache, 

even in cases where such lines may be least recently used. Two different algorithms are 

presented for profiling which category a cache line belongs to. 

Another LRU-based algorithm is the Enhanced LRU (ELRU). ELRU has counters on the 

accesses to each cache block. During evictions, the average counter value of the blocks 

is calculated, and the actual LRU is only applied to cache blocks that have below average 

counter value. According to the provided results this algorithm does perform better than 

basic LRU, however the provided results are based only on randomly generated memory 

accesses. [49] 

One simple pseudo-LRU implementation is the MRU-based pseudo-LRU (PLRUm). In 

PLRUm, every cache line is given an MRU-bit (most recently used). This bit functions as 

a flag that is set to 1 when the line is used. If all other flags are already set to 1 when the 

last way is toggled, all MRU-bits of the set are reset back to 0, and only the most recent 

one is toggled. Whenever a line has to be evicted, the algorithm simply picks the first line 

which MRU-bit is 0. PLRUm should match or even outperform pure LRU. [50], [51] 

Modified Pseudo-LRU (MPLRU) is an LRU approximation based on a binary tree imple-

mentation. MPLRU takes a Basic Pseudo-LRU (BPLRU) and introduces additional Mul-

tiple Block Access Indicators (MBAI) to its binary tree structure. These MBAI bits are 

used to indicate the history of accesses, by storing both the current and previous status 

of the binary tree, instead of only the current status. MPLRU performs better than the 

BPLRU, though does not match the accuracy of LRU. [5] 

Another pseudo-LRU is the pseudo-FIFO LRU. Like many pseudo-LRU implementa-

tions, this algorithm focuses on improving the memory footprint by removing the require-

ment for a stack. In addition, it aims to improve the timing requirements to increase the 

maximum clock rate. According to the provided results the pseudo-FIFO has slightly 

higher miss rate than a full LRU, i.e., it’s less accurate. [47] 

There are also designs that attempt to combine features of multiple different algorithms. 

One such case is Effectiveness Based Replacement, which aims to combine features of 

both LFU and LRU into a single algorithm. Each cache line has two counters, one for 

frequency and one for recency. The frequency counter increments whenever the cache 

line is accessed, and the recency counter whenever the cache line is not referenced for 
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multiple misses. Based a on these counters, and additional weight variables, an effec-

tiveness value is calculated for each line. The evicted cache line is chosen based on 

lowest effectiveness. [52] 

Another algorithm that similarly aims to combine LRU and LFU is the Least Recently/Fre-

quently Used (LRFU). Similar to EBR, LRFU calculates a value called Combined Re-

cency and Frequency (CRF) for each cache line. The CRF value is based on amount of 

references to the cache block, and the times they occurred. Since storing the entire his-

tory of accesses to each block would take a lot of memory, only the calculated CRF is 

stored. When a new reference occurs, the CRF is again recalculated, based on the age 

and value of the previous CRF. [53] 

Basic, Dynamic, and Adaptive Cost-Sensitive LRU (BCL, DCL, ACL) are a set of replace-

ment algorithms which have been designed to consider the cost of replacing a cache 

block, in addition to recency. Even if a cache block is the least recently used one, it can 

be kept in the cache if evicting it is more costly than evicting some other block. Such 

blocks are referred to reserved. Costs of different blocks can be estimated based on the 

miss latencies, bandwidth consumption, or other effects, and can depreciated over time.  

[54] 

State-based random replacement is an algorithm that is specifically designed for multi-

processor environments with shared MESI coherent memories. It aims to improve the 

performance of random replacement by considering cache lines’ coherence state, as 

well as the state of most recently used cache line. Instead of picking a random cache 

line from the whole cache, the randomization only applies to a subset where all cache 

lines have the same state. For example, highest priority is Invalid cache lines, followed 

by Shared, Exclusive, and lastly Modified. In addition to the predefined priority order, a 

limitation is set so that the MRU state is considered for eviction last. [55] 

Hawkeye is a predictive replacement policy which won the 2nd Cache Replacement 

Championship held in 2017 [56], [57]. Following this, a more advanced version called 

Mockingjay was later developed [58], [59]. Mockingjay samples the memory accesses 

done during execution, and then uses those samples to predict future memory opera-

tions. Based on these, addresses which are predicted to be used sooner are prioritized 

to be kept in the cache, while addresses with longer estimated reuse can be evicted. 

This concludes the Related Works chapter. The algorithms which were selected for com-

parison are introduced in further detail in the Algorithms chapter. 
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5 ALGORITHMS 

After the research described in the Related Works chapter was carried out, a set of al-

gorithms had to be selected for implementation and comparison. To select the replace-

ment algorithms which would be included in this work, the different options were collected 

and processed based on a few simple qualitative criteria.  

5.1 Selection 

The initial selection could not go very deep into the fine details each algorithm, as that 

was estimated to be too time-consuming. Therefore, the criteria used was only roughly 

defined: good performance, accurate enough specification or description, variety, and 

recency.  

The number of candidates was not initially restricted to a specific number, but it was 

estimated that an amount of three to five was realistic given the size of the work. Adding 

more algorithms would increase the time required for both the RTL implementation and 

the performance measurements. 

Performance was the highest criteria. As the goal of this work was to increase the per-

formance of HPC, the requirement was that any implemented algorithms would have to 

surpass, or at the very least match the performance of the LRU algorithm. Due to the 

popularity of LRU, most papers published on cache replacement algorithms do use it for 

comparison, making it a convenient benchmark. 

The second consideration was the level of description that was available for the candi-

date algorithm. An algorithm can be specified in many ways. The most accurate ways 

are a full source-code or a more abstract pseudocode. Different diagrams or other graph-

ical descriptions can also be used, and they are often utilized for visualization along other 

types of specification. A purely verbal documentation can also be used. 

There is no one answer for what is the correct type of specification. However, the more 

complex the algorithm, the more detailed the documentation should be. The more struc-

tured descriptions can also be more accurate and thus less open to interpretation or 

mistakes in implementation. In practice, algorithms which only had a high-level concep-

tual description were not considered for implementation. Some otherwise interesting al-

gorithms were excluded due to their specification being too high-level. 
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As previously mentioned, the amount of selected algorithms had to be restricted. There-

fore, the focus was put on having a handful of algorithms, but with each of them being 

different in nature and in complexity. 

Additionally, the recency of the algorithms was considered. This requirement was added 

mainly to catch any latest developments in cache replacement algorithms. 

All considered algorithms are listed in Table 1. Algorithms were searched for in the two 

manners described in Related Works. Firstly, other high-performance RISC-V platforms 

were investigated to find out what cache replacement algorithms they use, and secondly, 

sources that specifically focused on cache replacement algorithms were investigated. 

Algorithms in the first group are ones that have their respective platform or processor 

included in the table. There is some overlap in this group, as many different RISC-V 

platforms use the same algorithms. Some platforms have multiple algorithms if they are 

configurable or use different algorithms for different cache levels. Year refers to date of 

related publication, which is not necessarily the same date the algorithm was originally 

designed.  

Final decision was to choose the algorithms PLRUm, EBR, and Mockingjay for the actual 

implementation and comparison. Each of these algorithms is described in greater detail 

in following subchapters. 
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 Table 1: Cache Replacement Algorithms 

Algorithm Ref. Platform Specification or lan-
guage 

Year Selected 

Least Recently Used 
(LRU) 

 Ballast (HPC) SystemVerilog  Baseline 

Mockingjay [58], [59]  C++ model, diagrams 2022 Yes 

Effectiveness Based 
Replacement (EBR) 

[52]  Pseudocode, diagrams 2014 Yes 

MRU-based Pseudo-
LRU (PLRUm) 

[50], [51]  Diagrams 2004 Yes 

Pseudo-FIFO LRU [47]  Pseudocode, diagrams 2005  

Modified Pseudo 
LRU (MPLRU) 

[5]  Diagrams 2006  

Basic Cost-Sensitive 
LRU (BCL) 

[54]  Pseudocode, diagrams 2003  

Dynamic Cost-sensi-
tive LRU (DCL) 

[54]  Diagrams 2003  

Adaptive Cost-sensi-
tive LRU (ACL) 

[54]  Diagrams 2003  

State-based priority 
random replacement 

[55]  Diagram 1998  

Least Recently/Fre-
quently Used (LRFU) 

[53]  Pseudocode, equations 1999  

Reference Locality 
Replacement (RLR) 

[48]     

Enhanced LRU 
(ELRU) 

[49]  Pseudocode 2017  

Hawkeye [56]  C++ model, diagrams 2016  

FIFO-like [18]–
[20] 

ESP (CVA6)  2018  

Pseudo-LRU (L2) 
and     LRU (L1.5) 

[17], 
[21]–
[23], [44] 

OpenPiton 
(CVA6/Open-
Sparc/Lagarto) 

Verilog RTL 2016  

Random 
 

[24]–
[27] 

Chipyard 
(CVA6/Rocket/ 
Others) 

Chisel RTL 2020  
 

Pseudo LRU (L2 and 
L1) 

[36], [37] BlackParrot SystemVerilog RTL 2020  

Unknown [33], [34] Mig-V (CVA6) Unknown   

PLRU, random [42], [43] NOEL-V VHDL 2020  

Random, LRU [40], 
[41], [60] 

RiscyOO Bluespec SV 2019  

Random, RR, PLRU [45], 
[61], [62] 

Shakti (C-Class) Bluespec SV 2016  
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5.2 PLRUm 

PLRUm was chosen to represent the vast amount of LRU and pseudo-LRU algorithms. 

Its specification was simple, but unlike many other pseudo-LRUs, the accuracy was 

claimed to be higher than pure LRU making it a very compelling algorithm. Al-Zoubi et 

al. [51] specifically state that “For second level unified cache L2U, both PLRUm and 

PLRUt outperform LRU for even more cache organizations than in first level caches.”, 

which makes PLRUm very appealing for the case of HPC L2. The mentioned PLRUt is 

not included in this thesis as Al-Zoubi et al. also note that PLRUm outperforms it. Addi-

tionally, PLRUm had been chosen as the best option in a another Master’s thesis [50], 

which also made it appear a proven choice. 

PLRUm’s functionality is built around an array of MRU-bits. In this array, every cache 

line of the cache has its own flag bit which indicates if the line has been recently ac-

cessed. 

The update and eviction sequences go as follows. At initialization, all bits are set to 0. 

Whenever a line of the cache is accessed by read or write, the associated flag bit is 

toggled to 1. If after this toggle every bit of the same set is 1, all the bits in the same set 

are reset to 0, except for that one that was just toggled (stage “Write e” in Figure 7). 

 Figure 7: PLRUm example sequence, adapted from [50] 

Whenever a cache line needs to be evicted, the first line with MRU bit 0 is chosen as the 

victim. In Figure 7 the victim way is highlighted. 



  23 
 

5.3 EBR 

EBR was chosen as it is a hybrid of the features of LRU and LFU algorithms, but with a 

practical set of requirements. The LRFU algorithm [53] was also considered in its stead, 

due to the similar nature of the two, but the implementation did not seem as straightfor-

ward as EBR.  

The cost based BCL, DCL or ACL [54] would have also been similar in that they assign 

a value for each cache block, to aid in replacement decisions. However, this set of algo-

rithms seemed more geared towards multiprocessor systems with multiple different 

memories. While any of these algorithms would likely be very interesting to use on the 

full Ballast SoC, the planned single-core single-memory simulation setup used for the 

benchmarking in this thesis may have not shown its full capabilities, and practical imple-

mentation of the cost function would have likely been challenging. EBR’s counter based 

design therefore seemed to better align with the parameters of this thesis. 

To explain EBR in closer detail, the algorithm assigns two counter registers for each line 

of the cache: R-counter and E-counter. R-counter is used for tracking references to each 

block, while E-counter is used for tracking how much time has elapsed from last refer-

ence. Additionally, two weight values are used to emphasize the different counters: fre-

quency weight f, and recency weight r. These counters and two weight values are used 

to calculate the effectiveness value E of each way using equation (1). 

𝑬(𝒊) =  
𝒓∗𝑹𝒄𝒐𝒖𝒏𝒕𝒆𝒓(𝒊)

𝒇∗𝑬𝒄𝒐𝒖𝒏𝒕𝒆𝒓(𝒊)
,    (1) 

When a line needs to be evicted, the effectiveness value is calculated for all ways of the 

same set, and the way with the lowest effectiveness is chosen as victim. In the case that 

multiple cache lines have the same lowest effectiveness value, the choice between them 

is randomized. 

The R-counter is incremented every time the related cache line is accessed, but E-coun-

ter’s handling has more steps. Each sets’ E-counters have one shared counter assisting 

them. This counter’s purpose is to count misses which occur in its set. The E-counters 

are then only incremented when this miss counter overflows. E.g., if the miss counter is 

a 2-bit register, it will only overflow on every 4th miss. Whenever the 4th miss happens, 

all E-counters in the same set are incremented by 1. 

Unlike the miss counters, the E- and R -counters are saturating i.e., once they reach their 

maximum value, they do not overflow. E-counters are reset when the associated cache 

line is hit, or if the cache line evicted to bring in new data. R-counters are only reset on 

evictions. 
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EBR also has a more advanced Dynamic (EBR-D) variant. However, in this thesis only 

the simpler variant is implemented. The main difference between the regular and dy-

namic variants is that EBR-D adjusts the recency and frequency weights r and f during 

execution, while in the regular version both weights are static. Tian & Liebelt’s [52] guide-

line for the static weights was that recency weight r should be much greater than fre-

quency weight f. 

5.4 Mockingjay 

Mockingjay [59] is a predictive replacement algorithm, which aims to replicate Belady’s 

optimal algorithm by estimating how soon different cache lines will be reused. It was 

selected as the third algorithm due to its performance. As discussed in chapter 4.3, the 

older Hawkeye version was shown to be a very high accuracy algorithm, and Mockingjay 

itself should outperform it. 

The algorithm (Figure 8) consists of three main components: Sampled Cache, Reuse 

Distance Predictor, and the ETR (Estimated Time Remaining) counters. Additionally, 

there are a group of timestamp registers, one for each set, and similarly a group of ETR 

clocks, also one for each set. 

 

Sampled cache is a separate 5-way set-associative cache, included only for the use of 

the Mockingjay replacement algorithm. Its purpose is to collect data on the past accesses 

to the actual L2 cache. It doesn’t log every reference, but rather only those that target 

sampled sets of the L2. Every 32nd set is sampled, meaning that 32 of HPC’s 1024 sets 

are logged. With a history length of 8 in an 8-way cache, this means that each sampled 

sets’ last 64 accesses would be logged, making the full-size sampled cache require 2048 

cache lines. In practice, however, only references to unique addresses are stored, and 

the sampled cache’s size with its 5 ways is limited to only 1280 cache lines. 

 Figure 8: Mockingjay algorithm  
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Each cache line in the sampled cache consists of a valid bit, a 10-bit tag from the re-

quested address, an 11-bit program counter signature, and an 8-bit timestamp. The PC 

signature is a hashed value that is calculated from part of the actual program counter 

associated with the request, a hit/miss bit, and the core ID of the request. The timestamp 

is assigned according to the set’s current timestamp value at the moment the request is 

logged. 

Like other caches, the sampled cache also needs a replacement policy. As the sampled 

cache lines include a timestamp by design, an LRU policy can be implemented without 

requiring a separate stack or other additional data. 

Reuse distance predictor (RDP) is the second major component. As the name suggests, 

its goal is to predict how long a time will take until a given PC signature is encountered 

again. The RDP functions like a direct-mapped cache, with PC signatures serving as the 

index. Each line in the RDP only stores a valid bit and a 6-bit reuse distance. RDP entries 

are updated using temporal difference [63], which considers both the previous predicted 

distance and the newly witnessed one.  

The last main component are the ETR counters. Each cache line in the L2 has its dedi-

cated counter, which maintains an estimation of how soon the line should be reused. 

These counters are based on RDP’s predictions. The ETR value can be either a positive 

or a negative value. Positive ETRs are those which should take place in the future, while 

negative ETRs are those which, according to the estimation, should have already oc-

curred. 

ETR counters provide the data for the actual eviction decisions, with the longest ETR of 

the set always being the victim. Since the ETR values are signed, the comparisons are 

done using the absolute values. 

The algorithm also maintains registers of timestamp counters, one for each set, which 

are used when a new line is entered into sampled cache, as well as when calculating the 

amount of time that has passed since the last access to the set. 

An additional group of ETR clocks, also one for each set, are used to for counting down 

the main ETR counters. Each ETR clock is incremented on every access to its set. Every 

time the ETR clock overflows, the main ETR counters are decremented. Consequently, 

the purpose of the ETR clocks is comparable to the miss counters in EBR algorithm 

(chapter 5.3). 

Mockingjay also requires definitions for multiple different parameters that direct its be-

haviour. Of them, a few are particularly important. Infinite reuse distance (INF RD) is the 
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highest possible value for reuse distance, i.e., 63 in the case of HPC’s 6-bit RDP regis-

ters. While the literal number value is not infinite, it represents PC signatures which are 

predicted to be not reused in the current lifetime in the cache. Shah et al. [59] refer to 

such non-recurring accesses as scans. Cache lines that are a part of a scan are consid-

ered low-priority and therefore are preferred for eviction. Another related parameter is 

maximum reuse distance (MAX RD). Any predicted reuse distances above the maximum 

are considered infinite. For the HPC implementation, maximum reuse distance is defined 

as 53. To match INF_RD, the ETR counters have their own infinite value, called 

INF_ETR. For HPC this value is defined as 7, for the signed 4-bit registers. While other 

ETR counters count down to estimate the time of next access, any that are set to 

INF_ETR retain that maximum value. 

Mockingjay’s predictions are updated as follows. When a new request comes into the 

L2, the algorithm first checks if the line is part of a sampled set. If it is, the update process 

is longer. First the sampled cache tags are checked to see if the same address already 

exists in it. If the line is found in the sampled cache, the algorithm calculates how much 

time has passed since the last access to the address by using the timestamp from the 

last sample and the current timestamp from the timestamp counters.  

The result of this calculation can then be used to update the relevant PC signature in the 

RDP. If the PC signature already has a valid prediction in the RDP, temporal difference 

is used to update it. Otherwise, the RDP is initialized to the amount of time that had 

passed according to the timestamps. After this the Mockingjay state machine goes to its 

sampled cache LRU process. If the sampled cache line was not found earlier, the previ-

ous steps are skipped and the LRU is entered directly. 

During sampled cache LRU, a victim sample line is chosen. Invalid lines are identified, 

but if none are present, the line with the oldest timestamp can be used. Additionally, lines 

that have passed MAX_RD are also identified. This allows updating those lines PC sig-

nature in the RDP, by setting them to INF_RD. Sampled cache lines that relate to these 

expired RDP lines are also invalidated. After any invalidations are made to the sampled 

cache, the current request is written in. 

Last step in the update process is setting a new ETR value. Any accesses that are to 

non-sampled cache lines, only have to run this part of the update process.  

During the ETR update, the cache line’s ETR counter and the related ETR clock are 

updated. This is done based on the RDP line that has a matching PC signature. If the 

matching PC signature has no valid prediction, the ETR counter is set to the INF_ETR 
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value. The set’s ETR clock is incremented, and if it overflows, other ETR counters of the 

set are decremented. 

Addresses that have no valid RDP or which RDP is a maximum value, have their ETR 

set to the maximum value. For the rest of lines, ETR is updated according to RDP value 

divided by 8. The division is required as ETR uses less precise values than RDP to save 

memory, and the 3-bit ETR clocks compensate for it. 

Finally, when a line has to be evicted from the cache during a miss, the choice is based 

on the ETR of the cache lines. Each of the set’s ways’ ETRs are checked, and the one 

with the longest absolute value is chosen as victim.  
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6 METHODOLOGY 

For the comparison, a set of attributes were selected as the criteria. Amounts of hits and 

misses were used to calculate hit-ratio, which was used to measure the accuracy of the 

algorithms. Hit-ratio was collected from all hits and misses from the start of the bench-

mark programs.  

No training period was used at the start of the program, which means that the effect of a 

completely empty cache is also included in the hit-ratio. Alternative method would be to 

run each program enough to fill the cache to some degree, and only then start collecting 

hits and misses. 

Simulation clock cycles of the benchmarks were used to measure overall performance 

differences. Additionally amounts of different types of evictions and state transitions of 

the algorithms were counted as a form of sanity check.  

The comparisons were carried out in RTL simulation. Largely the existing Ballast RTL 

code was used, but some minor modifications were added to enable collection of perfor-

mance data. These were done using simple SystemVerilog variables to not interfere with 

the actual functional RTL logic. Simulations were performed on a single core, as realistic 

multi-core use cases would ideally require an operating system. 

Benchmarks used for the performance measurements were primarily from RISC-V Inter-

national [64]. Additionally, two custom LFSR (linear feedback shift register) tests were 

used, mainly to troubleshoot the testbench prior to adding the rest of the benchmarks. 

All used benchmarks are listed in Table 2. 

 Table 2: Used benchmark programs. 
Benchmark Description Data set size 

median  Finds median value in data set 50000 

mt-matmul 2D Matrix multiplication 10000 

mt-vvadd Floating point vector addition 10000 

multiply Multiply two arrays with a software multiplication 
operation 

45000 

qsort Sorts array with quicksort 25000 

rsort Sorts array with radix sort 16384 

vvadd Integer vector addition 25000 

lfsr64bit Calculates pseudo random data with an LFSR op-
eration, stores it in an array. 

50000 

lfsr64bit_rand Same as above, but store indices are also random-
ized 

50000 
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Different data set sizes were tested to find out points where different benchmarks would 

cause a significant number of evictions with each algorithm. This testing was carried out 

by simply trial-and-error. If a benchmark caused multiple thousands or more evictions, 

without taking tens of hours, it was considered usable for the actual benchmarking 

phase. 

RISC-V International does have multiple other benchmarks available as well, but any 

that didn’t cause evictions in the L2 were discarded from the final results. If a benchmark 

shows no evictions, the cache replacement algorithm has not been used for any eviction 

decisions, and therefore the benchmark provided no useful data for this thesis. 

It’s possible that even larger than tested data sets would have at some point caused 

more evictions in these discarded benchmarks, but it’s challenging to estimate how long 

the execution times would have been and how much testing would have been necessary 

to reach that point. 

The execution time of the final run of the benchmark set was approximately 225 hours. 

This number does not include the multiple simulation runs that were ran while verifying 

the algorithms or testing the different benchmarks. 

These benchmarks were mainly selected to their known compatibility with RISC-V, and 

the fact that they run as baremetal, i.e., they do not require an operating system or other 

supervising or scheduling processes to manage them. While the CVA6 cores are Linux-

compatible as mentioned earlier, running a full operating system in RTL simulation in 

addition to the actual benchmark process would add a significant overhead. While Linux 

or some other operating system would allow for more options in benchmarking, it was 

not realistic for this work. 

Worth emphasizing is that results presented in this thesis are for an L2 cache, with a 

write-through L1 caches above it in the memory hierarchy inside the processor core. This 

means that any L1 read hits are not seen by the L2, its replacement algorithm, or the 

benchmark data collectors. However, every L1 write hit is seen due to the write-through 

policy. This is likely to have some amount influence on a few aspects. First, the replace-

ment algorithms may perform quite differently on another system with a different cache 

architecture. Second, the hit-ratio presented in Results chapter is only for the L2 and 

does not account for any of the read hits that are encountered in the L1 caches.  

Introducing multiple cores would also provide different results, as coherency control 

would force shared data to be occasionally evicted from L1. Naturally, the amount of 

memory accesses to the L2 cache would also be increased. 



  30 
 

7 IMPLEMENTATION 

As large part of this thesis was practical RTL implementation of different algorithms, a 

separate chapter is dedicated to different decisions and observations made on the topic. 

One consideration in implementation was the extent of required changes. An algorithm 

which does not need changes for example to the processor pipeline or to the cache’s 

structure is significantly easier to implement than ones which do need such changes. 

Structurally, each of the new algorithms added in this work followed the same principle 

as the existing LRU algorithm, where each algorithm has two separate sets of control 

logic: update logic and eviction logic. 

Update logic is used whenever the algorithm’s internal state needs to be updated. This 

means whenever a hit or a miss occurs in the L2 cache’s own primary state machine. In 

practice the replacement algorithm snoops the signals of the L2 controller and activates 

when the correct combination of signals is present. The update logic then handles all 

necessary operations, and then goes back to waiting. The complexity of update logic is 

highly dependent on the specific algorithm. 

Eviction logic, on the other hand, is directly built in as part of the primary L2 controller’s 

state machine. The goal of this logic is to simply indicate to the controller which of the 

cache lines in the 8 ways of the cache can be evicted. As with the update logic, the 

amount of complexity required for this depends on the replacement algorithm. 

Each cache replacement algorithm requires some registers or memories for bookkeep-

ing. The full amounts have been calculated and are shown in Table 3. 
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 Table 3: Required registers or memories. 

 

As can be seen from the table, different replacement polices have varying amount of 

needs to storage data. These requirements increase the area that would be needed to 

implement said algorithms in hardware. Furthermore, area would be also increased by 

the control logic of each algorithm. However, to obtain detailed information on that, the 

subsystem would need to be synthesized with each different algorithm, which was be-

yond the scope of this work. 

The memory requirements also scale up if cache size or associativity is increased. Other 

implementation details are discussed in following subchapters. 

7.1 PLRUm 

On the simplest of the three algorithms, PLRUm, the only observation made was the 

ease of implementation. Only a handful of code lines and one set of registers were nec-

essary. The algorithm was simple enough that even though no pseudocode was found, 

it could be easily understood and implemented based on a short explanation and a dia-

gram (Figure 7).  

As with most pseudo-LRU, the hardware requirements are modest. PLRUm requires 

only one bit per cache line, less than the traditional LRU. 

7.2 EBR 

EBR was also straightforward to implement. The logic consists of three sets of counters 

(R-, E- and miss counters) which are incremented during hits and misses, and of the 

effectiveness calculation which is done during eviction. In an effort to keep the design 

Algorithm Structure name Size (bits) Size (KiB) 

LRU l2_mem_tag_lru_array 3072 3 
 

PLRUm plrum_mru_bits 8192 1 
 

EBR ebr_r_counters 40 960 5 
 ebr_e_counter 24 576 3 
 ebr_mitt_counter  2048 0,25 
 EBR Sum  8,25 

 
Mockingjay sampled_cache 38 400 4,6875 
 etr 32 768 4 
 etr_clock 3072 0,375 
 current_timestamp 8192 1 

 rdp 14 336 1,75 
 Mockingjay Sum  11,8125 
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simple, the dynamic EBR-D variant was not implemented. However, this did mean that 

the weights used in effectiveness calculation (Equation 1) had to be selected.  

The frequency weight f was set to be a constant 1, as the guideline was that that recency 

weight r should be significantly larger f. Initially, a recency weight of r=8 was used for 

running the benchmarks. Following this, an experimentation was carried out to see if 

other weights might perform better.  

Running the full test set with many different weights would have been extremely time 

consuming, and therefore a simple experimentation was carried out with just one test 

case. Used benchmark was the lfsr64bit test, as it was the one to have largest differences 

in hit-ratio between the other algorithms. 

Considered recency weights were mostly powers of 2, as in hardware they could be 

implemented with a simple left shift operation. Tested recency weights were 1, 2, 4, 8 

and 16. The results of this experimentation are in Figure 9. 

 

 Figure 9: Hit-ratio for benchmark lfsr64bit with varying recency weights 

As can be seen, r weight 2 had the best hit rate with lfsr64bit, though the variance be-

tween different weights is small. The full benchmark set was then also tested with this 

value. Also noteworthy is that with this one test, equal f, and r weights (“EBR, r=1”) re-

sulted in the second highest hit-ratio. Full test results with both EBR r weights and the 

other algorithms are in chapter 8. 
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In the EBR implementation some complexity is still added as the algorithm does require 

division logic to calculate the final effectiveness values. Additionally in the case that mul-

tiple ways have an equally low effectiveness value, the victim will have to be chosen 

randomly from the subset. This makes the actual victim selection of EBR more compli-

cated than the other algorithms, as a pseudo-random number may have to be generated.  

Number of bits used for each counter can be modified, but with this implementation, a 5-

bit R-counter, 3-bit E-counter, and 2-bit miss counter were used. As seen from Table 3, 

this brings the overall required memory to 8,25 KiB.  

Further testing could be done to optimize the counter widths, as each bit removed from 

the R- and E- counters would reduce the needed memory by 1 KiB. 

7.3 Mockingjay 

Mockingjay is a significantly more complicated algorithm. Despite this, its SystemVerilog 

implementation was also greatly aided by the C++ model [58] which had been used to 

simulate the algorithm in previous works. The model was close enough in detail to RTL 

level that many constructs were directly translated to SystemVerilog.  

However, there were also some challenges present, due to the fundamental differences 

of hardware and software. The C++ model was mainly realized as one large function, 

which was to be called whenever a hit or a miss occurred. Additional smaller helper 

functions had been added for commonly used operations. 

For the SystemVerilog version, this larger main function of the algorithm was broken 

down into an 8-state finite state machine. Like the update-function of the C++ model, this 

state machine activates whenever a hit or a miss occurs in the cache, otherwise waiting 

in an idle state.  

One challenge brought on by the complexity of the algorithm state machine is that the 

state update process can take longer than it takes for the next memory request to arrive 

to the cache. This can lead to a situation where the actual L2 controller FSM has to wait 

in idle state so that the replacement algorithm can finish its update. With tested bench-

marks the number of cycles “wasted” in this manner was minimal, less than 0,3% of 

runtime with all benchmarks. However, in a multi-core system with more frequent 

memory request this number would likely rise, and the effect could be more significant. 

Further analysis on the algorithm logic would be necessary identify which parts could be 

more effectively parallelised.  
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Certain details of the C++ model were not documented in detail, such as some of the 

cache parameters that were only defined as constant numbers. This led to additional 

work in identifying what values the parameters should have in the case of HPC L2. Dif-

ferent variables and structures had to be also carefully examined, to identify correct data 

widths, and whether they should be signed or not. The Mockingjay paper detailed many 

of the hardware requirements, which did aid in the implementation. 

Mockingjay was the only one of the algorithms implemented in this thesis that required 

modifications to not only the cache logic, but also to the processor core itself. Namely it 

was necessary to add program counter value to each memory request. While the modi-

fication to the L1.5 interface itself was trivial, finding the correct way to route the PC value 

through the various pipeline stages and other modules of the processor was more chal-

lenging. 
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8 RESULTS 

After running the benchmarks presented in chapter 6 the statistics were collected to an-

alyse the results. Figure 10, Figure 12, and Figure 11 show hit-ratios for each testcase 

and algorithm. EBR8 refers to EBR with r weight of 8, and EBR2 to EBR with r weight of 

2. Mockingjay is referred to as MJAY.  

The results for hit-ratio show LRU generally performing the worst, expect for the median 

benchmark and the two sorting algorithms. PLRUm matches, and in most cases outper-

forms the standard LRU, except for the median and qsort cases where it’s behind. Even 

in those cases the difference in hit-ratio by less than 0,05% 

Both EBR versions generally perform better than the two LRU variants, except for the 

mentioned median, qsort, and rsort. Mockingjay has the highest hit-ratio in most tests 

except the two sorting algorithms, and in lfsr64bit. 

Overall, little difference is seen between the two EBR implementations, staying within 

1% of each other. Neither version seems to have a clear edge over the other. 

 

 

 Figure 10: Hit-ratios with lfsr64bit, lfsr64bit_rand, and median 
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 Figure 12: Hit-ratios with mt-matmul, mt-vvadd, and multiply  

 Figure 11: Hit-ratios with qsort, rsort, and vvadd. 
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Figure 13, Figure 15, and Figure 14 show the run time for each benchmark, with each 

algorithms’ results normalized to LRU’s performance. A result of 100% would be equal 

to LRU’s performance for the given benchmark, less than 100% is a faster execution 

time, and more than 100% is slower. These comparisons are calculated from the raw 

amount of simulated clock cycles taken by each algorithm on the given benchmark.  

What should be noted is that these results may not fully match the exact performance of 

a real system based on this RTL, as actual performance would be affected for example 

by the exact type of memory used, as well the exact clock rates used by the different 

subsystems involved.  

 Figure 13: Clock cycles/LRU clock cycles, with lfsr64bit, lfsr64bit_rand, and median 
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 Figure 15: Clock cycles/LRU clock cycles, with mt-matmul, mt-vvadd, and multiply 

 Figure 14: Clock cycles/LRU clock cycles, with qsort, rsort, and vvadd 
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Nevertheless, these results do demonstrate in a practical manner the benefit of higher 

hit-ratio, though the performance is not directly proportional. Clearest example of this are 

the two sorting algorithm benchmarks, where EBR and Mockingjay have only slightly 

worse hit-ratio than the LRU-based replacement algorithms, but the effect on execution 

length is much more significant. Rsort in particular is a long testcase with a lot of memory 

accesses, which emphasizes the runtime difference caused by worse hit ratio. 
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9 CONCLUSIONS 

As the Results chapter shows, there is no single clear winner in this comparison. While 

the more advanced EBR and Mockingjay algorithms beat the LRU-implementations in 

most cases, there are some exceptions too. To explicitly state that which algorithm is 

better than the other would require narrowing down the subsystem use cases to a spe-

cific scenario. Based on the results presented here, it can only be said that EBR and 

Mockingjay generally perform better than LRU-based algorithms. 

Similarly, it can be said that Mockingjay generally performs better than EBR, but the 

performance comes at a cost. The amount of work required for the implementation is 

more significant, and based on just the memory requirements, without considering the 

control logic, Mockingjay also requires more area on chip. As such, EBR may be a more 

practical choice. 

PLRUm’s performance results are also very valuable. This pseudo implementation of 

LRU not only matches traditional LRU accuracy but overtakes it in most cases, while still 

requiring less memories. This makes it a very appealing LRU-approximation. 

Some limitations of this thesis work were discussed in relevant chapters. Overall, there 

are a few areas that would provide significant value if researched further. 

Perhaps the most significant ones are physical requirements of different algorithms. 

Some information was obtained from RTL implementation, such as approximate memo-

ries required, which shed some light on the area required by different algorithm imple-

mentations. However, this does not consider the amount of required control logic for 

each algorithm, which may or may not be very area intensive. 

Another consideration are timing requirements of different algorithm implementations. 

Pure RTL simulation does not necessarily match actual performance on physical hard-

ware. While one algorithm might need less cycles to perform an operation, it’s possible 

that another algorithm would outperform it due to having shorter critical paths and there-

fore being compatible with higher clock rates. It’s also possible that the only bottleneck 

would be the existing cache control logic, in which case timing of the replacement policies 

could prove irrelevant. 

Another interesting topic would be more advanced benchmarking on FPGA or ASIC. RTL 

simulation is inherently slow and limited by the simulation platform’s performance as well 

as the available memory. For example, benchmarking more complex programs running 
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on a Linux or another operating system would provide valuable information on very prac-

tical use cases. This could also be extended to multi-core cache testing. 

It is worth noting that this work is not, nor does is it aim to be, an exhaustive look at all 

possible cache replacement algorithms ever devised. Rather it’s a brief look at some of 

the available designs, practicalities that can be considered in their implementation, and 

the performance they offer on one simulated platform.  

There are bound to be other very well performing algorithms that are not mentioned in 

thesis. Despite a certain kind of stagnation that can be seen in actual hardware imple-

mented cache replacement algorithms, the topic is worth exploring in detail. 
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