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ABSTRACT
Motivated by topological data analysis, we study in this article certain notions
of “tameness”for modules over posets. In particular, we show that after adding
infinitary points the so called finitely determined modules become finitely
presented.
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1. Introduction

Miller defined in [6, p. 186, Def. 2.1] the notion of a “positively a-determined” module, where a ∈ Nn.
Positively a-determined modules are Nn-graded modules over a polynomial ring in n variables over a
field. They are in a certain way determined by the homogenous components of degrees from the interval
[0, a] ⊆ Nn. Finitely determined modules are Zn-graded modules determined by the homogeneous
components of degrees inside some interval in Zn. Whereas positively determined modules are always
finitely generated, finitely determined modules need not be finitely generated in general.

Finitely determined modules have recently been studied by Miller in the context of topological data
analysis (see [7]). Topological data analysis is a field of mathematics studying the shape of data by
associating filtered topological spaces to data sets. The homological properties which “persist” along
the filtration are considered important. By taking homology with coefficients in a field, one obtains a
diagram of vector spaces and linear maps. This diagram is called a persistence module. In the standard
case, the filtration is indexed by Z or R, but the indexing set can be any poset.

We can think of the persistence module as a module over a poset. More formally, a persistence module
over a poset C with coefficients in a field k is a functor from C, interpreted as a category, to the category
of k-vector spaces. For the sake of generality, instead of the field k, we prefer in this article to work
with any commutative ring R. Following the terminology of representation theory, we call a functor
C → R-Mod an RC-module. In this terminology, a persistence module is then a kC-vector space. Note
that the category of RZn-modules is isomorphic to the category ofZn-graded modules over a polynomial
ring in n variables over R (see [1, p. 78, Theorem 1]).

Persistence modules need not be finitely presented. For computational reasons, one has therefore
introduced several notions of “tameness” for them. As a straightforward generalization of a positively
determined module, we defined in [4, p. 22, Definition 4.1] an RC-module M to be S-determined if there
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exists a subset S ⊆ C such that Supp(M) ⊆ ↑S, and for every c ≤ d in C the implication

S ∩ ↓c = S ∩ ↓d ⇒ M(c ≤ d) is an isomorphism

holds. For any T ⊆ C, we use the usual notations

↑T := {c ∈ C | t ≤ c for some t ∈ T}
and

↓T := {c ∈ C | c ≤ t for some t ∈ T}
for the upset generated and the downset cogenerated by T, respectively.

As defined in [7, p. 24, Definition 4.1] an encoding of an RC-module M by a poset D is poset
morphism f : C → D with an RD-module N such that the restriction resf N is isomorphic to M. Suppose
now that S ⊆ C is a finite set that is strongly bounded from above. The latter condition means that every
finite subset S ⊆ C has a unique minimal upper bound in C. We will consider the set S̃ of all minimal
upper bounds of the subsets of S. We are going to define a functor α : C → S̃ by mapping an element of
C to the unique minimal upper bound of the elements of S below it. In our main result, Theorem 3.4, we
will then prove that M is S-determined for some finite S ⊆ C if and only if α is an encoding of M.

As a consequence of Theorem 3.4 we can show in Theorem 5.4 that after adding infinitary points
to Zn, finitely determined modules in fact become finitely presented. We follow here an idea due to
Perling (see [8, p. 16]). We also show in Proposition 5.8 that our terminology is compatible with that of
admissible posets used in [8].

2. Preliminaries

Throughout this article we use the terminology of category theory. We will always assume thatC is a small
category and R a commutative ring. For any set X, we denote by R[X] the free R-module generated by
X. An RC-module is a functor from C to the category of R-modules. A morphism between RC-modules
is a natural transformation. For more details on RC-modules, we refer to [5] and [2].

Recall first that an RC-module M is called
• finitely generated if there exists an epimorphism⊕

i∈I
R[MorC(ci, −)] → M,

where I is a finite set, and ci ∈ C for all i ∈ I;
• finitely presented if there exists an exact sequence⊕

j∈J
R[MorC(dj, −)] →

⊕
i∈I

R[MorC(ci, −)] → M → 0,

where I and J are finite sets, and ci, dj ∈ C for all i ∈ I and j ∈ J.
See, for example, [9].

Let ϕ : S → C be a functor between small categories. Recall that the restriction resϕ : RC-Mod →
RS-Mod is the functor defined by precomposition with ϕ, and the induction indϕ : RS-Mod → RC-Mod
is its left Kan extension along ϕ. The induction is the left adjoint of the restriction. The counit of this
adjunction gives us for every RC-module M the canonical morphism

μM : indϕ resϕ M → M.

More explicitly, for any RC-module M and RS-module N, we have the pointwise formulas

(resϕ M)(s) = M(ϕ(s)) and (indϕ N)(c) = colim
(t,u)∈(ϕ/c)

N(t)

for all s ∈ S and c ∈ C. Here (ϕ/c) denotes the slice category. Its objects are pairs (s, u), where s ∈ S and
u : ϕ(s) → c is a morphism in C. For (s, u), (t, v) ∈ Ob(ϕ/c), a morphism (s, u) → (t, v) is a morphism
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f : s → t in S with vϕ(f ) = u. We will typically assume that S is a full subcategory of C and that ϕ is the
inclusion functor. In this case, we use the notations resS and indS instead of resϕ and indϕ . If C is also a
poset, the latter formula yields

(indS N)(c) = colim
t∈S, t≤c

N(t).

Let C be a small category and S ⊆ C a full subcategory. An RC-module M is said to be S-generated if
the natural morphism

ρM :
⊕
s∈S

M(s)[MorC(s, −)] → M

is an epimorphism. Here
M(s)[MorC(s, −)] := M(s) ⊗R R[MorC(s, −)],

where the tensor product is taken pointwise. Since the morphism ρM factors through the canonical
morphism μM , we see that M is S-generated if and only if μM is an epimorphism.

Following [3, p. 13, Proposition 2.14], we say that M is S-presented if it is S-generated and the following
condition holds: Given an exact sequence of RC-modules

0 → L → N → M → 0,
where N is S-generated, then L is S-generated. It is shown in [3, p. 13, Proposition 2.14], that M is S-
presented if and only if μM is an isomorphism.

3. Modules over strongly bounded posets

In order to prove Theorem 3.4, we need to recall some order theory. In the following, C always denotes
a poset.

Notation 1. Let S ⊆ C be a finite subset. We denote the set of minimal upper bounds of S by mub(S). If
S is finite, we set

Ŝ :=
⋃

∅�=S′⊆S
mub(S′).

In other words, Ŝ is the set of minimal upper bounds of non-empty subsets of S.

We say that the poset C is strongly bounded from above if every finite S ⊆ C has a unique minimal
upper bound in C. If C is strongly bounded from above, then Ŝ is finite. The condition of C being strongly
bounded from above is equivalent to C being a bounded join-semilattice. Also note that if C is strongly
bounded from above, then C is weakly bounded from above and mub-complete, as defined in [4, p. 23,
Definitions 4.5 and 4.6].

Let C be strongly bounded from above, and let S ⊆ C be a finite set. From now on, we consider mub(S)
as an element of C, and not as a (one element) set. In particular, every element of Ŝ is then of the form
mub(S′), where S′ ⊆ S is a non-empty subset. Viewing C as a join-semilattice, we have the join-operation

a ∨ b := mub(a, b) := mub({a, b}).
Extending this operation to finite sets, we get an operation that coincides with taking minimal upper
bounds.

Lemma 3.1. Let C be strongly bounded from above, and let S ⊆ C be a finite subset. Then ˆ̂S = Ŝ.

Proof. An element s ∈ ˆ̂S may be written as
s = mub(mub(S1), . . . , mub(Sn)),
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where S1, . . . , Sn are (finite) non-empty subsets of S. Since the join-operation is associative in join-
semilattices, we see that

s =
n∨

i=1
(
∨

Si) =
∨

(

n⋃
i=1

Si).

This implies that s = mub(S1 ∪ · · · ∪ Sn), which belongs to Ŝ by definition.

Assume that C is strongly bounded from above. Then C has a minimum element min(C) = mub(∅).
Let S ⊆ C be a finite subset. Denote

S̃ := Ŝ ∪ {min(C)}.
We define a poset morphism αS : C → S̃ by setting

αS(c) = mub(S ∩ ↓c)
for every c ∈ C. In other words, αS maps each c ∈ C to the minimal upper bound of the elements of S
below it. To show that αS actually is a poset morphism, suppose that c ≤ d in C. Then S ∩ ↓c ⊆ S ∩ ↓d,
which implies that αS(c) ≤ αS(d).

Proposition 3.2. Let C be strongly bounded from above, and let S ⊆ C be a finite subset. Then αS = αŜ =
αS̃.

Proof. Using Lemma 3.1, we first note that ˜̂S = S̃ and ˜̃S = S̃. Let c ∈ C. We claim that

mub(S ∩ ↓c) = mub(Ŝ ∩ ↓c) = mub(S̃ ∩ ↓c).
The latter equation follows from the fact that for all subsets T ⊆ C, we have mub(T) = mub(T ∪
{min(C)}). In particular, mub(T) = min(C), if T = ∅.

For the first equation, since S ⊆ Ŝ, we have mub(S ∩↓c) ≤ mub(Ŝ ∩↓c). On the other hand, Ŝ ∩↓c is
a subset of Ŝ. Thus mub(Ŝ ∩↓c) ∈ ˆ̂S = Ŝ, where the equation follows from Lemma 3.1. By the definition
of Ŝ, we may now write

mub(Ŝ ∩ ↓c) = mub(s1, . . . , sn),
where s1, . . . , sn ∈ S. Furthermore, mub(Ŝ ∩ ↓c) ≤ c, so we also have s1, . . . , sn ≤ c. This implies that

mub(s1, . . . , sn) ≤ mub(S ∩ ↓c),
which completes the proof.

Encouraged by Proposition 3.2, we will just write α instead of αS, if there is no risk of confusion.
Before moving on to the main theorem of this section, we require one more lemma.

Lemma 3.3. Let C be strongly bounded from above, and let S ⊆ C be a finite subset. Then Ŝ∩↓α(c) = Ŝ∩↓c
for all c ∈ C.

Proof. Let c ∈ C. We immediately see that Ŝ∩↓α(c) ⊆ Ŝ∩↓c, because α(c) ≤ c. Suppose that d ∈ Ŝ∩↓c.
We need to show that d ≤ α(c). This follows from Proposition 3.2, because now

α(c) = αŜ(c) = mub(Ŝ ∩ ↓c).

Let C be strongly bounded from above, let M be an RC-module, and let S ⊆ C be a finite subset. The
morphism α gives rise to a natural transformation

Tα : resα resS̃ M → M,
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where for any c ∈ C, Tα,c is the morphism

M(α(c) ≤ c) : (resα resS̃ M)(c) = M(α(c)) → M(c).

We are now able to prove our main result

Theorem 3.4. Let C be strongly bounded from above, and let M be an RC-module. Given a finite subset
S ⊆ C, the following conditions are equivalent:
1) For all c ≤ d in C,

S ∩ ↓c = S ∩ ↓d ⇒ M(c ≤ d) is an isomorphism;

2) Tα : resα resS̃ M → M is an isomorphism;
3) α is an encoding of M.
If min(C) ∈ S, then condition 1) says that M is S-determined.

Proof. Suppose first that 1) holds. We can safely assume that S includes the minimum element of C,
so that Supp(M) ⊆ ↑S = C. This will not affect the sets Ŝ or S̃, nor the functor α. Therefore M is S-
determined. We have proved in [4, p. 25, Corollary 4.13] that an S-determined module is ˆ̂S-presented.
Lemma 3.1 now tells us that M is Ŝ-presented. So M ∼= indŜ resŜ M. This implies that for c ∈ C,

(resα resS̃ M)(c) = M(α(c)) ∼= colim
d≤α(c), d∈Ŝ

M(d).

Furthermore, by Lemma 3.3, we get

colim
d≤α(c), d∈Ŝ

M(d) = colim
d≤c, d∈Ŝ

M(d) = (indŜ resŜ M)(c) ∼= M(c).

If 2) holds, we immediately see that the functor α with the RS̃-module resS̃ M is an encoding of M.
Finally, suppose that 3) is true. Assume that c ≤ d and S∩↓c = S∩↓d. We need to show that M(c ≤ d)

is an isomorphism. Since α is an encoding of M, there exists an RS̃-module N such that resα N ∼= M.
Here resα N(c ≤ d) is the morphism N(α(c) ≤ α(d)). We note that

α(c) = mub(S ∩ ↓c) = mub(S ∩ ↓d) = α(d),

so the morphism resα N(c ≤ d) is an isomorphism. Thus M(c ≤ d) is an isomorphism. Therefore 1)
holds true.

4. Adding infinitary points

One approach to understand RZn-modules better is to expand the set Zn to include points at infinity.
This idea has been utilized by Perling in [8]. Set Z := Z∪{−∞}. It is easy to see that Zn inherits a poset
structure from Zn. Any RZn-module M can be naturally extended to an RZn-module M by setting

M(c) = lim
d≥c, d∈Zn

M(d)

for all c ∈ Z
n. More formally, this is the coinduction of M with respect to the inclusion Zn → Z

n.
The functor M �→ M establishes an equivalence of categories between the category RZn-Mod and its
essential image in RZn-Mod.

Let S ⊆ Z
n be a finite non-empty subset. We denote by mlb(S) the (unique) maximal lower bound of

S. In this section, we will define a morphism β “dual” to α. The idea is to map an element to the maximal
lower bound of the elements of S above it. The morphism β will play a crucial role in the proof of our
main result, Theorem 5.4.

We restrict ourselves to cartesian subsets of Zn, i.e. subsets of the form S = S1 × · · · × Sn, where
S1, . . . , Sn are subsets of Z. In this situation, we can calculate α and β coordinatewise. We begin with the
following observation.
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Proposition 4.1. Let pi : Zn → Z be the canonical projection for every i ∈ {1, . . . , n}, and let S ⊆ Z
n be

a finite non-empty subset. Then
1) mub(S) = (max(p1(S)), . . . , max(pn(S)));
2) mlb(S) = (min(p1(S)), . . . , min(pn(S))).

Proof. Since both 1) and 2) are proved in the same way, we will only present the proof of 1) here. Let
i ∈ {1, . . . , n}. The existence of max(pi(S)) follows from the fact that pi(S) is non-empty, linearly ordered
and finite. Write

d = (d1, . . . , dn) := mub(S).
We will show that di = max(pi(S)). First, since d is an upper bound of S and the canonical projection pi
preserves order, we see that di = pi(d) ≥ max(pi(S)). Secondly, if max(pi(S)) < di, then

d′ := (d1, . . . , di−1, max(pi(S)), di+1, . . . , dn)

is an upper bound of S such that d′ < d, contradicting the minimality of d. Thus di = max(pi(S)).

Let S := S1 × · · · × Sn ⊆ Z
n be a cartesian subset. We write

S = S̃1 × · · · × S̃n,
where S̃i = Si ∪ {−∞} ⊆ Z for all i ∈ {1, . . . , n}. Note that if S is finite, then so is S.

Example 4.2. Let a ≤ b in Zn. We write a = (a1, . . . , an) and b = (b1, . . . , bn). For the closed interval
[a, b] = {c ∈ Zn | a ≤ c ≤ b} = [a1, b1] × · · · × [an, bn],

we have
[a, b] = [̃a1, b1] × · · · × ˜[an, bn]

= {(c1, . . . , cn) | ai ≤ ci ≤ bi or ci = −∞ (i ∈ {1, . . . , n})}.

We now have

Lemma 4.3. Let S := S1 × · · · × Sn ⊆ Z
n be a finite cartesian subset, and let T ⊆ S be a finite non-empty

subset. Then
1) mub(T) ∈ S;
2) mlb(T) ∈ S;
3) S̃ = S.

Proof. To prove 1), let pi be the canonical projectionZ
n → Z for all i ∈ {1, . . . , n}. From Proposition 4.1

1), we get that
mub(T) = (max(p1(T)), . . . , max(pn(T))).

Thus mub(T) ∈ S, because pi(T) ⊆ pi(S) = Si for all i ∈ {1, . . . , n}.
Next, the proof for 2) is done in the same way as 1), this time using Proposition 4.1 2).
Finally, for 3), we note that S is finite and cartesian, so 1) implies Ŝ = S. Since S already contains the

minimum element of Zn, we get

S̃ = Ŝ ∪ {(−∞, . . . , −∞)} = S ∪ {(−∞, . . . , −∞)} = S.

Let S := S1 × · · · × Sn ⊆ Z
n be a finite cartesian subset. Since S̃ = S by Lemma 4.3 3), we have a

poset morphism α := αS : Zn → S, where

α(c) = mub(S ∩ ↓c)
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for all c ∈ Z
n. By Lemma 4.3 2), we now can define a “dual” poset morphism β := βS : S → S by setting

β(c) = mlb(S ∩ ↑c)

for all c ∈ S. Here the set S ∩ ↑c is always non-empty, because S is final in S.
We can now give coordinatewise formulas for α and β .

Proposition 4.4. We write αi := αSi
and βi := βSi for all i ∈ {1, . . . , n}. For c := (c1, . . . , cn) ∈ Z

n, we
have
1) α(c) = (α1(c1), . . . , αn(cn));
2) if c ∈ S, then β(c) = (β1(c1), . . . , βn(cn)).

Proof. To prove 1), we will first show that

pi(S ∩ ↓c) = Si ∩ ↓ci,

where pi : Zn → Z is the canonical projection for all i ∈ {1, . . . , n}. Since pi(S) = Si and pi(↓c) = ↓ci,
we see that pi(S ∩ ↓c) ⊆ Si ∩ ↓ci. For the other direction, suppose that d ∈ Si ∩ ↓ci. Then d ≤ ci, so we
have an element

d′ := (−∞, . . . , −∞, d, −∞, . . . , −∞) ∈ S ∩ ↓c

such that pi(d′) = d. Hence pi(S ∩ ↓c) = Si ∩ ↓ci. Now, using this result and Proposition 4.1 1), we get

α(c) = mub(S ∩ ↓c)
= (max(S1 ∩ ↓c1), . . . , max(Sn ∩ ↓cn))

= (α1(c1), . . . , αn(cn)).

For 2), the proof is similar. Let c ∈ S. We will first show that

pi(S ∩ ↑c) = Si ∩ ↑c.

From pi(S) = Si and pi(↑c) = ↑ci, we see that pi(S ∩ ↑c) ⊆ Si ∩ ↑ci. Next, suppose that d ∈ Si ∩ ↑ci.
Since c ∈ S, there is an element s := (s1, . . . , sn) ∈ S such that s ≥ c. Because d ≥ ci and S is cartesian,
we again have an element

d′ := (s1, . . . , si−1, d, si+1, . . . , sn) ∈ S ∩ ↑c

such that pi(d′) = d. Thus pi(S ∩ ↑c) = Si ∩ ↑c. To finish the proof, we use Proposition 4.1 2):

β(c) = mlb(S ∩ ↑c)
= (min(S1 ∩ ↑c1), . . . , min(Sn ∩ ↑cn))

= (β1(c1), . . . , βn(cn)).

We note that α and β ◦ α are “continuous” in the following sense.

Proposition 4.5. Let c := (c1, . . . , cn) ∈ Z
n.

1) If N is an RS-module, then

lim
d≥c, d∈Zn

N(α(d)) ∼= N(α(c)).

2) If Q is an RS-module, then

lim
d≥c, d∈Zn

Q((β ◦ α)(d)) ∼= Q((β ◦ α)(c)).
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Proof. For 1), suppose that N is an RS-module. Let c′ := (c′
1, . . . , c′

n) ∈ Z
n as follows: For any i ∈

{1, . . . , n}, we set ai = min(Si ∩ Z), if it exists, and

c′
i :=

{
max(ci, 0), if Si ∩ Z = ∅;
max(ci, ai − 1), otherwise.

This guarantees that we always have c ≤ c′ and c′ ∈ Zn. With the notation from Proposition 4.4, we may
write

α(c) = (α1(c1), . . . , αn(cn)).

Let i ∈ {1, . . . , n}. If Si ∩ Z = ∅, then αi(c′
i) = −∞ = αi(ci). Similarly, if c′

i = ai − 1, then αi(c′
i) =

−∞ = αi(ci). Thus α(c) = α(c′) in all cases. Since α is a poset morphism, we see that for all d ∈ Zn

such that c ≤ d ≤ c′,
α(c) = α(d) = α(c′),

and therefore

N(α(c)) = N(α(d)) = N(α(c′)).

Furthermore, because the set {d ∈ Zn | c ≤ d ≤ c′} is an initial subset of the set {d ∈ Zn | c ≤ d}, we
have

lim
d≥c, d∈Zn

N(α(d)) ∼= lim
c≤d≤c′, d∈Zn

N(α(d)) ∼= N(α(c)).

Next, for 2), let Q be an RS-module. Now resβ Q is an RS-module, so by 1), we have

lim
d≥c, d∈Zn

(resβ Q)(α(d)) ∼= (resβ Q)(α(c)).

On the other hand, by definition, for all e ∈ Z
n,

(resβ Q)(α(e)) = Q(β(α(e))) = Q((β ◦ α)(e)).

This means that we may write the above isomorphism as

lim
d≥c, d∈Zn

Q((β ◦ α)(d)) ∼= Q((β ◦ α)(c)).

Corollary 4.6. Let N be an RZn-module, and let c ∈ Z
n. Then

1) lim
d≥c, d∈Zn

N(α(d)) ∼= N(α(c));

2) lim
d≥c, d∈Zn

N((β ◦ α)(d)) ∼= N((β ◦ α)(c)).

Proof. For 1), we note that resS N is an RS-module, where (resS N)(d) = N(d) for all d ∈ S. We may then
apply Proposition 4.5 1) to get the result. For 2), we use Proposition 4.5 2) on the RS-module resS N.

5. Finitely determined modules

Let M be an RC-module. We say that M is pointwise finitely presented if M(c) is finitely presented for
all c ∈ C. Slightly generalizing the definition of Miller in [7, p. 25, Example 4.5], where R = k is a
field, we say that an RZn-module M is finitely determined, if M is pointwise finitely presented, and for
some a ≤ b in Zn, the convex projection π : Zn → [a, b] gives M an encoding by the closed interval
[a, b] ⊆ Zn. Here the convex projection π takes every point in Zn to its closest point in the interval
[a, b]. If a = (a1, . . . , an) and b = (b1, . . . , bn), we have for any c := (c1, . . . , cn) ∈ Zn,

π(c) = (π1(c1), . . . , πn(cn)),
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where

πi(ci) = max(ai, min(ci, bi))

for all i ∈ {1, . . . , n}. Note that a pointwise finitely presented RZn-module M is finitely determined if and
only if there exists a closed interval [a, b] ⊆ Zn such that the morphisms M(c ≤ c + ei) (i = 1, . . . , n)
are isomorphisms whenever ci lies outside [ai, bi].

Remark 1. Let M be an RZn-module. Then M is encoded by the closed interval [a, b] with the convex
projection π : Zn → [a, b] if and only if M ∼= resπ res[a,b] M. Indeed, if M ∼= resπ N for some R[a, b]-
module N, then for all c ∈ Zn, we have

M(c) ∼= (resπ N)(c) = N(π(c)) = N(π(π(c))) ∼= M(π(c))

because for all c ∈ Zn, π(π(c)) = π(c).

We would now like to investigate how the notion of finite determinacy relates to our notion of
S-determinacy, when S is finite and M is pointwise finitely presented. While the requirement that
Supp(M) ⊆ ↑S does not necessarily hold for finitely determined modules, we do have the following:

Proposition 5.1. Let M be an RZn-module, and a, b ∈ Zn such that a ≤ b. Set u := (1, 1, . . . , 1) ∈ Zn. If
M is [a + u, b]-determined, then M has an encoding by the closed interval [a, b] with the convex projection
π : Zn → [a, b]. The converse implication holds if Supp(M) ⊆ ↑a.

Proof. For the first implication, suppose that M is [a + u, b]-determined. We write a = (a1, . . . , an) and
b = (b1, . . . , bn). Let c := (c1, . . . , cn) ∈ Zn. We note that if ci ≤ ai for some i ∈ {1, . . . , n}, then also
πi(ci) ≤ ai, so that c, π(c) /∈ Supp(M). Otherwise c > a, in which case π(c) ≤ c and [a+u, b]∩↓π(c) =
[a + u, b] ∩ ↓c. Thus M(π(c)) → M(c) is an isomorphism by the definition of [a + u, b]-determined
modules, and M ∼= resπ res[a,b] M.

To prove the converse, assume that Supp(M) ⊆ ↑a and M has an encoding by the closed interval
[a, b] with the encoding convex projection π : Zn → [a, b]. Let c := (c1, . . . , cn) ∈ Zn. Suppose that
ci < ai for some i ∈ {1, . . . , n}. From the condition Supp(M) ⊆ ↑a, we see that M(c) = 0. Since
M is finitely determined, we also have M(π(c)) = M(c) = 0. Thus M(c) = 0 if ci ≤ ai for some
i ∈ {1, . . . , n}. If this is not the case, we have c ≥ a + u. Let c ≤ d in C such that a + u ≤ c ≤ d and
[a + u, b] ∩ ↓ c = [a + u, b] ∩ ↓ d. This implies that π(c) = π(d), so M(c ≤ d) is an isomorphism.

To proceed, we have to shift our focus to RZn-modules. Let a ≤ b in Zn. With the notation from
Section 4, we will view the case S = [a, b]. In particular, we have α = α[a,b] and β = β[a,b].
Proposition 4.4 gives us formulas for α and β . If c := (c1, . . . , cn) ∈ Z

n and d := (d1, . . . , dn) ∈ [a, b],
then

α(c) = (α1(c1), . . . , αn(cn)) and β(d) = (β1(d1), . . . , βn(dn)).

Here αi := αSi
and βi := βSi for all i ∈ {1, . . . , n}. Explicitly,

αi(ci) =

⎧⎪⎨⎪⎩
−∞, if ci < ai;

ci, if ai ≤ ci ≤ bi;
bi, if ci > bi

and βi(di) =
{

ai, if di = −∞;
di, otherwise

for every i ∈ {1, . . . , n}. The next proposition shows us that the composition β ◦α is an extension of the
convex projection π from Zn to Z

n.

Proposition 5.2. Let π : Zn → [a, b] be the convex projection. Then for any c := (c1, . . . , cn) ∈ Zn,

π(c) = (β ◦ α)(c).
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Proof. Suppose first that n = 1. Recall that π(c) = max(a, min(c, b)). Now there are three cases:
• If c ∈ [a, b], then (β ◦ α)(c) = β(c) = c = π(c);
• If c < a, then (β ◦ α)(c) = β(−∞) = a = π(c);
• If c > b, then (β ◦ α)(c) = β(b) = b = π(c).

Suppose next that n > 1. Using Proposition 4.4, we may write

α(c) = (α1(c1), . . . , αn(cn)) and β(d) = (β1(d1), . . . , βn(dn))

for all d ∈ [a, b]. Similarly, recall that

π(c) = (π1(c1), . . . , πn(cn)).

It now follows from the case n = 1 that

(β ◦ α)(c) = β(α1(c1), . . . , αn(cn))

= ((β1 ◦ α1)(c1), . . . , (βn ◦ αn)(cn))

= (π1(c1), . . . , πn(cn))

= π(c).

Remark 2. In an effort to keep the notation simpler, we only defined β for the elements in the image of
α. Of course, we could have defined β in a fully dual fashion to α, starting from posets that are strongly
bounded from below, adding the point ∞ to Z, and defining a set S dually to S. This would have resulted
in the situation where

(β|S ◦ α)(c) = (α|S ◦ β)(c) = π(c)

for all c ∈ Zn. In other words, the same result would have been achieved.

We saw in Remark 1 that if M is encoded by a closed interval [a, b] with the convex projection
π : Zn → [a, b], we have M(c) ∼= M(π(c)) for all c ∈ Zn. On the other hand, by Theorem 3.4, we
have M(α(c)) ∼= M(c) for all c ∈ Z

n if M is S-determined and S ⊆ Z
n is finite. In preparation for the

proof of Theorem 5.4, we will now show that a similar result applies to β in both cases.

Proposition 5.3. Set u := (1, 1, . . . , 1) ∈ Zn. Let M be an RZn-module, and let c ∈ [a, b].
1) If M has an encoding by the closed interval [a, b] with the convex projection π : Zn → [a, b], then

M(c) ∼= M(β(c)).
2) If M is [a + u, b]-determined, then M(c) ∼= M(β(c)).

Proof. To show 1), suppose that M has an encoding by the closed interval [a, b] with the convex
projection π : Zn → [a, b]. Then, by the definition of M,

M(c) = lim
d≥c, d∈Zn

M(d).

The encoding gives us M(d) ∼= M(π(d)) for all d ∈ Zn. This implies that

M(c) ∼= lim
d≥c, d∈Zn

M(π(d)).

We may now apply Corollary 4.6 to see that M(c) ∼= M(β(α(c))). Note that c ∈ [a, b] implies α(c) = c.
Thus M(c) ∼= M(β(c)).

Next, to prove 2), let M be [a + u, b]-determined. Since c ≤ β(c), it is then enough to show that
[a + u, b] ∩ ↓c = [a + u, b] ∩ ↓β(c). We instantly have ↓c ⊆ ↓β(c). For the other direction, let d :=
(d1, . . . , dn) ∈ [a + u, b] ∩ ↓β(c). We want to show that d ≤ c. Recall that we may write β(c) =
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(β1(c1), . . . , βn(cn)), where

βi(ci) =
{

ai, if ci = −∞;
ci, otherwise.

for all i ∈ {1, . . . , n}. Suppose that i ∈ {1, . . . , n}. If βi(ci) = ci, we have di ≤ βi(ci) = ci. Otherwise, if
βi(ci) = ai, we must have di = ci = −∞, because di, ci ∈ [ai + 1, bi]. We conclude that d ≤ c.

Remark 3. Let M be a pointwise finitely presented RZn-module and let c ∈ Z
n. If M is finitely

determined with the convex projection π : Zn → [a, b], then from the proof of Proposition 5.3, we
have M(c) ∼= M((β ◦ α)(c)), so that M is pointwise finitely presented.

We are now ready to state

Theorem 5.4. Let M be a pointwise finitely presented RZn-module. Then the following are equivalent:
1) M is finitely determined;
2) M is S-determined for some finite S ⊆ Z

n;
3) M is finitely presented.

Proof. We will first show the equivalence of 1) and 2). Note that for any finite subset S ⊆ Z
n, we can

always find a, b ∈ Zn such that S ⊆ [a + u, b]. Consider the functor

α′ = α[a+u,b] : Zn → [a + u, b],

and denote its restriction to Zn by α. By Theorem 3.4, M is [a + u, b]-determined if and only if M is
encoded by α′. That is, M ∼= resα′ N for some R[a + u, b]-module N. By restricting to Zn, we see that

M ∼= resZn resα′ N = resα N,

so α encodes M. Conversely, if M is encoded by α, then M has an obvious encoding by α′, because α is
a surjection on objects. Next, we note that the restriction of β to [a + u, b],

β : [a + u, b] → [a, b].
is an isomorphism of posets. Therefore β ◦ α is an encoding of M if and only if α is an encoding of
M. These conditions are equivalent to M being finitely determined, because β ◦ α = π . Namely, for all
c ∈ Zn, we have (β ◦ α)(c) = (β ◦ α′)(c), where

(β ◦ α′)(c)i =
{

βi(−∞), if ci = ai,
βi(αi(ci)), else.

=
{

ai, if ci = ai,
πi(ci), else.

= π(c)i

for all i ∈ {1, . . . , n}.
Finally, we observe that the equivalence of 2) and 3) follows from the main result of our previous

paper, [4, p. 25, Theorem 4.15]. For Zn-modules, it states that being pointwise finitely presented and S-
determined for some finite S ⊆ Z

n is equivalent to being finitely presented. Also note Remark 3, which
shows us that M is pointwise finitely presented.

We are now able to give a “sharpened” version of Proposition 5.1.
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Corollary 5.5. If M is an RZn-module and a, b ∈ Zn such that a ≤ b, then the following are equivalent:
1) M is encoded by the convex projection π : Zn → [a, b];
2) M is [a + u, b]-determined, where u := (1, . . . , 1) ∈ Zn.

Proof. We showed in the proof of Theorem 5.4 that 2) implies 1). Conversely, suppose that 1) holds. Let
c ≤ d in Z

n such that [a + u, b] ∩ ↓c = [a + u, b] ∩ ↓d. Coordinatewise, for i = {1, . . . , n}, this implies
that either ci = di, bi ≤ ci < di or ci < di ≤ ai. In any case, (β ◦ α)(c) = (β ◦ α)(d), so that

M(c) ∼= M((β ◦ α)(c)) = M((β ◦ α)(d)) ∼= M(d).

Thus M(c ≤ d) is an isomorphism, and M is [a + u, b]-determined.

To demonstrate Theorem 5.4 and Corollary 5.5, it is convenient to take the point of view of topological
data analysis, and consider the births and deaths of elements of a module. Given an RZn module M, one
can track how an element x ∈ M(c), where c ∈ Z

n, evolves when mapped with the homomorphisms
M(c ≤ c′), (c, c′ ∈ Z

n). We say that the element x is born at c if it is not in the image of any morphism
M(c′ ≤ c), where c′ < c. On the other hand, the element x dies at c′′ if M(c ≤ c′′)(x) = 0, but
M(c ≤ c′)(m) �= 0 for all c ≤ c′ < c′′.

Consider now an RZ2-module M that is finitely determined, and let π : Z2 → [a, b] be the
accompanying convex projection. Note that no new elements are born or die in the leftmost edge or the
bottom edge of the box [a, b]. This follows from the fact that every element on these two edges has already
appeared infinite times before, and was born at some infinitary point. Let us write a = (a1, a2). For
example, if an element, say x ∈ M((a1, c)), maps to zero on the leftmost edge of [a, b], in M((a1, c + 1)),
then x ∈ M((−∞, c)) will also map to zero in M((−∞, c + 1)). Thus x does not “die” at the point
(a1, c + 1), but rather at the infinitary point (−∞, c + 1) ∈ [a + u, b].

Remark 4. Let M be an RZn-module and c ∈ Z
n. Consider the natural homomorphism

λM,c : colim
d≤c,d∈[a+u,b]

M(d) → M(c).

Following [4, p. 15, Def. 3.6], we say that c is a birth if λM,c is a non-epimorphism, and a death if λM,c is
a non-monomorpism. Furthermore, suppose that M is [a + u, b]-determined, and the births are “well-
behaved” enough. That is, for any birth c, the module M(c)/ Im λM,c is projective. The latter of course
holds if R is a field. Then, as we discussed in [4, p. 21, Remark 3.27], births and deaths show the positions
of the minimal generators and relations of M.

In the next example, we will demonstrate how, for a finitely determined module M, the extension M
has births and deaths at infinitary points that guarantee the existence of a finite presentation of M.

Example 5.6. Let M be an RZ2-module that is defined on objects by

M(c) =
{

R, if c ≤ (0, 0);
0, otherwise,

for all c ∈ Z2, and where a morphism R → R is always idR. Then M is finitely determined with the
convex projection π : Z2 → [(0, 0), (1, 1)]. Now, by Remark 5.5, M is [(1, 1), (1, 1)]-determined. Here
[(1, 1), (1, 1)] is the set

{(−∞, −∞), (1, −∞), (−∞, 1), (1, 1)}.

In particular, we have M((−∞, −∞)) = R, and

M((−∞, 1)) = M((1, −∞)) = M((1, 1)) = 0.
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Furthermore, by Theorem 5.4, M is now finitely presented. In more concrete terms, we have an exact
sequence of RZ2-modules

K → N → M → 0,

where

N = R[Mor
Z

2((−∞, −∞), −)]
and

K = R[Mor
Z

2((1, −∞), −)] ⊕ R[Mor
Z

2((−∞, 1), −)].
Here (−∞, −∞) is the only birth of M, while (1, −∞) and (−∞, 1) are the deaths.

Example 5.7. If k is a field, then it is well known that finitely generated kZn-modules are finitely
presented. This result, however, does not apply to kZn-modules. For a counterexample, consider a kZ2-
module M, where

M((x, y)) =
{

k, if x + y < 0;
0, otherwise.

Clearly M is finitely generated with its only birth in (−∞, −∞). It is not finitely presented, since the
deaths happen at points (n, −n) for all n ∈ Z.

Finally, we want to relate Theorem 5.4 to the work of Perling ([8]). Recall that a subset L ⊆ Z
n is a

join-sublattice if mub(S) ∈ L for every finite subset S ⊆ L. Note that this is equivalent to the condition
that L = L̂. Given a join-sublattice L ⊆ Z

n, following Perling in [8, pp. 16–19, chapter 3.1], we define
the zip-functor

zipL : RZn-Mod → RL-Mod

and the unzip-functor

unzipL : RL-Mod → RZn-Mod.

Contrary to Perling, we do not assume that R is a field. The zip-functor maps an RZn-module M to
the RL-module resL M, whereas he unzip-functor maps an RL-module N to an RZn-module unzipL N
defined by

(unzipL N)(c) =
{

N(mub(L ∩ ↓c)), if L ∩ ↓c �= ∅;
0, otherwise

for all c ∈ Z
n. Note that Supp(unzipL N) ⊆ ↑L.

Remark 5. It turns out that unzipL is essentially the same thing as resα , when L is finite and α := αL.
There is the slight complication that unzipL is defined for RL-modules, while resα is defined for RL̃-
modules. We may, however, extend an RL-module N to an RL̃-module Ñ by setting

Ñ((−∞, . . . , −∞)) = 0,

if (−∞, . . . , −∞) /∈ L, and Ñ(c) = N(c), otherwise. Having defined the module Ñ in this way, we see
that unzipL N ∼= resα Ñ.

Given an RZn-module M, the join-sublattice L is called M-admissible in [8, p. 18, Definition 3.4] if
the condition M ∼= unzipL zipL M is satisfied. This leads us to the following proposition.
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Proposition 5.8. Let M be an RZn-module, and L a finite join-sublattice. Then L is M-admissible if and
only if M is L-determined.

Proof. Let c ∈ Z
n. With the earlier notation, we see that

unzipL zipL M = unzipL resL M ∼= resα r̃esL M,

where

(resα r̃esL M)(c) =
{

(resα resL̃ M)(c), if L ∩ ↓c �= ∅;
0, otherwise.

Assume first that M ∼= unzipL zipL M. If L ∩ ↓c = ∅, we have M(c) = 0 by the definition of the functor
unzipL. But in this case α(c) ≤ c, so that L ∩ ↓α(c) = ∅. Using the definition of unzipL again, we get

(resα resL̃ M)(c) = M(α(c)) = 0.

On the other hand, if there is an element d ∈ L∩↓c, then, by the above formula, M(c) ∼= (resα resL̃ M)(c).
Thus,

M ∼= resα resL̃ M

and Supp(M) ⊆ ↑L, so M is L-determined by Theorem 3.4.
Conversely, suppose that M is L-determined. By Theorem 3.4, we have M ∼= resα resL̃ M and

Supp(M) ⊆ ↑L. The above formula shows us that

(unzipL zipL M)(c) = (resα resL̃ M)(c)

for all c ∈ ↑L. If c /∈ ↑L, then c /∈ Supp(M), which means that M(c) = 0. In this case, we also have
(unzipL zipL M)(c) = 0 by the definition of the functor unzipL. Thus we have an isomorphism

M ∼= unzipL zipL M.
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