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Abstract—The paper presents a direct model predictive
control algorithm for medium-voltage (MV) induction machines
driven by three-level neutral-point-clamped (NPC) inverters
that incorporates the neutral point potential balancing. For
such nonlinear systems implementation of long horizons may
be regarded as even a formidable task due to the high
computational complexity. Nevertheless, this can be achieved
with a modest calculation cost by decreasing the size of
the underlying control optimization problem. Moreover, when
assisted by a light estimation algorithm, the developed control
scheme achieves a high level of robustness to variations in
the motor parameters. The presented results demonstrate the
effectiveness of the proposed method during steady-state and
transient operating conditions.

Index Terms—AC drives, medium-voltage (MV) drives, model
predictive control (MPC), direct control, robust control

I. INTRODUCTION

Three-level neutral-point-clamped (NPC) converters are a

common choice in medium voltage (MV) drive applications

due to the higher efficiency and better quality of the output

current they offer in comparison to a two-level topology [1].

Such converters, however, require balancing of the neutral

point (NP) potential to maintain equal distribution of the dc-

link voltage across the upper and lower dc-link capacitors,

see Fig. 1. To achieve this, several control approaches modify

the voltage reference that is driven to a pulse width modu-

lation (PWM) stage. For example, [2] uses a zero-sequence

voltage injection into the modulating signal of a carrier-based

PWM (CB-PWM) strategy. [3] exploits the redundancy in the

voltage vectors that alter the NP current but do not affect

the converter output voltage. In a similar way, [4] proposes

a method to modify the application times of the redundant

vectors utilized in space vector modulation (SVM).

However, the effectiveness of such techniques is often

compromised at certain operating points associated with

high modulation indices and low power factors [5], [6].

Another approach, suitable especially for low- or no-load

operation, manipulates the line currents, but at the expense

of an increased output current total harmonic distortion

(THD) [7]. Thus, as can be understood, the NP potential

balancing with linear control strategies is a non-trivial task

that may result in complicated control designs, especially

when various operating points are considered [8].
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Fig. 1. Three-level NPC voltage-source inverter (VSI) driving an IM.

A simpler design perspective on the NP potential balancing

is offered by model predictive control (MPC) because it

is capable of handling multi-input multi-output (MIMO)

systems, thus avoiding cascaded control loop structures. One

of the subcategories of MPC—finite control set MPC (FCS-

MPC), which is considered in this work—features control

and modulation problem in one computational stage. As

a result, the controller outputs the switching signals that

are directly applied to the converter without a dedicated

modulator, thus enabling very fast dynamic responses. In the

framework of the said direct MPC approach, the problem of

the NP potential balancing is addressed in [9], [10]. However,

these works do not fully address the common drawbacks

associated with FCS-MPC as discussed in the following.

As the computational complexity of FCS-MPC increases

exponentially with the number of the prediction horizon

steps, its real-time implementation poses significant chal-

lenges. Consequently, many works resort to the one-step

prediction, thus not fully exploiting the potential perfor-

mance benefits of FCS-MPC [11]. To keep the calculation

complexity at bay, non-trivial prediction horizons [11]–[13],

or more sophisticated solvers such as the sphere decoding

algorithm (SDA) [14], [15] can be adopted. Although, the

NP potential balancing is not considered in the said methods,

their formulation can be modified to include the problem

in the control objectives. For example, since the dynamics

of the NP potential lead to a nonlinear prediction model,

SDA cannot be directly used. To overcome this issue, in

works [9], [10] SDA was modified to work with a linearized

system model. Obtaining the latter, however, may be a

computationally demanding task, if done in real time. Also,
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Fig. 2. Equivalent inverse-Γ model of an IM.

differences between the controller prediction model and

the actual nonlinear system model are introduced with the

linearization, what may compromise the system performance.

Besides the unmodeled or linearized dynamics, the per-

formance of FCS-MPC may degrade due to changes in the

system parameters. For example, variations in the resistances

and inductors of an induction machine (IM) typically occur

due to, e.g., changes in temperature or saturation of the

magnetic material. Hence, MPC needs to be equipped with

tools to account for any mismatches that negatively affect the

controller performance. To this end, an external disturbance

observer [16]–[18], or a system identification algorithm—

either with full knowledge of the system [19] or without

any dependency on it [20]—can be used. However, such

methods tend to increase the complexity of the closed-loop

controller design, often along with the computational burden.

Considering that the latter needs to be kept relatively low

such that the real-time implementation of long-horizon FCS-

MPC is possible, such auxiliary tools should not add much

computational overhead.

Motivated by the above, this paper proposes a long-horizon

FCS-MPC that performs the active NP potential balancing for

an MV IM driven by a three-level NPC converter. To this end,

the objective function is complemented with a penalization of

the NP potential deviation such that the reference tracking of

all the controlled variables is achieved in one computational

stage. To limit the calculation burden of the latter, the

split prediction horizon is adopted in line with the method

proposed in [13]. Moreover, the most crucial parameter

deviations that affect the controller behavior are addressed

with a refined estimation algorithm adopted from [21].

II. SYSTEM MODELING

The mathematical model for the chosen case study, which

is shown in Fig. 1, is derived in the following using per unit

(p.u.) quantities. To this end, the stationary frame is adopted,

and the subscripts for variables in the αβ-plane are dropped.

The mapping from the abc- into the αβ-plane and vice versa

is done with the reduced Clarke transformation matrix
∼

K

and its pseudo-inverse
∼

K
−1

, respectively [22, Chapter 2.1].

In this work, the sum of the voltages across the lower

vdc,lo and upper vdc,up dc-link capacitors Xdc comprises the

constant dc-link voltage

Vdc = vdc,lo + vdc,up, (1)

and the NP potential, which is defined as

vn = (vdc,lo − vdc,up)/2, (2)

floats. Therefore, the inverter output voltage vinv, which is

equal to the stator voltage vs, can be written as

vinv = vs =
Vdc

2

∼

K uabc − vn
∼

K |uabc|, (3)

where uabc = [ua ub uc]
T is the three-phase switch position,

with ux ∈ U = {−1, 0, 1}, x ∈ {a, b, c}, being the single-

phase switch position. Moreover, |uabc| = [|ua| |ub| |uc|]
T

denotes the component-wise absolute value of uabc.

Since the currents at the NP sum up to zero, with the help

of (2) the dynamics of the NP potential are captured in the

expression
dvn
dt

= −
in

2Xdc

, (4)

where the NP current in is the sum of the stator phase

currents isa, isb, isc. Since the latter flow through the NP

when the switch position of the corresponding phase is zero,

the following holds

in = (1 − |ua|)isa + (1 − |ub|)isb+(1− |uc|)isc

= −|uabc|
T is,abc,

(5)

where is,abc = [isa isb isc]
T . Note that a star connection

for the load is assumed in (5), i.e., isa + isb + isc = 0.

Inserting (5) into (4) yields the final expression for the NP

potential evolution

dvn
dt

=
|uabc|

T is,abc

2Xdc

. (6)

In direct MPC methods the dynamics of IM are typically

modeled using the equivalent T-model [22, Chapter 2.2].

The latter, however, can be transformed into the simpler

inverse-Γ model in Fig. 2 without any loss of information or

accuracy [23]. In the equivalent circuit in Fig. 2 Rs and R̄r

are the stator and rotor resistances, respectively, X̄m and Xσ

are the mutual and total leakage reactances, ψ̄r and īr are the

rotor flux and current, and ωr is the angular rotor speed. Note

that the overline in the listed machine parameters denotes

the variables in the inverse-Γ model, which are defined in

Appendix A.1 The primary reason behind employing the

discussed IM formulation can be understood by noting that

the total leakage reactance

Xσ = (Xls +Xm)−X2
m/(Xlr +Xm) (7)

includes both the stator Xls and rotor Xlr leakage reactances

of the machine, thus capturing their impact on the system

model deviations. This facilitates the adoption of the estima-

tion algorithm, as will be shown in Section IV.

To devise the prediction model of the drive, the switch

position uabc ∈ U = U3 is defined as the system input, the

stator current is and flux ψs together with the NP potential

vn are assigned to the state vector x = [iTs ψ
T
s vn]

T ∈ R
5,

while is and vn are also considered as the system output

1For more details on the inverse-Γ model derivation and its comparison
to the T-model the reader is referred to [13, Section II].



y = [iTs vn]
T ∈ R

3. In the next step the continuous-time

state-space model is derived based on the circuit in Fig. 2

dx(t)

dt
= F(t)x(t) + Guabc(t) (8a)

y(t) = Cx(t), (8b)

where the matrices F(t) ∈ R
5×5, G ∈ R

5×3, and C ∈ R
3×5

are given in Appendix B. It is worth noting that F(t) contains

multiplication of the input and the state, what makes the

model nonlinear and poses challenges for the controller

design. Following, (8) is discretized by adopting the forward

Euler method with the sampling interval Ts

x(k + 1) = A(k)x(k) + Buabc(k) (9a)

y(k) = Cx(k) , (9b)

where A(k) = I5 + F(t)Ts, B = GTs, and k ∈ N denotes

the discrete time step.

III. CONTROLLER DESIGN

For the MV system in consideration the ultimate goal

of the controller is to minimize the stator current distor-

tions while keeping deviations of the NP potential and the

switching power losses low. This is translated into the two

sub-tasks of regulating the stator current is together with

NP potential vn along their references and minimizing the

device switching frequency fsw. For a one-step FCS-MPC

the former objective is captured by the predicted output error

yerr(k+1) = yref(k+1)− y(k+1), while the latter by the

control effort ∆uabc(k) = uabc(k)− uabc(k − 1).
To obtain a long-horizon formulation of the control prob-

lem, this work adopts the concept of the horizon combination

N = {Np, Nc}, where Np denotes the number of discrete

time steps wherein the system output behavior is predicted

using (9), and Nc denotes the number of steps for which the

possible switch positions are evaluated [13]. The discussed

FCS-MPC design considerations can be captured by the

following objective function

J =

k+Np−1∑

ℓ=k

‖yerr(ℓ+ 1)‖2Q + λu

k+Nc−1∑

ℓ=k

‖∆uabc(ℓ)‖
2
2 , (10)

where the diagonal weighting matrix Q = diag(1, 1, λn) ∈
R

3×3 penalizes the deviation of the output variables from

their references, and the weighting factors λn, λu > 0 set

the trade-off between the stator current distortions, the NP

voltage potential, and the switching frequency.

The task of the controller is to find the optimal sequence

of control actions

U∗(k) =
[
u∗T
abc(k) u

∗T
abc(k+1) . . . u∗T

abc(k +Nc − 1)
]T

by solving the following optimization problem

minimize
U(k)∈U

J(k) (11a)

subject to (11b)

x(j + 1) = A(j)x(j) + Buabc(j) (11c)

y(j + 1) = Cx(j + 1), ∀j = k, ... , k+Np−1 (11d)

‖∆uabc(ℓ)‖∞ ≤ 1, ∀ℓ = k, ... , k+Nc−1, (11e)

where U = U × · · · ×U is the 3Nc-times Cartesian product

of the set U , and represents the feasible input set.
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Fig. 3. Simplified equivalent model of an IM for the total leakage reactance
estimation.

A common approach to solve (11) is the exhaustive search

that evaluates all possible solutions, i.e., 33Nc , to conclude

to the one that results in the minimum value of (10).

Notably, the computational complexity of such an approach

quickly exceeds the capabilities of modern control platforms.

However, as was shown in [13], [21], the feature of long-

horizon MPC strategies to predict the system evolution over

a wider time window can be exploited at a marginal com-

putational cost. Specifically, if operation at a low switching

frequency range is considered, and thus the minimum amount

of changes in the switch position is anticipated within a

prediction window, then calculation of (11) up to Np steps

can be redundant. Thus, by setting Nc < Np the performance

benefits of long horizons can be fully harvested. In such a

case—that is tailored for MV applications—the exhaustive

search can be a viable choice for a real-time implementation.

IV. ESTIMATOR DESIGN

As can be seen from (10) the controller relies on (9) to

compute the system predictions and consequently find the

optimal solution. Therefore, whenever the system matrices

A(k) and B do not reflect the actual system under test the

control may result in a subpar performance. In relation to

this drawback, [24] explored the effect of machine parameter

deviations on the IM drive performance controlled by FCS-

MPC. The study showed that variations in the rotor Xlr

and stator Xls leakage reactances have the most prominent

impact on the system behavior. Obtaining the actual values of

both parameters separately using sophisticated identification

techniques usually results in an unwanted increase of the

calculation burden. Fortunately, the adopted inverse-Γ model

incorporates the said parameters implicitly in Xσ, see Fig. 2

and (7). The latter can be found in a computationally efficient

manner, as shown in [21]. In the sequel, a short overview

of the estimation algorithm is presented with necessary

modifications to account for the varying NP potential. For

the detailed implementation the reader is referred to [21].

The estimation algorithm assumes a sinusoidal form of the

back electromotive force (back-EMF) vemf and constant am-

plitude during one sampling interval Ts. Given a negligible

value of the stator resistance Rs in MV machines, and based

on the equivalent circuit in Fig. 3, the following holds

X̂σ

dis(t)

dt
= vs(t)− vemf(t), (12)

where X̂σ denotes the estimated value of the total leakage

reactance. In contrast to cases where a zero value of the NP

potential is assumed, the evolution of the latter needs to be

taken into account when computing vs in (12) with the help
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of (3). Following, considering the assumptions above, X̂σ

can be found by solving the quadratic equation

X̂2
σA+ X̂σB + C = 0 , (13)

where A, B, and C are defined in Appendix C.

The block diagram of the proposed FCS-MPC approach is

shown in Fig. 4, while Fig. 5 demonstrates the effectiveness

of the developed estimation algorithm. After simulating

the drive operation with the nominal machine parameters

Xpred
σ = Xmach

σ for 20ms a mismatch of −50% in both

rotor Xlr and stator Xls leakage reactances is introduced

in the prediction model. This leads to the wrong leakage

reactance Xpred
σ = 0.13 p.u. used by the proposed FCS-MPC.

Next, at 0.1 s the prediction model starts to use the estimated

value Xpred
σ = X̂σ . It should be noted that the total leakage

reactance is calculated throughout the whole simulation, and

for the time period from 0 s to 0.1 s estimator runs in parallel

to the control scheme.

V. SIMULATION RESULTS

This section explores the time-domain results—presented

in the p.u. system—for the proposed FCS-MPC. The setup

under test is a three-level NPC inverter with a constant

dc-link voltage of 5.2 kV and two dc-link capacitors of

2.24mF each. The 2MVA IM has rated voltage of 3.3 kV,

and nominal stator frequency of 50Hz, while its total leakage

reactance is 0.25 p.u.2 It is worth highlighting that the

prediction model has a mismatch of −50% in the rotor Xlr

and stator Xls leakage reactances that is compensated for by

the estimation algorithm. The controller sampling interval

is Ts = 25µs, and the coefficient λu is chosen such that

the resulting device switching frequency is fsw ≈ 200Hz,

while λn = 5. The system is tested with the horizon

combinationN = {5, 1}. According to [21, Section III], such

a combination should deliver the optimal drive performance,

i.e., the same as for N = {5, 5}, up to the critical switching

frequency fsw = 666Hz. However, in case of N = {5, 1}
the associated computational effort facilitates the real-time

2The complete list of the drive parameters can be found in [25, Table I].
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Fig. 5. Simulation results for estimation of the total leakage reactance Xσ

(up) and its zoomed-in view (down).

implementation of the proposed FCS-MPC scheme, as the

level of complexity of the optimization problem is similar

to that of a one-step FCS-MPC, even though the prediction

horizon is five steps.

Starting with the steady-state operation at nominal electro-

magnetic torque Te = 1, Fig. 6 demonstrates the ability of

the proposed scheme to accurately balance the NP potential

along its reference vn,ref = 0. Moreover, the stator currents

follow their sinusoidal references. The stator current spec-

trum shows prominent odd non-triplen harmonics. In this

regard, the results are similar to, e.g., synchronous optimal

modulation that theoretically has the lowest possible current

distortions for a given operating point [25]. Finally, the stator

current THD value of ITHD = 5.95% and the stator current

spectrum shape supports the statement of the improved drive

performance in comparison to a one-step horizon. Namely,

it can be seen that the said metrics are very close to

ones in work [9], wherein FCS-MPC with N = {5, 5} is

implemented for an MV IM drive with effectively the same

parameters.

As the next step, the transient operation is examined when

the electromagnetic torque reference is stepped from 1 to

0 and vice versa at 5ms and 20ms, respectively. Notably,

operating at zero torque is challenging for the NP potential

control due to the 90◦ shift in phase between the stator

phase voltages and currents [26]. Fig. 7 shows that in the

presence of mismatches the NP potential is kept balanced

along its reference during the transients. Furthermore, the

scheme exhibits fast reference tracking, which is a typical

characteristic of direct control methods. Specifically, Te
and is,abc settle at the new trajectories in a fraction of a

millisecond at the step-down change in the torque reference.

This is due to the available voltage margin in all the three

phases at the moment of the commanded change. Note that,

ensured by the controller design, the switching constraint is

not violated. During the step-up change in Te the transient

takes about 3ms limited only by the available voltage margin.

Finally, to highlight the active NP potential balancing

ability of the proposed control scheme, Fig. 8 shows the

effect of variations in λn. Specifically, when an initial offset

vini
n is imposed, it is seen that with a higher penalization on

vn the NP potential is balanced faster.
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VI. CONCLUSION

The paper extended the algorithm proposed in [13] to

include the balancing of the NP potential of a three-level

NPC inverter driving an MV IM into the proposed FCS-

MPC strategy. The method manages to control the stator

currents along their references and balance the NP potential

in a single control loop. Also the results indicate that the

approach fully gains the performance benefits associated with

long horizons and is robust to variations in the machine

parameters. Thanks to the split prediction horizon and the

light estimation algorithm, this is achieved with modest

computational requirements, something that enables the real-

time implementation of the proposed control strategy.

APPENDIX A

VARIABLES OF THE INVERSE-Γ MODEL

The parameters of the inverse-Γ model are defined with the

help of the transformation coefficient γ = Xm/(Xlr +Xm)
as

īr = ir/γ ,

ψ̄r = γψr ,

X̄m = γXm ,

R̄r = γ2Rr .
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Fig. 7. Simulation results for the proposed FCS-MPC with N = {5, 1}
with steps in the electromagnetic torque reference when a mismatch of
−50% is simultaneously introduced in the rotor Xlr and stator Xls leakage
reactances, and the estimator is active.
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Fig. 8. Balancing of the NP potential vn with the initial offset vini
n =

0.08 p.u. for λn = 1 (blue line), λn = 5 (green line), and λn = 15 (red
line). A mismatch of −50% is simultaneously introduced in the rotor Xlr

and stator Xls leakage reactances, and the estimator is active.

APPENDIX B

SYSTEM MATRICES

F(t) =




FIM

[
− 1

Xσ

∼

K |uabc(t)|

−
∼

K |uabc(t)|

]

[
1

2Xdc
|uabc(t)|

T
∼

K
−1

01×2

]
0




FIM =




− 1
τs,Γ

−ωr
R̄r

XσX̄m

ωr

Xσ

ωr − 1
τs,Γ

− ωr

Xσ

R̄r

XσX̄m

−Rs 0 0 0

0 −Rs 0 0



,



where the transient stator time constant τs,Γ is given by

1

τs,Γ
=

R̄r

X̄m

+
R̄r +Rs

Xσ

.

G =
Vdc

2

[
1

Xσ

I2 I2 02×1

]T ∼

K, C =

[
I2 02×3

01×2 0 0 1

]
.

APPENDIX C

COEFFICIENTS OF THE QUADRATIC EQUATION

A = ∆A2
α(k + 1) + ∆A2

β(k + 1)−∆A2
α(k)

−∆A2
β(k) ,

B = 2
(
∆Aα(k + 1)vsα(k) + ∆Aβ(k + 1)vsβ(k)

−∆Aα(k)vsα(k − 1)−∆Aβ(k)vsβ(k − 1)
)
,

C = v2sα(k) + v2sβ(k)− v2sα(k − 1)− v2sβ(k − 1) .
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