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ON A CONFORMAL TRANSFORMATION IN
AREAL SPACES

Takanori Igarashi

Abstract

Concept“of “conformal transformation” is introduced in areal spaces. Under tihs transformation, changes
of various geometric objects in areal spaces of the general type and of the submetric class are considered.

§1. Conformal transformation in the areal space of the general type.

We assume that there be given two metric m-tensors g;; and ’gy; in the areal space
of the general type* Let us consider a transformation

(A7, g1)) > (AS”, g1.)), (1.1
which satisfies the relation ;

'g1= 081, (1.2)
where ¢ is a scalar function such that

p=¢(x’, p2) > 0. 1.3

Differentiating (1.2) by p% we have

&Lk =20¢,kgi,+ g1k,
and contracting by p’, ws obtain

g1=0, (1.4)

by means of Iwamoto’s theorem 6)!* we can insist that the function ¢ in (1.2) does not
depend on arguments p% but depend on only x°
On the other hand, if we assume ¢ be in the form such that

» Latin indices i7,4,... run over 1,2,..n, Greek indicee ¢, 7,.. over 1,2,.., m; while Latin capital
indices L/ K,.. denote compound indices ¢ [m/, 7[m] k[m/... In what follows, we use the
same notations and terminologies as those in papers 1),2),..5).

» * Numbers in brackets refer to the references of the end of this paper.
» » » In this paper, we use the concept “partial differetiation in p’ ,, such as
Qi =D, iimy— m@ﬁ,lﬁz """ p:'”n]z]r Df = 8@/81)5,,

for any homogeneous function @ of order 0 in p/, cf. 4)

(195)
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p=g(x", p')>0 (1.5
instead of (1.3), then differentiating (1.2) partially.*** we have
815k = 20¢xgr+ B8 11k,
and contracting p’, we get
$.x=0.

Hence, we can also insist that the function . in (1.2) does not depend on p' but depend
on only x°.
An angle g between m-vectors X' and Y'is defined as follows ;

_ ey X'Y/ (1.6)
Cos0= X7

where | X| is a magnitude of X*such that | X|*= ‘7;11‘ g X' X
Measuring the angle § between x’ and y’ with use of ’g;;, we have
' cosB= 2 XY g XY’
XY
V/;%T’ng‘)(K}(L ;%r’ngAr)fﬂllfN
2 )(I)f] iyJ
= : ¢ 817 : - N: g"{’;{‘lﬁl }zr" = cosf
¢\/WgK,LXKXL¢\/W gunY"Y

Consepuently, the angle § is invariant transformation (1.1) satisfying (1.2). In such a
sense, we call this transformation as conformal transformation.
There is a relation such that

gy’ = (m!)*F (1.7

between the metric m-tensor €rs and the fundamental function F(x? p') of A%, it is to
say, F(x® p') represents the magnitude of m-dimensional area element p’,

Now, we assume that the fundamental function F' is transformed to ’F under the conf-
ormal transformation. Then;

; 1, 1
F=Tuly &b't'= Ty et =0°F,
lLe., we obtain
F=¢F. (1.8)

So, we find that (1.8) is hold good when the transformation satisfies (1.2).

Next, let us start from (1,8), conversely. Since there is a function f (4%, p%) such that
F(x'p') = f(x%p,), we may identify f as F unless there is no confusion?.

Differentiating (1.8), i.e.,
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"F(x',pe) = o F(x', pl)
by pi, and making use of (1.4), we have followings ;
Fi=oFf
pi=pt, (pi=F'F9),
LY = LE,
where L% is a Legendre’s form such that L= p%4+ pips.

With the help of p¢ L%, etc., the metric m-tensor g;; is expressed ;¥

m

_ m\? 2 [(1131._' Wi, aer pPrer an] B
g1y /12:()(/1) Eay..am EB1- Bm F L[]l[]1 LZ.A]‘A PZ-HI pﬁul plm] p]m] .

Taking account of (1.10) and (1.11), we can conclude the following theorem ;

THEOREM. 1. 7o what g;; satisfies (1.2), it 15 equivalent that I satisfies (1.

y LK

g™ as

’ LK

g¥=9"g
under the conformal transformation.

Next, we have to show how connection coefficients changes. Put

nk Rhge e hpkhye ek
gii T Liigeeim iz in& " .

9 \-1 _
Az‘jhk:<7nn_ % > {(m—1 )!)"Zg(tj)hk“<:,£_21 ) 8G:0% ),

_ hk
Aijaﬂ_/lij png’

2

2
A*z_jaﬁ:FTﬁAz_ja,R, A*Uaﬂ:F m/luaﬂ,
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(1.8)

1.9)
(1.10)
1.11)

(1.12)

8).

The contravariant component g"¥ of g;,defined by g*g,, = % &% is transformed to

(1.13)

where A¥,; 1s derived from A;* A% ,,=675% under the assumption that the mu-rowed

det. |A5%%|# 0.
Then, we give a covariant differential of a vector V* in the form ;®
SV i=dV i+ I3 Vide*+ CiV5ps,
where  §ph=A(dpi+ Birdx"), vi=0%—pips,
I3 = vh—C"inBh—C*nB; +C* &7, By,
Y}k: E%A*iraﬂ{/l*rkaﬁ,j +A*jraﬂ,k_A*ikaﬂ,7}y
ixkfrhy: ‘Zlﬁﬂ*iraﬁ/l*ikaﬁ; Z, Cxévyh: sz;vyhv

h — . F pITI7RES T[T hES ira — S
Brs_YJJklj{S‘ 787, 5,7 z'lki%—(?aagé‘;,
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ijréz:( xzalar ><za aj Xj’Zl)p§+5§5£ a

27 —Cer papj

Under the conformal transformation, quantities g;;"* A,,%%, AY,s are invariant. Hence

(1.19)

><za

A%5%% and A*¥,4 are transformed as
2 2

* aB _ Mm% af %ii L awi
ARG = T AT, AT ap = AT g,

which give us follows ;

) 2 2
’V;k: ﬁ ¢ -m *gaﬂ{ d)m(/l*rkaﬂ,j+/l*jraﬂ,k_A*jkaﬂ,r)
2 _
+ —727 " (g A il — b ¥ 345,

With use of the fact that A*",eA*,,**= m*6% and of notation such as 7/1*”

A3 and ¢ ¢ r= ¢r, we obtain the expression
(1.20)

7Jk VJk (A*Jlg(bfﬁ 511¢>7”_5;2 ¢i)y
which give us the transformation law of the Christoffel’s symbol of the areal space of the

general type.
VI being invariant under the confomal transformation, the change of BZs is given

by
"Bds= Bo]?s - (A*}Z Or— 5;1 Pr—

(1.21)

17 hkd

Wb — Ohhs )DEW I,

by means of (1.18).
XY Cry’ and W we can exp-

On making use of (1.21) and of the invariance of Ci%7,
ress the transformation law of /'3 in the form ;
(1.22)

y ke *1 i
5k = I — Ul

where
; n

T br— 05— (A2 pa — 0% ba — 6% pa)

X( X;Jr ;JC; + Xj',yr af}ig__cx;};e,yr J}??))[)g

Jk*

On account of the invariance of C}77,
connection coefficient CZ% is a conformal-invariant, i.e
S (1.24)

we can immediately show, from (1.19), that the

N Aerr
Jy ke TR

Accordingly, we have the the following theorem ;
THEOREM. 2. [n the areal space of the generval type, if there be given a comnection

(1.14), tthe connecion coefficient 5 is transformed such as (1.22), while the another coeffici

ent Ci% is invariant under the conformal transformation.

(198)
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§2. Conformal transformation in the areal space of the submetric class.

In this section, we take up an areal space of the sudmetric class.
Let us consider a conformal transfomation

(A, gi) ~ (AT, &) 2.1
with
F=¢F, ¢> 0, 2.2)
where g;; 1s a normalized metric tensor which is given such as
gij:<i“L?f+p?p§>ga/f, |gasl = F?, 2.3

gas being a metric tensor in an m-dimensional subspace of AY™,
Since |'gad =CF)?=¢F*= ¢*| gugl =| 051804,

(or | gas| is a polynomial homogeneneous in each gus), we have

2 2
"Gas= " 8ap, '&T=¢ "8, gasg" =0} 2.4
Taking (22.3), and making use of (2.4), (1.11) and (1.12), it is evident that
gy = o™ &is.

On the other hand, the metric m-tensor g;; decomposes in the form ;

&r1= M) Liili Givin *** Gimbim) + Jitm,j1mi, (2.5)

in which J,im,jim vanishes in the case that the space is of the metric class.
Taking thought that the expression ’g;;= ¥?g,; hold good in. Riemannian, Finsler
and Cartan spaces, it is natural that (2.5) would be transformed to

2 2 2
"21. 1= MmN B N B Liain) (™G itimt) F T il siml

Consequently, for the normalizsd metric tesor g;; and g%, the transformation laws are
given such that '

2 A 2
gu= gy, gt=o g™ 2.6

(Otherwise, these expressions hold good, since Cg}":%g“gﬁ;; and (1.4)).
For a Christoffel’s symbol

{;k}:%gih{ghk,j+gjh,k_gjk,h}, 2.7
substituting (2.6), we have
o 1 & . 2 2 2
{jk}zjdfmgl {(0™),7 gne (™), 1gin— (™), nGi%
2
+ 3" Gnrit Ginyh— Gimn) ).
Putting qu:% ¢ s, d'=g" ¢;, we obtain

(199)



598 Takanori Igarashi

,{]'Zé}—‘{]k} (p'gin— ¢j5\2_¢k5§). (2.8)

Under the assumption that the metric tensor g,; is not necessarily real-valued, an affine
connection is defined for a contravariant V¢ as follows ; ®

DVi=dV'+ 5 X7 de*+ Ci% X Dps, 2.9

where  Dpi=yidpi+Béndx*, vi=8i—pips, (2.10)
s={ b L awiBl+ gt Bl g BY), (2.11)

o= Do, Wi Wit = oiotet, 212
Wike=(g"gunhd5 + 8" 813 10%— g ginh) pa+ 0% On k. (2.13)

The connection cofficient C%7, is defined by
15%=8"Cn %, (2.14)
Chj,iZ‘%—(ghj;Z*ZD%gmL*?]i), (2.15)
where L*% is an “ecmetric tensor’ which is defined by by A. KAWAGUCHI such that
LE=1%e"s gi=LL%ga, 2.16)
and which vanishes in the case that the space is of the metric class.

The ecmetric tensor L*%f is invariant under the conformal transformation, because
L% is also invariant.
Cr;} in (2.5) is transformed such that

,Cu kR ¢)mcm ky (27)

thus, the connection coefficient C} } given by (2.14) is conformal-invariant.
The transformation law of the another connection coefficient is derived from (2.11),
(2.12) and (2.13), in the same way as that in §1.

B, is transfomed such as
,Bék:Bék_(¢)pghl_¢h6€_¢)lé\€z)p¢W£lé7a, (2.18)

hence, /% is transformed in the form;

’ jlgzpﬂ_ Ujik, (2.19)
with
U= 2"{(gu} Bh+ £} Bl g }BY)
— (@’ gse— s 67— e 0%) (Qu, IWES + g AW s — gin AW ) 5. (2.20)

Consequently, we have the following theorem ;

(200)
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THEOREM. 3. In the areal space of the submetric class, if there be given a conmection
such as (2.9), then, the connmection coefficient I'ih is transformed as in (2.19), while the ano-
ther commection coefficient Cil is invariant, under the conformal transformation.

Seminar of Mathematics,
Muroran Institute of Technology,
Muroran, Japan.

(Recived May. 21, 1977)
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