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ABSTRACT

Jere Mäkinen: Improving the membership functions of a fuzzy hydrometeor classifier in an X-Band
weather radar system
Master’s thesis
Tampere University
Master’s Programme in Science and Engineering
September 2023

A weather radar is a remote sensing device that measures rain by transmitting a high-energy
electromagnetic signal into the atmosphere and receiving echoes that scatter back to the radar.
The weather targets are referred to as hydrometeors which is a generic name for any water or ice
particle in the atmosphere. Modern radar technology, especially the so-called dual-polarization
technique, enables measuring a large scale of parameters describing hydrometeors’ size, shape,
and orientation. Based on this information, it is possible to classify the hydrometeors into classes
such as rain, wet snow, dry snow, or hail.

This procedure is typically done using algorithms based on fuzzy logic. Fuzzy logic is an ex-
tension of classical logic. It is capable of modeling the logical "middle ground" that is not included
in classical logic by allowing truth values that are something between true and false. Membership
functions are part of fuzzy systems that transform the crisp input values into fuzzy truth values.
This work presents the basics of fuzzy logic and how it can be utilized in solving a classification
problem.

However, weather radars operate using different frequency bands in their transmitted signal.
The frequency bands are denoted with letters S, C, and X, listing from the lowest frequency to
the highest. The parameters of the membership functions are dependent on the used frequency
band of the radar. The aim of this work is to adjust the parameters of Vaisala’s fuzzy hydrometeor
classification algorithm for X-band based on the old C-band specific parameters. The adjustments
made in this work are based on literature references that describe the polarimetric differences of
the different frequency bands and similar adjustment processes that have been carried out before
for different algorithms.

The performance of the algorithm after the parameter adjustments is studied by comparing real
weather data from an X-band weather radar and a ground-based forward scatter sensor. Analysis
is also supported by visual and quantitative comparison of the data with the old and the adjusted
parameters. All in all, five different raining events were included in the analysis.

The results of the analysis show that after the adjustment, the number of snow bins incor-
rectly classified as liquid rain was significantly decreased and the algorithm behavior was more
consistent in detecting hail and graupel.

Keywords: weather radar, fuzzy logic, algorithm, classification
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TIIVISTELMÄ

Jere Mäkinen: Parametrien säätäminen sadetyypin luokittelussa X-taajuusalueen säätutkassa su-
mean logiikan algoritmissa
Diplomityö
Tampereen yliopisto
Teknis-luonnontieteellinen DI-ohjelma
Syyskuu 2023

Säätutka on etämittausjärjestelmä, joka mittaa sadetta tutkaa ympäröivässä osassa ilmake-
hää. Tutka lähettää korkeatehoisen elektromagneettisen signaalin ilmakehään ja vastaanottaa kai-
kuja, jotka siroavat ilmakehässä olevista kohteista takaisin tutkalle. Moderni tutkateknologia mah-
dollistaa monipuolisen tiedon keräämiseen ilmakehän sääpartikkeleista eli ns. hydrometeoreista.
Erityisesti kaksoispolarisaatiotekniikka mahdollistaa tiedon keräämisen hydrometeorien koosta,
muodosta ja orientaatiosta. Tämän tiedon avulla hydrometeoreita on mahdollista luokitella eri sa-
deluokkiin kuten vesisade, lumisade tai raekuuro.

Sadetyypin tunnistus tyypillisesti toteutetaan hyödyntäen sumeaa logiikkaa. Sumea logiikka on
klassisen logiikan laajennus. Se sallii myös totuusarvot, jotka ovat jotain toden ja epätoden väliltä.
Jäsenfunktioiden avulla mitatut arvot voidaan muuttaa sumean logiikan mukaisiksi totuusarvoiksi,
jotka kuvaavat sitä, kuinka paljon objekti kuuluu tiettyyn luokkaa mitatun ominaisuuden perusteel-
la.

Säätutkia toimii kolmella eri taajuusalueella. Taajuusalueita, lueteltuna matalimmasta taajuu-
desta korkeimpaan, merkitään kirjaimilla S, C ja X. Jäsenfunktioiden parametrit riippuvat tutkan
taajuusalueesta, sillä erilaiset signaalit siroavat eri tavalla mittatavista kohteista. Tämän työn ta-
voitteena on säätää parametreja Vaisalan sadetyypintunnistusalgoritmissa toimimaan taajuusalu-
eella X. Parametreihin tehdyt muutokset perustuvat kirjallisuuskatsaukseen.

Tämä työ esittelee sumean logiikan perusteet ja erityisesti, kuinka sitä voidaan hyödyntää luo-
kitteluongelmien ratkaisussa. Lisäksi esitellään menetelmä, jonka avulla algoritmin suorituskykyä
voidaan arvioida vertaamalla sen tuloksia maanpinnalla olevan sääsensorin kanssa. Suoritusky-
vyn arviointiin kuuluu myös tulosten visuaalinen ja kvantitatiivinen vertailu PPI-kuvista.

Tulosten arviointi osoittaa, että parametrien muutosten jälkeen algoritmin suorituskyky oli pa-
rantunut. Vähemmän lumisadedatapisteitä luokiteltiin virheellisesti vesisateeksi muutosten jälkeen.
Algoritmi myös toimi johdonmukaisemmin rakeiden ja lumirakeiden tunnistamisessa.

Avainsanat: säätutka, sumea logiikka, algoritmi, luokitteluongelma

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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ABBREVIATIONS AND NOTATIONS

A A classical set˜︁A A fuzzy set

χ(x) A membership function defining a classical set

CSU Colorado State University

FMI Finnish Meteorological Institute

h Altitude

hML Melting level height

Kdp Specific differential phase, range derivative of the differential phase

µ(x) A fuzzy membership function

NSLL National Severe Storms Laboratory

φdp Differential phase, phase difference between the horizontal and

vertical signals of dual-polarization radar

PPI Plan position indicator, a type of polar data visualization that has

the radar antenna in the center of the figure with the distance from

the radar shown

RHI Range height indicator, a cartesian type of radar data visualization

that shows a given property as a function of range and altitude.

ρhv Cross correlation ratio, correlation coefficient between horizontal

and vertical received echoes

SNR Signal to noise ratio

UTC Coordinate Universal Time

Zdr Differential reflectivity, ratio between the horizontal and vertical re-

flectivity

Zh Horizontal reflectivity, property of the target that describes how

much of the energy transmitted through the the horizontal polar-

ization channel is reflected back to the radar.

Zv Horizontal reflectivity, property of the target that describes how

much of the energy transmitted through the the vertical polariza-

tion channel is reflected back to the radar.
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1. INTRODUCTION

A weather radar is a remote sensing device that is used to measure weather, especially

rain. Radar measurement is based on emitting an electromagnetic signal and receiving

echoes that scatter back from objects in the signal’s way [13]. Of course, the strength of

the received echo, often referred to as reflectivity, can be measured, but modern weather

radars have polarimetric capabilities that enable measuring a lot of additional informa-

tion about the measured targets [14]. This, in turn, enables the creation of advanced

data products such as estimated rainfall, attenuation corrected reflectivity, and rain type

detection. Rain type detection, or hydrometeor classification, is the main focus of this

work.

Hydrometeor is a common term for any water or ice particle in the atmosphere formed as

a result of condensation [31]. The hydrometeor classification can be implemented using a

classification scheme based on fuzzy logic. Fuzzy logic is an extension of classical logic.

Unlike classical logic, fuzzy logic allows for truth values that are something in between true

or false [27]. It is an effective tool to solve classification problems that include possibly

noisy measurements and overlapping characteristics between different classes [12][33].

Both of these aspects are present in the hydrometeor classification as will be illustrated

in this work.

However, weather radars operate using three different frequency bands and the param-

eters of a fuzzy hydrometeor classifier are dependent on the used frequency. The fre-

quency bands are denoted with letters S, C, and X, listing from the lowest frequency to

the highest. The need for adjustments is caused by the different scattering behaviors of

different frequency signals.

In Vaisala’s weather radar systems, the hydrometeor classification is handled by an al-

gorithm called the HydroClass. The public methods that are the basis of the HydroClass

were originally developed for S-band radars [10][21]. Vaisala has recently added a new

X-band radar WRS400 into its radar offering, which causes a need to adjust the param-

eters of the HydroClass for an X-band system. HydroClass parameters have previously

been adjusted for C-band radars, and these parameters work as the starting point of this

study.
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The aim of this work is to adjust the parameters of the HydroClass algorithm and improve

the performance of an X-band weather radar system’s hydrometeor classification. Also,

the aim is to study the changes caused by the parameter adjustments and evaluate the

quantity and the significance of the changes in the results.

The adjustments are made based on literature references as similar adjustment pro-

cesses have been carried out before for other fuzzy hydrometeor classifiers. For exam-

ple, Dolan and Rutledge studied hydrometeor classification with X-band weather radars

in their article A theory-based hydrometeor identification algorithm for X-band polarimet-

ric radars [3] and Al-Sakka et. al describe the differences in the classification schemes

between the different frequency bands in their article A new fuzzy logic hydrometeor clas-

sification scheme applied to the French X-, C-, and S-band polarimetric radars [20].

Verifying the performance of a weather radar is not an easy task due to the nature of

the measurement. The measurement volumes observed by a radar are large and it is

impossible to replicate them in a controlled environment. Therefore, the performance val-

idation must be done based on real weather data measured by a WRS400 radar located

at Vaisala headquarters in Vantaa. In this work, a few simple methods to analyze the per-

formance of the HydroClass are presented. The results of the HydroClass are compared

to data from a ground-based forward scatter sensor, Vaisala FD70. This provides an

accurate reference point, but it considers only a tiny portion of the radar’s measurement

volume. Therefore, the mentioned method is supported by counting the occurrences of

different hydrometeor types given by HydroClass using the old and the adjusted parame-

ters in large measurement volumes. The data is also inspected visually.

This work is divided into the following chapters. Chapter 2 provides the theoretical back-

ground for the thesis. This includes an introduction to the basic operating principle of

a weather radar, an overview of fuzzy logic focusing on solving classification problems,

and a description of the HydroClass algorithm. In the final section of chapter 2, the phe-

nomena that cause the need for adjusting the parameters are introduced. Chapter 3

introduces the methodology and the data set used in the performance validation. This

also includes a short description of the devices that were used to collect the data. In

chapter 4, the parameter adjustments and the results from the performance analysis are

presented. The conclusions from the analysis and possible ideas for further studies and

improvements are presented in chapter 5. Chapter 6 summarizes the key content and

findings of this work.
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2. THEORETICAL BACKGROUND

Even though the basic working principle of a radar is rather simple it is a really complex

device. As the first part of the theoretical background, a brief introduction to weather

radar measurement is presented. The focus is on the polarimetric data moments that

modern weather radars are capable of providing. These in addition to the reflectivity

of the targets in the radar’s measurement volume, provide ways to analyze the weather

conditions in a versatile and accurate way [14]. Measuring the polarimetric properties

enables the creation of advanced data products such as attenuation-corrected reflectivity,

rainfall estimation, and hydrometeor classification, the main topic of this work.

Fuzzy logic is a regularly used, if not the most frequently used, tool to solve the problem

of hydrometeor classification [20]. Polarimetric data moments are key inputs for classifi-

cation. In some methods, temperature or melting level height data are used as inputs as

well to include additional information about the surrounding conditions [15]. All in all, the

polarimetric capabilities of modern weather radars and fuzzy logic are the key to accurate

hydrometeor classification.

HydroClass is the fuzzy logic based method that Vaisala uses for hydrometeor classifica-

tion. In general, weather radars operate on three different frequency bands, S, C, and X.

The parameters of the HydroClass algorithm are dependent on the frequency band that

the radar is operating on or, in other words, the wavelength of the transmitted signal. The

motivation of this work is the phenomena that cause different scattering phenomena in

different frequency bands. The aim of this work is to adjust the parameters of the Hy-

droClass algorithm to improve its performance in an X-band weather radar system. The

start point of the adjustment process is the HydroClass parameters adjusted for C-band

radars. The adjustments are needed because the scattering of the transmitted signal is

different based on the wavelength of the signal.

This chapter provides the theoretical background for precipitation classification by dis-

cussing the mathematical basis of the HydroClass algorithm and the public methods that

the HydroClass is based on. The basics of the weather radar and the data moments

measured by a dual-polarization weather radar are introduced. Finally, the phenomena

that cause the need for the frequency band specific adjustments are discussed.
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2.1 Weather radar

Next, the basics of weather radar are briefly introduced. Dual-polarization and especially

the capabilities provided by it are also discussed. The content of this section is based on

Skolnik’s Radar Handbook [14] and Rinehart’s Radar for meteorologists [16].

2.1.1 A Brief introduction and an overview to weather radars

The basic working mechanism of radar is to emit a high frequency electromagnetic signal

that scatters from objects in the signal’s way [13]. Some of the scattered signal is received

and detected back at the radar. Based on the time delay and the frequency shift of the

returned signal, the distance, speed, and direction of the encountered object can be

determined. The radar measurement can be summarized in the following steps.

1. The radar sends a pulse of electromagnetic energy into the atmosphere.

2. Some of the transmitted signal encounters object(s) on its way and the energy of

the signal scatters in many directions.

3. Some of the scattered signal, also referred to as echo, returns back to radar and is

received by the antenna.

4. The echo is amplified and moved into signal processing.

5. The signal processor processes the data and the data products are computed.

The summarized steps are based on reference [14]. Figure 2.1 shows a simplified block

diagram of radar with the most critical components.

Figure 2.1. A simplified block diagram of a radar. Figure is based on reference [16].

The transmitter sends out the signal with a suitable waveform. A typically used transmit-

ter option in weather radar applications is the magnetron transmitter. A magnetron trans-

mitter is a vacuum tube device that generates microwave signals by applying a strong

magnetic field to accelerate electrons emitted from a heated cathode, causing them to
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spiral in resonant cavities within the anode. This spiraling motion, known as cyclotron

resonance, produces amplified microwave radiation. Another option is to use solid-state

transmitters. They generate signals using semiconductor devices, like transistors, without

relying on vacuum tubes. These transmitters manipulate and amplify electrical currents

through solid-state materials, converting them into high-frequency signals. Solid-state

transmitters offer advantages such as efficiency, reliability, and compact size compared

to traditional vacuum tube-based systems [14].

The modulator’s purpose is to switch the transmitter on and off and provide the right

waveform for the pulse to be transmitted. In other words, it tells the transmitter when to

transmit and for how long. The waveform selection is a topic that is largely omitted in

this work but generally, a common waveform could be a series of narrow, rectangular-

like pulses. A typical order of magnitude for the duration of a pulse is between 0.1 and

10µs. The pulse duration affects the range resolution of the radar measurement. Solid-

state transmitters require the usage of longer pulses to compensate for their lower peak

power compared to magnetron transmitters. Similar range resolution can be maintained

by using pulse compression techniques [14]. The rate at which the radar transmits is

called the pulse repetition frequency (PRF). The PRF and the pulse duration together

limit the maximum range of the measurement. The echoes from the transmitted pulse

must have time to travel back to the radar before the transmission of the next pulse.

The antenna, which is the most visible and recognizable part of radar, is the device that

directs the transmitted signal into the atmosphere. Directing the transmitted signal is

done to concentrate the power and at the same time enable determining the direction of

the detected targets. The directed transmitted energy is called a beam. The antenna

also collects the echoes. The antenna design, shape, and size in combination with the

wavelength of the used signal determine the width of the radar beam and the resolution

to separate targets in angle. A typical beam width in weather radar applications is 1◦. The

antenna can rotate with respect to both the horizontal and vertical axes. The horizontal

angle that the antenna is pointed at is called the elevation angle and the vertical angle is

called the azimuth angle. The azimuth is reported with respect to North. So, azimuth of

0◦ means that the radar is pointed North and 90◦ means the radar is pointed East, and so

on.

The receiver is the component that detects, amplifies, and down converts the signals col-

lected by the antenna. These echoes are often very weak, which means that the receiver

must be very sensitive. From the receiver, the echo signal is directed to the signal proces-

sor. The signal processor’s role is to carry out different computational procedures, such

as quality control, calibration, and data processing. The role of digital signal processors

has increased in weather radars in recent years. They enable fast and comprehensive

computation of different data products. Some of these data products are presented in the

next chapter.



6

The duplexer protects the receiver from the high power emitted by the transceiver. The

receiver is designed to detect echoes whose power is several orders of magnitude smaller

compared to the power of the transmitted signal. Therefore, the receiver could be dam-

aged if it is exposed to the transmitted power. The duplexer prevents this from happening

by blocking the transmitted signal from getting to the receiver. On the other hand, it also

directs the received echoes to the receiver rather than the transmitter. All in all, the du-

plexer allows for the use of the same antenna for transmitting and receiving.

Weather radar can be run using different kinds of measurement schemes, but a typical

way to operate a weather radar is a so-called volume scan. In a volume scan, the antenna

rotates full 360◦ about the vertical axis. The elevation angle stays constant during the full

rotation. This process is repeated using multiple different elevation angles to measure a

big volume of the atmosphere surrounding the radar.

2.1.2 Data moments measured by a polarimetric weather radar

The signal transmitted by a weather radar is polarized. This means that the electromag-

netic signal only vibrates in a specific orientation. Modern weather radars transmit and

receive two orthogonal polarizations, horizontal and vertical. This does require some

changes to the radar hardware. For example, the radar must have separate transmitting

and receiving channels for each polarization. Transmitting a dual-polarized signal is not a

trivial task and the theoretical background of the technique must be omitted in this work.

However, a good overview of simultaneous horizontal and vertical transmission and its

repercussions are given in an article by Scott et. al The Use of Simultaneous Horizontal

and Vertical Transmissions for Dual-Polarization Radar Meteorological Observations [22].

Dual polarization gives significantly more information about the observed precipitation

compared to using only one polarization. The additional information originates from com-

paring and combining information from received echoes from horizontal and vertical chan-

nels. This enables a better understanding of properties such as scatterers’ shape, size,

phase, and orientation. Next, some of the most common polarimetric data moments are

introduced. The following definitions are from Merrill Skolnik’s Radar Handbook [14].

Reflectivity describes how much of the energy is reflected back from the target. In weather

radar’s case, hydrometeors in the measured volume are the targets. Reflectivity is usually

denoted by Z and its magnitude is reported in decibels. Polarimetric radars can measure

reflectivity from both horizontal and vertical channels. Reflectivity values from horizontal

and vertical channels are denoted by Zh and Zv respectively. In this work, reflectivity

refers to horizontal reflectivity Zh if not mentioned otherwise.
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Differential reflectivity is a ratio of the horizontal reflectivity and the vertical reflectivity. It

is defined by

Zdr = Zh − Zv, (2.1)

where Zdr is the differential reflectivity. Zh and Zv are in decibel units. Positive Zdr indi-

cates more prominent horizontal echoes, which is common for large raindrops. A negative

value, on the other hand, indicates more prominent vertical echoes, which may occur in

hail or graupel.

The cross-correlation ratio also describes the relation between the horizontal and vertical

echoes as it is the correlation coefficient between horizontal and vertical echoes. The

cross-correlation ratio is computed using the formula for the Pearson correlation coeffi-

cient

ρhv =
Cov(Zh, Zv)

σhσv
, (2.2)

where ρhv is the cross-correlation ratio, σh and σv are standard deviations of reflectivity

in horizontal and vertical polarization respectively, and Cov(Zh, Zv) is the covariance of

horizontal and vertical reflectivity. If the target is precisely spherical, ρhv = 1 as the hori-

zontal and vertical echoes would be equal. On the other hand, if there is no correlation at

all then, ρhv = 0. Generally, all meteorological targets are very close to a spherical shape,

but higher values indicate uniform precipitation areas and lower values more mixed hy-

drometeor types, such as melting snow, wet snowflakes, or airborne debris. Significantly

lower values indicate noise or ground clutter targets such as buildings.

Differential phase is the phase difference between horizontally and vertically polarized

signals given by

φdp = φh − φv, (2.3)

where φdp is differential phase and φh and φv are horizontal and vertical phases respec-

tively. Closely related to the differential phase, the specific differential phase is the rate of

change of the phase difference between the horizontal and vertical channels. It is given

by

Kdp =
dφdp

dr
, (2.4)

where Kdp is specific differential phase and r is range. Effectively, Kdp is the range

derivative of measured φdp. Greater horizontal shift results in a positive Kdp value while
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greater vertical shift results in a negative Kdp. As φdp is often regarded as a data moment

prone to noise, Kdp is computed over a longer range window rather than between just

two successive range bins. Kdp is a really useful data moment in many applications

because it is not affected by propagation attenuation and it is related to the intensity of

the precipitation [30].

One additional data moment that is worth mentioning in this context is signal to noise ratio

which is given by

SNR = 10 log10

(︃
Psignal

Pnoise

)︃
, (2.5)

where SNR is signal to noise ratio in decibel units and Psignal and Pnoise are the power of

the radar return signal and power of the background noise in the received echo respec-

tively. It is a measure comparing the level of the desired signal to background noise. It

can be used as a threshold in processing the data in order to exclude noisy data points.

Based on the polarimetric data moments, it is possible to create more advanced data

products such as hydrometeor classification or rainfall estimation. In this work, the focus

is on hydrometeor classification and especially Vaisala’s HydroClass algorithm. The po-

larimetric data moments act as inputs for the algorithm. Classification performed by the

HydroClass algorithm is based on fuzzy logic. Next, we will take a brief look into fuzzy

logic and how it can be used to solve a classification problem.

2.2 Fuzzy logic

Fuzzy logic can be described as an extension of traditional logic. Traditionally, logic de-

fines truth value as a binary variable that can have a value of 1 or 0, true or false. In

fuzzy logic, a continuous transition between truth values 0 and 1 is allowed. In a way,

introducing fuzzy logic represents a transition from asking the question, ’Does x belong

to class y?’ to asking, ’To what extent does x belong to class y?’ [27]

In this section, basic fuzzy logic concepts, such as fuzzy sets, membership functions, and

inference, are introduced focusing on a viewpoint of a classification problem. A general

framework for implementing a fuzzy logic based classification algorithm is presented and

finally, the strengths and weaknesses of fuzzy systems are discussed.

2.2.1 Fuzzy sets and membership functions

Before diving into fuzzy classifiers we must define some basic concepts of fuzzy logic.

The definitions and theorems presented in this chapter are from reference [24].
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Even though the topic at hand is fuzzy logic, let us first discuss sets as they are under-

stood in classical logic. These sets will be referred to as classical sets in this work to

separate them from their fuzzy counterparts. When it comes to classical sets, an element

either belongs to the set or it doesn’t. A mapping that defines belonging to a given set is

presented below.

Definition 2.1. Let A be a classical subset of X . Then function χA : X → {0, 1}, where

χA is membership function of set A that defines if element x ∈ X belongs to set A.

Function χA is of the form

χA(x) =

1 x ∈ A,

0 x /∈ A.
(2.6)

Figure 2.2 presents a visualization of a classical set.

Figure 2.2. An example of a classical set.

As previously mentioned, in fuzzy logic, an element may have a degree of belonging to a

set that is less than 1 but greater than 0. Definition 2.1 mentions membership functions.

Generally, membership functions describe the degree to which a given input x belongs

to a given set A, and they are a concept that is heavily tied to fuzzy sets. Membership

functions are used to convert crisp measured values into fuzzy values that are related to

the chosen output values.

Definition 2.2. Let ˜︁A be a fuzzy subset of X . Then a mapping given by µ ˜︁A : X → [0, 1]

is the membership function of the set ˜︁A.

Unlike classical sets, where the membership function always has the form presented in

2.1, a membership function of a fuzzy set may have countless different forms. Figure 2.3

shows some typical examples of shapes that fuzzy sets may have.
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Figure 2.3. Examples of fuzzy sets.

By no means does figure 2.3 include all possible shapes that a fuzzy set could have. The

shape of a fuzzy set doesn’t have to be symmetrical or even convex as the examples

presented here are. Of course, fuzzy sets can be multi-dimensional as well, but for the

reason of simple visualization, the examples in 2.3 were all chosen to be 1-dimensional.

One way to view the shape of a fuzzy set defined by a membership function is by three

properties: core, support, and boundary. Next, we will give the definition for these prop-

erties.

Definition 2.3. Let ˜︁A be a fuzzy subset of X and µ ˜︁A(x) is its membership function. A

membership function’s core, support, and boundary are defined as follows.

Core: ˜︁Acore = {x | µ ˜︁A(x) = 1}

Support: ˜︁Asupport = {x | µ ˜︁A(x) > 0}

Boundary: ˜︁Aboundary = {x | 0 < µ ˜︁A(x) < 1}

To summarize the content of definition 2.3, the core is the region where membership is

full, the support is the region where membership to at least some nonzero extent exists,

and the boundary is the region where membership is not full but exists to at least some

extent. Therefore, the support includes both the core and the boundary regions. Figure

2.4 further illustrates these properties.
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Figure 2.4. Example visualization of a membership functions core, support, and bound-
ary.

As fuzzy logic is an extension of classical logic, it is consistent that almost all of the prop-

erties, operations, and theorems that are used with classical sets can also be defined for

fuzzy sets. For example, operations like union, intersection, and complement are defined

for fuzzy sets similarly to how they are defined for classical sets.[24] Figure 2.5 presents

an example of the mentioned operations for fuzzy sets ˜︁A and ˜︁B that were originally pre-

sented in figure 2.3. It is extremely important to have these operations defined because

it allows combining fuzzy sets with one another and in turn, creating fuzzy systems like

fuzzy classifiers [27].

Figure 2.5. Examples of set operations union, intersection, and complement on fuzzy
sets. The blue line represents the result of operations while the dashed black line shows
the original fuzzy sets.
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Sets visualized in figure 2.3 follow the formulas given in definition 2.4.

Definition 2.4. Let ˜︁A and ˜︁B be fuzzy sets of X and µ ˜︁A(x) and µ ˜︁B(x) be the correspond-

ing membership functions. Then set operations complement, union, and intersection are

defined by the following membership functions.

Complement:

µ ˜︁A(x) = 1− µ ˜︁A(x)
Union:

µ ˜︁A∪ ˜︁B(x) = max(µ ˜︁A(x), µ ˜︁B(x))
Intersection:

µ ˜︁A∩ ˜︁B(x) = min(µ ˜︁A(x), µ ˜︁B(x))
Definitions in 2.4 stand for classical sets too. Classical sets could be seen as a special

case of a fuzzy set as the membership function of a classical set given in definition 2.1

also matches the definition of fuzzy membership function.

As the operations are similar it is clear that important properties of sets such as commu-

tativity, associativity, and transitivity are the same for fuzzy sets too.

Theorem 2.1. Let A,B and C be classical subsets of X . Then, properties of commuta-

tivity, associativity, and transitivity are defined as follows.

Commutativity

A ∪B = B ∪ A,

A ∩B = B ∩ A.

Associativity

A ∪ (B ∪ C) = (A ∪B) ∪ C,

A ∩ (B ∩ C) = (A ∩B) ∩ C.

Transitivity

If A ⊆ B ⊆ C, then A ⊆ C.

The properties and their definitions are identical for fuzzy subsets ˜︁A, ˜︁B, and ˜︁C.

However, there are also differences in the set operations of classical and fuzzy sets. To

be precise, there is particularly one theorem that doesn’t hold for fuzzy sets and that is

the excluded middle law.
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Theorem 2.2. Let A be a classical subset of X . Also, let ϕ be an empty set

ϕ = {}.

Then, the excluded middle law states that

A ∪ A = X,

A ∩ A = ϕ.

Effectively, theorem 2.2 states that any statement is either true or false and there is no

so-called middle ground. Figure 2.6 shows a visualization of the theorem 2.2.

Figure 2.6. Visualization of the excluded middle law.

It has already been established in this work that this is not the case when it comes to fuzzy

logic. Including the "middle ground" is the core essence of fuzzy logic. For example, in

the rightmost plot in figure 2.5 it is clear that the fuzzy set ˜︁A and its complement are

overlapping. Therefore, elements can belong to both sets at the same time. This is

a clear contradiction with theorem 2.2. This is even more evident from figure 2.7. The

figure shows the intersection of a fuzzy set and its complement which is clearly not empty.
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Figure 2.7. Visualization of the excluded middle law not holding for fuzzy sets. The
original fuzzy set ˜︁A and its complement are visible as a black dashed line.

The similarities between the properties of classical and fuzzy sets go beyond what is in-

troduced in this work. However, the main conclusion from the introduced properties and

operations is that fuzzy sets can mostly be handled using the same tools as classical sets,

but there are some key differences that make fuzzy sets more useful in some cases com-

pared to tools that classical logic can offer. Fuzzy logic can handle statements that are

not exclusively true or false. Membership functions are at the core of fuzzy logic as they

are the component that models this "fuzziness". In the next section, membership func-

tions’ usage is discussed further as a general method for fuzzy logic based classification

is introduced.

2.2.2 Rule base and fuzzy logic based classification

Fuzzy logic based classifiers combine information from multiple variables or multiple prop-

erties of the input object, for example, polarimetric properties of echoes measured by a

weather radar. Combining information from multiple variables with fuzzy sets allows mod-

eling human expert-like decision making where different properties are analyzed on how

similar they are to a typical object in a given class. In order to achieve this, the crisp

measurements have to be converted into fuzzy values that describe the mentioned sim-

ilarity. This is what the membership functions are used for [27]. Combining information

from multiple variables requires constructing inference and aggregation rules [10]. Finally,

fuzzy outputs have to be transformed into crisp class labels.
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Let us first introduce a basic structure for implementing a fuzzy logic based classifier and

then discuss each step in more detail. Generally, a fuzzy classifier includes the following

steps.

1. Identification of input variables and output values

2. Fuzzification of the input variables

3. Creating a rule base

(a) Inference

(b) Aggregation

4. Defuzzification of the results

The presented structure is created based on references [10] and [12]. Figure 2.8 further

illustrates the flow of a general fuzzy classifier.

Figure 2.8. Block diagram of a general fuzzy classifier. Adapted from reference [10].

First of all, the relevant input variables for solving the problem must be identified. In the

process of choosing the input variables, one must consider what variables are available

and which variables provide significant additional information for the classification. In
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cases where fuzzy logic is typically used the properties related to output classes are

overlapping. In other words, different classes have partly similar properties. There-

fore, enough input variables are needed in order to discriminate between classes and

for the classification to be accurate. Having too many input variables or output classes is

not good either because that can rapidly increase the number of membership functions

needed and even though fuzzy logic systems are relatively easy to implement this can

make the model hard to maintain. As every pair of input variable and output value needs

their own membership function, the size of the model can easily become too large.

The process of fuzzification was already briefly touched on in the previous section. It

is the process of converting crisp measured values to fuzzy values using membership

functions [24]. Therefore, this phase also includes formalizing the membership functions.

Selecting suitable membership functions can be tricky and it requires extensive knowl-

edge of a given topic [12]. Membership functions are often based on previous research

such as observed properties and distributions [18]. Each input variable and output class

combination requires its own membership function. Therefore, a system that takes m

input variables and has n output values needs n ·m membership functions. This further

illustrates the need to consider the number of inputs and outputs carefully.

The fuzzification of the crisp inputs provides n times m fuzzy values that describe to

what degree input belongs to a given class based on a given variable. To combine the

information from all variables inference is needed. In practice, this means a set of IF-

THEN rules. A fuzzy rule system is presented below in definition 2.5.

Definition 2.5. Let x be the object to be classified by the fuzzy classifier and i = 1, . . . , n

be the possible output classes. Furthermore, let xj, j = 1, . . . ,m be input variables of a

fuzzy classifier system, ˜︁Bi be fuzzy outputs of the classifier, and ˜︁Aij be fuzzy subsets of

Xj . Then a fuzzy rule system is defined as follows.

Rule 1: IF x1 is in ˜︁A11 and · · · and xm is in ˜︁A1m THEN x is in ˜︁B1

Rule 2: IF x1 is in ˜︁A21 and · · · and xm is in ˜︁A2m THEN x is in ˜︁B2

· · ·

Rule n: IF x1 is in ˜︁An1 and · · · and xm is in ˜︁Anm THEN x is in ˜︁Bn

Membership functions µij(x) describe to what extent does input variable xj belong to

fuzzy set ˜︁Aij .
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Fuzzy logic allows input x to belong to multiple outputs ˜︁Bi. Therefore, a way is needed to

define the strength of each rule. Maybe the simplest way rule strength could be defined

is a weighted sum.

RSi =
m∑︂
j=1

wjµij(xj), (2.7)

where RSi is the rule strength of rule i and wj is the weight given to jth statement in the

rules IF part. This is only one possibility for computing the rule strengths. The formula

can be a product, a sum, a hybrid of the two, or possibly even something else. The

product method minimizes the possibility of absurd classifications as even one clear out

of range value will make sure that the corresponding absurd class is not chosen. On the

other hand, the additive method provides more control to determine how much each input

variable affects the classification [9]. Again, just like in membership function selection,

expertise is needed in order to pick the right formula. Some variables are often better

indicators for classification than others and then it makes sense to emphasize them in the

rule strength computation.

An important note about rule strength is that the values should not be confused with

probabilities. The value is not the probability of input belonging to output ˜︁Bi. It is a

reference value and it enables comparison between different output sets. Also, depending

on the chosen formula, the rule strength value is not even necessarily limited to interval

[0, 1].

The process of obtaining the final conclusions from IF-THEN rules is called aggregation

[24]. The simplest way to achieve this is to choose the greatest value of the computed

rule strength. This so-called maximum method can be written as

y = argmax
i

(RSi). (2.8)

The final part of a fuzzy classification process is defuzzification. This means converting

the fuzzy output of the rule base to a crisp output value. In other words, it returns the

class label that corresponds to the aggregation result.

In conclusion, fuzzification is a transition from crisp values to a fuzzy system and defuzzi-

fication is a transition back to crisp values. On the other hand, membership functions and

the rule base determine the model’s operational logic. Chapter 2.3 will provide an exam-

ple of the classification process as the hydrometeor classification scheme is introduced,

but next the strong and weak points of the fuzzy logic are discussed.
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2.2.3 Strengths and weaknesses of fuzzy systems

Before starting the implementation of a fuzzy logic classifier, one should decide if fuzzy

logic is a suitable tool for the problem at hand. Fuzzy logic is a great tool when input

values may be noisy or imprecise and the rules that tie input values to outputs may be

vague [33]. Both of these aspects are presented in the case of hydrometeor classification

too. The nature of weather radar measurement makes it so that the measurements are

quite prone to noise. There are targets such as tall buildings, trees, bugs, pollen, or

debris in measurement volume that may significantly affect the measured values. Also,

many of the measured polarimetric data moments are prone to errors as their value scale

are rather small to start with. For example, differential reflectivity Zdr in weak rain typically

gets values that are very close to zero. This value is prone to noise, in the case of

decreased signal-to-noise ratio. The vagueness of the rules and output classes is also an

apparent issue in the hydrometeor classification problem. Rules that state how typical a

given input value is for a given class are often overlapping between different precipitation

types. Also, classes, such as light and moderate rain or wet and dry snow, are rather

vague and may be hard to tell apart from one another even by a human observer.

But maybe the most significant aspect that makes fuzzy logic an especially useful tool

in hydrometeor classification is that implementing a model based on traditional logic or

statistics would be exponentially harder than a fuzzy logic system. For example, imple-

menting a Bayesian model or a decision tree classifier would require coming up with strict

thresholds for different classes but that is not possible because properties of a given

hydrometeor type are not exclusive to it and therefore the properties are overlapping.

Another option could be a statistical model but that is significantly more challenging and

laborious to implement in comparison to a fuzzy system [10]. Also, fuzzy logic classifiers

have historically proven to be quite effective in this task [9][20].

Fuzzy systems have their problems as well. First of all, determining the membership

functions can be a challenging task and requires expertise in the field of the given clas-

sification problem. Unlike some machine learning methods, fuzzy systems do not have

memory and because of that, they lack the ability to learn and adjust themselves. There-

fore, hybrid models that combine fuzzy logic with machine learning methods are becoming

more common. This transition is visible in recent literature about hydrometeor classifica-

tion as well. For example, references [2] and [15] describe methods in which a fuzzy

classifier is used in combination with clustering methods, and reference [10] describes a

method in which a fuzzy classifier is adjusted using neural networks. The methods for

analyzing the stability of the model are not as straightforward as for many other common

classification methods. Lastly, the term ’fuzzy logic’ might be misleading to some [12].

Despite the word fuzzy being related to a lack of precision, there is nothing fuzzy in the

method. Instead, it is all built on a firm mathematical foundation as shown in this chapter.
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2.3 HydroClass

HydroClass is Vaisala’s hydrometeor classification algorithm. HydroClass is a combina-

tion of public methods, all of which are based on a fuzzy logic approach. The three main

parts of the algorithm are MeteoClassifier, PreClassifier, and PrecipClassifier [29]. Me-

teoClassifiers is based on a fuzzy classification method developed by the Colorado State

University (CSU) [10]. The implementation follows the revised version of the CSU method

described in reference [9]. PreClassifier and PrecipClassifier are both based on a method

developed by the National Severe Storms Laboratory (NSSL) [21].

The methods mentioned above are all different when it comes to input data moments,

membership functions, and use cases within HydroClass. Next, the components of Hy-

droClass and the methods that they are based on are introduced in more detail.

2.3.1 MeteoClassifier

MeteoClassifier is part of the HydroClass algorithm that performs the actual hydrometeor

type classification. Implementation closely follows the method originally developed at the

Colorado State University [9]. However, the original CSU method uses 10 final output

classes while Vaisala’s implementation uses only six. The original model has different

classes for small and large hail and drizzle and rain while MeteoClassifier only has one

class for hail and one class for liquid form rain.

The hydrometeor classes that Meteoclassifier use are ’Rain’, ’Wet snow’, ’Dry Snow’,

’Graupel’, ’Hail’, and ’Rain&Hail’. However, inputs that fall under class ’Rain&Hail’ are

reported as ’Hail’ in the final output. Finally, there is a ’No met’ class which is given for

input with no weather signal. This means either a non-meteorological target like a building

or a bird or some other non-meteorological target.

Polarimetric data moments reflectivity (Zh), differential reflectivity (Zdr), specific differen-

tial phase (Kdp), and cross-correlation coefficient (ρhv) are the inputs of MeteoClassifier.

In addition, observation altitude (h) and melting level height (hML) are used as inputs.

The melting layer is the altitude interval in which the frozen hydrometeors melt to liquid

form and the top of this layer is called melting level [4]. The air temperature is a useful

variable in hydrometeor classification and it is typical that classification algorithms take

it into account in some way. For example, some methods may use temperature data

from soundings as an additional input [34]. The CSU method and the MeteoClassifier

use the observation altitude and the melting level height to achieve the inclusion of the

temperature data [10].
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Membership functions for all inputs and classes have the same form. The formula for

membership functions is

µij(xj;mij, aij, bij) =
1

1 +

(︃(︂
xj−mij

aij

)︂bij
)︃2 , (2.9)

where x is any of the input variables Zh, Zdr, ρhv, Kdp or h. Parameters m, a, and b define

the shape of the membership function and they are different for each pair of input variable

and output class. The parameter m is the middle point of the membership functions core,

the parameter a determines the width of the core, and the parameter b determines the

slope of the boundary region as described by definition 2.3.

Membership functions corresponding to Zh and ρhv follow exactly the form presented in

2.9. Figures 2.9 and 2.10 present visualizations of these membership functions.

Figure 2.9. MeteoClassifier’s membership functions for ρhv.



21

Figure 2.10. MeteoClassifier’s membership functions for Zh.

The other input variables require a two-dimensional version of the membership function.

For Zdr and Kdp, this is achieved by defining the parameters m, a, and b as functions of

reflectivity Zh. So for these two input variables

m = m(Zh), a = a(Zh), and b = b(Zh). (2.10)

In the MeteoClassifier, the functions presented in 2.10 are fourth degree polynomials.

Two dimensional membership functions are needed because Zh and Zdr, or Zh and Kdp,

are not independent [10]. This is clearly illustrated in figure 2.11 which presents a Zdr, Zh

-scatter plot from real measurement data from a rain event.

Figure 2.11. A scatter plot of measured Zdr and Zh
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Figure 2.12 shows the two dimensional membership functions. The figures show the area

where the truth value is above 0.5. The tone of color illustrates the truth value. The darker

the color the lower the truth value.

Figure 2.12. MeteoClassifier’s two dimensional membership functions.

The membership functions for altitude h are also two-dimensional, but parameters are

defined as functions of melting level height hML. So, hML is not used in the same way as the

other input variables, but it defines parameters for altitude’s membership functions. Figure

2.13 presents membership functions for altitude when hML = 2.5 km. These functions

shift linearly as the melting level height is changed.
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Figure 2.13. MeteoClassifier’s membership functions for altitude, hML = 2.5km.

Rule strengths are computed using summation and product hybrid formula adapted from

the CSU method [9]. Coefficients in the formula are different for warm and cold seasons.

Cold season is defined as the time when hML < 0. Rule strengths are computed using

the formula

RSi,warm = µi(Zh)× µi(h)× µi(Zdr) + 0.5× µi(Kdp) + 0.5× µi(ρhv)

RSi,cold = µi(Zh)× 0.7× µi(h)× µi(Zdr) + 0.3× µi(Kdp) + 0.5× µi(ρhv).

The cold season formula is applied whenever a negative melting layer height is given as

an input. Aggregation and defuzzification are performed using the simple maximum rule

presented in 2.8.

2.3.2 PreClassifier and PrecipClassifier

PreClassifier and PrecipClassifier are different versions of the hydrometeor classification

method developed in the National Severe Storms Laboratory (NSSL) in Oklahoma [21].

The original NSSL method’s membership functions were adjusted and performance was

validated with data from the Joint Polarization Experiment (JPOLE). JPOLE took place

from the spring of 2002 until the summer of 2003 on a testbed radar located in Oklahoma.

It aimed to test and prove the capabilities of polarimetric weather radars [19].
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The two classifiers have different purposes within HydroClass. PreClassifier, as the name

suggests, works as a first check and quality control to detect range bins that contain sig-

nals from meteorological scatterers. Output classes of PreClassifier are GC/AP (Ground

Clutter/Anomalous Propagation), BIO or biological targets, and METEO or meteorologi-

cal scatterers. Only METEO range bins are then passed on to be classified by the other

methods. On the other hand, PrecipClassifier’s role is to determine the severity of the

rain. Its output classes are light, moderate, heavy rain, and large drops.

Input variables for both PreClassifier and PrecipClassifier are reflectivity Zh, cross-correlation

coefficient ρhv, differential reflectivity Zdr and differential phase φdp. Differential phase is

not used as is but the input variable is so called texture parameter of φdp. To obtain

the texture parameter, data is averaged over a running average window and then the

smoothed estimates are subtracted from the original values. This results in the standard

difference. Effectively, this means the formula

TX(x) =

∑︁n
i=1 xi

n
− x, (2.11)

where n is the number of range bins included in the running average window. The texture

parameter of the reflectivity Zh is also used as an input. So, Zh is used in two ways.

PreClassifier uses trapezoidal membership functions. Their formula is defined by

µij(xj; aij, bij, cij, dij) =



0 if xj ≤ aij
xj−aij
bij−aij

if aij < xj < bij

1 if bij ≤ xj ≤ cij
dij−xj

dij−cij
if cij < xj < dij

0 if xj ≥ dij

(2.12)

where xj is the input variable and aij, bij, cij, and dij are the parameters are different

for each input variable and output class combination. These parameters determine the

shape of the function as presented in figure 2.14.
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Figure 2.14. An example trapezoidal curve illustrating the meaning of parameters a, b, c,
and d.

Similarly to the MeteoClassifier, Zdr requires two dimensional membership functions where

parameters a, b, c, and d are functions of Zh. PreClassifier’s Zdr membership functions

are presented in figure 2.15.

Figure 2.15. PreClassifier’s membership functions for Zdr.

The other input variables have one dimensional membership functions following formula

2.12. The membership functions for ρhv and Zh are shown in figure 2.16.
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Figure 2.16. PreClassifier’s membership functions for ρhv and Zh.

The membership functions for both texture parameters are shown in figure 2.17.
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Figure 2.17. PreClassifier’s membership functions for the texture parameters.

PrecipClassifier classifies the members of the ’Meteo’-class into different classes based

on the intensity of the precipitation. The current implementation of PrecipClassifier uses

the same membership functions for ρhv,TX(φdp), and TX(Zh) as the ’Meteo’-class of the

PreClassifier. Figure 2.18 presents the membership functions for reflectivity Zh.
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Figure 2.18. PrecipClassifier’s membership functions for Zh.

Both PreClassifier and PrecipClassifier use simple additive rule strength formula

RSi =
5∑︂

j=1

µij(xj), (2.13)

where xj is one of the input variables. Again, aggregation and defuzzification are per-

formed using the simple maximum rule presented in 2.8.

2.4 Adjusting parameters for X-band radar

There are three different frequency bands that weather radars operate on, S-, C-, and

X-band. Table 2.1 shows key figures of the frequency bands. The actual operational fre-

quency and wavelength of an individual radar are chosen within the presented ranges.

Typically, radar networks consist of S- and C-band radars. S-band’s frequency is gen-

erally good for detecting rain because of the used frequency [14]. A lower frequency

would produce weaker echoes from rain particles and a higher frequency would make the

system prone to attenuation effects.

C-band is a bit more vulnerable to attenuation but the significantly smaller size of the

device compared to S-band often makes it a more viable and cheaper option. X-band

radars’ usage is limited due to decreased measurement range and increased attenuation

effects compared to S- and C-band [6]. But they are really useful for filling gaps in S- and

C-band radar networks [18]. Due to their size, X-band radars can also be used in mobile

radar applications.
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Table 2.1. Weather radar bands and the corresponding frequency bands and wave-
lengths. Table is created based on reference [16].

Band Designation Nominal Frequency Nominal Wavelength

S 2-4 GHz 15-8 cm

C 4-8 GHz 8-4 cm

X 8-12 GHz 4-2.5 cm

Both the CSU and NSSL methods were originally developed for S-band systems [10][21].

Over the years, various papers have been published on efforts to modify the methods to

work on C- and X-band systems, and the efforts have been successful. The differences

of the three frequency bands have been discussed on a theoretical level on multiple oc-

casions [1][3][18]. Hydrometeor classification methods have also been implemented and

field tested many times on X-band systems [8][15][20][34].

In literature references, the optimization of parameters is based on simulations that uti-

lize observed drop size distributions. Based on the simulations, one can then create

theoretical distributions for measured polarimetric variables on different frequency bands

[3]. These distributions do indeed differ from one another which is quite logical as the

wavelength of the signal does affect how it scatters from a target.

Generally, the two aspects that create the need for changing the parameters for different

frequency bands are so-called resonance effects and already mentioned attenuation [18].

At shorter wavelengths, resonance and attenuation effects play a more significant role

than they do in an S-band system. Next, these two phenomena are discussed in more

detail.

2.4.1 Resonance effects

The following introduction of radar targets’ scattering properties is based on reference

[16]. The backscattering cross-sectional area is the size a target appears to the radar.

Therefore, it also quantifies the amount of energy scattered back to the radar from a

target. The backscattering cross-sectional area of a radar target is dependent on the

shape, material, and size of the target. In addition, it is also a function of the wavelength

of the radar observing the target. It is often reasonable to assume that meteorological

targets are spheres. Of course, radar is not measuring individual targets but volume

that includes numerous targets. For spherical targets that are large compared to the

wavelength of the radar, the cross-sectional area is the same as the target’s geometric

areas. That is determined by the formula

A = πr2, (2.14)
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where r is the radius of the target. A target is considered large if D/λ > 10. D is the

diameter of the target and λ is the wavelength. However, if the size of the sphere is small

compared to the wavelength a different formula has to be used. This region is called the

Rayleigh region and the backscattering cross-sectional area can be computed using

A =
π5|K|2D6

λ4
, (2.15)

where |K|2 is a parameter related to the complex index of refraction of the material. A

target can be considered small if D/λ < 0.1. A large number of targets that are measured

by a weather radar fall into the Rayleigh region.

But, some targets are also in the region between the two mentioned regions. Determining

the backscattering cross-sectional area in this region is complicated. This intermediate

region is called Mie or resonance region. In this region, the backscattering cross-sectional

area can actually decrease as the target’s size increases. The size of the backscatter-

ing cross-sectional area oscillates approaching the behavior described in equation 2.14.

Figure 2.19 presents a visualization of this phenomenon.

Figure 2.19. Backscattering cross-sectional area for a metal sphere as a function of
relative frequency. The figure is based on reference [25] from open figure bank [32].

It should be noted that figure 2.19 presents the scattering phenomenon for a metal sphere.

Hydrometeors consist of water which makes the scattering dynamics even more complex

as the parameter K for hydrometeors is dependent on the signal’s frequency [16]. For a

metal object, this parameter can be considered to be a constant.
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Because the scattering regions are tied to the wavelength used by the radar, the radars

operating on different frequency bands encounter resonance effects of different magni-

tudes measuring different sized targets. This has to be taken into account in the mem-

bership functions. The physical background of the phenomenon is largely omitted in this

work. But in short, the differences in the resonance effects for hydrometeors are caused

by the differences in the imaginary part of the dielectric constant of water. The imagi-

nary part of the dielectric constant is greater in the X-band than in the C-band, which

causes the polarimetric data moments measured by an X-band to system behave closer

to S-band [18].

The resonance effects affect the precipitation classes that include the largest particles

which are liquid rain and hail. Their size can fall outside of the Rayleigh region [16][31].

Ryzhkov and Zrnic discuss and study the difference in radar polarimetry at different fre-

quency bands in the article the Radar polarimetry at S, C, and X bands, comparative

analysis and operational implications [18]. The analysis was based on simulated fields

of the polarimetric data moments. Based on the study, the cross-correlation ratio at the

C-band could drop significantly below 0.98 in liquid rain while in the X-band 0.98 can

safely be used as a limit value. The Mie scattering phenomenon can also cause notice-

able higher Zdr values in C-band than in S- or X-band systems. The same phenomenon

can also cause negative Kdp values in C-band. All in all, the resonance effects are more

pronounced in the C-band compared to the X-band.

When it comes to hail, based on simulations that aim to model the described scattering

mechanics, the membership functions for classifying hail should be adjusted so that the

support region is narrowed for Zdr and widened for Kdp in X-band systems compared to

C-band [20]. In addition, the membership function for ρhv can be modified to allow higher

values in the X-band than in C-band. The modifications that are made in this work are

presented in chapter 4.1.

2.4.2 Attenuation

As electromagnetic radiation passes through a medium, a part of the signal’s power is

lost due to absorption and scattering. Power loss caused by absorption refers to the

energy of the electromagnetic signal that is absorbed into the particles of the atmosphere.

Power loss caused by scattering refers to the energy of the transmitted signal that scatters

away from the wanted transmission direction. These two phenomena together are called

attenuation. The description of the attenuation phenomenon given in this chapter is based

on reference [16]. The amount of attenuated power is dependent on the material of the

object and its properties.
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There is always some level of attenuation as the signal transmitted by the radar travels

through the atmosphere. However, the attenuation effects caused by air, clouds, or even

snow are so insignificant that they can typically be neglected. The attenuation caused by

liquid rain, on the other hand, must be taken into account.

The strength of the attenuation is dependent on the signal’s frequency. The higher the

frequency is the stronger the attenuation is as well. Therefore, in X-band systems atten-

uation effects are more intense compared to C- or S-band. For example, in the revised

version of the CSU method described in reference [9], middle point parameter m, de-

fined in formula 2.9, is set to m = 50 for heavy rain while the same parameter is set to

m = 47.5 in X-band system. All in all, the support regions, defined in definition 2.3, are

extended in the case of the liquid rain classes of the revised CSU method.

Because of the attenuation, the reflectivity Zh limits of membership functions have to be

loosened. There are also methods to correct the attenuation effects in the reflectivity

data. Attenuation correction in dual polarization systems is based on differential phase

φdp and specific differential phase Kdp. These data moments are used because they are

not dependent on radar calibration accuracy [30].

2.4.3 Adjustment process

The adjustment of the HydroClass’ parameters in this work is based on a literature re-

view. The start point of the process is the current factory settings for the Vaisala C-band

weather radar WRM200. The parameters to be adjusted are the membership function pa-

rameters m, a, and b in MeteoClassifier and parameters a, b, c, and d in PrecipClassifier.

As mentioned before, in the current implementation only the reflectivity value separates

the different classes in PrecipClassifier. Therefore that is the only part of the PrecipClas-

sifier that is adjusted in this work. Although, it should be mentioned that according to

the references, there are other differences as well [2]. Different polarimetric character-

istics are reported from the rain with different intensities [3][20]. For example, typically

Zdr reaches higher values in heavy precipitation than in light precipitation. This was also

visible in figure 2.11 that showed Zdr as the function of reflectivity Zh. PreClassifier’s

membership functions don’t require adjusting as the targets that are identified, like clutter

targets and biological targets, have very different characteristics compared to meteoro-

logical targets.

All references used in the optimization use either the trapezoidal formula 2.12 or the CSU

formulation 2.9 in their methods’ membership functions. When it comes to the range

of output classes, references are a little different from HydroClass as they often include

more classes. Therefore, the parameters in literature references cannot be used as such

but the results have to be adapted to fit the HydroClass classification scheme using the

general guidelines that are apparent in all adapted references. In chapter 4, the adjusted
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membership functions are presented.

After the parameters have been adjusted based on the literature references, the next step

is to verify that the algorithm does indeed work better after the adjustments. The next

chapter introduces the data and methods that are used in the performance validation of

the X-band adjusted HydroClass.
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3. PERFORMANCE VALIDATION

Performance validation of the adjusted HydroClass is done by comparing results from

classification based on initial C-band specific parameters to classification done using new

adjusted parameters for the X-band system. Weather radar data used in the analysis is

from the Vaisala WRS400 polarimetric weather radar located in Vantaa, Finland. To have

a reference point that is not based on a radar measurement, in situ, ground measure-

ments from a Vaisala forward scatter sensor FD70 are used. Visual comparison of the

results is also performed based on PPI and RHI plots.

Next, the data set and the validation process are described. Instruments that were used

to measure the data are also briefly introduced as well.

3.1 Data

The data used in the analyses of this work was collected using a WRS400 X-band weather

radar and an FD70 forward scatter sensor, both located in Vantaa. All in all, four differ-

ent weather cases are included in the analysis to study how the HydroClass algorithm

behaves in different scenarios.

3.1.1 Weather radar WRS400

Vaisala WRS400 is a polarimetric X-band weather radar using solid state transmitter tech-

nology. The radar used in this work is located at the rooftop of Vaisala headquarters in

Vantaanlaakso, 12km north of Helsinki. It is located 35 meters above sea level. The radar

on top of the Vaisala headquarters is shown in figure 3.1. Northwest and southwest of the

radar, there are trees that block sectors of the radar scan. This is visible as blank sectors

in visual examples presented in chapter 4.3.
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Figure 3.1. WRS400 on the roof of Vaisala headquarters in Vantaa.

The measurement task used to collect the data is a volume scan. This describes a mea-

surement scheme where the radar rotates full 360 degrees using multiple elevation an-

gles. The lowest elevation angle of the volume scan is 1 degree and the highest is 10

degrees. Range resolution is 150m meters and the signal transmitted by the radar has a

beam width of 1◦. The measuring task was run on a four-minute interval.

Figure 3.2. 3D model of X-band weather radar WRS400.

In general, validating the performance of a weather radar is not an easy task. Because

of the nature of weather radar measurement, it is practically impossible to validate per-
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formance in a closed and controlled environment. The validation has to be done based

on available real weather. Performance can then be analyzed by, for example, analyz-

ing distributions of the measured data moments and comparing measured values with

observations made using other weather radars and ground sensors. In this case, the

performance validation is done by comparing the classification given by the WRS400 at

Vantaanlaakso to in situ observations made using an FD70 forward scatter sensor.

3.1.2 Forward scatter sensor FD70

Vaisala FD70 is a forward scatter sensor that is capable of accurately classifying detected

hydrometeors. The sensor transmits a very thin light sheet, which in combination with high

sample frequency allows for analysing each droplet individually. FD70 can measure size,

velocity, and other scattering properties like intensity [7]. With this data, precipitation type

can be determined.

Figure 3.3. 3D model of a FD70 forward scatter sensor.

Because of the above-mentioned properties, FD70 provides good in situ observations

that can be used as a reference point for WRS400 and HydroClass. However, one has

to keep in mind that FD70 measures and observes the precipitation on the ground level

while the weather radar measures the atmosphere tens, hundreds, or even thousands of

meters above ground depending on the distance from the radar. So there is a significant

mismatch in the measurement volumes. The specific FD70 sensor that was used in this

work is located at Helsinki-Vantaa airport, approximately 6.65 kilometers from WRS400 in

Vantaanlaakso at 42◦ azimuth. Therefore, the center of the radar beam is approximately
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150 meters above ground at the lowest elevation angle of the radar’s volume scan. Of

course, there is a huge difference in the sizes of the measurement volumes too. It is

reasonable to assume that conditions at that height are similar to those on ground level but

in some cases, wind and temperature differences could cause differences in the weather

conditions observed by the two sensors.

3.1.3 Data set

The data set of this work includes 5 different weather events. Each of them with different

weather conditions in order to analyze the HydroClass’ performance in different scenarios.

The events are described in table 3.1. The times presented in the table are all in Universal

Coordinate Time (UTC).

Table 3.1. Summary of the test cases.

Time frame (UTC) Melting layer height Event description

2022-08-28 ≈ 3.2 km Hail and heavy rain

16:00-17:00

2023-03-27 < 0km Snowing

02:00 – 08:00

2023-03-27 < 0km Snowing, mixed with frozen

18:00 – 23:15 and liquid precipitation

2023-04-26 ≈ 1.7 km Moderate and light rain

18:00 – 23:15

2023-06-25 ≈ 2.5 km Short and intense raining event

11:00 – 13:00 including some graupel

Melting level height data is from a website hosted by the University of Wyoming [28]. The

website includes data from numerous sounding sites. The data used in this work is from a

sounding site in Tallinn, which is the closest available site from WRS400 in Vantaanlaakso.

It is located approximately 100 km south of the Vantaanlaakso radar site. The sounding

data is from midnight so there is a possibility that the circumstances in the atmosphere

have changed between the radar and sounding measurements.

The first and last test cases listed in table 3.1 are used to visually compare the hail

and graupel detection with the X-band adjusted parameters compared to the old C-band

parameters. Data from the Finnish Meteorological Institute’s operational radar at Vihti

is also used in the visual comparison. This can be assumed to be a reliable comparison

point for as the data is from a governing agency and the data is also used for, for example,

creating weather forecasts and warnings in Finland. In general, FMI’s data is open for

anyone [26]. However, the hydrometeor classification data is only available for the past
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6 days so the data used in this work cannot be retrieved from the site anymore. For the

same reason, the FMI’s data from the hail event on 2022-08-28 could not be used but

the event was reported by the Finnish media. For example, Helsingin Sanomat reported

large hail in Myllypuro, Helsinki [5].

The three other test cases are used in a time series comparison between the FD70 sensor

and the WRS400 X-band weather radar. The methods used for both the visual and the

time-series comparisons are presented next.

3.2 Methods

In this work, the X-band adjusted HydroClass is analyzed using two methods: a compar-

ison with FD70 time series data and a visual inspection and comparison of the results.

3.2.1 Time series comparison between the FD70 and the HydroClass

HydroClass is compared with FD70 hydrometeor classification by plotting time series data

from both sensors. From radar data, the range bin directly above the sensor is picked out

and its hydrometeor class is reported.

Generally, algorithms that consider each bin individually are prone to misclassifications of

single bins [9]. These misclassifications can be caused by individual noisy measurements

and therefore they don’t necessarily mean that the algorithm is not working correctly.

These misclassified bins are easy to pick out by a human eye from PPI plots, for example.

This is, of course, a significant weakness of these kinds of methods but it is not the main

aim of this work to tackle this problem. However, adjusting the membership functions

does decrease the number of these misclassifications too. To minimize the effect of these

kinds of misclassifications in the analysis, a 3×3 window around the sensor is picked out

instead of a single bin.

The range bins are weighted differently in the analysis depending on their distance from

the middle range bin which is the one above the FD70 sensor. The weights are computed

using the formula

wij =

 1
dij

α if dij > 0

1 if dij = 0,
(3.1)

where di,j is the distance between the middle point of the range bin and the middle point

of the center range bin and α is a parameter that controls the strength of the weight

scaling. The formula 3.1 is based on reference [23]. As we are dealing with a 3 × 3

window, i, j ∈ {1, 2, 3} and for center bin i = 2 and j = 2. In this work, the control
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parameter is set to α = 0.2. The value was chosen because it offers a good balance to

the weights. Figure 3.4 shows how a slightly different control parameter value would alter

the weights.

Using the multiplicative inverse of the distance as the starting point of the weight com-

putation, allows us to take the surrounding bins into account in the analysis while giving

more weight on the center bin and the bins closest to it. In this case, as the center bin is

6.6 km from radar, this means the bins that are at the same range but at adjacent azimuth

angles.

The weights are then collected to a one dimensional vector v in which each index corre-

sponds to an output class. The elements of the vector are computed by

vk =
3∑︂

i=1

3∑︂
j=1

wij · [cij = k], (3.2)

where cij is the MeteoClassifier class given to the range bin. In other words, cij ∈ {’No

Met’, ’Rain’, ’Wet Snow’, ’Dry Snow’, ’Graupel’, ’Hail’} and

[cij = k] =

1 if cij = k

0 if cij ̸= k.
(3.3)

The final output class given to the window is then determined by simply picking out the

maximum value from the vector v and the corresponding class. This is given by

cwindow = argmax
k

(vk). (3.4)

Figure 3.4 presents examples of how the method works in action. Examples presented in

figure 3.4 are from real weather data measured by the WRS400 in Vantaanlaakso.
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a) α = 0.1, center result overturned b) α = 0.1, center result overturned

a) α = 0.2, center result overturned b) α = 0.2, center result not overturned

a) α = 0.4, center result not overturned b) α = 0.4, center result not overturned

Figure 3.4. Examples of classifying a 3× 3 window. The final output class of the window
is shown on top of the figure. The weights of individual bins are also shown.
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In the analysis, the results from HydroClass with C-band parameters are compared with

HydroClass with X-band adjusted parameters. The hydrometeor classification data from

the FD70 forward scatter sensor acts as the ground truth to which both HydroClass results

are compared. Results from the described analysis are presented in chapter 4.2.

3.2.2 Radar data visualizations

Two types of visualizations are presented in this work: PPI and RHI plots. A PPI or a

plan position indicator plot is a map-like visualization showing the radar in the middle with

the range increasing outwards. The values of data moments are indicated by colors. The

other visualization type is an RHI or a range height indicator. This type of visualization

shows distance on the horizontal axis and height on the vertical axis. So, a PPI is a polar

visualization and a RHI is a cartesian visualization. Chapter 4.3 presents many examples

of both visualization types.

Visual inspection of the data allows a qualitative comparison between the old parameters

and the new adjusted parameters. We can also see if the new parameters produce re-

sults that are more in line with expected hydrometeor types. For example, aspects such

as whether the melting layer is visible in the data, indicating a region where frozen hy-

drometeor types, mainly dry snow, transition to wet snow and eventually to liquid rain, can

be analyzed. We can also observe the individual rain pixels in the two cold season test

cases mentioned in table 3.1 and investigate if they form a clear cluster or if they are just

individual misclassifications.

To add a quantitative aspect to the analysis, the numbers of different hydrometeor types

appearing in the PPI figures are reported as well. This will give an illustration of how

significant the change is with respect to the number of different classifications. However,

it should be noted that this analysis doesn’t show if the changes are for the better as we

are missing a reliable source of ground truth data for the entire volume measured by the

radar. By visually inspecting the data we can evaluate if the results seem realistic or not.

For example, a coherent region of one hydrometeor type is certainly more realistic than

individual pixels here and there.
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4. RESULTS

In this chapter, the results from the data and analysis methods described in the previous

chapter are presented. The actual changes that were made to the membership functions

of the MeteoClassifier and the PrecipClassifier based on the theory presented in 2.4 are

also presented.

4.1 Changes to the membership functions

Due to the phenomena described in chapter 2.4, changes are made to the MeteoClas-

sifier’s membership functions of the ’Rain’ and ’Hail’ classes. Both of these hydrometeor

types may have large particles that land outside of the Rayleigh region and therefore be

affected by the resonance effects. The modified membership functions are presented

next to the initial functions to highlight the changes. The two dimensional functions are

presented in a similar fashion as in chapter 2.3. In other words, the figures show the area

where the truth value is above 0.5 and the tone of color illustrates the truth value. The

darker the color the lower the truth value.

Figure 4.1 presents the changes made to the ’Rain’ class’ membership functions. The

changes are in line with the observations from the literature mentioned in chapter 2.4. The

support region of the ρhv membership function is narrowed. Similarly, the highest values

included in the fuzzy set of Zdr are lower at the higher end of the reflectivity spectrum.

The boundary region is also a bit wider than before.
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a) Membership functions for ρhv

b) Membership functions for Zdr

Figure 4.1. The adjusted membership function for Meteoclassifier’s ’Rain’-class

Figure 4.2 presents the changes made to the ’Hail’ class’ membership functions. Again,

the changes are made based on the aspects noted in chapter 2.4. The support region

of the ρhv membership function is widened to allow higher values than with the old pa-

rameters. The Zdr membership function is less curved and the support region for Kdp

is widened. The adjusted Zdr membership function is now more in line with literature

because most of the references used in this work use constant support region for hail

[2][8][34]. The modification also leaves the highest and the lowest values of the initial

membership functions’ support region outside of the support region.
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a) Membership functions for ρhv

b) Membership functions for Zdr

c) Membership functions for Kdp

Figure 4.2. The adjusted membership function for the Meteoclassifier’s ’Hail’-class.
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Due to the attenuation effects, the PrecipClassifiers Zh membership functions are shifted

towards the lower end of the spectrum. Figure 4.3 presents the changes made to the

PrecipClassifier’s membership functions next to the old membership functions.

a) Old membership functions

b) Adjusted membership functions

Figure 4.3. The adjusted membership functions for the PrecipClassifier.

As the PrecipClassifier classification is just based on differences in the reflectivity values,

these changes are not analyzed further. The focus is on the changes in the MeteoClassi-

fier. Next, the results from the MeteoClassifier after the adjustments are presented.
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4.2 Results from the time series comparison

The data from three test cases, 2023-03-27 (UTC: 02:00 - 08:00), 2023-03-27 (UTC:

18:00 - 23:15), and 2023-04-26 (UTC: 18:00 - 23:15), are used in order to analyze hy-

drometeor classification results from the HydroClass algorithm and the FD70 forward

scatter sensor. From the FD70, the rain type reported by the sensor is shown. For the

HydroClass algorithm, the reported class is determined by the method described in chap-

ter 3.2.

Figure 4.4 shows the results from the test case 2023-03-27, UTC: 02:00 - 08:00. The

ground truth measurement of the FD70 shows snow for the whole time interval.

a) HydroClass with old parameters

b) HydroClass with modified parameters

c) FD70 classification results

Figure 4.4. Classification results for the test case 2023-03-27, UTC: 02:00 - 08:00.

FD70 doesn’t discriminate between wet and dry snow, but the data clearly shows that

there was no liquid rain at any point. The results from the old C-band parameters show
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six misclassified points where dry snow is reported as rain. The results from the modified

parameters show a significant decrease in the number of misclassifications as there is

only one of them in this case.

The second test case, 2023-03-27, UTC: 18:00-23:15, includes various different hydrom-

eteor types reported by the FD70 sensor. This includes, for example, frozen drizzle, rain

and snow mixture, and rain in liquid form.

a) HydroClass with old parameters

b) HydroClass with modified parameters

c) FD70 classification results

Figure 4.5. Classification results for the test case 2023-03-27, UTC: 18:00 - 23:15. The
dashed lines in the FD70 plot separate solid, frozen, and liquid hydrometeor classes from
each another.

This is a difficult case for the HydroClass algorithm as there is no class that would ex-

actly correspond to the frozen hydrometeor types. Figure 4.5 presents the results from

this case. HydroClass with the old parameters doesn’t seem to react to the frozen hy-

drometeors at all and classifies them all as dry snow apart from one point. Also, there is
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one misclassified point at the start of the interval which appears with the old parameters

but not with the modified parameters. The results from the modified parameters clearly

highlight the time interval where FD70 reported the mixed hydrometeor types as there 12

points classified as rain. None of them land in into the time interval where FD70 reported

standard snow. All in all, the results have improved in this case too. Human observer

looking at the HydroClass results could notice that the precipitation is not just dry snow

but with the old parameters such observation would not be possible.

The last test case, 2023-04-26, UTC: 18:00 - 23:15, is a long-lasting light and moderate

raining event. In this case, there is no difference between the old and modified param-

eters. Even the old parameters manage to classify this event correctly. The results are

shown in figure 4.6.

a) HydroClass with old parameters

b) HydroClass with modified parameters

c) FD70 classification results

Figure 4.6. Classification results for the test case 2023-03-27, UTC: 18:00 - 23:15.
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Figure 4.7 presents how well the HydroClass matches the classification given by the FD70

for the test case from 2023-03-27, UTC: 02:00 - 08:00. For the FD70, the value chosen for

the comparison is an average over three data points with time stamps closest to the time

of the corresponding radar measurement. The values that fall into the diagonal axis are

correct classifications and outside of the diagonal are misclassifications and false alarms.

This shows that with the old parameters there are 7 points outside of the diagonal while

there are only 2 such points with the modified parameters.

a) HydroClass with old parameters b) HydroClass with modified parameters

Figure 4.7. Classification comparison table with the FD70 for a) old parameters and b)
X-band adjusted parameters.

For the other two test cases similar mode of visualization doesn’t provide meaningful

information. For test case from 2023-04-26, UTC: 18:00 - 23:15, both parameters provide

the same result. For the test case from 2023-03-27, UTC: 18:00 - 23:15, HydroClass

doesn’t have corresponding classes to the classification for some of the classes, such as

freezing drizzle or freezing rain, provided by the FD70, which makes matching the results

practically impossible.

All in all, the modified parameters decreased the number of misclassifications in the snow-

ing events without decreasing the performance in the case of the raining event. However,

this analysis is focusing only on a small measurement volume. Therefore, we will next

take a look at the visual comparisons that show a bigger picture of how the modifications

affect the HydroClass’ results.
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4.3 Visual comparison

In this chapter, we will present PPI and RHI plots to illustrate the changes in the results af-

ter the parameter adjustments. From PPI plots, the occurrences of different hydrometeor

types are counted and compared between the old and the modified parameters. The first

visual example is from the snowing event on 2023-03-27. Figure 4.8 shows results from

HydroClass using the old C-band specific parameters and the results from the modified

parameters for X-band.

a) HydroClass with old parameters

b) HydroClass with modified parameters

Figure 4.8. PPI examples of the HydroClass a) with the old C-band parameters and b)
with the X-band adjusted parameters, 2023-03-27, UTC: 05:00
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Figure 4.9 shows PPI plots from the polarimetric data moments corresponding to the

results presented in figure 4.8.

a) Reflectivity Zh b) Cross-correlation ratio ρhv

c) Differential reflectivity Zdr d) Differential phase φdp

Figure 4.9. PPI examples of the polarimetric data moments, 2023-03-27, UTC: 05:00

Figure 4.10 presents the HydroClass distribution from the PPI figure presented in figure

4.8. The noisiest measurements are left out of the analysis so data is thresholded so that

points with signal-to-noise ratio below 10 dB are excluded.
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The number of ’Rain’-pixels dropped from 4041 to 2479 while the number of ’Dry Snow’-

pixels increased from 71844 to 73426. The change is visually apparent in the area marked

by the black circle in figure 4.8 b). It is expected that some dry snow pixels get incor-

rectly classified as rain because their membership functions are overlapping as one can

see from chapter 2.3. Our only ground truth measurement for this case comes from the

FD70 sensor which reported snow on this time period. The FD70 obviously doesn’t cover

the entire measurement volume shown in figure 4.8 but it is reasonable to assume that

weather conditions at its close proximity are similar. Therefore, we can say that it is quite

probable that the decrease in the number of ’Rain’-pixels is a change for the better.

Figure 4.10. Distribution of different hydrometeor types reported by the HydroClass,
2023-03-27, UTC: 05:00

The next examples are from the rain event in 2023-04-26. The results show how the

modified parameters cause the result to be more consistent at the melting level height.

Figure 4.11 shows RHI plots from the HydroClass results with the old and the modified

parameters.
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a) Hydrometeor classification with the old parameters

b) Hydrometeor classification with the modified parameters

Figure 4.11. RHI examples of the HydroClass a) with the old C-band parameters and b)
with the X-band adjusted parameters, 2023-04-26, UTC: 22:50

In plot a) of figure 4.11 some ’Wet snow’ pixels appear even in the measurement volume

which can be expected to be purely rain. These points are marked by black circles. The

melting layer seems to be partly leaking into the liquid rain layer. This phenomenon is not

as visible in plot b) which shows the results from the modified parameters. However, RHI

plots do generally distort the shape of the weather events, especially in the vertical axis

due to the nature of this visualization.
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Figure 4.12 shows RHI plots of the corresponding polarimetric data moments.

a) Reflectivity Zh b) Cross-correlation ratio ρhv

c) Differential reflectivity Zdr d) Differential phase φdp

Figure 4.12. RHI examples of the polarimetric data moments, 2023-04-26, UTC: 22:50

Figure 4.15 shows PPI visualizations from the heavy raining event on 2023-06-25. The

event also included some lightning and graupel. These examples are from an elevation

angle of 6◦.
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a) HydroClass with old parameters

b) HydroClass with modified parameters

Figure 4.13. PPI examples of the HydroClass a) with the old C-band parameters and b)
with the X-band adjusted parameters, 2023-06-25, UTC: 11:42

The graupel bins are more apparent in the classification provided by the modified param-

eters. Again, these areas are marked by black circles. To verify the correctness of this

observation a PPI plot from approximately the same time from FMI’s weather radar in Vihti

is shown in figure 4.14.
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a) HydroClass with modified parameters

b) FMI Vihti hydrometeor types

Figure 4.14. The reported hydrometeor types from FMI’s weather radar in Vihti a) and
the HydroClass results with the X-band adjusted parameters b). The area covered by
WRS400 in figure 4.13 is marked by the red dashed line.
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Because the WRS400 in Vantaanlaakso and FMI’s radar in Vihti are located in different

places and the plots are from different elevation angles there are some clear differences

in the PPI visualizations from different radars. This is because the radars’ beams are at

different altitudes at different ranges. However, the graupel areas, both the one almost

exactly above and the one to the southwest direction of the WRS400, are visible in both

figures 4.13 and 4.14. The improved performance caused by the modified parameters

shows that the graupel areas, especially the one above the WRS400 radar, are more

coherent in plot b) of figure 4.13 than their counterparts in plot a) of the same figure.

These areas are marked by the black circles in figure 4.13 b). Figure 4.15 shows PPI

plots of the polarimetric data moments corresponding to the plots in figure 4.13.

a) Reflectivity Zh b) Cross-correlation ratio ρhv

c) Differential reflectivity Zdr d) Differential phase φdp

Figure 4.15. PPI examples of the polarimetric data moments, 2023-06-25, UTC: 11:42
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Figure 4.16 shows the distribution of hydrometeor types in PPI plot 4.17. The horizontal

axis showing the number of occurrences is set to a logarithmic scale to make the changes

in ’Hail’ visible as their number is significantly smaller than other classes.

Figure 4.16. Distribution of different hydrometeor types reported by the HydroClass,
2023-06-25, UTC: 11:42

The number of bins classified as ’Graupel’ and ’Hail’ has increased from 1012 to 1552

and from 31 to 90 respectively. These changes in combination with the observations from

the FMI data indicate improved performance in graupel and hail detection.

Figure 4.17 shows RHI plots from the same heavy rain event as in figure 4.13. These

visualizations show the same phenomenon that was already observed before graupel

range bins appeared in a more coherent cluster with the modified parameters compared

to the old parameters. In this case, the modified parameters behave in a significantly

more expected way than the old parameters. It is highly unlikely that a graupel cell is

split in between by liquid rain in a way shown in figure 4.17 a). This is probably the

example where the more consistent and expected behavior and classification of the new

parameters are most visible.
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a) HydroClass with old parameters

b) HydroClass with modified parameters

Figure 4.17. RHI examples of the HydroClass a) with the old C-band parameters and b)
with the X-band adjusted parameters, 2023-06-25, UTC: 11:42

Figure 4.18 shows RHI plots corresponding to the HydroClass results presented in figure

4.17. The figure shows that there was a really strong weather echo with reflectivity Zh of

approximately 50 dB in combination with cross-correlation ρhv values too low to be liquid

rain [18]. This further supports that the modified parameters perform better than the old

parameters in this case too.
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a) Reflectivity Zh b) Cross-correlation ratio ρhv

c) Differential reflectivity Zdr d) Differential phase φdp

Figure 4.18. RHI examples the polarimetric data moments, 2023-06-25, UTC: 11:42

The final example of the MeteoClassifier presents data from a heavy rain and hail event

on 2022-08-28. Myllypuro, which is the area where the hail was reported, is located ap-

proximately 12km from WRS400 in Vantaanlaakso at an azimuth angle of approximately

120◦. Figure 4.19 shows the hydrometeor classification results from this event. The group

of hail range bins falls on top of the Myllypuro area.
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a) HydroClass with old parameters

b) HydroClass with modified parameters

Figure 4.19. PPI examples of the HydroClass a) with the old C-band parameters and b)
with the X-band adjusted parameters, 2022-08-28, UTC: 16:36

Again, the modified parameters provide a coherent group of hail bins while the old pa-

rameters show a more sparse group of hail bins. Figure 4.20 shows PPI plots of the po-

larimetric parameters corresponding to the MeteoClassifier results shown in figure 4.19.
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a) Reflectivity Zh b) Cross-correlation ratio ρhv

c) Differential reflectivity Zdr d) Differential phase φdp

Figure 4.20. PPI examples of the polarimetric data moments, 2022-08-28, UTC: 16:36

The polarimetric parameters show an area with strong Zh, relatively low ρhv, and small,

even negative, Zdr. This is a combination that is not typically seen with liquid rain which

further supports that the classification shown in figure 4.20 is reasonable and that the

performance is enhanced with the parameter modification [18].

Figure 4.16 shows the hydrometeor type distribution in the PPI plot 4.19. Again, the

vertical axis is set on a logarithmic scale to showcase the change in the number of hail

bins.
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Figure 4.21. Distribution of different hydrometeor types reported by the HydroClass,
2022-08-28, UTC: 16:36

The number of ’Hail’-pixels increased from 75 to 168. This in combination with the fact

that the hail cell that appeared in figure 4.19 a) was sparse and not coherent, indicates

that the parameter modification increased the accuracy of hail detection.

All in all, the different examples illustrate the improved performance with the adjusted

parameters for the X-band system. It can be seen in the decreased misclassification of

snow bins and a more coherent behavior in graupel and hail events. However, it must

be noted that the quantitative analysis doesn’t necessarily mean increased behavior. But

in combination with the visual inspection, it is likely that the performance has indeed

improved.



64

5. CONCLUSIONS AND DISCUSSION

The aim of this work was to adjust the parameters of the HydroClass algorithm and val-

idate the improved performance after the adjustments. In this chapter, we will discuss if

this goal was met and what could possibly be done in order to enhance the performance

and the analysis methods even further.

5.1 Conclusions from the analysis results and study methods

The performance validation process done in this work can be divided into two parts: time

series comparison with the FD70 forward scatter sensor and visual comparison. Based

on the time series comparison we were able to analyze the HydroClass’ performance in

long-lasting snow and raining events and in a case where a snowing event includes also

mixed hydrometeor types. A summary of the time series comparison with the FD70 is

shown in table 5.1.

Table 5.1. Summary of the FD70 time series comparison

Hydrometeor 2023-03-27 2023-03-27 2023-06-26

type UTC: 02:00 – 08:00 UTC: 18:00 – 23:15 UTC: 18:00 – 23:15

Snow Snow, mixed hydrometeors Rain

Old Modified Old Modified Old Modified

Rain 6 1 2 12 74 74

Wet Snow 13 12 2 3 0 0

Dry Snow 66 72 76 65 0 0

The visual comparison offered a good general view of what changed in the classification

after the parameter adjustments which was supported by simple quantitative analysis of

the hydrometeor type distributions. A summary of the quantitative analysis of the PPI

cases is shown in table 5.2
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Table 5.2. Summary of the hydrometeor type distribution in PPI examples.

Hydrometeor 2022-08-28 2023-03-27 2023-06-25

type UTC: 16:36 UTC: 05:00 UTC: 11:42

Old Modified Old Modified Old Modified

Rain 23554 23738 4041 2479 26426 26054

Wet Snow 0 0 9471 9451 4298 4146

Dry Snow 0 0 71844 73426 14294 14289

Graupel 0 0 0 0 1012 1552

Hail 75 168 0 0 31 90

The first conclusion that can be made from the results of the analysis is that even with the

old parameters, HydroClass performs well in regular snowing and rain events. Especially

in the test case from 2023-04-26, which included a long-lasting rain event, the old and the

adjusted parameters performed identically in the time series comparison. However, the

visual inspection showed that with the modified parameters the behavior of the classifica-

tion algorithm in the melting layer was more consistent with the expected behavior. In the

test case from 2023-03-27 which included a long-lasting snowing event, the parameter

adjustments did significantly reduce the number of snow bins misclassified as liquid rain.

But even the old parameters performed relatively well overall in this case.

In the test case from 2023-03-28 with mixed hydrometeor types, the old parameters did

not seem to react to the changes in the hydrometeor types. In the time series from the

HydroClass using the adjusted parameters, the shift is clearly visible. The time period

that included frozen drizzle and snow and rain mixture is visible as there are more bins

classified as rain. HydroClass doesn’t have an output class that clearly corresponds to

these obscure hydrometeor types but if a human observer were to look at the data from

HydroClass from this time period they should be able to notice that the event did not

consist of dry snow only. That would be impossible from the classifications produced by

the old parameters. This case did also show that the adjustments to the parameters did

not just reduce the number of rain classifications in snowing events but actually caused

the algorithm to perform more accurately compared to the ground observations.

The hail and graupel cases from 2022-08-28 and 2023-06-25 showed a more consistent

behavior with the adjusted parameters than with the old parameters. The graupel and hail

areas appeared to be much more uniform. This is well illustrated in figure 4.17. In the

visual comparison with FMI’s data, the modified parameters showed a great match to the

graupel areas reported by the FMI’s operational weather radar while in the old parameters’

case, some graupel bins could even be interpreted as individual misclassifications rather
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than a clear graupel cell. The improvement in performance is evident in this case too.

All in all, it is clear that the performance of the HydroClass in the X-band system improved

with the parameter modifications. The performance was especially better in snowing

events and in hail and graupel detection. A narrower support in ρhv membership function

and a slightly revised Zdr membership function of the ’Rain ’ class reduced the number

of snow bins incorrectly classified as liquid rain. They also improve the performance in

graupel cases. The membership functions for the ’Graupel’-class were not changed but

the graupel detection still improved. This is due to the changes in the ’Rain’ class. The

modifications made to the ’Hail’-class’ membership functions resulted in a more consistent

behavior of the algorithm in detecting hail cells.

A weakness of the used methods in this work is that they don’t really provide a numerical

value on how big the improvement is. The time series comparison with the FD70 is a

good method in the sense that it is based on reliable ground truth data measured by

the forward scatter sensor. However, the time series comparison is focused only on a

small part of the radar measurement volume. On the other, while the visual comparison

considers larger parts of the measurement volume, it does lack the capability to quantify

and verify the degree of improvement. Counting the classification results and comparing

them between old and modified parameters does tell how much the results did change,

but it doesn’t tell if the change was in the correct direction. Additional conclusions have

to be drawn from the visual inspection on how coherent and expected the classification

result seems to be. Keeping these aspects in mind, we can say that the aim of this work,

improving and validating HydroClass’ performance in an X-band weather radar system,

was clearly achieved but it is impossible to say exactly how big the improvement is.

To improve the accuracy of this analysis method it would be beneficial to have a network

of forward scatter sensors. This would provide more reference points and increase the

probability of a suitable weather event occurring at the location of the sensor. For exam-

ple, we did not have data from a test case in which a hail or graupel event would have

taken place on top of the FD70 sensor at the airport so it was not possible to analyze time

series data from such event. Of course, human observers could be utilized as well but

that is quite laborious and probably not as accurate as the classification provided by the

FD70. Having a network of FD70 sensors in an area covered by a radar network would

provide a great set of data points and an opportunity for a thorough analysis of the Hydro-

Class’ performance. This would also provide a meaningful sample size for the analysis

method presented in 4.7.

Another weakness of the study methods in this work is that the reference values are from a

ground-based measurement and we don’t have similar observations from higher altitudes.

Of, course getting such data is not an easy task. It would require some sort of aircraft with

a suitable sensor or human observer on board. Maybe in the future, it could be possible to
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utilize drones in this manner. FMI’s operational radars do offer data from higher altitudes

as well but in that case, matching the measurement volumes is problematic due to radars

observing the atmosphere from different locations using different directional angles.

Even though the visual comparison doesn’t offer a numerical accuracy value as a result

either, they clearly do still add some value to the analysis. They illustrate how the al-

gorithm behaves in different scenarios and it enables a simple and easy-to-understand

comparison between setups.

5.2 Improvement suggestions and possible topics for further

studies

The literature review and the adjustment process also brought up some ideas for the de-

velopment of the HydroClass and further study topics related to the topic of this work.

First of all, the analysis of selecting a 3×3 window rather than a single range bin showed

that including information about the surrounding bins does improve the classification re-

sults even in this really simple implementation. This takeaway could be developed further

either by including information on the HydroClass classification of the surrounding bins

or the underlying polarimetric data moments. For example, clustering methods could be

used to achieve this like in the revised version of the CSU method [2].

Even though the parameter adjustments significantly reduced the number of snow pixels

incorrectly classified as rain there are some still visible in the results. This is at least

partly because the polarimetric characteristics of dry snow and light to moderate rain

are pretty similar as we can see from the figures 2.9, 2.10, and 2.12. The melting layer

height is already used as an input which does take care of this issue at temperatures

close to 0◦C but it doesn’t solve the issue for clearly freezing conditions. This is because

the membership functions of the melting level height are identical for all cases hML < 0

km. Therefore, the air temperature would be a good indicator that could separate the two

classes. A simple solution for that could be integrating a thermometer into the radar that

would measure the air temperature at the radar site. This could then be used in order to

reject liquid rain classifications in clearly freezing conditions.

Machine learning is a trend that has been on the rise in solving different classification

problems during recent decades. There are also some studies where different machine

learning methods have been used for hydrometeor classification. For example, k-means

clustering and support vector machines have been used in combination with a fuzzy logic

approach [2][15][17]. A convolutional neural network has also been used in order the clas-

sify hydrometeors without fuzzy logic [11]. Out of these cases, the clustering approaches

in combination with fuzzy logic seem to have been the most successful. This could be

a possible addition to be considered in the future if Vaisala’s hydrometeor classification
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scheme is to be updated.

Another observation from hydrometeor classification algorithms presented in the litera-

ture reference is that many algorithms do not use two dimensional membership functions

for any other class than rain [2][21][34]. This makes these systems simpler and easier to

manage. On the other hand, there seems to be a consensus in that for rain the two dimen-

sional membership functions are necessary. This is caused by the physical properties of

liquid water compared to ice [16].

Many hydrometeor classification schemes have more output classes compared to those

in the HydroClass. For example, there are different classes for different sized hail and

graupel [34]. However, this is not necessarily a weakness of the HydroClass. Instead,

it is a question of prioritizing the accurate classification of fewer classes rather than the

inclusion of more classes. Also, increasing the number of classes would also make main-

taining the system harder and of course, require adding a multitude of new membership

functions.

All in all, the study process showed that fuzzy logic is a great tool for hydrometeor clas-

sification. This is supported by the results shown in this work and by the overview of the

literature on the topic. As the visualizations of the membership functions presented in this

work show, the characteristics of different hydrometeors are often overlapping. It would

be hard to model this using classical logic or some other method. Fuzzy logic enables

discriminating different precipitation classes despite their often overlapping characteris-

tics.

When it comes to further study ideas, of course, it would be possible to collect more data

from different weather conditions and analyze time series data from those cases too. A

good further study would also be to analyze how sensitive the algorithm is to changes in

the measured values. For example, how does a slightly incorrect input melting level height

affect the results or what kind of effects does a bias in one of the polarimetric parameters

have? The methods presented in this work provide good tools for these further study

topics if they were to be carried out.

A logical future study topic related to hydrometeor classification is adjusting the other

algorithms that use the polarimetric data moments in order to create advanced data prod-

ucts. For example, attenuation correction and melting layer detection are issues for which

Vaisala provides algorithmic solutions. They should be adjusted for the X-band system

as well.
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6. SUMMARY

Fuzzy logic is a great tool for hydrometeor classification. Its capabilities allow for modeling

the so-called logical middle ground. The main idea of fuzzy logic is to expand the set of

allowed truth values to include any real value between 0 and 1. This means that an object

may belong to multiple alternate classes to some extent. Membership functions are part

of fuzzy systems that model this "fuzziness". They convert the measured values to fuzzy

values, which makes them an essential part of any fuzzy system. Vaisala’s hydrometeor

classification algorithm HydroClass is also based on fuzzy logic.

Modern weather radars measure the polarimetric properties of the hydrometeors. These

variables are the key to hydrometeor classification as their values differ between different

hydrometeor types. Although the characteristics of different hydrometeor types are over-

lapping when it comes to some of the polarimetric properties. Therefore, the classification

is based on multiple polarimetric variables to discriminate between classes.

The polarimetric characteristics detected by the radar are dependent on the frequency

of the radar’s transmitted signal. This is caused by different scattering effects that are

dependent on the ratio of the transmitted signal’s wavelength and the size of the target.

The most significant scattering phenomena, in this case, are resonance effects and atten-

uation. Because of these phenomena, the parameters of the membership functions must

be adjusted for each frequency band. In this work, the modifications were made based

on literature references of previously carried out adjustment processes.

As shown in this work, the performance of a hydrometeor classification algorithm can

be evaluated by comparing it to the results given by a ground-based forward scattering

sensor. To counter misclassifications caused by noisy measurements, a 3 × 3 range bin

window from the radar measurement surrounding the ground-based sensor can be picked

out instead of an individual bin on top of the ground-based sensor. Using this method it

was possible to show that a more accurate classification result in snowy conditions was

achieved with the adjusted parameters compared to the initial parameters. On the other

hand, visual inspection showed a more consistent behavior in graupel and hail detection.

In the future, the performance of HydroClass could be analyzed in a more varied set of

rain cases and the robustness of the method could be investigated further too. Vaisala’s

other algorithms based on polarimetric variables should also be adjusted.
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