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ABSTRACT
The rise of immersive communication due to virtual reality (VR),

augmented reality (AR) and mixed reality (MR) has imposed strin-

gent requirements on the wireless communication systems. A basic

requirement imposed by VR/AR/MR environments (in a Metaverse)

on the communication system is the sensing ability. Therefore, inte-

grated sensing and communication (ISAC) systems are considered

an integral part of the Metaverse. In order to improve the sensing

functionality of the ISAC system within the Metaverse, this paper

proposes an iterative optimization algorithm to solve non-convex

signal to clutter plus noise ratio (SCNR) maximization problem

when the target direction is uncertain. Simulation results demon-

strate that the effectiveness of the proposed algorithm as compared

to the existing schemes which assume apriori information about

the target direction.
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1 INTRODUCTION
In today’s rapidly evolving digital landscape, the Metaverse stands

at the forefront of a paradigm shift, promising to revolutionize the

way we interact, work, and socialize in an immersive, intercon-

nected, and mixed real-virtual world. One distinctive mark of the

metaverse is creating interactive, digital experiences that blend the

boundaries between the physical and virtual worlds. To achieve

this feature, the entities in the real physical world will need to

communicate and interact with virtual entities in the metaverse or

digital counterparts of other physical objects. In this context, immer-

sive communication becomes an essential technique underpinning

the metaverse, as it facilitates seamless and realistic interactions

between users, digital objects, and virtual environments for the

connected virtual universe.

Immersive communications is a highly interactive and engaging

form of communication that blends promising technologies such

as virtual reality (VR), augmented reality (AR), and mixed reality

(MR) to create rich, multi-sensory experiences that closely mimic

real-world interactions. To support such technologies, the wireless

system in immersive communications will not only provide high-

speed, low-latency, and reliable connectivity but must also provide

various sensing functions (e.g. localizing objects, position or motion

state tracking and prediction) for enhancing the experience and

facilitating natural interactions within digital and physical environ-

ments. Such a wireless communication system is now known as

integrated sensing and communication (ISAC) system [10, 11].

With the sensing functionality integrated with the communi-

cation systems, the performance metrics also differ from those of

the conventional communication systems. The most commonly

used performance metrics for sensing, localization are based on

Crámer-Rao bound (CRB) of the distance, angle, or speed parame-

ters and object detection probability. Specifically, for localization

purposes, the goal is to devise transmission schemes such that

the performance is as close to the CRB as possible. Similarly, for

detection purposes, the goal is to allocate transmission resources

in such a way that the detection probability is maximized while

maintaining the performance of the communications. In terms of

localization performance, recent works [5–9] provided CRB mini-

mization schemes under different system setups. In [9], a hybrid
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approach with known/unknown placements of multiple sensors is

presented to estimate the location of multiple targets. The design of

various detectors based on the minimization of the CRB is presented

in [7]. The works in [9], [7] do not consider the joint operation of

sensing and communication. To fill this void, [6] provides a CRB

minimization scheme. Specifically, CRB is used as a performance

metric of target estimation, and then a CRB minimization beam-

forming design is proposed which guarantees a pre-defined level

of signal-to-interference-plus-noise ratio (SINR) for each communi-

cation user (CU).

In an immersive environment such as VR, AR, MR, the physical

objects needs to be reconstructed virtually. However, before their

reconstruction it is necessary to detect the objects. Therefore detec-

tion probability improvement is an important issue. With regard to

the detection probability maximization, it is well known that the

probability of detection is an increasing function of the radar re-

ceived signal to clutter plus noise ratio (SCNR) [4]. Thus SCNR is an

important performance metric and hence the detection probability

maximization problem effectively translates to SCNR maximization

problem. Therefore, several existing works have solved interesting

optimization problems where the objective was to maximize the

radar SCNR while satisfying the performance of the CUs. How-

ever, most of these works assume that the radar target can lie only

at a specific angle from the ISAC transmitter [1], [3]. In reality,

this apriori information about the target direction is not available

since in reality a radar target can emerge from different directions.

This practical consideration necessitates further study of radar

SCNR maximization schemes. The fundamental challenge posed by

this consideration is the choice of receive beamforming vector at

the transmitter. Specifically, when there is only one target the re-

ceive beamforming vector can be obtained in closed-form using the

minimum variance distortionless response (MVDR) beamforming

technique which significantly simplifies the SCNR maximization

problem. However, if there are more than one possible target di-

rections, then we do not have a closed-form expression for receive

bearmformer. Hence, new solution method is required to solve the

SCNR maximization problem. In this context, this paper considers

an ISAC system with multiple CUs and a target with ambiguity in

arrival direction. Then, the aim is to maximize the detection proba-

bility of the radar whilst satisfying the minimum rate requirements

of the CUs for all the possible target directions.

2 SYSTEM MODEL AND ASSUMPTIONS
This section presents the main system parameters, underlying as-

sumptions and important performance metrics for the radar and

communication system. In this paper, we assume an 𝑁 antenna

ISAC transmitter which serves 𝐾 single antenna CUs. In addition to

serving the CUs, we assume that a target also needs to be detected

which can lie at an angle \𝑇 ∈ {\1, \2, · · · , \𝑀 } from the ISAC

transmitter. This considered system model can easily reflect a VR

environment. For example a VR headset mimics the ISAC transmit-

ter and various control units within the VR system are represented

by the CUs to which the VR headset must remain connected during

the whole VR experience.

From the available 𝑁 antennas, we assume that 𝑁𝑡 antennas

are used for transmitting information to the CUs while it uses 𝑁𝑟

antennas for reception of reflection from the target to perform

detection of the target. The beamforming vector, and information

symbol for 𝑘-th CU are denoted by u𝑘 ∈ C𝑁𝑡×1
, 𝑠𝑘 , respectively. In

the following, we assume 𝐸 [𝑠𝑘 ] = 0, 𝐸 [|𝑠𝑘 |2] = 1, 𝐸 [𝑠 𝑗𝑠𝑘 ] = 0, for

𝑗 ≠ 𝑘 .

Furthermore, we assume two scenarios with respect to the use

of probing signal for target detection. In the first scenario, we

assume no dedicated probing signal is employed. In the second

scenario, we assume that a dedicated probing signal is used for for

radar detection. Hence, the overall transmitted symbol for the first

scenario can be written as

x𝐼 =
𝐾∑︁
𝑘=1

u𝑘𝑠𝑘 , (1)

while for the second scenario the transmitted symbol is given as

x𝐼 𝐼 =
𝐾∑︁
𝑘=1

u𝑘𝑠𝑘 + v𝑠0, (2)

where 𝑠0 with 𝐸 [|𝑠0 |2] = 1 is the symbol used for probing signal. The

channel vector between the transmitter and 𝑘-th CU is represented

by h𝑘 ∈ C𝑁𝑡×1
. Next, we present the performance metrics for

communication and radar systems, respectively.

2.1 Communication system performance metric
With the above assumptions, the received signal at the 𝑘-th user

for the first scenario can be written as

𝑦𝐼
𝑘
= h𝐻

𝑘
u𝑘𝑠𝑘 +

𝐾∑︁
𝑖=1,𝑖≠𝑘

h𝐻
𝑘

u𝑖𝑠𝑖 + 𝜔𝑘 , (3)

and for the second scenario

𝑦𝐼 𝐼
𝑘

= h𝐻
𝑘

u𝑘𝑠𝑘 +
𝐾∑︁

𝑖=1,𝑖≠𝑘

h𝐻
𝑘

u𝑖𝑠𝑖 + h𝐻
𝑘

v𝑠0 + 𝜔𝑘 , (4)

where 𝜔𝑘 ∈ C is the additive white Gaussian noise (AWGN) at CU

𝑘 with mean zero and variance 𝑁0.

Then, the corresponding signal to interference plus noise ratio

(SINR) at the 𝑘-th CU for first scenario is given as

𝛾 𝐼
𝑘
=

|h𝐻
𝑘

u𝑘 |2∑𝐾
𝑖=1,𝑖≠𝑘

|h𝐻
𝑘

u𝑖 |2 + 𝑁𝑜
, (5)

and for the second scenario, the SINR for 𝑘-th CU is given as

𝛾 𝐼 𝐼
𝑘

=
|h𝐻
𝑘

u𝑘 |2∑𝐾
𝑖=1,𝑖≠𝑘

|h𝐻
𝑘

u𝑖 |2 + |h𝐻
𝑘

v|2 + 𝑁𝑜
. (6)

In order to have a satisfactory communication performance in

both scenarios, the 𝑘-th CU requires its SINR to be at least Γ𝑘 .
Mathematically, it can be represented as

𝛾 𝐼
𝑘
=

|h𝐻
𝑘

u𝑘 |2∑𝐾
𝑖=1,𝑖≠𝑘

|h𝐻
𝑘

u𝑖 |2 + 𝑁𝑜
≥ Γ𝑘 , (7)

and

𝛾 𝐼 𝐼
𝑘

=
|h𝐻
𝑘

u𝑘 |2∑𝐾
𝑖=1,𝑖≠𝑘

|h𝐻
𝑘

u𝑖 |2 + |h𝐻
𝑘

v|2 + 𝑁𝑜
≥ Γ𝑘 . (8)
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2.2 Radar system performance metric
In this subsection, we present the radar system performance metric

for two possible scenarios. In the considered system model, assum-

ing that the target is located at an angle \𝑇
𝑖
from the transmitter,

the 𝑗-th clutter component located at an angle \𝐶
𝑗
, the received

signal at the radar can be written as

r𝑙 (\𝑇𝑖 )=𝛼
𝑇
𝑖 a𝑟 (\𝑇𝑖 )a

𝐻
𝑡 (\𝑇𝑖 )x

𝑙 +
𝐽∑︁
𝑗=1

𝛼𝑖a𝑟 (\𝐶𝑗 )a
𝐻
𝑡 (\𝐶𝑗 )x

𝑙 +n,

which can be simplified to

r𝑙 (\𝑇𝑖 ) = 𝛼
𝑇
𝑖 A(\𝑇𝑖 )x

𝑙 +
𝐽∑︁
𝑗=1

𝛼𝐶𝑗 A(\𝐶𝑗 )x
𝑙 + n, (9)

where 𝑙 ∈ {𝐼 , 𝐼 𝐼 },A(\ ) = a𝑟 (\ )a𝐻𝑡 (\ ) ∈ C𝑁𝑟 ×𝑁𝑡
, 𝛼𝑇
𝑖
, 𝛼𝐶
𝑗
∈ C are

the complex channel between target and radar, and between clutter

and radar, n ∈ C𝑁𝑟 ×1
is additive white Gaussian noise (AWGN)

with n ∼ CN(0, 𝑁𝑟 I), a𝑧 (\ ) ∈ C𝑁𝑧×1
is the transmit are receive

steering vectors for 𝑧 ∈ {𝑡, 𝑟 }, respectively. The dependencies of
the steering vectors a𝑡 (\ ), a𝑟 (\ ) on the angle \ are given as

a𝑡 (\ ) = [1, 𝑒− 𝑗2𝜋Δ sin(\ ) , · · · , 𝑒− 𝑗2𝜋 (𝑁𝑡−1)Δ sin(\ ) ]𝐻 , (10)

a𝑟 (\ ) = [1, 𝑒− 𝑗2𝜋Δ sin(\ ) , · · · , 𝑒− 𝑗2𝜋 (𝑁𝑟 −1)Δ sin(\ ) ]𝐻 . (11)

where Δ = _
2
and _ is the carrier wavelength.

We assume that 𝛼𝑇
𝑖
, 𝛼𝐶
𝑗
are independently distributed from h𝑘 ’s.

After reception, the radar performs receive beamforming (combin-

ing) with vector w on the received signal, then the output of the

radar receiver is given as

𝑦𝑙𝑟 (\𝑇𝑖 ,w) = w𝐻 r𝑙 (\𝑇𝑖 ). (12)

Subsequently, the average radar signal-to-clutter-plus-noise-ratio

(SCNR) can be written as

𝛾𝑙𝑟 (\𝑇𝑖 ,w) =
|𝛼𝑇

𝑖
|2𝐸 [ |w𝐻 A(\𝑇

𝑖
)x𝑙 |2 ]

𝐸 [w𝐻
(∑𝐽

𝑗=1
|𝛼𝐶

𝑗
|2A(\𝐶

𝑗
)x𝑙xl𝐻 A𝐻 (\𝐶

𝑗
) + 𝑁𝑟 I

)
w]

. (13)

It is clear from (7), (8), (13) that the communication and radar

performance depend on the beamforming vectors u𝑘 , v. In the next

subsection, we formulate an optimization problem to find the op-

timal values of u𝑘 , v while taking into consideration radar and

communication performance, simultaneously.

2.3 Problem formulation
In this paper, we are interested in maximizing the detection proba-

bility of the radar. As noted above, the radar detection probability

is directly proportional to the radar SCNR. Therefore, our aim is

to maximize the radar SCNR whilst satisfying the communication

requirements of the CUs. Overall, the mathematical formulation of

the optimization problem for finding the appropriate beamforming

vectors for the case when no dedicated probing signal is employed

is given as

P1

maximize

u𝑘 ,w
min

\𝑇
𝑖
∈Θ𝑇

𝛾 𝐼𝑟 (\𝑇𝑖 ,w)

subject to 𝐶1 :
|h𝐻
𝑘

u𝑘 |2∑𝐾
𝑖=1,𝑖≠𝑘

|h𝐻
𝑘

u𝑖 |2 + 𝑁𝑜
≥ Γ𝑘 ,

𝐶2 :

𝐾∑︁
𝑘=1

∥u𝑘 ∥2 ≤ 𝑃𝑚𝑎𝑥 ,

𝐶3 : ∥w∥2 = 1,

(14)

where Θ𝑇 = {\𝑇
1
, \𝑇

2
, · · · , \𝑇

𝑀
} is the set that contains the possible

angles of target with respect to ISAC transmitter. Similarly, when

dedicated probing signal is employed, the SCNRmaximization prob-

lem can be formulated as

P2

maximize

u𝑘 , v,w
min

\𝑇
𝑖
∈Θ𝑇

𝛾 𝐼 𝐼𝑟 (\𝑇𝑖 ,w)

subject to 𝐶4 :
|h𝐻
𝑘

u𝑘 |2∑𝐾
𝑖=1,𝑖≠𝑘

|h𝐻
𝑘

u𝑖 |2 + |h𝐻
𝑘

v|2 + 𝑁𝑜
≥ Γ𝑘 ,

𝐶5 :

𝐾∑︁
𝑘=1

∥u𝑘 ∥2 + ∥v∥2 ≤ 𝑃𝑚𝑎𝑥 ,

𝐶6 : ∥w∥2 = 1.

(15)

In P1, P2 the objective is to maximize the average SCNR of the

radar system while considering the ambiguity about the angle of

target. The constraints 𝐶1,𝐶4 guarantee that the minimum data

rate requirements of the CUs are met and 𝐶2,𝐶5 makes sure that

the total transmitted power is no more than the maximum allowed

transmit power. Moreover, 𝐶3,𝐶6 impose a constraint over the

receive beamformer. It is clear that P1, P2 are non-convex opti-

mization problems. The non-convexity is caused by the non-convex

objective function as well as the constraint functions. Moreover,

note that any solution to P1 is also a feasible solution to P2 and

therefore P1 can be considered to a special case of P2with v = 0. In
the following section, we present efficient alternating optimization

based algorithms for solving P1, P2.

3 OPTIMIZATION FRAMEWORK
In this section, first we present iterative optimization algorithms for

the optimization problems P1, and P2. Then, we show the conver-

gence of the proposed iterative algorithms. For ease of readability,

we divide this section into two subsections. First subsection dis-

cusses the proposed solution for P1 and the second subsection

discusses the solution methodology for P2.
As discussed in Section III, the coupling of the optimization

variables makes it difficult to solve P1. To handle this difficulty, we

use an iterative alternating optimization approach, where in each

iteration the optimization is first performed over the information

beamformers u𝑘 ’s while fixing receive combiner w and then the

optimization is performed over receive beamformer w while fixing

information beamformers u𝑘 ’s.
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3.1 Optimizing u𝑘 ’s for Fixed w
For fixed value of w, P1 can be written as

maximize

u𝑘
min

\𝑇
𝑖
∈Θ𝑇

|𝛼𝑇
𝑖
|2 ∑𝐾

𝑘=1
u𝐻
𝑘

Φ𝑇
𝑖

u𝑘∑𝐽
𝑗=1

|𝛼𝐶
𝑗
|2 ∑𝐾

𝑘=1
u𝐻
𝑘

Φ𝐶
𝑗

u𝑘 + 𝑁𝑟w𝐻w

subject to 𝐶1,𝐶2,

(16)

wherewe definedΦ𝑇
𝑖
= A𝐻 (\𝑇

𝑖
)ww𝐻A(\𝑇

𝑖
),Φ𝐶

𝑗
= A𝐻 (\𝐶

𝑗
)ww𝐻A(\𝐶

𝑗
).

Still the problem (16) is intractable due to the minimization of the

quadratic fractional terms in the objective function. To tackle this is-

sue, we use an iterative approach where in the𝑚-th iteration, we re-

place the value of u𝑘 in the denominator,

∑𝐽
𝑗=1

|𝛼𝐶
𝑗
|2 ∑𝐾

𝑘=1
u𝐻
𝑘

Φ𝐶
𝑗

u𝑘+
w𝐻w, by its optimal solution in the𝑚 − 1-th iteration. With this

approach, in the𝑚-th iteration, (16) can be modified as

maximize

u𝑘
min

\𝑇
𝑖
∈Θ𝑇

|𝛼𝑇
𝑖
|2 ∑𝐾

𝑘=1
u𝐻
𝑘

Φ𝑇
𝑖

u𝑘
Ω

subject to 𝐶1,𝐶2,

(17)

whereΩ =
∑𝐽
𝑗=1

|𝛼𝐶
𝑗
|2 ∑𝐾

𝑘=1
u𝐻
𝑘,𝑚−1Φ𝐶

𝑗
u𝑘,𝑚−1+𝑁𝑟w𝐻w and u𝑘,𝑚−1’s

are the optimal solution for (17) in the𝑚 − 1-th iteration. It can be

easily shown that (17) is equivalent to

maximize

u𝑘 , 𝑠
𝑠

subject to

|𝛼𝑇
𝑖
|2 ∑𝐾

𝑘=1
u𝐻
𝑘

Φ𝑇
𝑖

u𝑘
Ω

≥ 𝑠, ∀ 𝑖,

𝐶1,𝐶2.

(18)

Although problem (18) is much simpler than (16), it is still non-

convex due to the non-convex constraints.

In order to solve (18), we resort to SDR technique. Toward this

direction, first we introduce the matrices U𝑘 = u𝑘u𝐻
𝑘
,H𝑘 = h𝑘h𝐻

𝑘
.

Then, we can equivalently write (18) as

maximize

U𝑘 , 𝑠
𝑠

subject to

|𝛼𝑇
𝑖
|2 ∑𝐾

𝑘=1
Tr(U𝑘Φ𝑇

𝑖
)

Ω
≥ 𝑠,∀ 𝑖,

Tr(U𝑘H𝑘 )∑𝐾
𝑛=1,𝑛≠𝑘

Tr(U𝑛H𝑘 ) + 𝑁0

≥ Γ𝑘 , ∀ 𝑘,

𝐾∑︁
𝑘=1

Tr(U𝑘 ) ≤ 𝑃𝑚𝑎𝑥 ,

rank(U𝑘 ) = 1, ∀ 𝑘,
U𝑘 ⪰ 0, ∀ 𝑘.

(19)

In (19), the rank constraints makes the problem non-convex.

One possible approach that is widely used to solve the rank

constrained optimization problem in the literature is the Gaussian

randomization technique. However, such an approach is not only

sub-optimal but can also lead to solutions which do not satisfy

the minimum data rate constraints of CUs. Hence, in this situation

we cannot use Gaussian randomization technique. Moreover, the

widely known result about rank constrained separable SDP can-

not be applied directly to (19) due to the fact that the number of

constraints can be large due to the size of the set Θ𝑇 .

Despite of the above issues, in the following theorem we show

that the optimal solution for (19) can always admit rank one solu-

tions for U𝑘 ’s even if we ignore the rank one constraint.

Theorem 3.1. The optimal solutions for U𝐾 have rank one even if
we relax the rank constraints in (19).

Proof. It is clear that if we ignore the rank constraints in (19),

then it becomes a convex optimization problem. Hence, we can

use the well known KKT conditions to obtain the solution of rank

relaxed problem. Toward this direction, we canwrite the Lagrangian

of (19) as follows:

𝐿(𝑠,U𝑘 , `𝑖 , _𝑘 , 𝛽)=
𝐾∑︁
𝑘=1

_𝑘
©«Γ𝑘𝑁0+Γ𝑘

𝐾∑︁
𝑖=1,𝑖≠𝑘

Tr (H𝑘U𝑖 )
ª®¬

−𝑠+𝛽
(
𝐾∑︁
𝑘=1

Tr(U𝑘 )−𝑃𝑚𝑎𝑥

)
+

𝐼∑︁
𝑖=1

`𝑖

(
𝑠 −

𝐾∑︁
𝑘=1

Tr (A𝑖U𝑘 )
)
. (20)

Moreover, the dual problem can be written as

maximize

`𝑖 , _𝑘 , 𝛽
min

𝑠,U𝑘

𝐿(𝑠,U𝑘 , `𝑖 , _𝑘 , 𝛽).
(21)

After some mathematical manipulations, the dual problem (21) can

be simplified as

maximize

`𝑖 , _𝑘 , 𝛽
min

𝑠
−𝑠 + 𝑠

𝐽∑︁
𝑗=1

` 𝑗 + 𝑁0

𝐾∑︁
𝑘=1

_𝑘Γ𝑘 − 𝛽𝑃𝑚𝑎𝑥

subject to G𝑘 ⪰ 0,

(22)

where

G𝑘 = 𝛽I +
𝐾∑︁
𝑗=1

_ 𝑗H𝑗 −
𝐼∑︁
𝑖=1

`𝑖A𝑖 − _𝑘 (1 + Γ𝑘 ) H𝑘 , (23)

and the corresponding complementary slackness condition is

Tr

(
G∗
𝑘

U∗
𝑘

)
= 0,⇒ G∗

𝑘
U∗
𝑘
= 0. (24)

From (24) it can be deduced that rank

(
G∗
𝑘

)
≤ 𝑁𝑡−1 since rank (U𝑘 ) ≥

1 due to the SINR constraint of the 𝑘-th user. Next we show, with

the help of contradiction, that the matrix X𝑘 = 𝛽I + ∑𝐾
𝑗=1 _ 𝑗H𝑗 −∑𝐼

𝑖=1 `𝑖A𝑖 is always full rank in the optimal solution. To show this

fact, assume that X𝑘 is not full rank. Then, we can find a non-zero

vector y such that

y𝐻X𝑘y = 0, (25)

and hence

y𝐻 ©«𝛽I +
𝐾∑︁
𝑗=1

_ 𝑗H𝑗 −
𝐼∑︁
𝑖=1

`𝑖A𝑖 − _𝑘 (1 + Γ𝑘 ) H𝑘
ª®¬ y,

= −y𝐻_𝑘 (1+Γ𝑘 ) H𝑘y<0,

(26)

where the last strict inequality in (26) is due to the fact that H𝑘 ≻ 0.
However, according to the constraint in (22) G∗

𝑘
is a positive semi-

definite matrix, hence (26) cannot be true. Thus, rank (X𝑘 ) = 𝑁𝑡 .
Note also that rank (_𝑘 (1+Γ𝑘 ) H𝑘 ) = 1. Therefore, we must have

rank

(
G∗
𝑘

)
+ rank (_𝑘 (1+Γ𝑘 ) H𝑘 ) ≥ rank(

(
X∗
𝑘

)
), (27)
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which implies that

rank

(
G∗
𝑘

)
≥ 𝑁𝑡 − 1. (28)

Combining (28) with the earlier fact that rank

(
G∗
𝑘

)
≤ 𝑁𝑡 − 1, we

conclude that rank

(
G∗
𝑘

)
= 𝑁𝑡 − 1. Thus, rank

(
U∗
𝑘

)
≯ 1. Further-

more, due to the minimum SINR constraints of the CUs we know

that rank

(
U∗
𝑘

)
≠ 0. Therefore, we must have rank

(
U∗
𝑘

)
= 1. This

completes the proof. □

Although the result in Theorem 1 is obtained for P1, it can also

be shown that the conclusion obtained in Theorem 1 can also be

obtained for problem P2 with V∗ = 0. Another important property

of the optimal solution for problem P1 obtained from Theorem 1 is

that all of the _𝑘 ’s are positive. Therefore, it can be concluded that

in the optimal solution all of the SINR constraints for CUs are met

with equality. Note that this property was also observed in a recent

work which did not consider the possibility of multiple directions

of target.

3.2 Optimization with respect to w
After fixing the values of u𝑘 ’s, the optimization problem P1 with

respect to the optimization variable w is equivalent to the following

optimization problem

maximize

w
min

\𝑇
𝑖
∈Θ𝑇

|𝛼𝑇
𝑖
|2 ∑𝐾

𝑘=1
w𝐻B𝑇

𝑖,𝑘
w

w𝐻
[∑𝐽

𝑗=1
|𝛼𝐶
𝑗
|2 ∑𝐾

𝑘=1
B𝐶
𝑗,𝑘

+ I
]

w

subject to ∥w∥2 = 1,

(29)

where B𝑙
𝑚,𝑘

= A(\𝑙𝑚)u𝑘u𝐻
𝑘

A𝐻 (\𝑙𝑚), ∀ 𝑙 ∈ {𝐶,𝑇 }, ∀ 𝑚 ∈ {𝑖, 𝑗}.
Problem (29) is a non-convex generalized fractional optimization

problem. However, by using a well known result for generalized

fractional optimization problem with Toeplitz quadratic forms [2]

we can optimally solve problem (29). In order to apply the result of

[2], we note that each matrix in the summation of numerator, i.e.

B𝑇
𝑖,𝑘
, and denominator, i.e. B𝐶

𝑗,𝑘
, of the objective function in (29) is

a Toeplitz matrix. Hence, the result in [2] is directly applicable and

it can be shown that there always exists a rank one solution for the

following equivalent optimization problem

maximize

W
min

\𝑇
𝑖
∈Θ𝑇

|𝛼𝑇
𝑖
|2 Tr

(
W𝐻 ∑𝐾

𝑘=1
B𝑇
𝑖,𝑘

)
Tr

(
W𝐻

[∑𝐽
𝑗=1

|𝛼𝐶
𝑗
|2 ∑𝐾

𝑘=1
B𝐶
𝑗,𝑘

+ I
] )

subject to Tr(W) = 1,

W ⪰ 0.

(30)

Therefore, a global optimal solution can also be achieved for prob-

lem P. Due to the lack of space, we refer the interested reader to

[] for a detailed discussion on the solution approach for solving

problem (30).

3.3 Proposed Iterative Algorithm
The proposed algorithm is shown as Algorithm 1 below. The

algorithm takes initial values for w and u𝑘 ’s in step 1. Then, as

Table 1: Simulation parameters.

Parameter value Parameter value

𝑓𝑐 30 GHz Bandwidth 100MHz

𝑁0 −94 Propagation UMi

𝑁𝑡 {4, 8} 𝑁𝑅 {4, 8}
𝐾 4 Γ𝑘 [0, 20] dB

𝑃𝑚𝑎𝑥 30 dBm 𝑑𝐶𝑈
1

10 m

𝑑𝐶𝑈
2

15 m 𝑑𝐶𝑈
3

20 m

𝑑𝐶𝑈
4

25 m 𝐽 2

|𝛼𝐶
1
|2 .001 |𝛼𝐶

2
|2 .00001

\𝑇 {𝜋/4, 𝜋/6} \𝐶
1

0

\𝐶
2

𝜋
2

𝛼𝑇
𝑖

10
−1.5

can be seen the algorithm iteratively solves the alternating opti-

mization problems (19) and (29) with respect to u𝑘 and w, respec-

tively in steps 2-10. Finally, algorithm terminates when conver-

gence is achieved or the maximum number of iterations has been

performed. [1] Initialize: 𝑖 = 0, 𝜖, 𝑖𝑚𝑎𝑥 , w,u𝑘 ,∀ 𝑘 ∈ {1, · · · , 𝐾},
A(\𝑇

𝑖
),A(\𝐶

𝑗
),∀ 𝑖 ∈ {1, · · · , 𝑀},∀ 𝑗 ∈ {1, · · · , 𝐽 }. 𝑖 ≤ 𝑖𝑚𝑎𝑥 Solve

problem (19) by fixing value of w and denote the obtained solutions

with u𝑖
𝑘
. Solve problem (29) by fixing values of u𝑘 ’ and denote the

obtained solution with w𝑖
. Store the obtained objective value as

𝑓 (𝑖). Set 𝑖 = 𝑖 + 1 |𝑓 (𝑖) − 𝑓 (𝑖 − 1) | ≤ 𝜖 Break u∗
𝑘
= u𝑖

𝑘
, w∗ = w𝑖 .

4 SIMULATION RESULTS
In this section we present the simulation results. The important

simulation parameters are provided in Table 1. In the following, we

illustrate two types of simulation results. First, we show the SCNR

performance improvement achieved by the proposed algorithm as

compared to one of the recently proposed algorithms which do

not consider the possibility of uncertainty in the direction of radar

target. Secondly, we show the convergence result of the proposed

iterative algorithm.

Fig. 1 compares the SCNR results between the proposed algo-

rithm and the algorithm in [1]. Note that the algorithm in [1] re-

quires the exact information on the direction of arrival. In order

to obtain the results for [1] and to demonstrate the affect of uncer-

tainty of the target direction, we assume that the actual direction

of the target is at an angle
𝜋
4
while receive beamform optimiza-

tion is performed by assuming the target direction at an angle

𝜋
6
. Clearly, the SCNR performance of the proposed algorithm is

superior when compared to [1]. Moreover, the performance gap

improves for higher SINR thresholds. This increase in the perfor-

mance gap is due to the optimization performed with respect to

the receive beamforming vector w. The optimization with respect

to w accounts for the uncertainty of the direction of target and

thus improves the received power while the algorithm proposed in

[1] can only improve the received power from only one direction.

Hence, we observe an improvement in the performance for the

proposed algorithm. Another important observation is that the per-

formance gap is small for 8 antennas as compared to 16 antennas

over smaller SINR thresholds while it increases for larger values

of SINR. This is due to the fact that higher number of antennas
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Figure 1: Radar SCNR with respect to different SINR thresh-
olds for CUs. The algorithm proposed in [1] is denoted by
Sub-optimal algorithm.
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Figure 2: Convergence results of the proposed algorithm for
different number of antennas.

allow for better directivity of transmit power toward more than

one directions which ultimately results in larger reflected power.

It is not possible to theoretically prove the convergence of the

proposed algorithm. However, in Fig. 2 we provide the convergence

results of the proposed algorithm. It can be seen that the perfor-

mance converges only after 2 iterations. Therefore, the proposed

algorithm does not entail in high computational complexity due

to the requirement of higher number of iterations for achieving

convergence.

5 CONCLUSIONS
This paper proposed radar SCNR maximization algorithm in the

ISAC system. The SCNR maximization is achieved by optimizing

the transmit beamforming vectors for CUs as well the receive beam-

forming vector at the radar receiver. Contrary to the existing works

on SCNR maximization in ISAC systems, this paper considered the

possibility of uncertainty in the direction of target. The considered

scenario of uncertainty in target direction is more appropriate for

the VR environments. The performance of the proposed algorithm

is shown to be much better than the existing scheme which assumes

apriori information about the target direction.
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