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Abstract

The use of game elements in learning tasks is thought to facilitate emotional and behavioral

responses as well as learner engagement. So far, however, little is known about the underly-

ing neural mechanisms of game-based learning. In the current study, we added game ele-

ments to a number line estimation task assessing fraction understanding and compared

brain activation patterns to a non-game-based task version. Forty-one participants per-

formed both task versions in counterbalanced order while frontal brain activation patterns

were assessed using near-infrared spectroscopy (within-subject, cross-sectional study

design). Additionally, heart rate, subjective user experience, and task performance were

recorded. Task performance, mood, flow experience, as well as heart rate did not differ

between task versions. However, the game-based task-version was rated as more attrac-

tive, stimulating and novel compared to the non-game-based task version. Additionally,

completing the game-based task version was associated with stronger activation in frontal

brain areas generally involved in emotional and reward processing as well as attentional

processes. These results provide new neurofunctional evidence substantiating that game

elements in learning tasks seem to facilitate learning through emotional and cognitive

engagement.

Introduction

The use of game elements in learning tasks has become increasingly popular in recent years

[1]. Including game elements should lead to increased interest of learners and adherence to

instruction compared to non-game based task versions [2–4]. Additionally, game-based learn-

ing environments were found to either increase performance in various contexts or at least

yield a performance comparable to those observed in traditional non-game-based environ-

ments [2, 5].
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One focus of research in the context of game-based learning has been on mathematics edu-

cation and the field of number knowledge, especially on facilitating fraction understanding [4,

6, 7]. Number line estimation task [8] is a frequently used learning mechanic in game-based

learning studies focusing on fractions [6]. In number line estimation task learners are to esti-

mate, for instance, the position of a fraction on a number line ranging from 0 to 1 [9]. A game-

based implementation of the number line estimation task typically includes game elements

such as a narrative and virtual incentives, while a non-game-based task version does not

include such game elements. Studies employing game-based number line estimation tasks for

fraction learning reported significant increases in performance reflecting improvements in

participants’ fraction understanding [10, 11].

While the number of studies addressing behavioral effects of game-based learning is

increasing, the neural mechanisms and underpinnings of the respective learning processes in

game-based learning were investigated only rarely. Nevertheless, first neuroimaging studies

evaluating the neural correlates of game-based learning indicated that game-based learning

seems to facilitate the learning process through processes of reward, attention, and emotional

engagement [12, 13]. In particular, the studies by Greipl et al. [13] and Kober et al. [12] both

compared neural correlates of a game-based version as well as a non-game-based version of a

number line estimation task. Kober et al. [12] used near-infrared spectroscopy (NIRS) to mea-

sure changes in the hemodynamic response over frontal brain areas, while Greipl et al. [13]

used functional magnetic resonance imaging (fMRI). Both studies found that the game-based

task version leads to more pronounced activation in brain areas associated with reward pro-

cessing (e.g., the orbitofrontal cortex) than a non-game-based task. This is in line with a num-

ber of other studies indicating that game elements may generally activate the reward system in

the brain [14–20]. In the fMRI study by Greipl et al. [13], activation in brain areas associated

with emotional processing, such as the amygdala and anterior insula, was stronger in the

game-based compared to the non-game-based condition. The NIRS study by Kober et al. fur-

ther indicated stronger activation in frontal brain areas associated with attentional processes

[12]. Note that in the fMRI study by Greipl et al. [13] feedback episodes were analyzed while in

the NIRS study by Kober et al. [12] the whole task including number line estimation as well as

feedback episodes was analyzed. In sum, these prior neuroimaging studies indicate on a neuro-

functional level that including game elements in learning tasks seems to facilitate learning

through attentional processes, reward processing, and emotional engagement [12, 13].

In the present study, our goal was to replicate these previous findings by investigating the

hemodynamic response in frontal brain areas using NIRS while participants perform a game-

based and a non-game-based version of a number line estimation task. We used the same task

as Greipl et al. [13] used in their fMRI study. NIRS is a portable, flexible and easy-to-use

method to measure hemodynamic changes at the cortex level. In the past decade, the use of

NIRS as a method in gaming settings became more frequent [21, 22] as it provides several ben-

efits: i) it is relatively insensitive to participants’ movements, ii) it can be combined with a vari-

ety of other signal acquisition methods or tools, iii) it offers a quite comfortable and authentic

work [23, 24], iv) and gaming environments can be maintained during studies so that the gam-

ing situation can proceed undisturbed during scientific measurements [25]. This is also rele-

vant in the context of game-based learning, as authentic learning environments play an

important role in studies focusing on a better understanding of the mechanisms behind educa-

tional activities [26]. Replicating the results of previous fMRI measurements with NIRS would

therefore increment ecological validity of brain activation monitoring during intervention

studies with game-based learning in the future.

Based on previous findings, we expected stronger frontal brain activation in the game-

based compared to the non-game-based condition due to a heightened attentional focus as
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well as emotion and reward processing in the game-based task version. These factors might

also be facilitated by the fact that the game-based task was designed in an intrinsically inte-

grated way by combining content knowledge (fractions), content specific instructional knowl-

edge (number line estimation) and game mechanics/elements in a meaningful way [27]. Such

intrinsic integration is supposed to increase intrinsic motivation and the effectiveness of learn-

ing [28]. As in the studies by Greipl et al. [13] and Kober et al. [12], expected differences in

brain activation between task versions should be related to the intrinsically integrated game

elements (for more details see Methods), as math content, learning mechanic and task com-

plexity were held constant across the game-based and the non-game-based version. According

to previous research the game elements in the game-based task should be rewarding and emo-

tionally engaging [29–31], thereby leading to stronger frontal brain activation compared to the

non-game-based task.

In line with previous studies, we also assessed user experience (in terms of mood, flow, and

user experience) and compared it between task versions. Game-based tasks are often experi-

enced as more interesting, attractive, novel, and stimulating [12, 13, 32], while non-game-

based tasks might be rated as more efficient [12, 13]. Since it is expected that a game-based

task should lead to stronger emotional processing than a non-game-based task, affective states

such as mood might also differ between task versions [12].

As a complement to previous studies [12, 13, 32], we also assessed physiological responses,

i.e., changes in heart rate, while participants performed both tasks. Differences in emotional

engagement between task versions might also lead to differences in heart rate [33, 34].

When comparing game-based and non-game-based task versions, the question always

arises whether performance measures differ between task versions. As mentioned before, pre-

vious studies reported heterogenous results. Adding game elements to learning tasks either

increased performance or led to a comparable performance than traditional non-game-based

task versions [2, 5]. Previous studies using a game-based and non-game-based number line

estimation task comparable to the present study found a comparable task performance in

healthy young adults [12, 13, 32].

Methods

Participants

Forty-eight participants (25 women and 23 men) between 18 and 30 years of age participated

in the study. Due to technical issues and therefore incomplete data, five participants had to be

excluded from the sample. Furthermore, two participants could not complete the study due to

headaches and nausea during the measurement period. Therefore, the final sample included

41 participants (20 women and 21 men), who were, on average, 22.95 years old (SD = 3.04). All

participants had normal or corrected-to-normal vision. Exclusion criteria included any severe

illnesses, neurological or psychiatric diagnoses, cardiovascular diseases, or use of medication

affecting the central nervous system or participants’ attention and vigilance. In addition, par-

ticipants had to be eligible for NIRS measurements, meaning that they should not have, e.g.,

any wounds or inflammation around their heads and on their scalp or uncontrollable muscle

spasms. We also assessed the video game habits of the participants using self-assessment.

Regarding their video game habits, 32% of participants reported that they had not played

video games in the 12 months prior to their participation in the study. Most participants (49%)

rarely or sometimes played video games, while 17% reported that they played video games fre-

quently or almost daily. Participants were recruited through a university-wide newsletter,

social media, and personal recruitment. As compensation for their participation, psychology

students at the University of Graz received course credit (note that not all participants were
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psychology students). No financial compensation was offered to participants. All participants

gave written informed consent prior to the study, which was approved by the local ethics com-

mittee of the University of Graz, Austria (reference number GZ. 39/35/63 ex 2020/21) and is

in accordance with the ethical standards of the Declaration of Helsinki. Two of the authors

(MDN and SEK) had access to information that could identify individual participants during

and after data collection.

Game-based vs. non-game-based task version

All participants performed both a game-based and a non-game-based version of a number line

estimation task. Half of the participants started with the game-based version, and the other

half with the non-game-based version.

The game-based task version used in this study was based on the Number Trace game [10],

which uses (fraction) number line estimation tasks as its core learning (game) mechanic. The

current version of the game was specifically created for fMRI and NIRS research. Only a lim-

ited number of game elements were included in this version to ensure that any differences in

brain activation patterns between the game-based and non-game-based task versions are spe-

cifically related to these game elements and that the game elements do not cause cognitive

overload. That is, only game elements of a controllable avatar (a dog), visually appealing game

world (forest) and avatar-based emotional feedback (facial expressions of the dog) were

included and integrated to the core learning mechanic (number line estimation). This same

version has previously been used in the fMRI study by Greipl et al. [13]. A more in-depth

description of the game can be found in their paper.

In general, the goal of the player in the current version of Number Trace was to correctly

estimate the location of fractions on a number line ranging from 0 to 1. The fraction that was

to be estimated was displayed in a box in the upper left corner of the screen (Fig 1). To enter

their estimations, players had to navigate an avatar in the form of an orange dog along the

number line using the arrow keys on a standard QWERTZ computer keyboard. The chosen

position was then confirmed by pressing the space bar, which caused the dog to start digging.

If the position was at least 90% accurate (i.e., located within +/- 10% of the correct location of

the fraction), the answer was deemed correct, and the dog was rewarded with a bone and

smiled. When the chosen position was false (i.e., located outside of +/- 10% of the correct posi-

tion), the dog did not receive any bones and started to cry. In both cases, the accurate position

of the fraction was indicated by a green bar. When the estimation was at least 90% accurate,

estimation accuracy was additionally displayed on the screen (Fig 1).

This version of Number Trace also included a control condition during which players had

to simply choose a position on the number line instead of estimating a fraction with a bone

indicating the target position, and instead of a fraction, letter pairs were displayed in the

box in the upper left corner. As this condition was mainly used to investigate differences

between the processing of fractions and non-numerical information, which was not the objec-

tive of this study, only the fraction condition of the game was analyzed in this study.

In total, participants had to complete one game-based level consisting of 24 item blocks

with four items each. Twelve blocks included only fraction estimation items, while the other

twelves included only letter pair items. After each block, there was a 23 second break in which

only the background picture of the game was displayed on the screen. Players had ten seconds

per item to estimate the correct position and confirm their answer. If they did not choose a

position on the number line within this time frame, the software automatically logged in the

position the avatar was located at. Depending on the time the player took to answer, the dura-

tion of the game level was between 18 and 25 minutes (i.e., all 24 item blocks).
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As described by Greipl et al. [13], all fraction items used in the game-based task version

Number Trace and the corresponding non-game-based version contained numerators and

denominators ranging from 2 to 29. At the start of any level of the game or non-game-based

version all of the displayed items were randomly drawn from a pool of possible items by the

game engine. Thus, items were presented to each participant in a randomized order and also

differed between task blocks as well as different levels of the game and non-game-based version.

The overall item and task block difficulty was comparable for all levels of both task versions.

The non-game-based task used in this study was identical to the game-based task regarding

its composition, goal, and task difficulty. Again, users had to estimate fractions on a number

line using the same controls as in the game-based version of the task. However, instead of con-

trolling an avatar, users could only change the position of a white, vertical bar on the horizon-

tal number line, without any other colorful and game-like elements. Analogous to the game-

based task, answers with at least 90% accuracy were deemed correct and estimation accuracy

was displayed on the screen accompanied by a green tick for these estimations. A red X was

displayed in case the answer fell outside the range of estimations deemed correct. These two

different feedback screens can be seen in Fig 1. In both cases, the correct position of the frac-

tion was indicated by a green, vertical bar. In the letter pairs condition, the position users had

to navigate to was also indicated by this green bar.

Again, in the non-game-based version of the task, users completed one level, which con-

sisted of twelve blocks of four fraction estimation items and twelve blocks of four letter pairs

items. After each block, there was a 23-second break, with the overall duration of the level also

being between 18 and 25 minutes.

In both task versions, mean accuracy across participants’ estimation on all fraction estima-

tion items as well as their hit rate were calculated for each condition. In this case, the hit rate

reflected the percentage of correct estimations automatically determined by the software.

Fig 1. Example scenes of task versions. Exemplary screenshots of the game-based version (upper row) and the non-game-based version (lower row) of the

number line estimation task. Screenshots in the left column show the two versions of the task during the estimation process. The screenshots in the middle

column and those in the right column show positive feedback after correct estimation as well as negative feedback after incorrect estimation, respectively.

https://doi.org/10.1371/journal.pone.0286450.g001
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NIRS recordings and analysis

NIRS measures relative concentration changes in oxygenated (oxy-Hb) and deoxygenated

(deoxy-Hb) hemoglobin. Activation of a certain brain area leads to an influx of oxygen-rich

blood to this active area as well as to surrounding tissue, which is accompanied by an increase

in oxy-Hb and a decrease in deoxy-Hb in this active brain area [35–38]. To measure partici-

pants’ hemodynamic activation in the frontal cortex, a 22-channel NIRSport2 system (NIRx

Medizintechnik GmbH, Berlin, Germany) and the accompanying software Aurora fNIRS (ver-

sion 1.4; NIRx Medizintechnik GmbH, Berlin, Germany) were used. The NIRS setup in this

study consisted of eight emitter- and seven detector-optodes resulting in 22 long-distance

NIRS channels. In addition, eight short-distance detectors with an emitter-detector distance of

8 mm were also included in this setup. Short-distance detectors were used to measure activa-

tion in the superficial extra-cerebral tissue, which was incorporated into NIRS data analysis to

improve accuracy and reliability of results by reducing the influence of physiological artifacts

[39, 40]. The approximate distance between emitters and detectors for the long-distance chan-

nels was 30 mm, and the NIRS system’s sampling rate was set to 10.17 Hz. The exact optode

placements and resulting channels are depicted in Fig 2A.

For further data analysis, channels were merged into regions of interest (ROIs) following

the procedure suggested by Kober et al. [12]: ROI 1: Superior frontal cortex right; ROI 2: Supe-

rior frontal cortex left; ROI 3: Middle frontal cortex right; ROI 4: Superior frontal cortex right;

ROI5: Superior frontal cortex left and right; ROI 6: Superior frontal cortex left; ROI 7: Middle

frontal cortex left; ROI 8: Orbitofrontal cortex right; ROI 9: Orbitofrontal cortex left. An over-

view of the ROIs can be found in Fig 2A.

The NIRS data was processed using the MATLAB-based package Homer2 (Ver. 2.8) [41].

To identify concentration changes in oxygenated (oxy-Hb) and deoxygenated hemoglobin

(deoxy-Hb) during the fraction estimation periods, several processing steps were performed.

First, the raw data was converted into optical density data using the function hmrIntensity2OD.

Then, the function enPruneChannels (dRange -1e+04 1e+07, SNRthresh 2, SDrange 0.0 45.0,

reset 0) was used to exclude channels with signals that deviated strongly from the other chan-

nels’ signals (e.g., channels with very low signal-to-noise ratio). Following that, motion arti-

facts were identified with a channel-wise approach (function hmrMotionArtifactByChannel;
tMotion 0.5, tMask 1.0, STDEVthresh 10.0, AMPthresh 0.50).

A Spline motion correction was performed (function hmrMotionCorrectSpline; p = 0.99,

turnon 1) followed by a Wavelet transformation (function hmrMotionCorrectWavelet;
iqr = 1.5, turnon 1). The choice to use a combination of Spline interpolation and Wavelet

transformation is based on a recommendation by 42 [42] who observed that this combination

led to the best results in motion artifact correction and trial preservation. Different to 42 [42],

a more lenient iqr value of 1.5 was used in the Wavelet transformation in order to avoid losing

important information and excluding non-artifact data from the signal.

In a next step, motion artifacts were identified again (function hmrMotionArtifact; tMotion

0.5, tMask 1.0, STDEVthresh 50.0, AMPthresh 3.00). Then, the function enStimRejection was

used to reject trials which started or ended in a time frame between 25.0 seconds before to 20.0

seconds after a motion artifact (tRange -25.0 20.0). After that, bandpass filters were applied to

the data (hmrBandpassFilt; hpf 0.010, lpf 0.50) and the optical density data was converted into

hemoglobin concentration changes (hmrOD2Conc; ppf 6.0 6.0). Finally, the data obtained

from the short-distance detectors was used to exclude confounding non-cortical signals from

the data (hmrDeconvHRF_DriftSS; trange -5.0 25.0, glmSolveMethod 1, idxBasis 2, paramsBa-

sis 0.1 3.0 10.0 1.8 3.0 10.0, rhoSD_ssThresh 15.0, flagSSmethod 0, driftOrder 0, flagMotion-

Correct 0) and block averages were created (hmrBlockAvg; trange -5.0 25.0).
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The time courses of oxy-Hb and deoxy-Hb (hemodynamic response) from each participant

were averaged for each task (fraction estimation and letter pairs condition, game-based and

non-game-based task version, averaged across all item blocks each), respectively. Task-related

concentration changes of oxy-Hb and deoxy-Hb were referred to a 5s baseline interval prior to

item block onset (seconds -5 to 0). For statistical analyses, concentration changes of oxy-Hb

and deoxy-Hb were averaged for the time period during which participants performed the

respective item block (0–20 s after item block onset, this time span covered the average time

needed by participants to complete the four items per block). In line with the NIRS study by

Kober et al. [12], we analyzed the whole task period including number line estimation as well

as feedback episodes.

Fig 2. Position of NIRS optodes and sensitivity. (A) Placement of the 8 emitters [E], 7 detectors [D] and 22 NIRS

channels (numbers written in black represent the respective NIRS channel number) on the forehead. Note that the 8

short-distance detectors, which were placed next to each emitter, are not shown in the figure. Positions of the 9 regions

of interests (ROIs) are also color coded. (B) Sensitivity profile showing the coverage of the frontal cortex.

https://doi.org/10.1371/journal.pone.0286450.g002

PLOS ONE Engaging learners with games

PLOS ONE | https://doi.org/10.1371/journal.pone.0286450 June 6, 2023 7 / 21

https://doi.org/10.1371/journal.pone.0286450.g002
https://doi.org/10.1371/journal.pone.0286450


Pulse recordings and analysis

To measure participants’ heart rate, the portable 10-channel signal acquisition device NeXus-10 by

MindMedia (Mind Media BV, Herten, The Netherlands) and a pulse sensor (PPG photoplethysmo-

graphy), which was attached to the participant’s left index finger, were used. The NeXus-10 was con-

nected to a computer via USB. All measurements were performed using the accompanying

BioTrace+ software package (version V2012G1 Beta; Mind Media BV, Herten, The Netherlands).

All preprocessing steps were performed for both task versions separately (game-based, non-

game-based) for each participant. The entire preprocessing procedure was run within Python

3.9. First, a high-pass filter at 0.5 Hz and a notch filter at 50 Hz were applied to the raw pulse

data. Subsequently, peak detection was performed via the HeartPy library (version 1.2.7). By

using a moving average and adaptive thresholds the HeartPy algorithm marks areas in the sig-

nal where all values surpass the respective threshold. Cardiac peaks are ultimately detected by

determining the local maximum within a given area. For further information on the HeartPy

library, please refer to [43]. Following that, instantaneous heart rate (IHR) was computed. In

order to correct erroneous algorithmic actions, such as missing actual heart beats or incor-

rectly labelling noise spikes as cardiac peaks, outlier exclusion was performed by iterating over

the IHR data twice and removing every IHR value five standard deviations above or below the

respective mean [44]. Subsequently, mean task-related IHR was calculated. In addition, a task-

related heart rate variability (HRV) measure was obtained by computing the standard devia-

tion of all R-R intervals of heartbeats [45]. IHR and HRV values of each participant were aver-

aged for each task (game-based and non-game-based task version of the fraction estimation

condition, averaged across 12 item blocks each), respectively.

Questionnaires

Affective states were assessed using the original German long version of the Multidimensional

Mood State Questionnaire (original German title: “mehrdimensionaler Befindlichkeitsfrage-

bogen”, MDBF) [46]. This self-report questionnaire has been constructed to evaluate the cur-

rent mood state in various settings and includes 24 items. All items are singular adjectives that

can be assigned to three bipolar subscales (eight items each): good-bad mood (“Gute-schlechte

Stimmung”, α = .91 to .94, e.g., ‘content’), awake-tired (“Wachheit-Müdigkeit”, α = .92 to .94,

e.g., ‘rested’), and calm-nervous (“Ruhe-Unruhe”, α = .86 to .91, e.g., ‘restless’). The items are

answered using a 5-point Likert scale which describes the accuracy with which the item can be

used to describe the current mood state. The answer scale ranges from ‘definitely not’ (“über-

haupt nicht”) to ‘very much’ (“sehr”). For further data analysis, sums of the answers given in

each subscale were calculated. These sums range from a minimum of 8 to a maximum of 40

possible points in each subscale.

To measure the participants’ flow experience, the Flow Short Scale (original German title:

“Flow-Kurzskala”, FKS) was used [47]. The FKS has been constructed in accordance with

Csikszentmihalyi’s flow theory [48] and is a self-report questionnaire including a total of 16

items. It can be used to measure the perceived fluency of a task (subscale “fluency”, 6 items, α
= .92), immersion and absorption (subscale “absorption”, 4 items, α = .80), concern about the

task (subscale “concern”, 3 items, α = .80 to .90) and the perceived fit of the task’s demands

and the user’s skill (subscale “perceived fit of demands and skills”, 3 items). Items from the

first three subscales are answered using a 7-point Likert scale ranging from 1 = strong disagree-

ment (“trifft nicht zu”) to 7 = strong agreement with the statement (“trifft zu”). Example items

for these scales are “I don’t notice how much time is passing” (item 3, subscale “absorption”) or

“I feel like I am in control of the task’s process” (item 9, subscale “fluency”). The three items

describing task demand, perceived skills, and the fit of these two measurements can be
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answered using 9-point Likert scales with answer options matching the specific item (e.g., the

answer scale of item 15, “I think my skills in this field are. . .”, ranges from 1 = “low” to 9 =

“high”). In addition to adding up the answers of the items per subscale, a general flow factor

can also be obtained by summing up the responses to all items of the subscales “fluency” and

“absorption”. These summed-up responses range from 6 to 42 for the subscale “fluency”, 4 to

28 for the subscale “absorption”, 10 to 70 for the general flow factor, and 9 to 21 for the sub-

scales “concern” and “perceived fit of demands and skills”. Analyses of the participants’ flow

experience in this study include the general flow factor and separate measures for each of the

questionnaire subscales.

To evaluate participants’ perception of the game-based and non-game-based task, the Ger-

man version of the User Experience Questionnaire (UEQ) was used [49]. The UEQ was devel-

oped specifically to assess users’ experience when interacting with different types of software,

products, or digital interfaces. The UEQ is a self-report questionnaire consisting of 26 pairs of

opposing adjectives (e.g., ‘unattractive’ and ‘attractive’). These items can be assigned to six sub-

scales: Attractiveness (six items, α = .89, e.g., ‘annoying’ vs. ‘enjoyable’), Perspicuity (four

items, α = .82, e.g., ‘not understandable’ vs. ‘understandable’), Dependability (four items, α =

.65, e.g., ‘unpredictable’ vs. ‘predictable’), Efficiency (four items, α = .73, e.g., ‘fast’ vs. ‘slow’),

Novelty (four items, α = .83, e.g., ‘creative’ vs. ‘dull’), and Stimulation (four items, α = .76, e.g.,

‘boring’ vs. ‘exciting’). All UEQ items are answered on a 7-point Likert scale ranging from one

adjective of the pair to the opposing one. For further analysis of the data, mean response scores

were calculated for each of the six subscales using the UEQ data analysis tool [50]. These calcu-

lated means can reach a minimum of -3 and a maximum of 3 for each subscale.

Procedure

At the beginning of the study, participants were asked to read and sign an informed consent

form. Then, the experimenter explained the overall procedure of the study and instructed the

participants on the goal, controls, and design of the game-based and non-game-based task ver-

sion. Participants then completed a tutorial level of both task versions. The tutorial levels both

consisted of one block of four fraction estimation items and one block of four letter pair items

each followed by a 23 second break. Items used in the tutorial were not included in the subse-

quent tasks of the critical experiment. To prevent possible order effects, half of the participants

completed the game-based condition first, while the other half started with the non-game-

based condition. This task order counterbalancing was also balanced between the sexes of par-

ticipants. Additionally, tutorials were presented in the same order as the conditions during the

critical experiment. Following the tutorials, the NIRS cap was mounted on the participants’

head and the pulse sensor was affixed to the participant’s finger.

After completing the first task version, participants filled out the MDBF, FKS, and UEQ to

assess their subjective experience during the previously completed task version. Then, the sec-

ond task version started, which was again followed by the completion of the MDBF, FKS, and

UEQ. The overall duration of the whole procedure was about 1.5 hours.

Statistical analysis

Statistical analyses were performed in R 4.2.1 [51] and RStudio 2022.07.2 [52]. The R Code for

all statistical analyses can be found in S1 and S2 Files. Tests for normal distribution can be

found in S1 and S2 Files as well. Box plots were used to check for possible outliers (S1 File).

Since excluding outliers (values larger or smaller 1.5 times the IQR) produced the same results

as analyzing all data, we decided to analyze all data. For all statistical tests run, alpha level was

set to p = 0.05.
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To analyze the NIRS data, we performed mixed-effects models with the fixed effects task-
version (game-based vs. non-game-based task version) and hemisphere (left vs. right), sepa-

rately for oxy- and deoxy-Hb. Participants were included in the model as crossed random

effects (see S1 File) [53]. For mixed-effects modeling, the R package lme4 was used [54]. To dis-

play F-values (Type I Analysis of Variance with Satterthwaite’s method) the lmertest library

was employed [55]. Additionally, paired t-tests comparing the game-based and the non-game-

based task version per ROI were performed post hoc (see S1 File). These t-tests were per-

formed in accordance with a previous NIRS study by Kober et al. [12] to achieve better compa-

rability between studies.

Possible differences between the game- and the non-game-based task version in task perfor-

mance (percentage of correct answers, accuracy), questionnaire data, and pulse recordings

were analyzed using paired t-tests (see S2 File). Alpha level was adjusted using the procedure

suggested by Holm [56] (S2 File).

Results

NIRS data

For oxy-Hb, the mixed-effects model revealed a significant main effect of task-version (F
(1,120) = 5.1085, p = 0.0256, ηp

2 = 2.36e-03). Oxy-Hb was higher in the game-based

(M = 0.013 μM, SD = 0.06) than in the non-game-based task (M = -0.003 μM, SD = 0.064). The

main effect of hemisphere (F(1,120) = 8.4188, p = 0.004419, ηp
2 = 0.04) was significant, too,

indicating a stronger oxy-Hb increase over the right (M = 0.015 μM, SD = 0.068) than over the

left hemisphere (M = -0.005 μM, SD = 0.055). The interaction effect was not significant (F
(1,120) = 1.7307, p = 0.190831).

For deoxy-Hb, the mixed-effect model revealed no significant results (main effect task-ver-
sion: F(1,120) = 0.0801, p = 0.7777; main effect hemisphere: F(1,120) = 2.0116, p = 0.1587; inter-

action effect: F(1,120) = 0.0012, p = 0.9720).

Table 1 summarizes the results of the pairwise comparisons of oxy- and deoxy-Hb between

the game- and the non-game-based task condition per ROI. Fig 3 shows means and SE for

oxy- and deoxy-Hb per ROI, separately for both task conditions. Fig 4 descriptively shows the

NIRS time course during performing the game and the non-game-based task and Fig 5 shows

the topographical distribution of the mean NIRS signal changes during task performance.

Table 1. Results of statistical analyses comparing oxy- and deoxy-Hb between the game- and the non-game-based

task version separately per region of interest (ROI).

Oxy-Hb Deoxy-Hb

Statistical result (effect size of significant results)

ROI1 Superior frontal cortex right t(40) = -0.10, p = 0.92 t(40) = -0.39, p = 0.70

ROI2 Superior frontal cortex left t(40) = -0.85, p = 0.40 t(40) = -0.14, p = 0.89

ROI3 Middle frontal cortex right t(40) = 2.51, p = 0.016* (d = 0.39) t(40) = 1.40, p = 0.17

ROI4 Superior frontal cortex right t(40) = 2.19, p = 0.034* (d = 0.34) t(40) = 0.21, p = 0.83

ROI5 Superior frontal cortex left and right t(40) = 2.52, p = 0.016* (d = 0.39) t(40) = -1.77, p = 0.08

ROI6 Superior frontal cortex left t(40) = 0.51, p = 0.61 t(40) = -0.71, p = 0.48

ROI7 Middle frontal cortex left t(40) = 0.70, p = 0.49 t(40) = 1.59, p = 0.12

ROI8 Orbitofrontal cortex right t(40) = 2.16, p = 0.037* (d = 0.34) t(40) = -0.57, p = 0.57

ROI9 Orbitofrontal cortex left t(40) = 1.35, p = 0.19 t(40) = 0.43, p = 0.67

Statistically significant p-values are marked with an asterisk. Alpha level was not adjusted for this explorative post-

hoc analysis. t: statistical value for t-test; p: p-value; d: Cohen’s d.

https://doi.org/10.1371/journal.pone.0286450.t001
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Task performance, user experience & physiological responses

Table 2 summarizes means and SDs of task performance and questionnaire data as well as the

results of the statistical comparisons between the game-based and non-game-based task version.

Task performance, mood, flow experience as well as heart rate did not differ between the

task versions. According to the results of the UEQ, participants rated the game-based task ver-

sion as significantly more attractive, stimulating, and novel.

Discussion

In the present study, we aimed at expanding the findings of a previous fMRI study [13] about

the neural correlates of game-based learning using NIRS, which is a more portable, flexible,

and user-friendly neuroimaging technique compared to fMRI enabling the monitoring of

brain activation patterns during gaming in a more ecologically valid and natural manner.

Therefore, we compared the NIRS response over frontal brain areas between a game-based

and a non-game-based version of a number line estimation task, the same task which was used

by Greipl et al. [13]. While task performance, flow, and affective states were comparable

between task conditions, the game-based task was rated as more attractive, stimulating, and

novel compared to the non-game-based task and elicited a stronger frontal brain activation. In

the following, we will first discuss results of brain activation patterns before we turn to results

on performance, user experience, and physiological responses.

Brain activation

Overall, the game-based task version led to a stronger increase in oxy-Hb than the non-game-

based task version over the frontal areas assessed by the current NIRS setup. This is in line

Fig 3. NIRS data per ROI. Means and SE of A) oxy- and B) deoxy-Hb [μM] for the game- (task version 1) and non-game-based task (task version 2) per region

of interest (ROI). ROI 1: Superior frontal cortex right; ROI 2: Superior frontal cortex left; ROI 3: Middle frontal cortex right; ROI 4: Superior frontal cortex

right; ROI5: Superior frontal cortex left and right; ROI 6: Superior frontal cortex left; ROI 7: Middle frontal cortex left; ROI 8: Orbitofrontal cortex right; ROI 9:

Orbitofrontal cortex left.

https://doi.org/10.1371/journal.pone.0286450.g003

PLOS ONE Engaging learners with games

PLOS ONE | https://doi.org/10.1371/journal.pone.0286450 June 6, 2023 11 / 21

https://doi.org/10.1371/journal.pone.0286450.g003
https://doi.org/10.1371/journal.pone.0286450


with previous evidence indicating that estimating numbers or fractions on a number line

seems to generally activate a fronto-parietal network [57]. In this context, it is assumed that

activation in frontal areas not only reflects number processing but also non-numerical pro-

cesses such as attention [for a meta-analysis see 58]. Hence, the stronger frontal activation

while performing the game-based task might be related to a stronger attentional engagement

compared to the non-game-based task [12].

Additionally, activation in the right frontal cortex was stronger during task completion

independent of the task version. This is in line with prior fMRI and NIRS studies showing that

number line estimation leads to stronger activation of the right frontal cortex including the

superior and middle frontal gyrus compared to the left frontal cortex [12, 57].

On an exploratory level, when having a closer look at the specific regions of interest (ROI),

the right middle frontal cortex (ROI3), the right superior frontal cortex (ROI 4), and the right

orbitofrontal cortex (ROI 8) were activated more strongly during the game-based compared to

the non-game-based task.

More pronounced activation in the orbitofrontal cortex might reflect increased processing

of reward and emotional aspects of the game-based task version [15, 59–61]. This is in line

with previous evidence indicating that the inclusion of game elements in cognitive tasks as

well as learning tasks can modulate emotional states [31, 62–66]. In the present study, feedback

and rewards for correct and incorrect number line estimations were presented in a more

Fig 4. NIRS time courses. NIRS time course of oxy- (upper panel) and deoxy-Hb (lower panel) during the game-based (left panel) and non-game-based (right

panel) task version, presented separately for each of the nine regions of interests (ROI).

https://doi.org/10.1371/journal.pone.0286450.g004
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contextualized and emotion-inducing way in the game-based task version. In particular, while

in the non-game-based task feedback was only presented in the form of a green tick or a red X

(Fig 1), in the game this feedback was extended with emotional reactions of the game avatar,

i.e., avatar was smiling or crying (Fig 1). Greipl et al. [13], who used the same task versions in

an fMRI study, also found significantly stronger activation of the orbitofrontal cortex during

the game- compared to the non-game-based task and linked this result to differences in emo-

tional and reward processing.

Stronger activation in the right superior frontal cortex might be caused by the richer sen-

sory stimulation in the game-based task version compared to the non-game-based version.

Fuster et al. [67] argues that the superior frontal cortex is, among other things, activated by

sensory stimuli like visual information. The game-based task features more and also more

diverse visual information than the non-game-based task (Fig 1), which might thus have

increased activation in the right superior frontal cortex.

Higher activation of the middle frontal cortex was previously linked to increased working

memory load and different attentional processes during the game-based task compared to sim-

pler non-game-based tasks containing less complex visual design [12]. This might suggest that

the game elements increased unnecessary, extraneous cognitive processing as suggested by

cognitive theories on multimedia learning [68]. According to these theories, irrelevant game

elements can distract learners from the essential learning material. However, we did not find

any difference in performance between the game and non-game-based task (see below). The

performance of the participants was very high, which may indicate that the possible extraneous

processing did not overload participants’ cognitive capacity, and thus the risk of disturbing

performance was low. On the other hand, it is questionable whether the game elements can be

considered as irrelevant as the included elements were intrinsically integrated with the core

learning mechanic.

Fig 5. NIRS topography. Topographical distribution of mean oxy- and deoxy-Hb values (average of second 0–20 after

task onset) during the game- and non-game-based task condition.

https://doi.org/10.1371/journal.pone.0286450.g005
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No significant changes in deoxy-Hb concentration were found. Generally, oxy-Hb showed

more pronounced concentration changes than deoxy-Hb [38]. Additionally, oxy-Hb is a more

sensitive indicator for changes in cerebral blood flow than deoxy-Hb [69]. Therefore, it is rela-

tively common in NIRS studies to observe significant changes in oxy- but not in deoxy-Hb.

Task performance

We observed no differences in task performance between both task versions. Previous studies

investigating neural correlates of game- vs. non-game-based versions of a number line estimation

task also reported no significant differences between task version in the number of correct answers

[12, 13]. However, Greipl et al. [13] observed significantly higher accuracy of fraction estimation in

the non-game-based task compared to the game-based task. Generally, task performance of the

present sample of healthy adults was quite high even though we adapted the used items by using

more difficult fractions (i.e., fractions with numerators and denominators ranging from 2 to 29).

Nevertheless, in the present study, participants administered only one playing session and thus

improvements were not expected. Previous studies reporting on performance improvements when

playing game-based rational number training performed multiple training sessions [11].

In some publications, concerns were raised about the potential detrimental effects of the

use of game elements in learning tasks. For instance, it was found that information that

Table 2. Task performance and user experience data (means and SD) and results of the statistical comparison between the game-based and non-game-based task

version.

Game No-Game

Mean SD Mean SD Statistical result (effect size for significant results)
Heart rate

IHR [bpm] 76.2 10.8 76.0 10.6 t(37) = 0.28, p = 0.78

HRV [ms] 71.9 21.1 75.4 24.7 t(37) = -0.95, p = 0.35

Flow [raw values ranging from 10–70 (general factor), 6–42 (fluency), 4–28 (absorption), 9–21 (concern, perceived fit of demand and skills)]

General factor 46.5 8.18 44.0 7.72 t(40) = 1.73, p = 0.09

Fluency 31.9 5.76 30.6 6.10 t(40) = 1.26, p = 0.22

Absorption 14.7 4.37 13.4 3.42 t(40) = 2.00, p = 0.05

Concern 5.7 3.48 5.6 3.26 t(40) = -0.55, p = 0.59

Perceived fit of demands and skills 12.1 1.95 12.2 2.11 t(40) = -0.40, p = 0.69

User Experience [raw values ranging from -3 to 3]

Attractiveness 1.23 0.88 0.08 1.09 t(40) = 5.53, p = 2.143e-06* (d = 0.86)

Perspicuity 2.20 0.97 2.24 0.95 t(40) = -0.23, p = 0.82

Efficiency 0.81 0.75 1.17 0.75 t(40) = -2.36, p = 0.02

Dependability 1.21 0.80 1.07 0.81 t(40) = 1.02, p = 0.31

Stimulation 0.23 1.01 -0.53 1.15 t(40) = 3.57, p = 0.0009* (d = 0.56)

Novelty 1.00 0.85 -0.84 1.12 t(40) = 7.77, p = 1.648e-09* (d = 1.21)

Multidimensional Mood State Questionnaire [raw values ranging from 8 (bad mood, tired, nervous) to 40 (good mood, awake, calm)]

Good-bad mood 32.8 4.23 32.8 4.73 t(40) = 0.00, p = 1.00

Awake-tired 25.9 6.93 25.0 6.52 t(40) = 1.10, p = 0.28

Calm-nervous 32.2 5.33 32.7 4.46 t(40) = -0.80, p = 0.43

Performance [%]

Accuracy 95.6 0.9 96.0 0.9 t(40) = -1.91, p = 0.06

Correct answers 93.3 4.47 94.0 4.32 t(40) = -0.76, p = 0.45

Statistically significant p-values are marked with an asterisk. For the analysis of the heart rate, only data of N = 38 participants were available. t: statistical value for t-test;

p: p-value; d: Cohen’s d.

https://doi.org/10.1371/journal.pone.0286450.t002
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captures attention but is irrelevant to the task at hand can interfere with learning [seductive

detail effect; e.g., 70, 71] by increasing extraneous processing demands [68]. Accordingly,

immersive game-based environments, which are rich in details, can lead to poorer learning

outcomes. This relationship might be caused by increased cognitive/mental load in the more

complex game-based environment [72]. In this context, the current result that task perfor-

mance did not differ between a more detailed and visually rich game-based task and a very

simplistic, non-game-based one also indicates that differences in frontal brain activation

between task versions might not be related to differences in task performance, mental load, or

task difficulty [12, 32, 73]. Accordingly, one might also speculate that game elements induce

different attentional processes or strategies, rather than only influencing extraneous processing

demands–at least when incorporating the game elements in an intrinsically integrated way [6,

28, 74]. We cannot exclude that game elements increased extraneous processing in the game-

based task version, however, the results of the task performance indicate that such a possible

extraneous processing did not lead to detrimental effects on performance. Furthermore, the

high task performance of the present sample may mask more pronounced effects of interfer-

ence of game elements on task performance. This is to be investigated in follow-up studies.

User experience

In line with previous studies, participants rated the game-based task version as more attractive,

stimulating and novel [12, 13, 32]. Perceived aesthetics of a game-based learning task can affect

emotional states and consequently intrinsic motivation of learners [31, 62, 75]. This in turn is

in line with our findings of more pronounced activation of the frontal cortex involved in emo-

tional processing and attention. Future studies might also investigate how user experience is

affected by gender and personality in game-based learning [76].

Flow experience was comparable in both task versions. Prior studies reported heteroge-

neous results concerning the effects of game elements on flow experience [e.g., 12, 31, 77].

Generally, it is assumed that a state of flow can only be reached when engaging with a task

that is somewhat challenging [48]. In this study, participants’ performance was rather high

in both conditions. Thus, one may argue that both task versions might not have been chal-

lenging enough for participants to actually reach a flow state. Furthermore, the simple

design of the game, lack of a clear overarching goal and possibility to fail in the game (e.g.,

lack of virtual energy metrics) may have lowered the possibility to reach a flow state. The

timing of the task (short item blocks followed by breaks) may also have hindered the emer-

gence of a strong flow experience. Participants were frequently interrupted in their work-

flow and left idle for 23 seconds during the breaks before they could return to their tasks of

fraction estimation. It is questionable whether such a structure is beneficial for the develop-

ment of flow since the flow experience is dependent on a person’s possibility to engage with

a task [48].

Participants also reported comparable mood levels in both task conditions. Prior studies

found a higher level of joy reported by participants during a game-based compared to a non-

game-based task version [12, 78]. Yet, in the studies by Kober et al. [12] and Brom et al. [78], a

different questionnaire was used to assess affective states during task performance, namely the

Positive and Negative Affect Schedule (PANAS). Hence, results seem not directly comparable.

Furthermore, the game and non-game-based version in the study by Brom et al. [78] differed

on more levels than on visual appearance and emotionally rich feedback (e.g. presence or

absence of competition). Taken together, our results suggest that using only game elements

that are integrated to the core learning mechanic does not create such a gameful experience

that facilitates enjoyment.
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Physiological responses

We also assessed physiological responses (e.g., heart rate) while participants performed the

task as differences in emotional engagement between task versions might also affect them [33,

34]. However, no differences in heart rate between task versions were observed. Increases in

heart rate during gaming are mostly dependent on the choice of game and the game setting

[33]. Studies reporting increases in heart rate typically investigated computer games of genres

such as survival horror, adventure, sports, or fighting. The game-based task of the present

study included relatively simple control patterns, slow pacing, relatively simple goals, and

weak negative consequences of failures, possibly leading to lower arousal than found in the

studies reviewed by [33]. Furthermore, there is evidence that, in particular, tasks requiring

high cognitive effort lead to emotional arousal followed by an increase in heart rate [79]. Yet,

as the current task of fraction estimation, task controls, and the goals of the present game- and

non-game-based task version as well as task performance were (observed to be) comparable,

cognitive demands to perform both tasks might be too similar to elicit significant differences

in physiological responses. Additionally, no significant differences in the participants’ mood

or their concern regarding the task at hand (flow subfactor “Concern” of the FKS) were found

between the two task conditions. In turn, this substantiates our interpretation that emotional

arousal elicited by the game- and the non-game-based task may be seen as comparable and

may thus also lead to similar physiological responses.

Conclusions

In the current study, we replicated previous findings of increased frontal brain activation

observed for a game-based version of a fraction learning task compared to a non-game-based

control task using NIRS. It is important to note that we used a simple game-based learning

task in which the core learning mechanic (number line estimation) was intrinsically integrated

with only a limited number of game elements. We did not include other common game ele-

ments that are used to create tension and a more immersive playing experience to be able to

investigate the effects of the core gameplay in more detail. While adding game elements to the

learning task had no effects on task performance within the session, game elements seemed to

activate brain areas associated with reward processing, emotional engagement and attention.

Furthermore, the game-based task version led to higher ratings of attractiveness, stimulation,

and novelty compared to a non-game-based task version. These factors might have a positive

effect on learning in case such a game-based task is used over a longer period of time. This

needs to be further investigated in future training studies.
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