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ABSTRACT

The expansion of social media has led more people to form groups for specific ac-
tivities, and, consecutively, group recommender systems have emerged as popular
research. In contrast to single recommendations, group recommendations involve a
much greater degree of complexity since the systems are responsible for balancing
the often conflicting interests of all group members. Due to the impact of recom-
mendations on users’ perceived performance (e.g., movie recommendations) and the
often inherently sensitive nature of recommendation tasks (e.g., e-health recommen-
dations), the process by which recommendations are generated should be carefully
considered. As a result, it has become increasingly necessary to develop recom-
mendations that adhere to various responsibility constraints. Such responsibility
constraints include fairness, which corresponds to a lack of bias, and transparency,
which facilitates an understanding of the processes of the system.

Nevertheless, if these constraints are followed, group recommender systems be-
come more complex. It is even more challenging if they are to consider a sequence
of recommendations rather than each recommendation as a separate process. Intu-
itively, the system should take into account the historical interactions between itself
and the group and adjust its recommendations in accordance with the impact of its
previous suggestions. This observation leads to the emergence of a new type of rec-
ommender system, called sequential group recommendation systems. However, stan-
dard group recommendation approaches are ineffective when applied in a sequential
scenario. They often produce recommendations that are not even intended to be
fair to all group members, i.e., not all group members are equally satisfied with the
recommendations. In practice, when each recommendation process is considered in
isolation, there is always going to be a least satisfied member. However, the least
satisfied member should not always be the same when the scope of the system en-
compasses more than one recommendation round. This will result in the fairness
constraint being broken since the system is biased against one group member.
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As a result of the complex nature of recommender systems, users may be unable
to understand the reasoning behind a suggestion. To counter this, many systems
provide explanations along with their recommendations in adherence to the trans-
parency constraint. Discussing why not suggesting an item is valuable, especially
for system administrators. Explanations to such queries are invaluable feedback for
them when they are in the process of calibrating or debugging their system.

Overall, this thesis aims to answer the following Research Questions (RQ). RQ1.
How to define sequential group recommendations, and why are they needed? How to de-
sign group recommendation methods based on them? This thesis formally defines a
sequential group recommender system and what objectives it should observe. Addi-
tionally, it proposes three novel group recommendation methods to produce fair
sequential group recommendations. RQ2. How to exploit reinforcement learning
to select a group recommendation method when the system’s environment changes af-
ter each recommendation round? In an extension of the RQ1, this thesis proposes
a reinforcement-based model that selects the most appropriate group recommenda-
tion method to apply throughout a series of recommendations while aiming for fair
recommendations. RQ3. How to design questions and produce explanations for why a
set of items did not appear in a recommendation list or at a particular position? This
dissertation defines what a Why-not question is, as well as presents a structure for
them. Additionally, it proposes a model to generate explanations for these Why-not
questions. RQ4. How to incorporate various health-related aspects in group recommen-
dations? It is important to make fair recommendations when dealing with extremely
sensitive health-related information. In order to produce as fair a recommendation
as possible, this thesis proposes a model that incorporates various health aspects.
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TIIVISTELMÄ

Sosiaalisen median laajeneminen on johtanut siihen, että yhä useammin ihmiset muo-
dostavat ryhmiä erilaisia aktiviteetteja varten, ja peräkkäisiä ryhmäsuositteluja tuot-
tavat järjestelmät ovat nousseet suosituksi tutkimusalueeksi. Ryhmälle tehtävät su-
ositukset ovat huomattavasti monimutkaisempia kuin yksittäiset suositukset, koska
suosittelujärjestelmät joutuvat vastaamaan kaikkien ryhmän jäsenten usein ristiri-
itaisten etujen tasapainottamisesta. Ottaen huomioon suositusten vaikutus käyt-
täjien kokemaan järjestelmän suorituskykyyn (esim. elokuvasuositukset) ja suosi-
tustehtävien usein varsin arkaluontoinen luonne (esim. sähköisen terveydenhuollon
suositukset), suositusten luomisprosessia tulee harkita huolellisesti. Näistä seikoista
johtuen on tullut entistä tarpeellisemmaksi kehittää erilaisia vastuullisuusrajoitteita
noudattavia suosituksia. Tällaisia vastuullisuusrajoitteita ovat muunmuassa reiluus eli
puolueettomuus, ja läpinäkyvyys, joka helpottaa järjestelmän prosessien ymmärtämistä.

Jos näitä rajoituksia noudatetaan, niin ryhmäsuosittelijoista tulee monimutkaisem-
pia. On edelleen haastavampaa, jos suosittelijat käsittelevät suositusten jonoa sen
sijaan, että jokainen suositus käsitellään erillään muista. Intuitiivisesti järjestelmän
tulee ottaa huomioon itsensä ja ryhmän välisen vuorovaikutuksen historia ja mukaut-
taa suosituksiaan aikaisempien suositusten vaikutuksen mukaisesti. Tämä havainto
johtaa uuden suositusjärjestelmätyypin, peräkkäisten ryhmäsuositusjärjestelmien, syn-
tymiseen. Tavalliset ryhmäsuositusmenetelmät ovat tehottomia, kun niitä käytetään
peräkkäisessä skenaariossa. Ne tuottavat usein suosituksia, joita ei ole edes tarkoitettu
reiluksi kaikkia ryhmän jäseniä kohtaan, eli kaikki ryhmän jäsenet eivät ole yhtä
tyytyväisiä suosituksiin. Käytännössä, kun jokaista suositusprosessia tarkastellaan
erikseen, aina löytyy vähiten tyytyväinen jäsen. Vähiten tyytyväisimmän jäsenen ei
kuitenkaan pitäisi aina olla sama, kun järjestelmän käyttö kattaa useamman kuin yh-
den suosituskierroksen. Tämä johtaisi oikeudenmukaisuuden rajoitteen rikkomiseen,
koska järjestelmä olisi puolueellinen yhtä ryhmän jäsentä vastaan.

Suositusjärjestelmien monimutkaisuuden vuoksi käyttäjät eivät ehkä pysty ym-
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märtämään ehdotuksen perusteluja. Tämän torjumiseksi monet järjestelmät tarjoa-
vat selityksiä ja suosituksia avoimuusrajoituksen mukaisesti. Keskustelu siitä, miksi
kohdetta ei ehdoteta, on arvokasta erityisesti järjestelmänvalvojille. Selitykset täl-
laisiin kyselyihin ovat heille korvaamatonta palautetta, kun he ovat kalibroimassa tai
korjaamassa järjestelmäänsä.

Kaiken kaikkiaan tämän opinnäytetyön tavoitteena on vastata seuraaviin
tutkimuskysymyksiin (RQ). RQ1. Kuinka määritellä peräkkäiset ryhmäsuositukset
ja miksi niitä tarvitaan? Kuinka suunnitella ryhmäsuositusmenetelmiä niiden pohjalta?
Tässä opinnäytetyössä määritellään formaalisti peräkkäinen ryhmäsuositusjärjestelmä
ja mitä tavoitteita sen tulee noudattaa. Lisäksi ehdotetaan kolmea uutta ryhmäsuosi-
tusmenetelmää oikeudenmukaisten peräkkäisten ryhmäsuositusten tuottamiseksi.
RQ2. Kuinka hyödyntää vahvistusoppimista ryhmäsuositusmenetelmän valinnassa,

kun järjestelmän ympäristö muuttuu jokaisen suosituskierroksen jälkeen? RQ1:n laa-
jennuksessa tässä opinnäytetyössä ehdotetaan vahvistukseen perustuvaa mallia, joka
valitsee sopivimman ryhmäsuositusmenetelmän käytettäväksi koko sarjassa, samalla
pyrkien reiluuteen.
RQ3. Kuinka suunnitella kysymyksiä ja tuottaa selityksiä sille, miksi jokin joukko ei

näkynyt suosituslistalla tai tietyssä paikassa? Tässä väitöskirjassa määritellään miksi-ei-
kysymys ja esitetään näiden kysymysten rakenne. Lisäksi työssä ehdotetaan mallia,
jolla luodaan selityksiä näihin miksi-ei-kysymyksiin.
RQ4. Kuinka sisällyttää erilaisia terveyteen liittyviä näkökohtia ryhmäsuosituk-

siin? Näissä on tärkeää antaa oikeudenmukaisia suosituksia, koska terveyssuosi-
tukset ovat erittäin arkaluontoisia. Mahdollisimman oikeudenmukaisen suosituk-
sen tuottamiseksi tässä opinnäytetyössä ehdotetaan mallia, joka sisältää erilaisia ter-
veysnäkökohtia.
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1 INTRODUCTION

In recent years, Recommender Systems (RS) have been one of the most active re-
search areas in computer science. They play a key role in the majority of applica-
tions aimed at end-users. RS are used to enhance user experiences across a range
of activities, from listening to music and movie recommendations to finding health
information or hiring an employee. At the same time, it is also simpler to organize
groups to carry out an activity, mainly due to the growth of social media. They en-
courage people from many social groups, from close friends or families to strangers,
to form a group and engage in an activity. Consequently, Group Recommender Sys-
tems (GRS) are a significant area of study [4, 59, 60]. A standard example of a GRS
is a group of friends that want to watch a movie. Every friend has preferences that
the other friends might not share. The goal of a GRS is to balance the preferences
of all group members and generate a list of items to recommend to the group. There
are various methodologies for producing such a list [37]. One of the most popular is
applying a single RS for all group members and then aggregating their corresponding
recommendation lists into one list for the group (e.g., [4, 5]).

Furthermore, in various cases, irresponsible recommendation techniques have
been cited as having counter-effects and being untrustworthy. Unfair treatment of
different users, non-transparency and extensive personalization based on users’ data
can reduce users’ trust in the system. To encourage users to trust an RS, it must
adhere to several responsibility constraints, such as fairness, non-discrimination, or
transparency [83]. There is a wide range of definitions for each of these constraints,
and they can be implemented in different ways. Generally, fairness corresponds to a
lack of bias towards users and data items; the non-discrimination constraint encour-
ages diversity in the results, and transparency enables users to better understand the
system’s inner workings.

This dissertation mainly focuses on two responsibility constraints; fairness and
transparency. The notion of fairness in group recommendations can be vague with
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multiple interpretations [64]. Nonetheless, a general description of a fair group rec-
ommender system is a system that lacks bias against any group member. Simple
solutions will not work for this issue, which demands a complicated solution. For
example, a fundamental approach to achieve fairness is to utilize the Average ag-
gregation method, in which the score of an item in the group recommendation list
equals its average score from the group members’ individual recommendation lists.
All group members are viewed as equals in this regard. This approach, nevertheless,
has a severe flaw that is better demonstrated with the following example. Consider a
group with three members where the first two share mutual tastes, but the third does
not. The Average approach has a tendency to disregard the third user’s feedback. As
such, the group recommender is biased against the third member.

The problem of fair group recommendations is complex enough, but it becomes
even more complicated to achieve when the system needs to consider multiple rec-
ommendation rounds instead of just one. In most cases, a GRS perceives each in-
teraction with the group as a standalone process. However, a group normally uses
a GRS multiple times. The group’s reaction to the system’s recommendations in
previous recommendation rounds is an important indicator that would be advanta-
geous for the system to consider. Thus, a group recommender system should take
into account a sequence of interactions with the group. A sequential group recom-
mender should record all recommendations provided to the group, along with group
members’ satisfaction with them, and consider both when producing suggestions for
the next round. Multiple recommendation rounds add a new layer of complexity for
achieving fair group recommendations. Supposing each group member experiences a
degree of satisfaction with a provided group recommendation list, the system should
provide recommendations without bias against any group member throughout a se-
ries of recommendation rounds. In other words, the same group member should not
always be the least satisfied. The primary focus of this thesis is on stable groups, i.e.,
groups whose members remain constant over time. However, it also examines the
effect of ephemeral groups on sequential recommender systems. Ephemeral groups
experience change after each recommendation round, either with the addition of new
members or the departure of established members.

In this dissertation, we also examine transparency in recommendations, com-
monly referred to as explanations in recommendations. Although recommenders
make an effort to make relevant suggestions to users based on their preferences, they
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often cannot find the most relevant data items to offer. This causes the users to lose
faith in the system, which frequently results in them refusing to use it or falsely be-
lieving there is a problem with it. Providing explanations in recommender systems
is a recurring problem in the research community. The most common solution is
to provide explanations in conjunction with recommendations so that the user or
the person who designed the system can then gain an understanding of the rationale
behind a suggestion [103, 82, 18]. The level of detail and the presentation style of the
explanations can differ depending on the end-user, i.e., the final user or the system
administrator.

Users can be presented with explanations of recommendations automatically or
after providing feedback [28]. In the latter case, the feedback often takes the form of
a query from the user to the system (e.g., [71, 34]). Such questions can be either pos-
itive or negative concerning the existence of a data item in the recommendation list.
For example, a question can be either why an item is suggested or why an item was
not suggested. Many works explore the first case. However, questions concerning
the non-existence of a data item remain unexplored. The implicit constraint of such
Why-not questions is that the user knows the system’s database and, thus, questions
why an expected item was not suggested. To this end, Why-not questions and their
explanations are mainly geared toward system administrators. It is necessary to ask
these kinds of questions because they give a system engineer a deeper understanding
of the system and how to debug it.

1.1 Research Goals and Questions

An RS can be applied to various problems, from innocent daily dilemmas, such as
choosing shoes, to more significant choices, such as who to hire. Regardless of the
importance of the suggestion provided by an RS, the system should behave responsi-
bly. In our work, we focus on ensuring fairness and provide explanations along with
recommendations. Although both have been extensively researched, some gaps still
exist. The goal of this dissertation is to resolve the following research gaps.

Sequential group recommendations are a relatively new area of research. This
dissertation formally defines the sequential group recommendation problem and ex-
plores how to achieve fair sequential group recommendations. By the nature of
sequential recommendations, the time dimension is considered in the recommenda-
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tion process. This means that the data available to the system change between rounds
of recommendation. After each round, additional information (i.e., ratings, reviews,
etc.) is included in the system. More significantly, the information about the group
changes. For instance, the group members’ satisfaction with the system changes fol-
lowing a round of recommendations. A system should adapt to these changes and
still produce fair recommendations. This thesis proposes a recommendation model
based on reinforcement learning to overcome this challenge.

Additionally, when developing a recommender system for a sensitive domain such
as health, the system should produce suggestions that are as relevant as possible. To
this end, the system should take into consideration multiple sources of information,
such as the users’ health problems, their health literacy, and their interests in med-
ical documents. The thesis proposes a group recommendation model specifically
designed for the health domain. Finally, the ability to automatically explain why a
data item was not displayed as expected is an important tool for the developer when
calibrating their system. This dissertation proposes a formalization ofWhy-not ques-
tions and offers a method to provide their corresponding explanations.

Therefore, this thesis, considering all the research gaps mentioned, shall con-
tribute to answering the following research questions (RQ).

RQ1. How to define sequential group recommendations and why are they
needed? How to design group recommendation methods based on them?

Sequential group recommendations are a significant research area since the for-
mation of groups is especially prevalent in recent times. This is mainly due to the
expansion of social media, which enables users to form groups more easily and ef-
ficiently. These groups interact with a recommender system multiple times, so the
system should consider the previous interactions and adjust its behavior according
to the effectiveness of the previous recommendation rounds.

In the scope of this work, a sequential group recommender system is a system
that offers recommendations to a group for a series of recommendation rounds. To
produce a recommendation for the group at each round, all previous interactions
between the system and the group should be considered. Generally, a sequential
group recommender system should offer good results for the current round of rec-
ommendations and simultaneously satisfy the group members over a sequence of rec-
ommendations. More specifically, the system should observe two objectives. First,
the recommended items should be as relevant as possible to the group members at
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each round. Second, the system needs to ensure that no group member is dissatisfied
after a sequence of recommendations. Meaning that no group member is continu-
ously offered items that are of no interest to them. Standard group recommendation
approaches are not enough to achieve both sequential group recommendation objec-
tives. However, specifically designed sequential group recommendation approaches,
which consider the previous rounds of recommendation, show a significant increase
in their performance compared to the standard group recommendation methods.
This work showcases three such methods and explores their effectiveness in various
test cases.

RQ2. How to exploit reinforcement learning to select a group recommenda-
tion method when the system’s environment changes after each recommendation
round?

The information available to the system rapidly changes over time, with addi-
tional data being augmented. As a result, the interests of the group members may
change with the additional feedback. Based on the severity of these changes, the effec-
tiveness of a recommendation model may be affected. Ideally, the recommendation
model should observe these changes and modify its behavior accordingly. This work
proposes a model based on reinforcement learning techniques since it mirrors the
sequential group recommendation problem. As a reinforcement learning model, it
consists of three parts, environment, actions, and reward. The criteria for designing
each model part are flexible based on what the model wants to achieve. This work
utilizes the following: at each recommendation round, the system considers the en-
vironment, i.e., the satisfaction of the group members, and selects an appropriate
action. The actions component of the reinforcement learning model lends itself nat-
urally to the various available aggregation methods. The application of an action has
two effects. First, each action changes the environment. Second, a reward is calcu-
lated. The reward function is flexible and can focus on what the system wants to
achieve. For example, if the system wants to maximize the users’ satisfaction, then a
reward function can be the overall group satisfaction.

RQ3. How to design questions and produce explanations for why a set of
items did not appear in a recommendation list or at a particular position?

RS are often a black box for the end-users. Explanations are useful when these
users do not receive an item at the expected ranking in the list or do not receive the
item at all. Explanations on why an item did not appear in the recommendation
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list ensure the users that there are no errors with the system and describe the rea-
soning behind the produced results. These explanations are incredibly informative
for system administrators when calibrating or debugging the system. The system
should answer these questions without human intervention. To this end, since these
questions have to be processed by a system, they have to have a formalized structure.
This work focuses on providing a system administrator with a user-friendly explana-
tion of their system; hence, the explanations are based on the model and its different
variables.

RQ4. How to incorporate various health-related aspects in group recommen-
dations?

RS in the health domain are a powerful tool for patients that search for medical
documents on the web about their health problems. Moreover, it has been demon-
strated that utilizing group dynamics is highly effective, for example in lowering
relapse rates in smoking. In therapy sessions, caregivers provide their patients with
access to more appropriate online resources to manage their health problems. They
encourage users to take a more proactive approach to their health. Due to the sen-
sitive nature of the health domain, the system should provide users with documents
as relevant as possible to their interests. Therefore, the system must consider in-
formation about the users’ health problems, health literacy, and other factors. It is
possible to include this information in various aspects of the recommendation model.
This work is focused on a group recommendation model and incorporates the users’
health information in a novel similarity function.

1.2 Contributions

The scope of this work contributes to multiple areas of recommender systems. The
dissertation consists of five published peer-reviewed articles (Publication I-V). Pub-
lications I and II address the RQ1 by defining the sequential group recommenda-
tion problem and proposing three novel group recommendation methods designed
explicitly for sequential group recommendations. Publication III answers RQ2 by
presenting a group recommendation model based on reinforcement learning. RQ3 is
expanded on Publication IV, where the Why-not questions and explanations for rec-
ommendations are demonstrated. Publication V answers the RQ4, wherein a novel
group recommender system encompasses the multidimensional aspects of the health
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domain. The contributions of each article are summarized as follows.

Publication I: Fair sequential group recommendations.
Publication I [86] first introduces the sequential group recommendation problem

and the notion of satisfaction and disagreement. It proposes a new group recommen-
dation method that aims to provide a recommendation list that is both satisfying and
fair to all group members. This method was extensively evaluated in a series of
experiments using the MovieLens 20M dataset [32].

Publication II: Sequential Group Recommendations based on Satisfaction and Dis-
agreement Scores.

Publication II [88] is an expansion on the previous, Publication I. It further re-
fines the sequential group recommendation problem and proposes two additional
group recommendation methods. The evaluation is more extensive by utilizing an
additional real-world dataset, GoodReads [96]. In addition, it extends the sequential
group recommendation scenario by including ephemeral groups, i.e., groups that
change their members between rounds of recommendations. It evaluates the effect
such groups have on the proposed sequential group recommendation methods.

Publication III: SQUIRREL: A Framework for Sequential Group Recommenda-
tions through Reinforcement Learning.

Publication III [89] proposes a sequential group recommendation model based on
reinforcement learning consisting of three main elements, environment, actions, and
reward. The environment depicts how satisfied each group member is. The actions
are various group recommendation methods, i.e., the three proposed in Publications
I and II and another three state-of-the-art methods. In addition, the publication
examines two different reward functions. The experimental procedure is further
expanded by adding a third real-world dataset, Amazon [33].

Publication IV:Why-Not Questions & Explanations for Collaborative Filtering.
Publication IV [90] contribution is formulating questions to a system about why

an item does not appear in an expected position in the recommendation list and pro-
viding the corresponding explanation. To create such Why-not questions that can be
used in a wide range of scenarios, this study proposes a structure and properties that
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they should possess in order to be able to handle complex questions. Additionally,
a method is proposed to generate explanations of such questions based on the initial
recommendation model utilized to generate the recommendation list. A series of
evaluations show the effectiveness of the method mentioned above.

Publication V:Multidimensional Group Recommendations in the Health Domain.
In Publication V [85], the contribution is designing a GRS that incorporates

complex and multidimensional aspects of the health domain. The sensitive nature of
such recommenders makes the construction of each component more challenging.
The system needs to provide relevant items to the end-users while adhering to their
health problems, literacy levels, and psycho-emotional status. To address this issue,
this publication proposes a similarity function and a new method for fair group rec-
ommendations. Additionally, the creation of two synthetic datasets is described in
this work. Extensive evaluation using these datasets shows that the group recom-
mendation model enhanced with various health-related aspects is more effective than
a standard approach.

1.3 Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 provides an overview
of the relevant research areas, including group and sequential recommendations, rein-
forcement learning in recommender systems, explanations, and recommendations in
the health domain. Chapter 3 describes the sequential group recommendation prob-
lem and the methods proposed for it, while Chapter 4 introduces the SQUIRREL
model designed for achieving sequential group recommendations through reinforce-
ment learning techniques. Chapter 5 proposes the formalization of Why-not ques-
tions for recommender systems and the methods to provide explanations for them,
and Chapter 6 describes a group recommendation model that incorporates multiple
aspects of the health domain. Finally, Chapter 7 concludes the thesis and discusses
future work directions. At the end of the thesis, the original research publications
are attached in their original format.
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2 RELATED WORK

2.1 Recommender Systems Overview

Using already available user information a Recommender System (RS) will suggest
to a user a list of items that are of potential interest to them. The general requirement
for an RS is a collection of items I and a user setU . Every user provides feedback, for
a subset of items I . In many cases, this feedback takes the form of ratings, reviews,
clicks, etc. The set of users that provided feedback for an item i is defined by Ui,
while the list of items that a user u has given feedback on is denoted by Iu. RS
estimates a prediction score p(u, i) for item i that user u has not given any feedback
on. The user’s recommendation list will be composed of the items with the highest
prediction scores.

Several studies have been conducted on estimating an item’s prediction score for a
user [1]. The various works that comprise this thesis are based on Collaborative Fil-
tering (CF), which is a well-established approach to recommending items (e.g., [47,
15, 60]) and for simplicity unless otherwise specified the user feedback is provided
in the form of ratings. CF algorithms are generally categorized as memory-based or
model-based [8]. The memory-based CF algorithms are further distinguished into
user-based and item-based. User-based algorithms identify users who are similar to
the target user by using a similarity function. The prediction is determined by an-
alyzing similar users’ ratings, or as they are commonly referred to as neighbors or
peers. Item-based CF algorithms suggest to users items that are similar to items they
have previously enjoyed. Model-based CF algorithms primarily use machine learn-
ing techniques to discover the implicit behavior of users [91]. Matrix factorization
is one of the most commonly used model-based methods [52]. Its aim is to fac-
torize a user-item matrix into two low-ranked matrices, the user-factor matrix and
the item-factor matrix, that can identify potential items that users may find inter-
esting. Several other model-based approaches have been proposed, including neural
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networks [72], which are more flexible than matrix factorization and can handle a
more significant amount of data, fuzzy systems [100], which can address the under-
lying uncertainties, lack of precision, and ambiguity in features of items and user’s
behavior, and Bayesian classifiers [16], which transform the recommendation prob-
lem into a classification task.

Fairness in RS. Fairness in recommender systems has been the subject of multiple
studies [65, 11, 10, 66, 26, 53]. To our knowledge, there has yet to be a formalized
and widely accepted definition of fairness in recommendations. In contrast, many
works offer their own definition of fairness. It is possible, however, to generalize
and categorize fairness definitions. Fairness definitions can be distinguished into two
main categories: individual and group fairness. In individual fairness, equal treatment
is premised on similar entities being treated equally. Group fairness definitions use
protected attributes to define groups; all groups should receive the same treatment.

The authors of [101] explore the issues surrounding fairness in CF recommender
systems, which are sensitive to discrimination based on historical data. Since pre-
dictions are based on empirical data, they may inherit any existing bias. They con-
sider two groups; advantaged and disadvantaged. For example, female presentation
percentages are lower (disadvantaged) in STEM courses when compared to male
presentations (advantaged). They propose various unfairness metrics based on the
discrepancy between predicted and actual scores for items suggested to these two
groups. The metric of value unfairness refers to the differences in estimation errors
between groups, i.e. when one group receives a prediction that is greater or lower
in value than their actual preference. The absolute unfairness metric calculates dis-
crepancies in absolute estimation errors within groups. Underestimation unfairness
measures the discrepancy between the predictions and the true ratings. Finally, non-
parity unfairness determines the difference between average ratings for disadvantaged
and advantaged users.

In [7], the proposed pairwise fairness method considers the items’ relative posi-
tions in the recommendation list rather than their scores. Two groups of items are
considered: protected and non-protected. Pairwise accuracymeasures how likely it is
that a clicked itemwill rank above an unclicked item for the same user. Subsequently,
the pairwise fairness is achieved if the groups have the same pairwise accuracy. Fur-
thermore, they distinguish between fairness within (intra-group) and between groups
(inter-group). Intra-group pairwise fairness is achieved if an item is ranked higher than
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a relevant unclicked item from the same group, regardless of which group it belongs
to. When comparing items across groups, inter-group fairness occurs if a clicked item
is ranked higher than a relevant unclicked item that belongs to the other group.

[11] utilizes Variational Autoencoders (VAE) as a CF method and addresses the
issue of providing fair recommendations when the data information is unavailable. A
particular focus is placed on the influence of position bias, where items with remark-
ably similar scores are placed in different rankings in the recommendation list, and
popularity bias, where unpopular items are less likely to be suggested. Popularity
is also taken into account in [24], where they investigate the long-term fairness of
recommendations when attributes, like popularity, are subject to change with time
as a result of recommendation policies and user feedback. Instead of examining how
to achieve fairness for existing items, [109] examines the fairness of new items when
they are first introduced to the system, i.e., a cold-start scenario. The authors pro-
pose an innovative framework for learnable post-processing for achieving fairness for
newly introduced items, in addition to two models derived from it.

Unlike previous works that examined fairness from the consumer’s perspective,
[81] proposes a calibration-based approach to fairness on the producer side. A cali-
brated recommendation algorithmwill provide recommendations that reflect a user’s
interests and are proportional to them. Ideally, a recommendation list should have
a similar proportion of items from different groups as those in the user’s history.
Let’s say that the recommended items are movies and that the protected attribute
is the genre. To calculate the fairness of the recommendations, they compare the
distributions of a specific genre in the recommendations and the user’s history. A
re-ranking algorithm is introduced in [27] that emphasizes fairness for providers in
accordance with a notion of equity that has been taken from the provider’s view-
point. The algorithm re-distributes the recommendation among the providers, with
a share of the recommendation being allocated to each provider according to their
representation in the input data.

2.2 Group Recommendations

The research behind group recommendations is extensive [54]. Generally, group
recommendations can be divided into two main categories [37]. The first approach
involves combining the group members’ ratings to form a virtual user that can be
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used in standard recommendation algorithms (e.g., [55, 104]). The second and more
commonly used method for group recommendations is to use the same single-user
RS for each group member (e.g., [4, 5, 59]). Subsequently, the system aggregates
each member’s list into one to generate a group recommendation list. All of the
works presented in this thesis follow the second approach, as it allows for increased
flexibility and provides avenues for further development in terms of efficiency and
effectiveness [61].

A group recommender system may take into account a wide variety of criteria at
the aggregation stage. As an example, the work presented in [105] suggests a group
recommendation model that considers the influence of each group member during
the aggregation process. Members with more knowledge of the recommended items
have the most influence, meaning their weight during aggregation is higher. Addi-
tionally, [17] demonstrates how the aggregation strategy can be deduced from recent
advances in attention networks and collaborative filtering. Similarly, [102], besides
using an attentionmechanism, utilizes a Bipartite Graph EmbeddingModel (BGEM)
to estimate each member’s contribution to the group’s eventual decision. [74] adopts
a preference-based social network and analyzes social connections between group
members to make a final decision without knowing each member’s preferences.

In [95], the most effective aggregation strategy is determined through an analysis
of the interaction between group members. Social self-attention networks were used
to determine the voting patterns of the group members based on the multiple voting
processes that simulate how consensus is reached. [67] provides a novel solution to
the problem of producing recommendations for large groups by subdividing a large
group of people according to their own interests. Specifically, it identifies media-
user pairs that are likely to be candidates for each subgroup and combines their
recommendations lists. [43] outlines a two-phase recommendation system that seeks
to satisfy each member of the group. The first phase involves satisfying the whole
group. The second phase involves filtering out irrelevant items for each member in
order to satisfy them individually.

Fairness in Group Recommendations. Fairness in group recommendations is a
widely researched area. However, it is essential to note that group recommendations
suffer from the same pitfalls as single recommendations when it comes to defining
fairness. There is no formal definition, and each work presents a new perspective on
group fairness.
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In [48], fairness is presented as a constrained optimization problem. In particular,
for a given set of rankings (i.e., group members’ individual recommendation lists),
the method provides the most similar ranking to the provided sets that satisfy a
specific fairness requirement. Assuming that all data items have a protected property
that separates the dataset into n distinct groups, the authors propose as a fairness
requirement a general formulation of statistical parity for rankings that takes into
account the top-k prefix of the rankings, which is the top-k parity.

Among the various methods for assessing fairness, [99] measures the degree of
satisfaction, or utility, for each group member with the group recommendation list,
based on the relevance of the recommended items for each member, i.e., what is the
predicted score of each recommended item in the user’s personal recommendation
list. Specifically, the utility of a set of items for a user can be expressed as the aver-
age utility of these items. Overall user satisfaction for a group recommendation list,
referred to as social welfare, is determined by averaging all group members’ utilities.
Then, fairness is calculated by comparing the group members’ utilities. Generally,
the fairest list would minimize user dissatisfaction within the group. Therefore, fair-
ness imposes the least misery policy with regard to users’ utilities, placing emphasis
on the disparity between the lowest and highest. In accordance with this idea, fair-
ness can be defined as the minimum utility among group members or by the variance
in them when encouraging group members to attain similar utility values.

In contrast to using group members’ utility for group recommendation, [73] uses
the position of the items in the group recommendation list. The authors proposed
approach for fair group recommendations is based on the concept of Pareto opti-
mality: an item i is Pareto optimal if none of the other items j rank higher than it,
i.e., no item j dominates item i. Subsequently, N-level Pareto optimal is a variation
of Pareto optimal consisting of items dominated by N-1 other items and identifying
the N best items to be recommended. By definition, an item set of this type is fair
since each user’s top choices are included. Similar to this, to facilitate the aggregation
phase, [41] introduces the concept of rank-sensitive balance. The group’s first rec-
ommendation should strive to balance all members’ interests to the maximum extent
possible. In the same way, the first two items together must also accomplish the same
task, etc.

Recent work presented in [77] has offered two definitions of fairness: fairness
proportionality and envy-freeness. In fairness proportionality, when the user u likes at
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Table 2.1 Fairness definitions taxonomy in group recommendations. The works in bold are works
presented in this dissertation.

Individual Group Consumer Producer Single Round Multiple Rounds

[48] ✓ ✓ ✓

[99] ✓ ✓ ✓

[73] ✓ ✓ ✓

[77] ✓ ✓ ✓

[87] ✓ ✓ ✓

[88] ✓ ✓ ✓

[89] ✓ ✓ ✓

[85] ✓ ✓ ✓

least m items in the recommended list, the user considers the list fair for them. In
envy-freeness, if the recommendation list contains at least m items for which the user
does not feel envious, then u will consider the list fair. Despite the fact that these
resulting suggestions may not be the most optimal, they are nevertheless fair since
there is at least one item on the list that appeals to each member of the group.

The voting theory was used as a basis for some of the first approaches to achieving
fairness in group recommendations [65, 63]. For example, [57] uses voting theory
to decide which item to recommend using probability knowledge about user ratings.
An alternative approach is proposed by [29] in which members of the group are
allowed to comment on each other’s choices. It allows users to receive new recom-
mendations that are similar to those made by other members of the group as well as
to present their own counter-proposals that explain their reasoning.

The ranking aggregation methods proposed in these works can be adapted to
work as additional actions in the reinforcement learning model proposed in this
thesis, SQUIRREL [89]. It may be necessary to make additional modifications to
the model in order to satisfy the requirements of the added method, like altering
the state or reward definition or providing other input. Furthermore, depending
on how complex the aggregation method is, it can be time-consuming to retrain
the model; the basic Average method requires less training time than a sophisticated
group recommendation method.

Overall, Table 2.1 categorizes the works based on the type of fairness they achieve
on three different dimensions. Individual and group fairness, consumer or producer-
side fairness, and if the works consider single or multiple rounds of recommenda-
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tions. In individual fairness, similar entities are treated equally. In group fairness, all
groups should receive the same treatment. It is worth mentioning that research liter-
ature has heavily focused on consumer-side fairness, and no works currently examine
how to achieve fairness in group recommendations from a producer’s perspective.

2.3 Sequential Recommendations.

Based on the number of past interactions they consider, sequential recommenders can
be classified into three broad categories: Last-N interactions-based recommendations,
Session-based recommendations and Session-aware recommendations [69]. In Last-N
interactions-based recommendations, only the user’s most recentN actions are taken
into consideration [20, 49, 50]. Generally, this occurs as a result of the sheer volume
of historical records stored by the system per user - those records are often duplicated
and provide no useful information - which overwhelms the system. Session-based
recommendations are only made based on interactions that have occurred during the
current session. Most commonly, they appear in news articles and advertisements
[23, 35]. Session-aware systems have information on the user’s history and the last
interaction with the system. There is a widespread use of these recommenders in
e-commerce and app recommendations [31, 38, 70].

The development of a session-aware music recommender system is discussed in
[30]. In a neural network architecture, users’ preferences for each session are rep-
resented as an embedding. Based on the user’s previous selections and session-level
context (e.g., the device used, time), it is possible to predict which songs a user is
likely to listen to in the future. Using Variational Autoencoders (VAEs), a multi-
round recommender system is presented in [9] which incorporates randomness for
fairness throughout and penalizes items based on their historical popularity to pro-
mote diversity and minimize bias [13, 10, 12].

Using a bipartite graph, [68] discovers collaborative information using cross-
neighbor relation modeling, in which users and items are represented as nodes and
their interactions as links. Their high-order collaborative relationships are not only
based on the nodes that are directly connected but also on those that are two hops
away. User and item dynamics can be captured more accurately by using them along
with both user-side and item-side historical sequences. As described in [98], the
GLS-GRL system uses item-item co-occurrence graphs to capture user-item inter-

35



Last-N interactions [20, 49, 50]

Session-based [49, 35]

Session-aware [31, 38, 70, 30, 9, 68, 98] [87, 88, 89]

Table 2.2 Sequential recommendations work categorization. The works in bold are works presented
in this dissertation.

actions over the historical period, as well as item-item co-occurrence graphs to in-
dicate current interactions. GLS-GRL’s graph representation learning allows it to
obtain long-term and short-term user representations, which can then be merged
to produce integrated user representations. By using an interactive constraint-based
attention mechanism, relationships between members of a group are encoded into
representations of the group that can be used for the recommendation process.

As a whole, the works described previously pertain to single-user recommen-
dation systems. The main focus of this dissertation is to present a framework for
achieving group recommendations in a sequential scenario. We present four novel
methods for sequential group recommendations, which were initially described in
[86, 88]. SDAA takes into account the entire group and dynamically determines a
weight according to the members’ satisfaction. We utilize this weight to aggregate
the following two scores; the average prediction score for an item across all group
members and the prediction score of that item for the user most dissatisfied with the
previous recommendation round. On the other hand, SIAA evaluates each individ-
ual in the group. In every round, it computes a weight per user determined by the
user’s overall satisfaction and disagreement in the prior round. Finally, Average+
builds on the positive aspects of the standard Average aggregation strategy and aims
to mitigate Average’s shortcomings in the process. Table 2.2 presents the catego-
rization of the works based on the different approaches to sequential recommenda-
tions; Last-N interactions-based recommendations, Session-based recommendations
and Session-aware recommendations.

2.4 Reinforcement Learning in Recommendations

In recent years, Reinforcement Learning (RL) has become increasingly popular in
recommendation systems [2]. There were some early works in this domain, includ-
ing [92], in which a web recommender system was proposed. In this model, the state
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of the environment represents the last N pages visited by a user, actions represent
suggestions of pages to the user, and reward represents a weighted sum based on the
ranking of the recommended pages and the amount of time the user spent on them.
[108] proposes an online personalized news recommendation framework based on
DQNs. There are two parts to the framework, offline and online. The offline stage
involves training the model, followed by the online stage which involves producing
a recommendation and recording feedback from users. In a subsequent stage, the
model enters the offline stage and may be modified in response to logged feedback.
A long-term reward can be increased by properly modeling the evolving aspects of
the news along with the preferences of the users. They also consider user return pat-
terns as part of their exploration strategy for more diverse recommendation options
in addition to click/no-click feedback. [36] optimizes recommendation models for
long-term accuracy using RL techniques. There are two main areas they consider;
cold-start and warm-start. The model was based on the interaction between the
environment, i.e., the recommender system, and the agents, i.e., the users. It was,
therefore, able to be implemented in environments with insufficient access to content
resources.

In [107], the researchers propose a list-wise recommendation framework based on
deep RL. By reducing redundant computations in scenarios with large and dynamic
item spaces, the method reduces computational costs. The model is trained and
evaluated offline, while the recommender system is applied online. A simulation
of the user’s response (reward) is used to successfully evaluate the model in offline
mode The reward is determined by comparing the similarity of the current state with
other historical data using a user-agent interaction environment simulator. [106]
describes a deep learning movie recommender model that is based on RL, depicting
the user’s changing interests over time through prioritized experience replay. As part
of the recommendation process, agents are used to learn about members’ interests
and movie features in order to recommend movies based on their preferences.

A user-side sequential music recommendation system is proposed in [56]. This
method integrates users’ explicit and implicit feedback as part of a Markov Decision
Problem (MDP). Users’ explicit feedback includes their preferences for music chan-
nels, while implicit feedback is generated when new music tracks are requested. [78]
also uses an MDP to predict and recommend a new product based on an ordered
sequence of choices made by each user. In order to deploy this model readily as
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an application, several assumptions are made since the e-commerce environment is
different from a classical recommendation system.

All the works described above propose solutions to the recommendation task by
utilizing RL, but most of them are focused on particular recommendation domains.
In this thesis, we present a framework called SQUIRREL, which aims to be more
versatile regarding the domains in which it can be utilized and can incorporate a vari-
ety of strategies to compensate for the limitations inherent to every recommendation
method.

2.5 Explanations for Recommendations

Recommendation methods can be quite complex, and users are unaware of their
inner processes. For various reasons, like misinterpreting the collected data, a system
may produce false recommendations, i.e., recommendations that are not relevant to
a user’s interests. As a result, the users may be dissatisfied with the service, which
will likely result in a user stopping using the system. One way to address this issue
is for the system to provide explanations for its suggestions.

Explanations in recommender systems can have various advantages. First, they
provide a level of transparency. It is important to explain the reasoning behind a
recommendation to ensure the users that the system works as expected and that the
suggestions were made for rational reasons. This leads to the second advantage of
explanations, scrutability. In some cases, explanations can be useful in identifying and
correcting the system’s misinterpretation of information. As part of the explanation
process, the user gains a better understanding of the system and has the opportunity
to influence what recommendations are made through the correction of the system’s
assumptions [80]. This results in the users becoming more trusting in the system,
which makes the system more persuasive and effective, resulting in a higher level of
satisfaction for the users.

According to how explanations are provided, they can also be classified as user-
invoked, automatic, or intelligent [28]. User-invoked explanations are explanations
that are provided only after they are requested by the user. Automatic explanations
are always produced by the system and cannot be controlled by the user. Finally,
intelligent explanations are provided when the system, through some inner process
determines that they are required.
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An explanation in CF is usually provided as a result of feedback from users. For
example, assuming that a user request explanations for a recommendation. In order
for this recommendation to be produced, first, a CF system would have to identify
users who are similar to the one for whom the explanations are intended. These
similar users are often called peers, and the system utilizes them to produce recom-
mendations. In this scenario, the system explains its recommendations, stating that
the user is similar to the peers, and the peers rated the suggested item positively [71].
[34] examines how different display styles affect the effectiveness of explanations. An
explanation can be presented as either an aggregated histogram of the peers’ ratings or
as a detailed analysis of their ratings. Additionally, [75] suggests that it is also possible
to explain recommendations by showing the user that the recommended items are
similar to those they have liked. As a result, many of the items rated highly by the
user are provided as an explanation. To investigate the effectiveness of explanations
in recommender systems, [93] designed a system to examine the effect of various
types of explanations. Overall, this study suggests that appropriately explaining rec-
ommendations can benefit recommender systems over a number of different aspects,
such as transparency, scrutability, persuasiveness, trustworthiness, and satisfaction.

In recent years, several approaches have been proposed, e.g., [19, 97], that aim to
elucidate latent factors utilized by matrix or tensor factorization. [19] provides ex-
planations of recommendations on high-level feature spaces and heterogeneous cross-
domain recommendations. [97] propose a multi-task learning solution for providing
explanations for recommendations. Two companion learning tasks, one for predict-
ing the relevance of an item to a user and another to predict the opinion that the user
would have for that item, are integrated via a joint tensor factorization. Thus, the
model estimates not only users’ preferences among a list of items, in other words, rec-
ommendations, but also users’ appreciation of items at the feature level, specifically,
opinionated textual explanation.

From another angle, [25] demonstrates how to compute the minimum subsets of
user actions that will alter top-ranked recommendations in a counterfactual scenario.
The authors propose a provider-side approach to provide concrete explanations for
end-users, in which explanations are composed of the bare minimum steps taken by
the user that, when deleted, alter the recommendation to an alternative suggestion.
Thus, the explanations are short, understandable, and helpful, as they are sets of the
least amount of information produced through a counterfactual model using a user’s
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own interaction with the system. Additionally, the explanations do not reveal any
personal data about other users, therefore preventing privacy violations by design.

In this thesis, we provide explanations after direct feedback from the user. Com-
paratively to those works previously mentioned, we provide explanations on why an
item or a set of items does not appear in the recommendation list rather than provide
explanations on why it does. Furthermore, we are producing the explanations from
a system administrator’s perspective, rather than appealing to the consumer. This
enables us to compose the explanations with more technical details that an average
user would not understand but are essential for a system administrator.

2.6 Recommendations in the Health Domain

Health recommender systems are decision-making systems for recommending in-
dividualized medical services. A system like this employs a variety of learning al-
gorithms and interprets the patient’s health information, often called the patient’s
profile, to produce healthcare recommendations. Health recommenders can be used
in the following scenarios [79]. First, the system is used by a health expert to re-
trieve information for a medical case. Second, the user of the system is a patient
and requires access to reliable and accurate information about their health problems.
Finally, in the third scenario, the system proposes combinations of different med-
ications to prevent adverse health effects. This dissertation focuses on the second
scenario.

The web is one of the most popular sources of information for patients about their
illnesses and possible treatments. However, there are generally two problems asso-
ciated with the information available on the Internet. First, the information is not
always reliable, and second, it is extremely diverse. Users could overcome these prob-
lems by using a personalized recommender, which would provide efficient, reliable,
and integrated clinical care and research systems, allowing patients to extract relevant
information from the enormous amount of heterogeneous information available.

To this end, [62] illustrates what is required of aHealth Recommendation System.
In particular, the system should be able to cope with imprecise and colloquial terms
as well as misspellings. Additionally, the system should be able to handle clinical
terms and anticipate when some terms should be negated from consideration. For
example, if a patient’s health profile states that they do not have cancer, they do
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not need cancer information. Furthermore, confidentiality must be maintained at
all times for the patients.

On the other hand, [76] analyzes the challenges that health recommender sys-
tems face. The first challenge is the patients’ profiles; the collection and selection of
patient health information are complex. Considering the information is provided in
a standard format, it has to be organized into a profile for each patient. Due to the
fact that health recommender systems accommodate a wide range of user needs, the
profile must be tailored to fit each user’s needs. The second challenge that health rec-
ommender face is trustworthiness. They should be able to present the suggestions in
such a way that even if the recommendations are inconvenient, the user can trust the
system to guide them in the right direction. Finally, health recommender systems
should always be used in conjunction with a health expert in order to use medical
assessment and treatment recommendations fully.

Various works are done on health recommendations. [44] proposes an approach
to establishing context-aware personalized healthcare recommendation services. [46]
assists patients in extracting relevant information from extremely large quantities of
heterogeneous and clinical data through semantic annotation of patient profiles and
past user queries. In [3], an individualized nutritional recommendation system is pro-
posed based on the health profile of the user and the main guidelines provided by a
medical specialist. Additionally, by decoupling users from their properties and items
from their properties, [51] defines a collaborative filtering model that assesses the
probability that items will be of interest to users matching specific features. There-
fore, one may be able to construct a matrix of values indicating the extent to which
an item feature affects, in a positive or negative way, an item’s usefulness with respect
to a specific user property. This would address problems of CF methods, including
sparsity, latency, and unfairness against those whose preferences are dissimilar from
common preferences.

There are a number of limitations with the recommender systems that have been
implemented in the health domain so far, even though they are becoming more pop-
ular in the field. To our knowledge, no research has been done in the rapidly evolv-
ing area of group recommendations, nor has it been done on incorporating fairness
into health care. These new challenges may benefit health experts, and this thesis
demonstrates some of these benefits. In order to create a group recommendation
list, we have used methods commonly used in pure group recommendation systems.
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However, our recommendations have been tailored for the health domain, leverag-
ing the users’ semantically annotated Personal Health Records (PHR) to calibrate
our recommendations. The result is a direct endorsement of documents relevant to
a user based not only on the user’s feedback, namely, the ratings that the user gave
to items but also on their personalized health profile. In addition, we ensure that all
members are treated equally by incorporating the notion of fairness into our model.
The importance of this is especially apparent in the health domain, where all group
members must be satisfied.
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3 SEQUENTIAL GROUP RECOMMENDATIONS

This chapter introduces the concept of sequential group recommendations and ana-
lyzes the measures used to achieve these recommendations. In the first section, we
describe the problem of sequential group recommendations. Section 3.2 introduces
the main methods to identify the user’s satisfaction with the system after a series
of recommendation rounds. In Section 3.3, we propose three different aggregation
functions designed for a sequential group scenario. Finally, Section 3.4 describes the
results of the experimentation we performed using real-world datasets.

3.1 Problem Description

In the scope of this work, we consider a system to be a sequential group recom-
mender system when it interacts with a group for a sequence of recommendation
rounds. There are two types of groups: stable, whose members stay the same over
time, and ephemeral, whose members change between rounds of recommendations.
Each round is a complete group recommendation process; first, a single recommen-
dation process is applied to all group members, generating their corresponding pre-
diction lists. To create the group recommendation list, the system then aggregates
those prediction lists into one. There are two main objectives that a sequential group
recommender system should complete. As a first objective, the items recommended
to the group should be as relevant as possible to the group members at each rec-
ommendation round. The second objective is that no group members should be
discriminated against during a sequence of recommendation rounds.

This is a complex set of objectives that are not easily observed. Group members
each have their own likes and dislikes, which can differ greatly from one another.
A user is satisfied with a group recommendation list if multiple items are relevant
to the user. Take a three-person group as an example. Two of them share the same
interests, while the third does not. If we applied a standard group recommendation
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approach, the third member would most likely be dissatisfied since their interests are
dissimilar from the other members, violating the first objective. Additionally, this
would continue for all recommendations rounds, thus violating the second objective.

However, we can make a conjecture based on the concept of multiple recommen-
dations. Generally, if a user is unsatisfied with the recommended items at a certain
round, they were satisfied at the prior round, or they will be satisfied in the following
round. Based on this conjecture, we propose methods to achieve sequential group
recommendations that consider how well the system and the group have interacted
historically, i.e., what items have been recommended previously and how well the
group members have received them.

This sequence of recommendations also generates a need to measure the satisfac-
tion of each user per recommendation round as well as for the entire sequence of
rounds. To achieve this, we introduce the notions of satisfaction and disagreement.

3.2 Users Satisfaction and Disagreement Scores

3.2.1 Satisfaction Measure

We need to design a measure that will describe our system’s effectiveness per round
and achieve the same for numerous rounds in order to evaluate the effectiveness of a
sequential group recommender system throughout multiple rounds of recommenda-
tions. We introduce the notion of satisfaction, expressing how satisfied a user is with
the recommendations. This dissertation defines two types of satisfaction: single-user
satisfaction and group satisfaction.

3.2.1.1 Single User Satisfaction

Initially, we formally measure how satisfied each user is with the group recommen-
dation Grj that they received during the recommendation round j. Specifically, we
compare the user’s recommendations as an individual, i.e., the predictions they re-
ceived from a single Recommender System (RS), with the recommendations they
receive as a group member. Our system considers the user’s predictions as their
ground truth, which allows it to view single-user RS as black boxes.

The top-k items for user u, namely the k items with the best prediction scores,
are returned as a list called A

j
u. We want to contrast the user’s ideal scenario with
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the items from the group recommendation list. As we take into account each user’s
top items, rather than the group’s top items, we can get a better picture of the users’
satisfaction than the average method. This is commonly referred to as the individual
loss concerning the group recommendations [58]. Formally:

sat(u, Grj , j) =
∑︁

i∈Grj pj (u, i)∑︁
i∈Aj

u
pj (u, i) . (3.1)

where pj (u, i) returns u’s prediction score concerning item i during recommendation
round j according to a single RS.

Note that we do not use the scores as they appear in the group list but as they
appear in the individual prediction list of the user. Since the aggregation phase of the
group recommendation process somewhat distorts the group members’ individual
opinions, we opt to take into consideration only the personal prediction scores of
each group member.

Equation 3.1 describes the satisfaction of a user per recommendation round. To
describe a user’s overall satisfaction with the entirety of the µ rounds of recommen-
dations we introduce the notion of overall satisfaction.

The overall satisfaction of user u concerning a sequence GR of µ rounds is the
average of the satisfaction scores after each iteration:

satO(u,GR ) =
∑︁µ

j=1 sat(u, Grj , j)
µ

. (3.2)

3.2.1.2 Group Satisfaction

Having defined each group member’s satisfaction score, we can now define the sat-
isfaction score of the entire group. Specifically, we define group G satisfaction con-
cerning a group recommendation list Grj as the average of the satisfaction of the users
in the group:

groupSat(G,Grj , j) =
∑︁

u∈G sat(u, Grj , j)
|G | . (3.3)

Subsequently, we define the overall group satisfaction of a group G for a recom-
mendation sequence GR of µ group recommendations (Gr1, . . . , Grµ), as:

groupSatO(G,GR ) =
∑︁

u∈G satO(u,GR )
|G | . (3.4)
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This measure indicates if the items we report to the group are acceptable to its
members. Higher group satisfaction means that the group members are satisfied with
the recommendations.

3.2.2 Disagreement Measure

The group satisfaction measure is a necessary tool to identify if our sequential group
recommender system is effective. However, there is a flaw in how the group satis-
faction score is defined (Equation 3.3). Namely, we take into account the average
satisfaction rating for the group. This can cause us to overlook the user’s dissatisfac-
tion in some way. Imagine that everyone in the group is extremely satisfied, with
the sole exception being a low-satisfied user. The group satisfaction score will then
likely remain relatively high, and the user who is least satisfied will usually not be
taken into consideration. Thus violating the second objective of a sequential group
recommender system. In response to this observation, we establish a new measure,
the disagreement score, both at the user and group levels.

User disagreement is defined at the user level as the discrepancy between the user’s
satisfaction and the highest user satisfaction score across all group members.

userDis(u, G, Grj , j) = max∀u′ ∈G sat(u′, Grj , j) − sat(u, Grj , j). (3.5)

This allows us to determine better if a group member is systematically favored
(the user will have very low user disagreement scores) or is disregarded (the user has
very high user disagreement scores).

At a group level, we intuitively define the group’s disagreement as the difference
in the satisfaction scores between the most satisfied and the least satisfied member in
the group [58].

groupDis(G,Grj , j) = maxu∈Gsat(u, Grj , j) −minu∈Gsat(u, Grj , j). (3.6)

Subsequently, we define the overall group disagreement of G for the entire recom-
mendation sequence as:

groupDisO(G,GR ) = maxu∈GsatO(u,GR ) −minu∈GsatO(u,GR ). (3.7)

Ideally, we want this measure to take low values, indicating that the group mem-
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bers are all satisfied to the same degree after a series of recommendation rounds.
Higher groupDis values will demonstrate that at least one group member is biased
against.

3.3 Aggregation Methods for Sequential Group Recommendations

This section outlines three new group recommendation approaches that fulfill the
two objectives a sequential group recommendation should complete. They create
group recommendation lists with at least one item of relevance to each member of
the group, i.e., the group recommendation list is relevant for all group members.
Additionally, they consider the previous rounds of recommendations and strive to
be fair to all group members throughout a series of recommendation rounds so that
no group member is constantly the least satisfied.

Each proposed method is an aggregation method, meaning that a single-user RS
has produced a prediction list for each group member. The proposed methods use
different mechanics to aggregate these lists into one group recommendation list. The
Average and Least Misery are two of the most established aggregation methods used
by standard group recommender systems [59]. Average is founded on the idea that
every member is regarded as being equal. As a result, the group prediction for an
item will be determined by averaging its members’ scores.: avgG(i, G) =

∑︁
u∈G p(u,i)

|G | ,
where p(u, i) offers us the user u’s prediction score in i (calculated using a single-user
recommendation method). In the Least Misery aggregation method, one person
has the power to veto any decision made by the group. In this instance, the group
prediction score of an item i is the lowest score given to that item in the prediction
lists of every group member: minG(i, G) = minu∈Gp(u, i).

3.3.1 Sequential Dynamic Adaptation Aggregation Method

The Sequential Dynamic Adaptation Aggregation (SDAA) method builds on the
strengths of the Average (equality) and the Least Misery (inclusion of all opinions)
aggregation methods and combines them via a weighted summation. In order to
calculate an item’s prediction score for a group, SDAA uses the following formula:

score(G, i, j) = (1 − αj) ∗ avgG(G, i, j) + αj ∗ leastG(G, i, j). (3.8)
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During round j, the avgG(G, i, j) function calculates the average score of item i based
on the classic Average aggregation method, while function leastG(G, i, j) provides the
least satisfied user’s score for i. The alpha variable can have values ranging from 0 to
1. If alpha = 0, SDAA is transformed into average aggregation, while when α = 1,
SDAA is transformed into a modified least misery aggregation, which considers only
the least satisfied member.

Ideally, this value should fluctuate to better reflect the group’s consensus. In
each recommendation round, α is dynamically determined by subtracting the group
members’ minimum satisfaction score from the maximum satisfaction score for the
previous round.

αj = maxu∈Gsat(u, Grj−1, j − 1) −minu∈Gsat(u, Grj−1, j − 1), (3.9)

where j > 1. When j = 1 (the first recommendation round of the system), then α = 0,
and the aggregation method reverts to that of a classic average aggregation.

Intuitively, suppose the group members are equally satisfied in the last round.
In that case, α takes low values, and the aggregation will closely follow that of an
average, where everyone is treated equally. On the other hand, if one group member
is extremely unsatisfied in a specific round, α takes a high value and promotes that
member during the next round.

3.3.2 Sequential Individual Adaptation Aggregation Method

The next proposed aggregation method, Sequential Individual Adaptation Aggrega-
tion (SIAA), concentrates on each group member individually. We assign each mem-
ber a weight score. This weight is based on each user’s satisfaction and disagreement
scores to ensure that the system is calibrated for each user individually.

Specifically, during the aggregation phase, we exploit the concept of overall user
satisfaction (Equation 3.2) and user disagreement (Equation 3.5). Each group mem-
ber is assigned an individual weight, which is applied to an item’s prediction score
given by the single-user RS (Equation 3.10). The final score of that item for the
group is the summation of its weighted prediction scores for all group members.

score(G, i, j) =
∑︁
u∈G

wu,j ∗ pj (u, i). (3.10)
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Users’ satisfaction scores can be used to balance recommendations for all group
members. Members who were dissatisfied in previous rounds are favored in the
following ones. The use of a user’s overall satisfaction is a simple approach. Ideally,
higher weight should be assigned to users with a low overall satisfaction score. For
example, assume the group is in the j-th recommendation round. Then the overall
satisfaction score for all previous j − 1 rounds is given by Equation 3.2. As a result,
the weight corresponding to each member at iteration j is:

wu,j = 1 − satO(u,GR j−1). (3.11)

where GR j−1 are all previous recommendations at the j − 1 round of the system.
The users with high overall satisfaction are assigned a lower weight, while those

with lower satisfaction scores are assigned a higher one. If the group members are
satisfied to the same degree, they are assigned similar weights. Since we compute a
user’s overall satisfaction score, we ensure that a systematically biased user will have
the greatest weight.

However, Equation 3.11 suffers from a drawback. It is slow to compensate for
extreme alternations of a user’s overall satisfaction throughout the recommendation
rounds. For example, suppose a user was highly satisfied in the first n rounds and
then extremely dissatisfied in the rest. In that case, the method will require some
rounds to assign them a higher weight to promote them. The same is true in the
reverse case, where a user was dissatisfied and then highly satisfied. This leads to
an aggregation method that promotes users even though they are satisfied during
multiple recommendation rounds.

A way to counter this drawback is to shorten the rounds needed for a change
in user satisfaction to be reflected in the user’s assigned weight. To achieve this,
we introduce the Sequential Individual Adaptation Aggregation method, or SIAA,
that considers a user’s overall satisfaction and their disagreement with the previous
recommendation round.

wu,j = (1 − b) ∗ (1 − satO(u,GR j−1)) + b ∗ userDis(u, G, Grj−1, j − 1), (3.12)

where b is the weight we use to balance the overall satisfaction and user disagreement
scores. Given that we are in the j-th round of the system, GR j−1 expresses the
recommendations of all the previous j − 1 rounds. Finally, Grj−1 consists of the
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recommendations of the immediately preceding round.

3.3.3 Average+ Aggregation Method

In the following sequential aggregation method, the group recommendation list is
considered as a set, unlike the previous method, in which each item was considered
individually. Also, the previous group recommendation methods add a single item
without considering the existing items in the group recommendation list. Consider-
ing that Average aggregation focuses on finding items that satisfy the majority of the
group, we propose an aggregation method called Average+ that exploits the Average
method and the high group satisfaction scores it produces [86].

Due to its propensity to overlook the outlier in a group, Average also gets high
group disagreement scores. When a group member’s interests differ from the others,
they are usually consistently dissatisfied. This observation prompts us to suggest a
new aggregation approach that not only preserves the benefits of the Average method
but also lessens the issues caused by the above-mentioned shortcoming.

There are two parts to this aggregation method. We capitalize on the average
method’s advantages in the first phase and then address its disadvantage in the second.
The first phase is simple; we utilize a traditional Average aggregation approach for
the group, which yields a lengthy list of candidate items. We retain a much longer
list than a typical Group Recommender System (GRS), which often only preserves
the k items with the highest score.

Following testing, a list of 5k items produces the most successful results, where
k is the number of items in the list GRS suggests to the group. This list is denoted
as AvgListGj for group G at recommendation round j. A longer than 5k list typically
offers additional items that do not have good enough group prediction scores, indi-
cating that the majority of the group will not find them relevant. Consequently, they
cannot be used to benefit from the performance of the average aggregation approach.

Having secured a high group satisfaction, the next phase of the Average+ aggre-
gation method is to minimize group disagreement.

An incremental heuristic method is proposed. There are two steps in this pro-
cess. First, the item with the highest predicted score in AvgListGj is inserted in the
group recommendation list Grj. The second step of the method is recursive. All the
items in the AvgListGj are examined individually. The item that is finally selected to
be included in the group recommendation list is the one that generates the lowest
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disagreement score as calculated by the Equation 3.13. This process is continued
until all k items have been added to the group’s recommendation list.

Grj = Grj ∪ {i | min∀i∈AvgListGj (groupDis(G,Grj ∪ i, j)) ∨ i ∉ Grj}. (3.13)

By incrementally filling the group recommendation list, we can examine all the
items and the effects they collectively have on the group.

3.4 Results

For the evaluation section of our work, we did not have access to datasets that con-
tain interactions between groups and a system, where for example, the group as an
entity has rated an item. In lieu of such a dataset, we artificially created groups based
on information taken from two real datasets, MovieLens, and GoodReads. Since we
want to evaluate our proposed aggregation methods for a sequence of recommen-
dations rounds, we need to simulate a time flow, where between the rounds some
time has passed. This means that the recommender does not start with all the data
available, but the information is sequentially augmented after each round. To simu-
late this, we first sort each dataset chronologically by the time that each rating was
given. Then we split the datasets into chunks, and after each round, a new chunk is
introduced to the system.

We also experimented with different group formats. These groups consist of 5
group members and are stable, meaning that the group members remain the same
throughout the rounds of recommendation. In order to find similar users we utilized
the Pearson Correlation[47] similarity function that produces scores in the range of
[-1,1]. Higher values imply a higher similarity between the users, while negative
values indicate dissimilarity. We consider two users to be similar if they share a sim-
ilarity score above 0.5 and dissimilar if their similarity score is below -0.5 The types
of groups we are considering are the following:
4 similar – 1 dissimilar (4+1): The four members of the group share similar inter-
ests, while the last one does not.
3 similar – 2 similar (3+2): We divide the group into two subgroups. The members
of each subgroup are similar to each other, while at the same time, the subgroups
are dissimilar to one another, i.e., all members of one subgroup are dissimilar to all
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Figure 3.1 Group satisfaction and disagreement scores for 4+1 group format in the MovieLens
dataset.

members of the other subgroup.
5 dissimilar: All members of the group are dissimilar from each other.

With these group formats, we want to simulate three different real-life scenarios.
First, it’s possible that a newcomer’s interests will differ significantly from those of
the rest of the group when they join an established group for the first time. Con-
sider, for instance, a workplace scenario where a new employee joins a project team
that already exists. Second, when two separate groups come together to work on
a common project, like two work teams that must cooperate. The last group type
mimics a situation in which a group of unrelated individuals gets together for an
activity, such as a business lunch or a tour provided by a travel agency.

We compare our methods to three other widely used group recommendation
methods; Average, RP80 [4], and Par [99]. For more detailed information on RP80
and Par see Section 4.3.3. Extensive experiments have shown that our proposed
methods are overall more effective than the standard group recommendation ap-
proaches when applied in a sequential scenario. As shown in Figure 3.1, the SDAA
and SIAA methods produce similar group satisfaction scores, with the most effective
ones, Average and Par, while simultaneously producing far lower group disagree-
ment scores compared to them, which produce the two highest group disagreement
scores. Due to this, our proposed methods outperform the Average method and
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Figure 3.2 Group satisfaction and disagreement scores for 4+1 group format in the MovieLens dataset
for ephemeral groups.

fulfill the two main objectives of a sequential group recommender system. They
consistently offer relevant items to the group (shown by the high group satisfaction
scores) and also ensure that no member is persistently overlooked (shown in the low
group disagreement scores).

In comparison to SDAA and SIAA, Average+ shows lower group satisfaction
levels. This is to be expected as the extended list produced by Average aggregation
serves as the foundation for the group list that Average+ constructs. Average+ in-
vestigates items that may yield lower satisfaction but significantly better (i.e., lower)
group disagreement scores rather than limit itself to those that would deliver the
greatest group satisfaction scores (i.e., the top k returned by Average). As a result,
Average+ has lower satisfaction ratings than the Average approach. Similar results
can be observed for the alternate group formats and the GoodReads dataset.

Evaluations were also done to examine the performance of the proposed methods
for ephemeral groups where the group members change between recommendation
rounds. One group member is randomly removed after each recommendation round
to mimic the dynamic properties of the ephemeral groups. To maintain the same
group size, a new user is randomly added. The newly chosen member is chosen in
a way that keeps the group’s type constant. For instance, if a 4+1 group has the
dissimilar user removed, the new member must be different from the other four
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group members.
The constant change of group members alters the performance of the proposed

methods. However, they still outperform the standard group recommendation ap-
proaches. In more detail, as shown in Figure 3.2, Average+ outperforms SDAA in
later rounds, despite having lower satisfaction scores in the initial iterations than the
other approaches. However, its performance is significantly less than SIAA. SIAA
has consistently achieved excellent group satisfaction scores across all test cases, but it
can now produce decent disagreement levels with ephemeral groups. This is a result
of SIAA’s user-centered design philosophy. Compared to an approach like SDAA
that is group-focused, it can handle the addition of a new group member better.

Additionally, a discrepancy in SDAA’s performance method can be observed.
The SDAA technique suffers a negative impact due to the continual member change,
with a sharp decline in performance. Every round introduces a new unknown mem-
ber, forcing the SDAA to employ greater alpha values. High alpha values have a neg-
ative impact on SDAA performance [86] and the value of alpha increases to the max-
imum at each recommendation round because the new member has no prior satis-
faction score (Equation 3.9). The traditional Average approach outperforms SDAA
because new members are continuously added to the group, preventing SDAA from
maintaining its optimal performance.
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4 THE SQUIRREL FRAMEWORK

This chapter introduces the SQUIRREL framework – SeQUentIal Recommenda-
tions with ReinforcEment Learning, a model based onMachine Learning (ML) tech-
niques in order to enable a sequential group recommender system to select an ag-
gregation strategy automatically. In Section 4.1, we describe the problem, and in
Section 4.2, we formalize the SQUIRREL model. In Section 4.3, we detail the var-
ious elements of the model. Finally, in Section 4.4, we describe the results of the
experimentation process.

4.1 Problem Description

The SQUIRREL model uses Reinforcement Learning (RL) strategies to determine
the best group recommendation algorithm depending on the group’s present state.
The choice to utilize reinforcement learning is intuitive given that the sequential
nature of RL closely matches the sequential nature of the sequential group recom-
mendation problem.

The recommendation system should have satisfied all members of the group after
a series of recommendation rounds. However, each member’s satisfaction changes
throughout the rounds. These changes can adversely affect the group recommen-
dation approach that was initially utilized. For example, a group recommendation
strategy like the Average works well when all members are similarly satisfied. This
is often the case in the first recommendation rounds but is unsuitable when one user
is significantly dissatisfied, which may happen in the latter rounds.

As a solution to this problem, the SQUIRREL model defines its environment
as the satisfaction of the group members, which changes after each recommendation
round. The model observes the current environment and determines which aggre-
gation function should be used to generate the group recommendation list (i.e., an
action). For example, if all group members are equally satisfied, the model will select
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an aggregation function that treats each member equally, such as the classic Average.
Alternatively, if a group member has a very low satisfaction score, then the model
selects an aggregation function, such as SDAA, that can promote that member and
raise their satisfaction score.

4.2 Model Definition

Based on a Markov decision process, the SQUIRREL model engages an agent in
interactions with an environment E, in order to maximize an accumulative reward.
This process can be described by a tuple of (S,A, Pa, Ra), where:

• S represents the state of the environment, i.e., the group, and is expressed as
the overall satisfaction scores of each member (Equation 3.2). At each round
j, we maintain a unique state for each member u of the group.

• A comprises the various aggregation functions used in the SQUIRREL model,
where |A| = m. Without any limitations on the number of actions we may
add, they can vary from quite basic ones, for example, a standard Average, to
considerably more sophisticated ones, such as SDAA.

• Pa(s, s′) specifies the likelihood that during round j following the action a, the
state s will change to the state s′. Specifically, Pa(s, s′) = Pr(sj+1 = s′ |sj = s, aj =

a).
• Ra(s, s′) is the reward obtained following the transition from state s to state
s′ under action a. The reward reflects the model’s performance. Two re-
ward functions are specified, which use the group members’ overall satisfac-
tion (Equation 3.2) and disagreement scores (Equation 3.5). The first method
examines the group’s overall satisfaction by averaging all members’ personal
satisfaction scores. The second reward function incorporates the disagreement
among group members as well as the overall level of satisfaction.

The model’s goal is to seek a policy π(a|s) that performs an action a ∈ A during
the state s ∈ S in an effort to optimize the expected discounted cumulative reward
after µ sequential recommendation rounds:

max E[R(µ)] (4.1)
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Figure 4.1 The SQUIRREL Model.

where

R(µ) =
µ∑︁
t=0

γRα(s, s′) (4.2)

with 0 ≤ γ ≤ 1.
The SQUIRREL model is utilized for a sequence of recommendation rounds to

generate a list of suggestions for the group. It is important to remember that each part
of the SQUIRREL model may be adjusted and optimized for a particular function.
For instance, an application may need to specify an alternative state and/or reward in
order to reduce the variations in how users perceive the system’s overall performance.
On the other hand, alternative actions may be defined by an application that seeks the
optimal variable for an aggregation function. As an example, when using the basic
Weight Sum aggregation function [94], actions correspond to the various weights.

SQUIRREL, as with any other RL model, is dependent on training. The system
requires a vast amount of data during this training phase. As part of training, the
model attempts to identify which action (i.e., which aggregation technique) is most
efficient given the current environmental state. An RL model must be retrained if
any of the model’s components, i.e., state, actions, or reward, are modified.

Figure 4.1 describes a SQUIRREL model’s recommendation round. At the start
of round j, a Recommender System (RS) produces a recommendation list separately
for each member of the group noted as Aj

u. In turn, these lists are entered into the
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SQUIRREL model, whereby the agent monitors the environmental state Sj, i.e.,
the current level of satisfaction within the group. Next, it decides on a suitable
action αj for aggregating the lists A

j
u. Consequently, this causes the model’s state Sj

to transition to the following state Sj+1. Additionally, the environment updates by
the group members’ overall satisfaction, and the reward Rj+1 is calculated. Lastly,
the model provides the group with the resulting recommendation list Grj.

4.3 The SQUIRREL Model

This Section describes in depth the SQUIRRELmodel’s three main elements – state,
action, and reward. These components are adaptable andmay be tailored to the user’s
demands. In this thesis, the model uses measures mentioned in Chapter 3. Specifi-
cally, the users’ overall satisfaction defines the model’s state. The group satisfaction
and disagreement scores express the reward functions. Finally, the model’s actions
include various state-of-the-art aggregation techniques in addition to the previously
suggested aggregation methods, SDAA, SIAA, and Average+.

4.3.1 State Definition

The specification of the environmental state is a critical component of the SQUIR-
REL model. This state is what characterizes the group members’ present status.
Therefore, we require a state that places an individual emphasis on each group mem-
ber and how satisfied they are with the recommendations they had received in pre-
vious rounds of recommendations. This will prevent the model from mistakenly
ignoring any group member, which is likely to happen if we consider the group as a
whole.

Therefore, we define our model’s state as an array containing the overall satisfac-
tion of each group member. Following each recommendation round, the model’s
internal state is updated with the group members’ new total satisfaction scores. The
model maintains the satisfaction of each group member through the most recent
round of suggestions.
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4.3.2 Reward Definition

The only means by which the model has to decide if an action it selected was suitable
is the reward provided by that action. Based on what the model tries to achieve, the
reward function may be defined in a variety of ways. In this thesis, two different
reward functions are proposed.

The first reward function utilizes the group satisfaction score (Equation 3.3),
which describes how well the group members received the recommended items. The
satisfaction score will reflect how successfully the system can balance the group mem-
bers’ desires. A high group satisfaction indicates that the system successfully located
items relevant to most group members. On the other hand, a lower group satisfac-
tion score denotes a failure of the system to meet its objectives.

Formally,
Rs(GR j) = groupSatO(GR j) (4.3)

where GR j refers to all the rounds up to the jth one.
However, according to the previous discussion in Chapter 3, a sequential group

recommender system needs to complete two objectives; propose items relevant to the
group members and keep all the members equally satisfied. The above-mentioned
reward function can only achieve the first objective. With that in mind, we also
define a second reward function that can address both objectives by considering the
overall group satisfaction and the group disagreement (Equation 3.6) scores.

As a second alternative reward of the SQUIRREL model, we can utilize the
harmonic mean of group satisfaction (Equation 3.3) and group disagreement scores
(Equation 3.7), namely their F-score. Considering the input functions that F-score
needs, we use 1 − groupDisO to simulate the group agreement.

Rsd(GR j) = 2
groupSatO(GR j) ∗ (1 − groupDisO(GR j))
groupSatO(GR j) + (1 − groupDisO(GR j))

. (4.4)

Overall, this strategy consists of two components, groupSatO, and groupDisO,
reflecting the degree to which an item is preferred by the members of the group and
the level at which the members disagree or agree with each other and aiming for an
appropriate balance of these components.
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4.3.3 Actions Definition

The actions are the driving force behind our model. The agent observes the state of
the environment and the history of the rewards it has already achieved and decides to
apply an action. The action will generate changes to the state, enabling it to calculate
a reward. The actions are the obvious choice to carry out the group recommendation
process since they are the only method that can result in changes in the model.

In this thesis, an RS generates a recommendation list for each group member.
This process is considered a black box. These separate recommendation lists can
then be consolidated into one group recommendation list as part of the group rec-
ommendation process.

SQUIRREL utilizes the following six aggregation methods.

1. Average. As the name implies, the Average Aggregation method consists of
averaging the predicted scores for each item among the members of the group.
This implies that each member’s predicted score of an item is treated equally.

2. RP80 [4]. The relevance and disagreement scores of groups are combined
in this method. Group relevance, avg(i, G), is defined as the average predic-
tion score among all group members of group G. In this work, the group
disagreement, dis(i, G), is calculated as the average pair-wise disagreement be-
tween the predicted scores of each group member for item i. dis(i, G) =

2
|G | ( |G |−1)

∑︁( |p(u, i) − p(u′, i) |), where u, u′ ∈ G, and u ≠ u′. The Average
Pair-wise Disagreement indicates how closely group members agree on the
relevance of the data item i. Accordingly, the total score for item i based on
the group G is as follows: RP80(i, G) = (1−w) ∗ avg(i, G) +w ∗ (1−dis(i, G)),
where w is a tuning factor for the group relevance and disagreement.

3. Par [99]. This method incrementally adds items with the highest combination
of Social Welfare (SW) and Fairness (F) scores to the group recommendation
list. An item’s Social Welfare is calculated as the average level of satisfaction
among its members. Similarly to this thesis, [99] calculates satisfaction using
equation 3.3 when there is only one item, i, in the group recommendation
list. Consequently, SW (i, G) = groupSat(i). The variance over members’
satisfaction scores is employed as Fairness, F (i, G). For each item, the final
score is calculated as: PAR (i, G) = λ ∗ SW (i, G) + (1 − λ) ∗ F (i, G).

4. SDAA. The Sequential Dynamic Adaptation Aggregation method, at round
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j, calculates a weight w that is equal to the difference between the most satis-
fied and least satisfied group members from the previous round of recommen-
dations, wj

SDAA = maxu∈Gsat(u, Grj−1) − minu∈Gsat(u, Grj−1). At the start of
round j, a weighted sum of the average score for the item in the group and the
least satisfied user’s predicted score for the item will be used to compute the
final group prediction score: score(G, i, j) = (1−w

j

SDAA) ∗avgG(G, i, j) +wj

SDAA ∗
leastG(G, i, j). For item, i at round j, avgG(G, i, j) returns the average score
across all members of the group, while leastG(G, i, j) returns the least satisfied
user’s score for i. SDAA becomes a simple average aggregation function when
j = 1, i.e. when the first round of recommendations is performed. A more
detailed discussion can be found in Chapter 3.3.1.

5. SIAA. As with SDAA, Sequential Individual Adaptation Aggregation also
uses weights for aggregation. SIAA focuses on each member of the group
individually, unlike SDAA, which considers the group as a whole. The fol-
lowing formula determines a weight that balances a member’s overall satisfac-
tion and the user disagreement from the preceding recommendation round:
w
j

SIAA(u) = (1 − b) ∗ (1 − satO(u,GR j−1)) + b ∗ userDis(u, Grj−1), with b being
the weight for balancing overall satisfaction and user disagreement. During the
j-th round of recommendations, GR j−1 represents all previous j − 1 recom-
mendations. After completing the single-user RS process, this weight is applied
directly to each item’s predicted score. For an item, the predicted group score
is the average of the weighted scores of all group members. A more detailed
discussion can be found in Chapter 3.3.2.

6. Average+. The group satisfaction scores, produced by the classic Average ag-
gregation function, are among the highest. However, the disagreement score
is among the worst. The Average+ aggregation method is proposed to address
this drawback, which consists of two phases. As a first step, an Average aggre-
gation is used. A second phase in the process involves iteratively populating
the recommendation list with items that yield the lowest score achievable for
group disagreement: Grj = Grj∪{i | min∀i∈AvgListjG

(groupDis(Grj∪i))∨i ∉ Grj},
where AvgListjG represents the list of the top k items following the first phase
of the aggregation. A more detailed discussion can be found in Chapter 3.3.3.

It is worth mentioning that although in this thesis, only these aggregation func-
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tions are examined as actions, the model can be augmented with additional aggrega-
tion methods.

4.4 Results

To evaluate our model, we utilized the datasets mentioned in Chapter 3.4, Movie-
Lens and GoodReads, and an additional dataset, namely the Amazon dataset. We
also kept some of the group formats as in Chapter 3.4, the 4+1, and 5 Dissimilar
group formats. For each of these group types and each dataset, we formulated 100
different groups. We used 80% of the groups for each group format as the training
set and the remaining 20% for the testing phase.

Aside from the previously mentioned group formats, we also take into account
an additional scenario to evaluate the model. When the model is trained for only one
type of group, it will be restricted to learning the format associated with that group
only. Nevertheless, such an approach does have some merit. An application can, for
example, group people randomly for an activity in order to facilitate more varied so-
cial interactions. This situation necessitates using a system capable of accommodating
the diverse needs of individuals who are different in nature. The SQUIRREL model
should, however, be used in more universal circumstances. In order to accomplish
this, 50% of each group type’s training sets and ten (10) groups obtained from their
respective test sets were randomly selected to form an additional testing scenario.

In order to evaluate the model, both reward functions mentioned in Chapter
4.3.2, Rs and Rsd were used. When SQUIRREL is presented with either reward
function, it chooses the optimal aggregation based on what maximizes that specific
reward function. The same behavior can be observed for all three datasets used in
the experiment. The model can also identify when an otherwise effective aggregation
method is not optimal for a round. SDAA and SIAA, for example, lack the necessary
information when they formulate their first recommendation. As a default, SDAA
uses a classical average, while SIAA utilizes the previous round’s disagreement, a
factor that is not present in the first round. Subsequently, both SDAA and SIAA then
resort to traditional Average aggregation. In contrast, Average+ does not possess any
such disadvantage. The model can detect this in the first round of recommendations
and select the most effective aggregation function.

In order to demonstrate the overall effectiveness of each group recommendation
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Figure 4.2 Rsd scores for 4+1 group format in the MovieLens dataset.

approach, it is better to use the reward function Rsd that combines the group satis-
faction and group disagreement scores. Figures 4.2, 4.3 and 4.4 show the Rsd scores
for the 4+1 group format for each dataset, MovieLens, GoodReads and Amazon.
For the other group formats, similar results are obtained.

In general, when considering both objectives for the sequential group recom-
mender system, namely high group satisfaction and low group disagreement scores,
the SQUIRREL model offers the best results, regardless of which reward function
was utilized. However, as is expected, the reward function Rs, which only factors
in the overall satisfaction of the group members, produces slightly better satisfaction
scores. On the other hand, the Rsd reward function that also considers the group
members’ disagreement produces significantly lower group disagreement scores.

Overall, the SQUIRREL model offers the best group satisfaction scores. For the
initial round of recommendations, the model decides on one aggregation function
that maximizes the selected reward function. However, the model has some flexibil-
ity in the selection of that function. As a result of choosing a different aggregation
method in the initial round, the results for the following rounds are impacted as
well. Both group satisfaction and disagreement improve due to the slight change in
the first round. Additionally, SQUIRREL only produces the second-best group dis-
agreement score behind RP80 because RP80 was explicitly designed to generate low
disagreement scores. However, because of this specialization of the RP80 method,
it also produces very low group satisfaction scores.
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Figure 4.3 Rsd scores for 4+1 group format in the GoodReads dataset.

Figure 4.4 Rsd scores for 4+1 group format in the Amazon dataset.
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There is a difference in the behavior of the aggregation methods among the three
datasets when both group satisfaction and disagreement scores are considered, namely
the Rsd scores. SDAA is the best-performing one for MovieLens (Figure 4.2), Aver-
age+ is the best-performing one for GoodReads (Figure 4.3), and SIAA is the best for
Amazon (Figure 4.4). Discrepancies in performance among the three datasets can
be attributed to their sparsity; in particular, the GoodReads and Amazon datasets
have a higher sparsity than the MovieLens dataset. Consequently, the RS is adversely
affected, and the number of highly relevant items for each member of the group is
reduced. In contrast, the single RS generates a greater number of relevant items per
group member in the MovieLens dataset, which is the densest of the three datasets.
The SDAA aggregation benefits from this since it ensures a balance between mem-
bers’ satisfaction and disagreements. SDAA is more beneficial when group members
share common relevant items.

Conversely, the sparsity of the GoodReads and Amazon datasets is favorable for
Average+ and SIAA aggregation methods. As the number of items with great rele-
vance per user is lower, Average+ will consider the best possible items for the group
during its first phase of selecting the items with the highest average score. Afterward,
Average+ can choose the items that generate the least disagreement among the group.
In SIAA, scores are only calculated based on the satisfaction and disagreement of each
individual member, not the group’s; thus, sparse datasets can be handled more effec-
tively. In comparison to all other individual aggregation methods, the SQUIRREL
model can adapt to different datasets and outperform them all.

Finally, the quality of the recommendations produced by the SQUIRREL model
is evaluated by calculating the Normalized Discounted Cumulative Gain (NDCG)
[39], whereby the best recommendations should appear at the top of the group rec-
ommendations list:
NDCG(u, G, j) = DCG (u,G,j)

IDCG (u,G) , with DCG(u, G, j) = ∑︁
i∈Grj

|i∩Aj
u |

log2 (rk(i,Grj )+1) ,
where rk(i, Grj) is the rank of item i in the group recommendation list Grj. For u,
IDCG represents the best possible outcome. The results from NDCG are supple-
mented with the Discounted First Hit (DFH) metric, which measures whether a
user has seen a highly relevant item in the early ranks of the group recommendation
list: DFH (u, Grj) = 1

log2 (fh+1) , where fh refers to the rank of the first item on both
the group recommendation list as well as the user’s own prediction list produced
by a single RS. Due to the fact that NDCG and DFH refer to one user, the group
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score is determined by calculating them separately for each group member and then
averaging over all members. The results are computed at the end of each round.

With either reward function, the SQUIRREL model has the two highest NDCG
values, which means it can provide more useful items to groups. Moreover, it rec-
ommends highly rated items by the users based on the DFH scores. On the other
hand, the Average+ aggregation method shows a decrease in NDCG scores since it
takes into account items that aren’t always of great interest to each member. High
NDCG scores are generally associated with aggregation methods such as Average,
SDAA, SIAA, Par, and SQUIRREL, which produce higher satisfaction scores. Be-
cause the group satisfaction score and NDCG scores convey the same basic concept
regarding the importance of items in the group recommendation list to each user,
this situation is not surprising.
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5 WHY-NOT QUESTIONS AND EXPLANATIONS

In this chapter, we introduce the concept of Why-not questions and explanations
and how they can provide a system administrator with valuable information in order
to adjust the various variables of a recommender system. Section 5.1 presents the
problem ofWhy-not questions and explanations, and Section 5.2 briefly describes the
recommendation model and its corresponding variables. Section 5.3 introduces the
characteristics of a Why-not question, while Section 5.4 describes the explanations
provided for the Why-not questions. Finally, Section 5.5 highlights the results of
the evaluation process of the proposed model.

5.1 Problem Description

The problem of explaining why a recommendation was made is well documented,
with explanations and recommendations presented in conjunction. End-users and
system designers can thus gain insight into why a certain item is recommended. The
explanations can diversify in their presentation or granularity, depending on the
consumer, specifically either the recommender’s user or the system’s designer. This
work introduces the notion ofWhy-not questions. When asking why-not questions,
the purpose is not to determine why particular items were included in the results
but rather to determine why they were not included. Additionally, this work is
based on the concept of post-hoc, model-based explanations for Why-not questions.
These explanations are produced after completing the recommendation process and
are based on the RS’s model.

Particularly for system administrators and engineers, Why-not questions are es-
sential since they are required to understand the system better and to get indications
on how to debug it. Consider, for instance, an e-shop that offers suggestions for
products to customers. Imagine a system administrator has discovered that a specific
company’s products are never presented to customers. Consequently, the engineer
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may need to identify the reason for the situation and devise an alternative(s) to rectify
it. This could benefit the final user in terms of a wide range of recommendations or
even help promote a specific company’s products, which are not included in the sys-
tem’s suggestions. This work assumes the explanations are consumed by the system
designer, which, for simplicity, will be referred to as the user of the system.

5.2 Recommendation Model

A user-based Collaborative Filtering RS produces recommendations that require ex-
planations. The first step of this process is to compute similarities between the users.
Based on two users’ ratings, sim(u, u′) is used to count their similarities. When
sim(u, u′) exceeds a threshold value th, and the users have rated more than numI

common items, a user u′ is considered similar to a user u. Further refinement is
achieved by retaining only numP users with the highest similarity scores, denoted as
peers of u, Peersu. For any item i that u has not yet rated, a prediction score p(u, i)
will be predicted based on the peers of u. In order to avoid recommending items
only liked by one (or a few) peers and unknown to others, items are recommended
when more than numPI peers have rated them. Furthermore, the recommendation
list Au that the RS produces consists of the k items with the highest prediction scores.
Finally, the notation posRu,i is used for the index of the item i in Ru.

5.3 Why-Not Questions

In lieu of explaining all items proposed by the system, the user asks questions instead.
Suppose a user is unhappywith the results provided by amovie recommender system.
Then, they can pose questions likeWhy were no dramas recommended? The system
will provide answers based on the characteristics of the system and the information
regarding these items.

Three main characteristics distinguish why-not questions: absenteeism, granular-
ity, and dependency on existing recommended items. Absenteeism is easily deter-
mined from false negative results, i.e., the items that should have been reported (in
a particular position) but were not. Granularity refers to the grouping of missing
items. The dependency reflects scenarios in which an item that appears in the recom-
mendations (true positive) and an item that does not (false negative) should appear
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Figure 5.1 Properties of Why-not Questions.

together in the recommendation list.
In more detail, absenteeism-based why-not questions are distinguished between

total absenteeism and position absenteeism. As an example, questions such as Why
not Matrix? can be considered total cases since they refer to items that do not appear
on the recommendation list and do not have a specific requirement for placement
in that list. Questions that are concerned with item ranking, such as Why should
Matrix not be ranked first?, are position-based. The granularity feature, which refers
to the degree of detail of the question, is divided into atomic cases and group cases.
Users may ask questions about particular items (atomic case), such as: Why not
Matrix?, as well as about groups of items with similar characteristics (group case),
such as: Why not comedies? Finally, dependency takes into account items that are
usually returned together in answers or should be returned in a specified order. For
instance, assume the questionsWhy are there not any comedies, but there are dramas?
Figure 5.1 showcase all the properties that a Why-not Question can have.

The formal definition of Why-not questions is the following. Consider a set of
items I , a user u, and u’s recommended items Au/subseteqI produced by an RS. Why-
not questions take the form of:

wn = {(m, pos, d) | m ∈ I and pos ∈ {1, . . . , |Au |} and d ∈ Au} (5.1)
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Equation 5.1 is flexible enough to account for all cases mentioned previously,
i.e., absenteeism (m and pos), granularity, and dependency (d). Despite not being
explicitly apparent, a granularityWhy-not question can be derived by expanding the
group to the related items in I . For example, a Why-not question of the styleWhy
not dramas? can be represented by wn = {(Titanic, , ), (TheGodfather, , )}, given that
the system can find these two movies in its database.

As a further step, Equation 5.1 is used to express Why-not questions’ different
properties (absenteeism, granularity, dependency). AWhy-not question always con-
tains the absenteeism property, so both subcategories (total and position) are discussed
when they also concern granularity and dependency. For the sake of simplicity, only
the notation for a set of items is given (the group subcategory of the granularity
property). However, the formalization of the Why-not questions is not affected be-
cause both granularity questions can be expressed using a set format (i.e., an item is
part of a set that consists only of a single item). Each case of the Why-not question is
described intuitively, accompanied by examples from a movie recommender system,
and then formalized for that case.

• Total Absenteeism:

– Independent: The user asks why some items do not appear in the recom-
mendation list.
Example-Atomic: Why Matrix is not there?
Example-Group: Why are there not any dramas?
Formally, an independent total absenteeism Why-not question is:

wnti = {(m, , ) | m ∈ I \ Au}

– Dependent: The user asks why certain items do not exist while others
(that usually appear together) exist.
Example-Atomic: Why Matrix is not there but Terminator is?
Example-Group:Why there are not any thrillers when there are action films?
Formally, a dependent total absenteeism Why-not question has the form:

wntd = {(m, , d) | m ∈ I \ Au and d ∈ Au}

• Position Absenteeism:
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– Independent: The user can ask about the ranking of a set.
Example-Atomic: Why is Matrix not ranked first?
Example-Group: Why are dramas not in a higher position?
Formally, an independent position absenteeism Why-not question takes
the form:

wnpi = {(m, pos, ) | m ∈ Au and posAu,m < pos}

– Dependent: The user asks why certain items do not appear higher in the
recommendation list than other recommended items.
Example-Atomic: Why not place Matrix before Terminator?
Example-Group: Why not place comedies before dramas?
Formally, an independent position absenteeism Why-not question is:

wnpd = {(m, pos, d) | m ∈ I and pos > posAu,d and d ∈ Au}

5.4 Why-Not Explanations

The system seeks to provide meaningful explanations to the system designers when
answering a Why-not question. In order to be meaningful, the information should
be adequate to help the designer understand why the items are not recommended
as expected. For this reason, the input is split into distinct components that can
explain - individually or combined - the Why-not question provided by the user.
These components are the input item set, the sets of all and the similar users given
the user in question, the set of ranking scores, and the recommender system design
(hyperparameters). To accommodate the different sources of error, a multi-type
structure, called an explanation, is defined as follows:

AWhy-not explanation for aWhy-not question on the recommendations of a user
u is a set of parameters of the recommender system responsible for the absence of
the missing item(s) from the (specific positions of the) recommendation list.

The explanations are distinguished between general explanations, which can ap-
pear in any recommender system, and model-specific explanations that are based on
the inherent parameters of the CF recommendation model.
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5.4.1 General Explanations

It is possible that the items that appear in a Why-not question do not exist in the
system’s database. Then the explanation is straightforward; the system does not
suggest this item since it is an unknown. Another explanation can be drawn from
the number of reported top-k items. If k reflects only a small number of items, it
is possible that the recommendation list includes the missing item, although it is
ranked lower. This explanation is only applicable for the first 2k items in the list
provided by the RS. For items further down that list, we consider other model-
specific explanations. Finally, different items may be scored the same way by the
system. It uses a specific method in order to break ties, for example, placing the first
encountered item in the database at the top. The system may label the tie-breaking
method as the culprit when a user asks why an item has been neglected.

5.4.2 CF Explanations

In Collaborative Filtering (CF), items are recommended to a user based on what
similar users have liked in the past. It is, therefore, likely that all possible explanations
will revolve around the peers of the user. Occasionally, an item remains invisible to
the system because no peers have given it a rating. If no user has ever rated that
item before, the system will also not recognize it. Besides these two explanations, an
answer to a question such as “Why not item A?” is determined by combining the
results for the three questions : (i) what is the number of peers that have rated it, (ii)
what scores they have assigned to it, and (iii) what is the similarity between them
and the user. Peer ratings are ignored when there are only a few (less than three) to
prevent false suggestions. The system scores items low when all or most peers have
assigned them a low rating. Additionally, the degree to which a peer is similar to the
user is fundamental. In the case of high-similarity peers, a peer’s dislike of an item
will influence the item’s predicted score.

The answers to the three questions above are represented in the form of expla-
nation tuples (peer, score, similarity). Three values in each tuple describe a peer who
has rated an item: (i) the peer’s id, (ii) their rating of the item, and (iii) their level of
similarity with the user.

The system rechecks the same information whenever the user inquires about an
item’s ranking in a recommendation list. It provides answers to questions such as:
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“Why was not item A ranked higher?” by providing an analysis of the item’s statis-
tics: the number of peers who have rated the item, how favorable they rated it, and
the degree of similarity between these peers and the user. There is a vagueness to
this question in that it questions the general ranking of an item without comparing
it to any other item; the question is independent. This is treated as if it were a total
absenteeism-based question by the system. A second solution is to arbitrarily select
one item in the list to transform the independent questions into dependent ones. In
this case, the selection is based on the specifics of the question - whether it is higher or
lower rank. For instance, a question such as “Why was not item A ranked higher?”
can be rephrased into “Why not place item A before item B?”.

Providing explanations for dependentWhy-not questions, such as “Why not item
A but item B?” or “Why not place item A before item B?”, presents a greater degree
of difficulty as it involves several items, with some existing, some not, combining
explanations and Why-not explanations. An analysis of the process that produces an
explanation for the first question is provided. A similar process can produce expla-
nations for the second question. First, two separate questions are posed in response
to the Why-not question. The first part relates to the user’s question: “Why not
item A”. The second question is “Why not item B”. Due to the fact that the system
has promoted item B over item A (either by excluding A from the recommendation
list for total Why-not questions or by ranking item B higher for position Why-not
questions), B should have more explanation tuples than A and B’s tuples should also
have higher values than A’s tuples. The combination of the answers to these two
questions produces the final explanation.

In the case of a user expressing a groupWhy-not question, for example, “Why not
more dramas?”, the system provides an explanation that incorporates the answers it
would have provided separately for each item. For each item in the same category as
the Why-not question, the system formulates a Why-not question, provided a peer
has previously rated that item A user-friendly output can be created by distilling the
results into something that can be consumed easily by the user. For example, “Your
peers prefer dramas, but they have not rated the same movie”, indicating that the
peers prefer dramas, but each rated a different film. It is for this reason that none of
them were suggested.
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5.5 Results

The experimental evaluation used the MovieLens dataset. Several parameters were
tested regarding the proposed model, specifically the users’ attributes for whom the
Why-not question was posed and the popularity of the missing movie. In order
to analyze the behavior of the algorithm two test sets were generated. First, 100
users were randomly selected who have rated a few items (45 to 55), denoted as
Moderate Users, and second, another 100 randomly selected users who have rated a
large number of items (145 to 155), named Active Users. Additionally, a variety of
popular movies were chosen for the study. Randomly selected 4 sets of 100 movies
with 2K, 4K, 6K, and 8K ratings, respectively, were used.

Many explanations can be derived from CF variables listed in Section 5.2. The
target item is not included in the recommendation list as a result of these variables.
The k explanation indicates that the item in question appeared further down the
recommendation list after the top-k items. The numP explanation means that a raise
to the numP threshold needs to occur in order to find enough peers that have rated
that specific item. The Peers explanation is displayed when no peer has rated the
item. Finally, Tuples refers to explanations that include peer information.

In the Moderate User case, less than 20% of movies with 2K ratings could be
explained by peer information. On the other hand, more than 95% of movies with
8K ratings could be explained by peer information. Additionally, over half of the
movies with 2k ratings had no ratings from the user’s peers, whereas this percentage
has dropped to almost zero for movies with 8k ratings. The Active Users case shows
similar numbers.

Based on the comparison of the outputs for the two sets of users, Active Users
have a higher number of explanations about the top peers not rating an item numP)
than Moderate Users. Users with more ratings are more likely to have numerous
similar other users. As the number of peers used is not a percentage but a constant,
there is a higher probability that the selected users have not rated the films in ques-
tion. Moreover, for the Active Users case, explanations due to the fact that no peers
had rated the item were fewer compared to corresponding ones for the Moderate
Users. Again, this is due to the higher number of peers among Active Users. A
demonstration of how a system administrator could use the model to rebalance the
variables of the CF system was also provided. A list containing all of the movies that

74



(b)

Figure 5.2 The similarity threshold (th) adjustment needed for the recommender to be able to calcu-
late a preference score for the missing items corresponding to a Peers explanation for (a)
moderate, and (b) active users.

have not been rated by any of the user’s peers (corresponding to the Peers explana-
tions) was generated. An examination of all the users in the system was conducted
in order to find the new similarity threshold the recommender needs, in order to
calculate a prediction score for an item in that list. A comparison was then made
between the threshold used initially and the newly calculated threshold as shown
in Figure 5.2. Both Moderate, Figure 5.2a, and Active Users, Figure 5.2b, require
only small adjustments in the similarity thresholds. This is a demonstration of how
a system administrator can take advantage of the explanations for debugging their
system.

75



76



6 MULTIDIMENSIONAL GROUP

RECOMMENDATIONS IN THE HEALTH DOMAIN

This chapter introduces a group recommendation model focused on achieving fair
recommendations for a group of patients. We exploit not only classic recommen-
dation input, such as ratings of documents but also the health profiles of the users.
A new similarity measure based on these health profiles is proposed. Section 6.1
describes the problem, while Section 6.2 analyzes the proposed similarity function.
Section 6.3 describes the group recommendation model utilized, and Section 6.4
describes the process of creating a health-focused document corpus with the corre-
sponding ratings given by the users. Finally, Section 6.5 analyzes the results of the
evaluation process.

6.1 Problem Description

Nowadays, health information is increasingly being searched on the web. While
there is a great deal of information available online, the quality and quantity of that
information often hinder interested patients from obtaining the correct information.
A reliable solution is for patients to be led by healthcare providers to trustworthy
data sources on the Web [6]. However, health providers do not always have much
time to dedicate to their patients, which makes guiding them in the correct way a
difficult task.

Moreover, it has been demonstrated that utilizing group dynamics to alter be-
havior is highly effective in enhancing social support, e.g., by promoting cohesion
among participants in physical activities [14] and lowering relapse rates in smoking
[21]. As part of these therapy sessions, caregivers provide their patients with ac-
cess to more appropriate online resources. However, finding information online for
a group of participants is more difficult than finding online information for a sin-
gle patient. Even though health professionals usually address closely related health
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conditions, education, health literacy, and psychoemotional status play a significant
role in determining the content that the health professional should suggest and the
recommendations should be based upon the aforementioned factors.

To achieve this goal, this thesis proposes the development of a new semantic
similarity measure that integrates the patient’s medical problems, educational level,
health literacy, and psycho-emotional status. Moreover, this thesis investigates the
use of collaborative filtering to develop a multidimensional group recommendation
model in the health domain.

6.2 Users Similarity based on Health Profile

Generally, diverse information can be used to find similarities between users. First,
there are the ratings given by the users to the documents. Second, to capture pa-
tient problems, group members fill out particular questionnaires (i.e., the ALGA-C
questionnaire [45]). An ontology is then used to model and store all captured infor-
mation. According to the answers to these questionnaires, specific values are auto-
matically calculated and stored in the patient’s profile in relation to the key areas of
their profile. Among others, scores exist for health literacy, educational level, cogni-
tive closure, and anxiety. Considering that each source yields different knowledge,
four similarity measures are defined. These measures are then combined to calculate
the similarity between two users.

Similarity based on ratings. A user is deemed similar to another if they have sim-
ilarly rated data items, i.e., their interests in health documents are similar. Any
similarity function that can compare two sets of ratings corresponding to two users
can be utilized. Such a similarity function is Pearson correlation [47], a fast and
efficient method that is suited to collaborative filtering. The Pearson correlation co-
efficient is calculated directly between two users, with a score ranging from -1 to 1.

RatS (u, u′) =

∑︁
i∈X

(r(u, i) − µu) (r(u′, i) − µu′ )
√︄∑︁

i∈X
(r(u, i) − µu)2

√︄∑︁
i∈X

(r(u′, i) − µu′ )2
(6.1)

where I (u) denotes all the items that user u has rated, X = I (u) ∩ I (u′), µu is the
mean of the ratings in I (u). Finally, r(u, i) is the rating that u has given to item i.
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Similarity based on health information. If two people have similar health prob-
lems, they usually have similar interests in health-related documents. Using the Inter-
national Statistical Classification of Diseases and RelatedHealth Problems1 (ICD10),
we are able to record health problems and then identify similarities between users
utilizing this standard medical classification list maintained by the World Health Or-
ganization.

The ICD10 taxonomy is represented as a tree, where the nodes represent health
problems. The taxonomy is structured in such a way that only one path connects
two individual nodes (acyclic). The structure also features significant similarities be-
tween sibling nodes at lower levels compared to those at higher levels. In light of the
discrepancy between the similarity of the health problems at different levels, nodes
are weighted in accordance with their level. Nodes at different levels are differenti-
ated based on these weights. There should be more similarity between siblings nodes
in the higher levels than those in the lowest levels (root node). To that end, we assign
a weight to each node based on the level it resides at.

Specifically, let A be a node in the ontology tree. Then,

weight(A) = w ∗ 2maxLevel−level(A) (6.2)

where w is a constant, maxLevel is the maximum level of the tree, and level(A) is a
function that returns the level of each node.

In addition, let anc(A) be the direct ancestor of A. Intuitively, we need to consider
the distance between two nodes and the level that those nodes belong. To achieve
that, we use the concept of the Lowest Common Ancestor (LCA) of two nodes A
and B, defined as the lowest node that has both A and B as descendants, where each
node can be a descendant of itself.

Then, for computing the distance between A and B, we compute their distance
from LCA(A, B). We first identify the path that connects A (and respectively B) with
LCA(A, B). Specifically, given that LCA(A, B) = C, path(A, C) returns a set of nodes
including A, its direct ancestor anc(A), its direct ancestor anc(anc(A)), and so on,
until C is reached, without including C in the set. The distance between A and C is

1/urlhttp://www.icd10data.com/
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calculated by accumulating the weights of each node in the path as:

dist(A, C) =
∑︁

n∈path(A,C )
weight(n) (6.3)

In conclusion, we employ the following formula to determine the similarity of two
nodes, A and B.

simN (A, B) = 1 − dist(A, C) + dist(B, C)
maxPath ∗ 2 (6.4)

Note that we divide the sum of the two distances with maxPath ∗ 2 to normalize
the overall similarity so that the function simN returns a value in the range of [0,1].
We define maxPath as follows:

Let T be a tree, and A and B two nodes in T, with A being a node in the highest
level and B the root. Then,

maxPath = dist(A, B) (6.5)

We can calculate the similarity between two health problems using the measures
described above. However, users typically have more than one health problem in
their profile.

Let Problems(u) be the list of health problems of user u ∈ U . Given two users, u
and u′, we calculate their overall similarity by considering all possible pairs of health
problems between them. Specifically, we take all the problems in Problems(u) and
calculate the similarity with all the problems in Problems(u′). For each distinct prob-
lem from u, we consider only the health problem of u′ with maximum similarity.
Overall, the semantic similarity between u and u′ is defined as:

SemS (u, u′) =
∑︁

i∈Problems(u) ps(i, u′)
|Problems(u) | (6.6)

where
ps(i, u′) = max(∀j∈Problems(u′ ) {simN (i, j)}) (6.7)

Similarity based on education and health literacy level. There is a wide range of
complexity and depth in how online health sources present a problem. A source
that is in accordance with a user’s level of health literacy and education will be more
attractive to them. Patients with a low health literacy score, for example, may not
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be interested in a document describing their health problem in great detail but will
appreciate a document that provides clear guidance on how to manage it. The first
document would be much more appealing to a patient with a high literacy score.

It is not uncommon for health documents containing similar information to be of
interest to people who have similar educational and health literacy levels. Therefore,
the Euclidean distance between these two values is used to measure the similarity
between them.

EducStatusS (u, u′) = 1 −
√︁
(HLit(u) −HLit(u′))2 + (EducLvl(u) − EducLvl(u′))2√︁

2 ∗maxDif 2

(6.8)
Where HLit(u) is a function that returns the health literacy level of user u and

Educlvl(u) is a function that returns their education level. To better combine these
scores with the ratings and health problems similarity scores, we normalize them so
that the function returns values in the [0, 1] range. The variable maxDif represents
the maximum difference between the two education or health literacy scores. Finally,
since we want the similarity score, not the distance between the users, we subtract
the distance score from 1.

Similarity based on psycho-emotional status. Finally, anxiety and cognitive clo-
sure affect the documents people prefer in specific periods, as anxiety and cognitive
closure can fluctuate over time. As such, we use the Euclidean distance between
the values of those two properties. As psychoemotional questionnaires are being
answered periodically, we consider only the latest measurements on these each time.

PhychStatusS (u, u′) = 1−
√︁
(Anxiety(u) − Anxiety(u′))2 + (CognCl(u) − CognCl(u′))2√︁

2 ∗maxDif 2

(6.9)
where Anxiety(u) is a function that returns the user’s anxiety level, and CognCl(u)
is a function that returns their cognitive closure status. In the same manner, as
the similarity method based on education and health literacy levels, the Euclidean
distance is normalized in the [0, 1] range and subtracted from 1 to provide a similarity
ranking.
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Similarity between users. A total similarity score is calculated by combining the
different values obtained from the different methods of computing similarity scores.
Accordingly, we assign weights to each similarity score that determine its significance
as we argue that not all perspectives of information are equally important.

S (u, u′) = α∗RatS (u, u′)+β∗SemS (u, u′)+γ∗EducStatusS (u, u′)+δ∗PhychStatusS (u, u′)
(6.10)

where α + β + γ + δ = 1.

6.3 Group Recommendation Model

We exploit the Collaborative Filtering (CF) recommendation model to generate lists
of relevant items for the group members. To find the similar peers required by the
CF, we utilize the above-mentioned similarity function (Equation 6.10).

We propose a new aggregation method, called AccScores method, in which we
accumulate the items’ scores. We add the scores as they appear in each group mem-
ber’s individual prediction list, Au as produced by a single RS, in a set called accDoc.
The first item we select to include in the group recommendation list, Gr is the one
with the highest score in accDoc. After each selection, we update a helper structure
accUser, consisting of the users and their accumulating prediction scores. If a user u
has a lower score than the rest in the accUser structure, for the next choice, we will
select an item that exists in the Au and simultaneously has the highest possible score
in the accDoc. If many users have the same lowest score, we select the user chosen
the least number of times.

Having constructed a group recommendation list and given a set of recommenda-
tions for a group to its caregiver, there may be a patient u who is the least satisfied in
the group, i.e., all items are irrelevant to them. Meaning the group recommendation
list is not fair for u. In real-life situations, the caregiver is responsible for the needs
of all group members, and the recommender should make sure that the documents
proposed are relevant and fair to all group members. The degree of fairness for a pa-
tient u given a set of recommendations Gr is defined as follows: fairness(u, Gr) = |X |

|Gr |
where X = Au ∩ Gr.

We define group discord as the difference between the maximum and minimum
fairness in the group in order to determine the cohesion of the group and to deter-
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mine if any group member is biased against.

groupDiscord(G,Gr) = maxu∈Gfairness(u, Gr) −minu∈Gfairness(u, Gr) (6.11)

Group discord should take lower values, as that would indicate that the group mem-
bers are equally treated. A high score suggests that one of the group members is not
as satisfied as the other members.

6.4 Dataset Creation

To evaluate the proposed model, we will need patients’ profiles that contain their
health problems and the corresponding ratings they have given to documents. How-
ever, the personal profiles of these patients are not publicly available. Due to a num-
ber of factors, among them ethical and legal constraints, the acquisition and usage of
such personal information is restricted.

We generated a synthetic dataset to compensate for this limitation. Initially, we
utilized publicly available 10.000 chimeric patient profiles [40]. These profiles in-
clude information equivalent to that found in a medical database. Among other
details, we analyze the details of the patient’s admission, demographics, socioeco-
nomic data, labs, and medications. Furthermore, the profiles rely on the ICD102

ontology to define each patient’s health problems, rendering this dataset perfect for
accommodating the semantic similarity method.

Utilizing these profiles, we generate a synthetic dataset consisting of a document
corpus and user ratings. In particular:

• Document Corpus

– Create document corpus. Several documents were generated per node in
the second level of the ICD10 ontology tree.

– Assignment of Education and Health Literacy Levels. Using percentage
scores corresponding to the five different education levels, we divide the
documents into subgroups and assign them education levels. A docu-
ment’s education and health literacy scores cannot be vastly different.
Documents with high education levels are unlikely to be useful to users

2http://www.icd10data.com/
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with low literacy levels. It is also unlikely that a document with a high
level of health literacy will also have a low level of education. Thus, each
document will be assigned a health literacy score that is the same, one
higher or one lower than its educational level.

• Rating Dataset

– Divide the patients into groups. It is assumed that each patient has rated
several documents. We divide patients into three sets based on the number
of ratings they have given, occasional, regular, and dedicated. Each group
of users gave few, average, and a lot of ratings, respectively.

– Assignment of Education and Health Literacy Levels. Assigning education
and health literacy levels to patients follows the same procedure as assign-
ing them to documents, which is described above.

– Assignment of Anxiety and Cognitive Closure. As anxiety and cognitive
closure tend to change rapidly, these scores are regularly measured. As a
result, only recent data is considered in our methods. Each patient in our
dataset receives one score for anxiety and cognitive closure. Similar to
the method used to determine the level of education and health literacy,
five percentages are used to divide the patients. The score for cognitive
closure will be determined by anxiety. A person’s anxiety regarding their
health problems increases the need for them to understand them.

– Simulate a power law rating distribution. Power law distributions are gen-
erally used to rank documents based on user preferences. To demonstrate
this, several documents were randomly selected and considered the most
popular.

– Generate documents to rate. For each patient, the ratings they would give
to documents that had a direct bearing on their health would be distin-
guished from those that were irrelevant to their health. We assigned rat-
ings to both groups of documents based on the assumption that patients
would be interested in both.

– Generate ratings. Finally, a 1-to-5 rating was assigned randomly to each
item generated above.
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Figure 6.1 NDCG values for different values of α, β, γ and δ.

6.5 Results

We examined the recommendations for individual users to compare the similarity
functions. A total of 50 users were used, and 20 percent of their ratings were hidden.
We then applied our method with different values for α, β, γ and δ and predicted
a score for the hidden items. Note that α represents the weight assigned to rating
similarity RatS, β to health problems similarity SemS, γ to education/health literacy
similarity EducStatusS and δ to anxiety/cognitive closure similarity PhychStatusS. To
evaluate the similarity functions, we used the normalized Discounted Cumulative
Gain [39] where the relevance of the items appearing in a user’s recommendation
list is correlated to the relevance of the items in an ideal scenario. The hidden items
provided the ground truth in computing the NDCG scores.

As shown in Figure 6.1, compared to the RatS similarity function, SemS provides
better results. Further analysis was performed on how PhychStatusS and EducStatusS
affect them. Despite introducing the two new similarities, SemS still gives better
results. However, combining all of the similarity functions yields the best results.
By combining the similarities of SemS andRatS, they can compensate for each other’s
shortcomings. SemS is capable of identifying patients with similar health problems,
meaning that they are interested in documents concerning the same health issue.
RatS finds all the other patients who have similar interests in documents but do
not necessarily have similar health problems. Adding EducStatusS and PhychStatusS
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to the equation further improves the results. The peer selection process is further
refined when they are considered, which ensures that the recommendations are more
accurate.

We compare our proposed group recommendation approach, AccScores, to three
other aggregation approaches. The classic Average, Borda [22], and Fair [84] aggre-
gation methods. In the Borda method, each document receives one point for placing
last in the list rankings, two points for placing second to last, and so on, culminating
in k points for placing first. An item’s total points are accumulated from all group
members’ individual prediction lists, Au. Documents with the highest total points
are ranked first on the group recommendation list, Gr. The item with the second
highest number of points is assigned the second position up to the best k items.

The Fair aggregation method takes into account pairs of patients within a group
in order to generate recommendations. Specifically, a document i is added to the
group recommendation list, Gr, if for patients u, u′ ∈ G, i ∈ Au

⋂︁
Au′ , i ∉ Gr, and

i is the highest ranking document in Au′ . Suppose k, i.e., the length of the group
recommendation list, is higher than the number of documents we can obtain from
the method outlined above. In that case, additional documents are added to the
list by iterating through the Au lists of the group members and including in each
iteration the document with the highest ranking not already included in the group
recommendation list.

To evaluate the methods, 40 groups were randomly selected with approximately
the same degree of similarity. Each aggregation method’s results were evaluated by
measuring the average distance between the top-k recommendation list generated for
the group and the list generated for each individual user. The Kendall tau distance
was used to calculate the distance between two ranking lists, which is a measure of
the number of pairwise disagreements between the lists [42]. Formally, K (t1, t2) =

|{(i, j) : i < j, (t1(i) < t1(j) ∧ t2(i) > t2(j)) ∨ (t1(i) > ti (j) ∧ t2(i) < t2(j))}|, where
t1(i) and t2(i) are the rankings of the element i in t1 and t2 lists, respectively.

There are very few differences between the AccScores aggregation method and the
other methods, although AccScores outperforms the rest as illustrated in Figure 6.2.
The group members are all similar due to the case study, so when aggregating their
top-k recommendations, the group is presented with the items that are most relevant
to the group, regardless of the aggregation design.

A far more interesting topic of evaluation is the individual satisfaction of each
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Figure 6.2 The Kendal tau Distances between the users’ prediction lists and the group recommenda-
tion lists.

group member. Our goal is to understand how the recommendation list impacts
each individual member of the group by calculating the group discord. All members
of the group should be treated equally in order to ensure fairness. It is essential that
the system does not return a biased result against a member since accurate informa-
tion about people’s health is crucial. Therefore, a method that generates lower group
discord values is more suitable for our purposes. As shown in Figure 6.3, AccScores
generates the lowest group discord scores, demonstrating the method’s advantages.
Essentially, the AccScores method identifies nearly equally fair items for every mem-
ber.
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Figure 6.3 Group Discord scores for 40 groups.
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7 CONCLUSIONS

7.1 Summary of Contributions

One of the most important applications of recommender systems is group recom-
mendations, where a group of users interacts with the system. When designing a
group recommender system, it is imperative to consider the members’ diverse inter-
ests in order to provide suggestions that are relevant to the entire group. Addition-
ally, the system would need to consider the previous interactions between it and the
group before offering suggestions. The system should consider a sequence of previ-
ous interactions and how the members responded to earlier recommendations and
adjust accordingly. As recommender systems directly affect the users’ experience,
responsibility constraints should be incorporated into their design. Such responsi-
bility constraints can include, for example, fairness, where all group members should
be treated equally, and transparency, where the system provides explanations for its
recommendations. This thesis primarily explores how recommender systems can be
designed to incorporate these responsibility constraints.

Specifically, the first contribution of this dissertation, discussed in Chapter 3,
answers the first research question RQ1. How to define sequential group recommenda-
tions and why are they needed? How to design group recommendation methods based on
them?. We propose three methods, SDAA, SIAA, and Average+, that aim to pro-
vide fair recommendations in a sequential group recommendation scenario. SDAA
considers the group members’ overall satisfaction with the previous rounds of rec-
ommendations. If a member is considerably less satisfied than the rest, the member’s
interests are prioritized. SIAA assigns a weight to each group member based on their
satisfaction in the previous recommendation round. Finally, Average+ is an exten-
sion of the classic Average aggregation method, where instead of just considering the
average score for all members, it also takes into account the members’ satisfaction
with the entire list. Experiments on two real-world datasets show that our pro-
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posed methods are more effective than other state-of-the-art group recommendation
techniques when they are applied in a sequential scenario. More specifically, SDAA
and Average+ are the two methods that yield the best results on the MovieLens
dataset. Average+ is the most effective method on the GoodReads dataset regardless
of the group format. The Average+ aggregation method is the most efficient when
ephemeral groups are considered.

The second contribution addresses the second research question RQ2. How to ex-
ploit reinforcement learning to select a group recommendation method when the system’s
environment changes after each recommendation round? and is analyzed in Chapter
4. It extends the work done in Chapter 3 by proposing the SQUIRREL model
which is based on reinforcement learning for attaining fairness in sequential group
recommendations. As the state of the model, we consider the satisfaction of the
group members and, as actions, various group recommendation methods. We eval-
uate our model using two reward functions, one based on the average satisfaction of
the members and the second based on the satisfaction and disagreement in the group.
We evaluate the model with three real-world datasets and show that it compensates
better than stand-alone group recommendation methods when the group informa-
tion rapidly changes. In more detail, regardless of the group format and the dataset,
SQUIRREL has the best performance. Both reward functions produce high-quality
results. Group disagreement scores are slightly higher when the reward function fo-
cuses only on user satisfaction rather than considering it in combination with group
disagreement scores.

The third contribution of this thesis focuses on transparency and answers the
third research question RQ3. How to design questions and produce explanations for
why a set of items did not appear in a recommendation list or at a particular position? in
Chapter 5. In particular, the use of "Why-not" questions for recommender systems
is explored, where a user asks the system why an item did not appear in the recom-
mendation list. We formally define a Why-not question and propose a model for
providing explanations to such questions for a Collaborative Filtering (CF) recom-
mender system. We evaluate our model using a real-world dataset and demonstrate
how a system administrator can utilize the provided explanations to calibrate a CF
model.

The final contribution is outlined in Chapter 6 and answers the fourth research
question RQ4. How to incorporate various health-related aspects in group recommenda-
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tions?. We propose a group recommendation model designed primarily for the health
domain. We consider various factors related to the users’ health, including, but not
limited to, their health problems and their interests regarding health documents. The
main focus of this work is to provide fair recommendations to a group. Due to the
patient’s sensitive health information, we also created two synthetic datasets in or-
der to evaluate our model. The evaluation demonstrates that the proposed model is
more effective than standard group recommendation strategies. In more detail, the
proposed similarity function improves upon existing similarity functions by consid-
ering the user’s various health aspects and ratings. Moreover, the proposed group
recommendation method achieves far greater fairness than other group recommen-
dation models while providing similar high-quality results.

7.2 Future Work

Several research areas may be explored as a result of this dissertation. The most no-
table research topics are the following. We want to combine the fairness and trans-
parency constraints in a sequential group recommender system, where the system
would also provide the group with an explanation of why a suggestion was made.
This has the potential to be complex since the system considers multiple recommen-
dation rounds, and such explanations can be very cumbersome for an average user to
understand. So a degree of generality in the explanation details should be considered.

Additionally, we intend to continue developing the SQUIRREL model to extend
the action set beyond aggregation techniques. However, this is a complex change,
and various aspects of the model will need to be adjusted. Many complex methods of
group recommendations require alternate input forms, such as graphs, to function.
By its nature, SQUIRREL requires an extensive training phase, and including more
complex methods will increase the training time. Subsequently, we must implement
various optimizations to our model before considering additional actions.

More straightforwardly, one can test different reward functions in the SQUIR-
REL model. This can also be combined with the various fairness definitions in the
literature. An advantage of this is that observing how each fairness approach be-
haves under the same test conditions would be possible. It would also be interesting
to see if there is any correlation between the fairness definition and the group rec-
ommendation methods. As an example, let’s take the following. If the reward is just
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the average satisfaction of the group members, then an aggregation method that is
very likely to be selected is the Average since it is closely related to average satisfac-
tion. However, such a correlation between more complex group recommendation
methods and reward functions is not readily apparent.

An additional avenue of research is the explanations. We want to generalize our
Why-not explanations to be model-agnostic. Our proposed method is based on a
user-based CF recommendation model, and the explanations we provide reflect that
by including various CF variables. We want to generalize our explanations to such
Why-not questions so that they can be used across multiple recommender systems.

Another aspect of explanations we consider is counterfactual explanations for
group recommender systems. The counterfactual explanations consist of interac-
tions between a group of users and the system, such as ratings or reviews, that are
responsible for a particular item being recommended. In other words, if these in-
teractions were altered or removed, the system would have recommended another
item. An example of such research can be found in [25]. However, it was only for
single recommender systems. In the future, we would also like to expand this to
include group recommendations. Due to the complexity of group recommendation
methods, such an approach must be very efficient since the possible combinations of
all group members’ interactions with the system are vast.
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ABSTRACT
Recommender systems have been incorporated in our everyday

life; from music to health recommendations, recommender systems

have enhanced the users’ experience. At the same time, with the

expansion of social media, it is now easier than ever to form groups

of people. As such, group recommenders have become more pop-

ular. Often, we consider the interaction between a group and the

recommender system as a stand-alone process; the group requests

some suggestions from the system and the system answers without

any considerations to past interactions. A more realistic scenario is

for a system to require access to history logs, and take them into

account when recommending items for a group of users. Not only

what items the system previously had recommended, but also, how

well were these items received by the members of the group. In

this work, we propose a sequential group recommender, which is

aware of the past interactions of the group with the system. We

introduce the notion of satisfaction that describes how relevant are

the recommended items to each member of the group. We utilize

satisfaction in a novel aggregation method that achieves to make

our model fair for all members of the group. We show with experi-

mental results that the typical group recommendation approaches

are substandard to our proposed method.

KEYWORDS
Recommender systems, sequential recommendations, group recom-

mendations, fair recommendations.

1 INTRODUCTION
Recommendations have been integrated into many of the services

available to users in recent times. From listening to music to health

information, recommender systems are employed to make the user

experience better and smoother. In most cases, recommender sys-

tems provide users with a list of data items that are most relevant to

them. Two main methods appear to produce such lists of items. The

content-based method [24] and the collaborative filtering method

[29]. In the content-based case, the system recommends to the user

items that are similar to other items that the user has already con-

sumed in the past. This requires previous knowledge about the

items which is often hard to obtain. In contrast, collaborative fil-

tering (CF) requires data regarding user preferences for specific

items. The main idea behind a CF recommender system is the fol-

lowing: given a target user, the system finds similar enough users

to him/her, often called peers. Then the items that the peers have

shown a preference for (mostly in the form of ratings, but often

other forms of feedback are used, such as textual review and bi-

nary format of like/dislike) are examined and used as input into

a relevance function, which produces the list of relevant items to

the target user. Collaborative filtering is a very powerful tool that

enables recommender systems to provide far more accurate and

specialized recommendations [3].

With the expansion of social media, another form of recommen-

dations has emerged; namely the group recommendations [1, 21, 22].

Instead of a single user requesting recommendations from the sys-

tem, a group can make a query as well. A standard example of group

recommendations is the following: a group of friends wants to see

a movie. Each friend has his/her own likes and dislikes. The system

needs to properly balance them, and offer to the group a list of items

that has a degree of relevance to each member. Recently, there is

some research on the selection process of the items. One approach is

to create a pseudo user by combing the data of each group member,

and then apply a standard recommendation method. The second

and most used approach is to apply a recommendation method to

each member individually, and then aggregate the separate lists

into one for the group. The aggregation phase of the approach is

the object of much research done on group recommendations.

There are many different criteria one can take into account dur-

ing the aggregation stage. One such criterion is fairness [19, 30–32].
A basic definition of fairness is to recommend the item that has the

best relevance to the group. Instinctively, one way to produce such

an item is to calculate the average score across all the group mem-

bers’ preference scores for that item. In such a way, all members of

the group are considered equals. However, this has a big drawback.

Consider, for instance, the following scenario with a group of three

users. Two of them are quite similar to each other, while the third

is not. By using the average method the opinion of the last user is

lost. An alternative approach is to use the minimum function rather

than the average. This way, the user with the minimum preference

score will act as a veto to the rest of the group. The least misery

approach, as it is called, has a drawback as well. It only takes the

opinion of one group member under consideration, while ignoring

the others. Subsequently, the system in most cases, recommends an

item that is acceptable for all members, but it will be an item with a

somehow low preference score. The need to combine the equality of

the average method and the inclusivity of the least misery method

is the driving force behind our work in this paper.
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The previous approaches for computing recommendations have

a hidden element to them. We imply that each time a group is using

the system is distinct from the previous ones and that the system

has only one state without keeping a history log. But this is not a

realistic scenario. A user, or in our case a group of users, interacts

with the system multiple times. So, the system should recommend

different items at each iteration, while retaining knowledge from

past interactions, so as to keep the output diverse. That is, we do not

want to always recommend the same item or the same set of items.

We want a system that has a memory and can adjust its recom-

mendations accordingly. Continuing with a group movie example,

where the same group of friends requests a movie recommenda-

tion each week, both the average and least misery approaches fail

through all iterations of the system. In the case of average, the

outlier user is never satisfied, while in the case of least misery, the

system recommends movies that are not highly relevant to anyone

in the group.

In this work, we address the problem of unfairness that is gen-

erated by these methods when applied to sequential group recom-

mendations. A simple working scenario is as follows: we have a

group of friends that meets in regular times to watch a movie. We

want to recommend each time a new movie for the group. Figure 1

gives an experimental example of such a scenario. We take a group

of 5 members that ask the system for recommendations 5 different

times. Each time the system reports to the group 10 items. In Figure

1-left, we have formed the group list, by using the average aggre-

gation method, while in Figure 1-right, the least misery one. In

this example, we count the degree of satisfaction for each member,

which is calculated by measuring how relevant are the group list’s

items, over the best items for each member
1
. In both scenarios, User

4 has a very low satisfaction score (for least misery is always 0),

which implies that almost none of the reported items are of interest

to him/her. It is evident that the recommender system is unfair to

him/her, and that unfairness continues throughout the iterations.

Ideally, each new group recommendation should take into account

what has happened in the past. Not only what movies have already

been recommended, but at which degree each member of the group

was satisfied with that recommendation.

The notion of multiple iterations of recommendations allows

us to make a conjecture. If a user is not satisfied with a particular

round of recommendations, then he/she was either satisfied in a

previous or will be satisfied in the next round. We introduce the

notion of satisfaction to estimate the degree of satisfaction in the

recommendations for each group member, after each iteration of

the system. We apply this satisfaction score during the aggregation

phase of the group recommendationmethod as aweighting function

on the individual preference scores of the group members. This way,

the users that were not satisfied in the previous round will have

more weight in the next iteration. Additionally, a member is not

continuously biased against (as may be the case of simple average),

since the calculation of the satisfaction scores is done dynamically

at each iteration. Finally, we take into account the opinions of the

entire group (something that least misery was lacking).

The contributions of our work are the following:

1
For more details see Section 4 – Equation 1.

• We introduce the notion of sequential group recommenda-

tions. We propose that when adding the dimension of multi-

ple iterations to typical group recommendation approaches,

such as the average and least misery aggregation methods,

the results do not ensure user satisfaction for all group mem-

bers.

• We propose the concept of satisfaction. Each member of the

group has a degree of satisfaction for the items recommended

at each iteration, as well as an overall satisfaction, gained by

all the previous iterations of the group.

• We propose a sequential group recommendation model that

takes into account the previous interactions of the group

with the system and alters the influence that a group member

has on the formation of the group recommendation list.

• We experimentally show that our proposed model is superior

to the standard group recommendation approaches.

The rest of the paper is structured as follows: Section 2 describes

the related work. Section 3 presents basic concepts on recommender

systems, and Section 4 introduces our approach for sequential group

recommendations, targeting at ensuring fair results for all group

members. Section 5 presents our experimental setup, and Section

6 presents our evaluation results. Finally, Section 7 concludes the

paper with a summary of our contributions and directions for future

work.

2 RELATEDWORK
A recommender system aims to provide to a user, items that are

relevant to him/her, by exploiting already available user informa-

tion – profile, preferences, etc. One of the most used approaches for

producing recommendations is the collaborative filtering approach.

With more than a decade of research in the area, there are many

different solutions to the problem [3]. Most of them can be divided

into two main categories: memory-based and model-based algo-

rithms. Memory-based algorithms [15, 28], employ a user-ratings

matrix that contains the ratings each user has given to items. They

utilize this matrix to find similar users to a target user, by applying

a similarity function. The final prediction is made by examining the

ratings of similar users, or as they often called neighbors or peers.
Model-based algorithms [7], first construct a model to represent

the behavior of the users and, therefore, to predict their ratings. In

this work, we utilize memory-based collaborative filtering.

2.1 Group Recommendations
Group recommendation is another field with a significant research

background. There are two main approaches to group recommen-

dation: virtual user and recommendation aggregation [13]. In the

former approach, we combine the profiles and ratings of each group

member to form a virtual user so that a standard recommendation

approach can be applied. In the latter approach, we apply a standard

recommendation algorithm to each group member individually and

aggregate their lists into one. In this work, we follow the latter

approach, since it is more flexible [23] and offers opportunities for

improvements in terms of effectiveness.

During the aggregation phase of this approach, many criteria

can be taken into account. [36] proposes a group recommendation

model that takes into account the influence that each member has
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Figure 1: Example for a group with 5 members, and a group recommendation list with 10 items. We consider 5 iterations. We
utilize the average (left) and least misery (right) aggregation methods.

on the final choice for the group. They state that a member has

more influence on the group if he/she is more knowledgeable about

the items that are recommended. In our work, we propose that, if

there is a group member that is more dissatisfied than the rest, then

that member will have more influence in the group decision. [4]

learns the aggregation strategy from data, which is based on the

recent developments of attention network and neural collabora-

tive filtering (NCF), while we dynamically change our proposed

aggregation method based on the satisfaction of the group mem-

bers. While we focus on a relatively small group of friends (5 in

our experiments), [25] offers a novel approach to producing recom-

mendations for a large group of people, by dividing the big group

into different interest subgroups. For each subgroup, they find a

potential candidate set of media-user pairs and finally aggregate

the CF produced recommendation lists for each pair. [16] proposes

a two-phase group recommender that, similar to our work, tries

to satisfy all the group members. In the first phase, they try to

satisfy the whole group, while in the second they try to satisfy the

members individually, by filtering out items that are irrelevant to

each member. We incorporate these two phases into our proposed

aggregation method.

2.2 Fairness in Group Recommendations
There are many different approaches to achieving fairness in group

recommendations. One approach is to calculate fairness based on

the game and voting theory. [5] solves conflicts of interest between

members of heterogeneous random groups by utilizing the Non-

Cooperative Game Theory [34]. [20] assumes that the recommender

system has probabilistic knowledge about the distribution of users’

ratings, and utilizing the voting theory recommends to the group a

“winning” item. Finally, [9] proposes a new group recommendation

method by allowing a group member to commend on the choices of

the rest of the group. This allows each user to get new recommen-

dations similar to the proposals made by other group members and

to communicate the rationale behind their own counterproposals.

Another approach to achieving fairness in group recommenda-

tion is presented in [1]. It introduces the consensus function that

similarly to our work takes into account the opinion of the group

as it is given by the average method and the disagreement between

users. They define the disagreement of users as either the aver-

age of pair-wise relevance differences for the item among group

members or a variance disagreement function that computes the

mathematical variance of the relevance scores for the item among

group members. [30] proposes two definition of fairness: fairness
proportionality and envy-freeness. In the former, the user u con-

siders the list of recommended items fair for him/her, if there are

at leastm items that the user likes. In the latter, u considers the

package fair, if there are at leastm items for which the user does

not feel envious. [35] presents yet another definition of fairness.

They define a utility score for each group member based on the

relevance that the recommended items have on them. They model

fairness as a proximity of how balanced the utilities of users are

when group recommendations are given.

All of the works mentioned above in achieving fairness only

consider one instance of group recommendations and do not take

into account the sequential group recommendation problem, as we

do in this work.

2.3 Sequential Recommendations
Sequential recommendations is a relatively new area of research. In

general, there are three categories of sequential recommenders, and

they are divided based on how many past user interactions they

consider: Last-N interactions-based recommendations, Session-based
recommendations and Session-aware recommendations [26]. In the

first approach, only the last N user actions are considered [6, 17, 18].

This is because the system has logged a huge amount of historical

data for the user, with many of them be duplicates, which do not

offer relevant information to the system. Last-N interactions-based

recommendations are typically location-aware recommendations.

In session-based recommendations, only the last interaction of the

user with the system is used. They are typically found in news [8]

and advertisement [12] recommender systems. In the last category

of sequential recommenders – session-aware recommendations, we

have information about both the last interaction of the user with

the system, as well as the history of the user. These recommenders

are often implemented in e-commerce or for app suggestions [10,

14, 27]. In our work, we use the last method to approach sequential

group recommendations. The above classification has been done

for single user recommenders, and to our knowledge, our work is
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the first one in sequential group recommendations, that handles

the notion of fairness.

3 BASIC CONCEPTS
In this section, we introduce a simple group recommendation pro-

cess. This is a stand-alone process and does not take into account

any past interactions that the group may have had with the system.

The group recommendation approach we use, is the aggregation of

the individual group members’ preference lists into one group pref-

erence list. We define a preference list to be the list we recommend

either to each member individually or to the group.

Specifically, let U be a set of users and I be a set of items. Each

user ui ∈ U has given a rating from 1 to 5 to an item dz ∈ I
represented as r (ui ,dz ) The subset of users that rated an itemdz ∈ I
is denoted byU (dz ), while the subset of items rated by a userui ∈ U
is denoted by I (ui ). Let’s assume also a fixed group of users G
of size n, G ⊆ U . Having applied a single user recommendation

algorithm to all group members inG and produced their preference

lists Au1
, . . . ,Aun , the next step is to aggregate these lists into one.

After the aggregation phase, each item will have just one group

preference score and the top k will be reported back to the group

as the final recommendations.

Typically, two well established aggregation methods are used [2].

The first aggregation approach we examine is the average method.

The main idea behind this approach is that all members are consid-

ered equals. So, the group preference of an item will be given be

averaging its scores across all group members:

avдG(dz ,G) =
sumui ∈Gp(ui ,dz )

|G |
,

where p(ui ,dz ) gives us the preference score of dz for user ui (com-

puted by a standard single user recommendation algorithm). The

second aggregation method is least misery, where one member can

act as a veto for the rest of the group. In this case, the group pref-

erence score of an item dz is the minimum score assigned to that

item in all group members preference lists:

minG(dz ,G) =minui ∈Gp(ui ,dz ).

4 SEQUENTIAL GROUP
RECOMMENDATIONS

In this section, we introduce the notion of multiple rounds to the

previous group recommendation process. Consequently, we do not

consider each group query to the system as a stand alone process,

but as a sequence of queries submitted to the system by the same

group. We call each group query to the system an iteration, and
each iteration has the main components of a standard group rec-

ommendation method: single user recommendations followed by

the aggregation phase.

Formally, let GR be a sequence of µ group recommendations

(Gr1, . . . ,Grµ ). We use pj (ui ,dz ) for the preference score of userui
for item dz at iteration j , 1 ≤ j ≤ µ. These scores are estimated by a

single user recommendation algorithm. After the aggregation phase

of the group recommender system, we use дpj (G,dz ) to denote the

preference score of item dz for the groupG as a whole, as estimated

by the group recommender at iteration j.

This new model, in contrast to the previous one, introduces

the notion of multiple iterations or sequence of recommendations.

We use these interactions, to alter the output of the recommender

system, in such a way that if a user was not satisfied in a previous

iteration, potentially, he/she will be satisfied during the current

one.

4.1 Satisfaction Measure
To examine the effectiveness of our group recommender algorithm

through a series of iterations, we need to define a measure that

will help us elevate the problem from examining each iteration

independently, to examining a series of iterations. We introduce

the notion of satisfaction that represents the gratification of each

group member for the recommended items after each iteration of

the system. We define two variations of satisfaction: single user
satisfaction and group satisfaction.

4.1.1 Single User Satisfaction. First, we want to provide a formal

measure of the degree of the satisfaction of each user ui in G to

the group recommendation Gr j received at step j. We do so, by

comparing the quality of recommendations that the user receives

as a member of the group with the quality of the recommendations

that the user would have received as an individual.

Assume that Gr j involves items i j,1, i j,2, . . . i j,k . Furthermore,

let Aui , j be the list with the top-k items aj,1,aj,2, . . . aj,k for user

ui , that is, the k items with the highest prediction scores for user

ui . Our goal is to directly compare the user’s satisfaction from the

group recommendation list with the ideal case for that user. This

gives us a more clear view of the satisfaction of the user than the

average method since we take into account the top items for each

user, and not only the top items for the group. Formally:

sat(ui ,Gr j ) =
GroupListSat(ui ,Gr j )

UserListSat(ui ,Aui , j )
(1)

GroupListSat(ui ,Gr j ) =
∑

dz ∈Gr j

pj (ui ,dz ) (2)

UserListSat(ui ,Aui , j ) =
∑

dz ∈Aui , j

pj (ui ,dz ) (3)

With the function GroupListSat (Equation 2), we calculate the

user’s satisfaction based on the group recommendation list. For

every item in Gr j , we sum the score as they appear in each user’s

Aui , j . The function UserListSat (Equation 3), calculates the ideal

case for the user, by simply sum the scores of the k top items in

the user’s Aui , j . This way, we are able to normalize the user’s

satisfaction score. For example, if a user gives mainly low scores to

items, then Equation 1 is able to compensate for it.

Note that in both Equations 2 and 3, we do not use the scores as

they appear in the group list, but as they appear in the individual

preference list of the user. Since the aggregation phase of the group

recommendation process, rather distorts the individual opinions

of the group members, we opt to take into consideration only the

personal preference scores of each group member.

Still, Equation 1 remains static, in the sense that we calculate the

satisfaction of a user for one iteration only. As stated before, what

we want is to define a measure that takes into consideration the

satisfaction scores from previous iterations of the system. Such a
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score will represent the overall satisfaction of each group member

with the entirety of the µ group recommendations.

Definition 4.1 (Overall Satisfaction). The overall satisfaction of

user ui with respect to a sequence GR of µ iterations is the average

of the satisfaction scores after each iteration:

satO(ui ,GR) =

∑µ
j=1

sat(ui ,Gr j )

µ
(4)

4.1.2 Group Satisfaction. Having defined the satisfaction score

of each group member we can now define the satisfaction score

of the entire group. Specifically, the satisfaction of the group G
with respect to a group recommendation list Gr j is defined as the

average of the satisfaction of the users in the group:

дroupSat(G,Gr j ) =

∑
ui ∈G sat(ui ,Gr j )

|G |
(5)

Subsequently, we define the overall group satisfaction of a group

G for a recommendation sequence GR of µ group recommendations

(Gr1, . . . , Grµ ), as:

дroupSatO(G,GR) =

∑
ui ∈G satO(ui ,GR)

|G |
(6)

This measure indicates if the items we report to the group, are

acceptable to its members. Higher group satisfaction means that the

group members are satisfied with the recommendations. However,

since we average the members satisfaction scores a dissatisfaction

of a user can probably be lost in the computations. To counter this

problem, we focus as well on the potential disagreements between

the users in the group. For representing such disagreement, we
define the groupDis measure:

дroupDis(G,GR) =

maxui ∈GsatO(ui ,GR) −minui ∈GsatO(ui ,GR) (7)

Intuitively, we define the disagreement of the group, to be the

difference in the overall satisfaction scores between the most satis-

fied and the least satisfied member in the group. Ideally, we want

this measure to take low values, as that will indicate that the group

members are all satisfied to the same degree. Higher дroupDis val-
ues will demonstrate that at least one member of the group is biased

against.

4.2 Problem Definition
Our sequential group recommender system needs to achieve two

independent objectives that are nonetheless critical to the success

of our model. The first objective considers the group as an entity:

we want to offer to the group the best possible results. The second

objective considers the group members independently: we want to

behave as fairly as possible towards all members.

Definition 4.2 (Fair Sequential Group Recommendation). Given
a group G, the sequential group recommender produces at the µ
iteration a list of k items Grµ , Grµ ∈ GR that:

(1) Maximizes the overall group satisfaction,дroupSatO(G,GR),
and

(2) Minimizes the variance between users satisfaction scores:

дroupDis(G,GR).

To achieve the first objective, we target atmaximizingдroupSatO .

This means that we require the items with the highest preference

scores for the group as a whole. Since дroupSatO expresses the

average satisfaction of the group members, and the dissatisfaction

of just one member is easily lost, we also need to achieve the second

objective, to minimize дroupDis , which is the representation of the

degree of dissatisfaction between the members of the group.

Depending on the similarity between the group members, these

two objectivesmay be conflictingwith each other. A simple example,

is a group of three members, two that are highly similar to each

other, and one that is very dissimilar to them. To achieve high

дroupSatO values, we need to recommend items that are relevant

to the two similar users, so as to increase the average satisfaction of

the group. On the other hand, by doing so, дroupDis will take high
values as well since we do not address the needs of the third member.

Overall, we need to recommend items that are not just good enough

for all members – since that still returns low дroupSatO values, but

items that have high relevance to the group, without sacrificing the

opinions of the minority.

4.3 Sequential Hybrid Aggregation Method
As explained above, both the average and the least misery aggre-

gation methods have drawbacks, when we consider them for se-

quential recommendations. At the same time, both have advantages

(namely, equality for average, and inclusion of all opinions for least

misery) that are an asset for a recommender system. Furthermore,

it has been proven that to compute the best suggestions for a group

that minimizes the gap between the least and highest satisfied

group members is an NP-Hard problem [35]. That is something we

want to achieve throughout the multiple iterations of the system,

to be equally fair to all members of the group. To circumvent the

problem and to capitalize on the advantages of the average and the

least misery aggregation methods, we propose a novel aggregation

method that is a weighted combination of them. We call the method

sequential hybrid aggregation method.

score(G,dz , j) =

(1 − α j ) ∗ avдScore(G,dz , j) + α j ∗ leastScore(G,dz , j) (8)

The function avдScore(G,dz , j) returns the score of the item dz
as it is computed by the average aggregation method during iter-

ation j, and function leastScore(G,dz , j) returns the least satisfied
user’s score of dz at iteration j. The variable α takes values from

0 to 1. If α = 0, then the sequential hybrid aggregation method

becomes average aggregation, while when α = 1, it transforms to a

modified least misery aggregation, where we only take into account

the preferences of the least satisfied member.

Intuitively, when α = 0, our method satisfies the first part of

the fair sequential group recommendation problem (Definition 4.2)

since the average aggregation considers the best options for the

group as a whole. The benefits of α = 1 can be seen for higher

values of µ, since at the first iterations the group disagreement may

remain high since it considers the overall satisfaction of the users

(Equation 4).

Given that our goal is to fulfill both objectives of the problem def-

inition, we need to set the value of α between 0 and 1. Furthermore,

we want this value to self-regulate, to more effectively describe the
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Figure 2: Example for the same group as in Figure 1. We con-
sider 5 rounds. We utilize the Sequential Hybrid Aggrega-
tion method.

consensus of the group. Thus, we set the value of α dynamically in

each iteration by subtracting the minimum satisfaction score of the

group members in the previous iteration, from the maximum score.

α j =maxu ∈Gsat(u,Gr j−1) −minu ∈Gsat(u,Gr j−1) (9)

When j = 1 (the first iteration of the system), then α = 0, and the

aggregation method reverts to that of a classic average aggregation.

By having this dynamically calculated α , we counteract the in-
dividual drawbacks of average and least misery. Intuitively, if the

group members are equally satisfied at the last round, then α takes

low values, and the aggregation will closely follow that of an aver-

age, where everyone is treated as an equal. On the other hand, if

one group member is extremely unsatisfied in a specific iteration,

then α takes a high value and promotes that member’s preferences

on the next iteration. Formally:

Proposition 1. Letu be a user in a groupG , such that, sat(u,Gr j−1)

< sat(ui ,Gr j−1), ∀ui ∈ G\{u}. Then, ∃uy ∈ G\{u}, such that,
sat(uy ,Gr j ) < sat(u,Gr j ).

Proof. For the purpose of contradiction, assume that sat(u,Gr j )
< sat(uy ,Gr j ), ∀uy ∈ G\{u}. Then, this means that u is the least

satisfied user at iteration j, which in turn means that α takes val-

ues not leading towards a least misery approach at this iteration,

meaning that u was not the least satisfied user at iteration j − 1,

which is a contradiction. □

To exemplify this, we run the same experiment as in Figure 1, for

the same group, but now we utilize the sequential hybrid aggrega-

tion method. The results appear in Figure 2. Here, we can observe

that a group member that was not satisfied in the previous iteration

of the system, is satisfied in the next. A good example of this is

User 4 where in the first iteration has a very low satisfaction score,

and in the second has a higher one. This is a clear improvement

over the results shown in Figure 1, where User 4 was always the

least satisfied member of the group.

4.4 Algorithm
Our sequential hybrid group aggregation method is described in

Algorithm 1. The input to the algorithm is the group G, the iteration

j, and the size k of the group recommendation list Gr j , which
we report to the group after each iteration is finished. In Line 1,

we apply a single user recommendation algorithm to each group

member and save their preference lists into the variable A. In Line

2, we define a set that contains all the items that appear in the

members’ preference listsGl and, in Lines 3–5, we populate the set.

In Lines 6–10, we calculate the α ; if it is the first iteration meaning

j = 1 (Line 7), then α = 0, otherwise, we use Equation 9 (Line 9)

to calculate it. In Lines 11–24, we perform the sequential hybrid

aggregation method. For all the items in Gl , we calculate the item
score using Equation 8 (Line 12) and insert them in the group list

Gr j (Line 13). After we have examined all the items in Gl , we sort
the items in the group list (Line 15), and finally, we report the top-k
of them to the group (Line 16). The complexity of our algorithm

is O(n logn) due to the time complexity of the sorting function,

where n = |Gl |.

Data: Group G, j top k
Result: Group Recommendation List: Gr j

1 A← RS(G);

2 Gl ← ∅;

3 for ui ∈ G do
4 Gl ← Gl ∪Aui ;

5 end
6 if j=1 then
7 α j = 0;

8 else
9 α j =maxSat(G, j − 1) −minSat(G, j − 1);

10 end
11 for item dz in Gl do
12 score(G,dz , j) =

(1 − α j ) ∗ avдScore(G,dz , j) + α j ∗ leastScore(G,dz , j);

13 Gr j ← Gr j ∪ score(G,dz , j);

14 end
15 sort(Gr j );

16 report(top(Gr j ,k));
Algorithm 1: Sequential Group Recommendation Algorithm

5 EXPERIMENTAL SETUP
In this section, we describe the two pre-processing tasks needed for

the experimental evaluation of our sequential group recommender

system: the dataset splitting and the group formation.

5.1 Dataset
For the experimental evaluation of our sequential group recom-

mender system, we use the 20MMovieLens Dataset [11]. It contains

20.000.263 ratings across 27.278 movies. These data were created by

138.493 users between January 09, 1995, and March 31, 2015. The

dataset was generated on March 31, 2015. To simulate multiple iter-

ations of suggestions, we split the dataset into chunks. Each chunk

is added to the system, representing new information, and along

with the already existing data in the system, is used for locating

the suggestions for the next iteration.

Initially, we divide the dataset into two parts of roughly the same

size. The first part that contains the ratings given between January

1994 and December 2003, is the starting dataset of our recommender.
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Figure 3: Divided by semester: Ratings, unique users and
movies, as well as the number of new users and movies that
appear in each chunk

This gives us an initial dataset that consists of 8.381.255 ratings,

73.519 users and 6.382 movies. We initiate the system with this

starting dataset to avoid any issues emanating from the cold start

problem
2
. The second part of the dataset is further split into chunks

based on timestamps.We create 22 chunks, where each one includes

information for a period of six months. During the first iteration,

the system will have access only to the initial dataset. When that

iteration ends, the system will be enhanced with one additional

chunk (first semester of 2004), and after each subsequent iteration,

the system will be given access to the next chunk (second semester

of 2004, fist semester of 2005, etc.).

Figure 3 shows the detailed information on the contents of each

chunk. With the last two columns, we report the number of users

and movies respectively that appear for the first time during the

specific semester. As we can see, the ratings are not evenly split

between the semesters. There is a higher number of ratings in the

years 2004 to 2010, in some cases even triple the amount. As it is

expected, the number of movies that appear in each chunk increases

as the time passes, since the users can rate old movies as well. At

the same time, the number of users is relatively the same across all

chunks. The disinterested of the users to give ratings as time passes

is not a complication in our evaluations since the total number of

available ratings is enough for our needs.

5.2 Group Formation
We will evaluate our sequential group recommender on stable

groups. This means that the members of the group do not change

between iterations, and all the members are present for each rec-

ommendation. We will examine our recommender on four types of

groups, based on the similarity shared between the members. We

2
The cold start problem in collaborative filtering appears when there is not enough

information about a user and we are unable to find similar other users to him/her.

This problem is beyond the scope of this research, and to overcome it, we initialize

our system with a large enough dataset.

target at covering groups with different semantics, starting from

groups with similar users to groups with dissimilar ones. We calcu-

late the similarity between the members of the group using only

the starting dataset and not the entirety of it since we want the

relationship between the users to be present from the first iteration.

The similarity between the group members is calculated using

the Pearson Correlation similarity measure [28], which takes values

from −1 to 1. Higher values imply a higher similarity between the

users, while negative values indicate dissimilarity.

s(ui , ul ) =

∑
dz ∈X

(r (ui , dz ) − r̄ui )(r (ul , dz ) − r̄ul )√ ∑
dz ∈X

(r (ui , dz ) − r̄ui )
2

√ ∑
dz ∈X

(r (ul , dz ) − r̄ul )
2

(10)

where X = I (ui ) ∩ I (ul ) and r̄ui is the mean of the ratings in I (ui ),
i.e., the mean of the ratings of user ui .

We consider two users to be highly similar to each other, if

they share above 0.5 similarity score, while dissimilar when they

have -0.5 or lower similarity score. The types of groups, we are

considering are the following:

• 4 similar – 1 dissimilar: The four members of the group

share a high similarity score, while the dissimilar one shares

a low similarity score with the rest of the group members.

• 3 similar – 2 similar: We divide the group into two sub-

groups. The members of each subgroup are similar to each

other, while at the same time, the subgroups are dissimilar to

one another, i.e., all members of one subgroup are dissimilar

to all members of the other subgroup.

• 3 similar – 1 dissimilar – 1 dissimilar: We divide the

group into three separate subgroups: one that contains three

members and two subgroups that each contain just one user.

All subgroups are dissimilar to each other, while the three

members belonging in the same subgroup are similar to each

other.

• 5 dissimilar: All members of the group are dissimilar with

each other.

For each group type, we generate 100 groups, and each user

can only participate in one group per category. We consider only

groups of five members since that is a realistic scenario.

6 EVALUATION
In this section, we go over our experimental procedure and the

variables we took into consideration during the evaluation of the

sequential group recommender. We present the results of this eval-

uation that showcase the advantages of our sequential hybrid ag-

gregation method.

6.1 Experimental Procedure
In our experiments, we will examine the behavior of four types

of groups, considering 100 different groups per type. For each

group in a set, we perform sequential group recommendations

for various values of µ, as described in Algorithm 1. For all the

groups in the set, we calculate the average of дroupSatO(G,GR)
and дroupDis(G,GR). Additionally, we utilize an F-score measure

(Equation 11), namely the harmonic mean of the дroupSatO and

дroupDis measures, that provides a good indication of the users’
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satisfaction and the agreements between the users in the group.

Taking into account the input functions that F-score needs, we use

1 − дroupDis to simulate the group agreement.

F -score = 2

дroupSatO ∗ (1 − дroupDis)

дroupSatO + (1 − дroupDis)
(11)

We find similarities between users, by utilizing the Pearson Cor-

relation. We consider two users as similar if the similarity is greater

than 0.7, and if they have rated more than five identical items.

To predict preference scores for a user, we use the Weighted

Sum of Others Ratings [33], and we take into account only the top

100 most similar users to him/her. We recommend to the group the

10 items with the highest group preference score. In our case, we

assume that the system does not recommend items to the group

that it has previously recommended.

p(ui ,dz ) = r̄ui +

∑
ul ∈(Pui ∩U (dz ))

s(ui ,ul )(r (ul ,dz ) − r̄ul )∑
ul ∈(Pui ∩U (dz ))

|s(ui ,ul )|
(12)

6.2 α Experiments
To examine the behavior of the sequential hybrid aggregation

method, we first examine the values that the variable α (Equa-

tion 9) takes during the iterations of the system. We examine the

performance of α through 15 iterations. In Figure 4, we report the

average α values of the 100 groups per type, per iteration. At the

first iteration, the α takes the default value 0. During the next itera-

tions, the α values increase in a close to linear form. This is expected

since by design the groups have at least one outlier member that

is dissimilar to the rest of the group. This guarantees that at least

one member is not satisfied during an iteration of the system. The

high values of α in the later iterations are also the result of the

dataset splitting. At the later iterations, the majority of the dataset

has already been given as input to the system, and statistically,

the best items for the group as well as for the individual members

have already been recommended. Since per our scenario our system

cannot suggest items that have already been recommended, the

remaining items are less preferable to the group as a whole and

each member individually.

An additional observation is the different behaviors of the four

group types. As already stated, the groups are formed in such a

way, as to always have at least one member being a minority. The

α values offer a first impression of the implications these types

of groups have on sequential recommendations. Remember that

α is different than the group disagreement (Equation 7) since it

only takes into account the members’ satisfaction for the previous

iteration of the system. During the first iterations of the system,

there is a little variation in the values of α . The clear distinction
becomes obvious in the later iterations, where we can observe that

the more diverse the group becomes, the more higher the values

of α get. This is expected since the more distinct opinions in the

group are, the higher the disagreement between the user becomes,

and thus the values of α become higher.

6.3 Group Type Experiments
To examine the effectiveness of the sequential group recommender,

we consider the group satisfaction, дroupSatO (Equation 6) and

the disagreement between the users, дroupDis (Equation 7), after a

Figure 4: Average α values over 100 groups per group type,
at each iteration.

number of iterations µ. For each type of group, we perform the ex-

periments for different number of iterations, µ ∈ [5, 10, 15]. Figures

5, 6, 7 and 8, show the average of the group satisfaction and group

disagreement scores for the 100 groups per group type, respectively.

We perform the tests for different values of α , α ∈ [0, 0.4, 1,
dynamic α], as well as the pure Least Misery approach (LM). For

α = 0, we have a standard average aggregation method. For α = 1,

we have a slightly altered least misery aggregation method, where

instead of assigning the lowest score among the individual group

members’ preference scores to the item as a group preference score,

we assign to the item the score as it appears on the preference

list of the least satisfied user. We also consider a static value for α ,
which is 0.4, selected as the one with the best results, after extensive

experimentation on different α values.

When considering the overall group satisfaction, we observe that

for all group types it decreases by the same degree. This is because

in the later iterations of the system the best items for the group

have already been reported, and as stated we do not recommend

items that have already been recommended in previous iterations.

When comparing the group satisfaction for the different values of

α , we observe that the average method slightly outperforms the

dynamic α . For 15 iterations, the average method offers a better

overall group satisfaction by a slight factor, since it tries to offer the

best results to the group as a whole. The dynamic α , also clearly

outperform the LM method, especially the more diverse the groups

become. By far the worst performance is for α = 1, since in each

iteration of the system, we consider only one user, without taking

into account the opinions of the rest of the group.

Regarding the group disagreement, LM has the worst results

followed by the average method (α = 0), while the dynamic α has

the best. This is because, the average method ignores the minority

opinion in the group, which is reflected in the high group disagree-

ment values. LM does not work well for diverse groups since the

preferences of the members greatly differ from each other. This

becomes more apparent the more dissimilar the group members

are, as shown in Figure 8. The benefits and drawbacks of α = 1 are

apparent in our evaluations. We can observe high disagreement in

the first iterations of the system, but later, we have better results.

This is more clear in more diverse groups, such as the ones in Fig-

ure 8, where during the later iterations it achieves the second best

disagreement.
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Figure 5: 4 similar – 1 dissimilar: Overall group satisfaction
and group disagreement for 100 groups for different µ.

Figure 6: 3 similar – 2 similar: Overall group satisfaction
and group disagreement for 100 groups for different µ.

Overall, the sequential group recommendations problem is not

one dimensional. We need to examine the overall group satisfaction

and the group disagreement in conjuncture with each other. Even

though the average method (α = 0) and the static value of α = 0.4,

offers slightly better group satisfaction than the dynamic α , they
both have far higher group disagreement values. We argue that

this is an acceptable loss of group satisfaction, when we consider

the advantage that the dynamic α has over the average and static

α aggregation methods on the disagreement between the group

members.

To better demonstrate this, we also calculate the F-score of the

дroupSatO and дroupDis values. We present these results in Table

1. For all group types and all number of iterations, the method

using dynamic α offers better results, than the rest of the methods.

This better demonstrates the point we made previously. Even if

the average method offers better group satisfaction, our proposed

dynamic hybrid sequential method, more than makes up for it, with

the far lower group disagreement.

7 CONCLUSION
In this work, we introduce the notion of sequential group rec-

ommendation. We show that the standard group recommendation

Figure 7: 3 similar – 1 dissimilar – 1 dissimilar: Overall group
satisfaction and group disagreement for 100 groups for dif-
ferent µ.

Figure 8: 5 dissimilar: Overall group satisfaction and group
disagreement for 100 groups for different µ.

approaches are not favorable for sequential recommendations. Such

methods suffer from particular drawbacks – a minority opinion

may be lost by the average method, and the preference of the group

is determined by just one voice in the least misery – that are only

exacerbated when they are applied to sequential recommendations.

We propose a sequential group recommendation model that takes

into account the satisfaction of the members during the previous

interactions of the group with the system. The influence that each

member has on determining the group score for an item, is defined

by the degree of the satisfaction that member has, for the recom-

mended items in the previous iteration of the system. In the future,

we want to further evaluate our work with a user study, to better

examine the effectiveness of our method and how users respond

to it. Additionally, we want to study the effect of sequential group

recommendations on ephemeral groups and the subsequent conse-

quence of them on the individual members. That is, how we can

satisfy a user if at each iteration is a member of a different group,

without sacrificing the overall satisfaction of the temporally formed

group.
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Group 4+1 3+2 3+1+1 5Diss
Iterations 5 10 15 5 10 15 5 10 15 5 10 15

α = 0 0.784 0.720 0.672 0.819 0.741 0.682 0.801 0.719 0.662 0.805 0.726 0.668

α = 0.4 0.808 0.754 0.713 0.823 0.767 0.724 0.814 0.753 0.706 0.806 0.753 0.705

α = 1 0.675 0.673 0.648 0.676 0.676 0.655 0.662 0.663 0.640 0.658 0.667 0.649

LM 0.756 0.677 0.617 0.789 0.695 0.633 0.760 0.664 0.590 0.771 0.645 0.560

Dynamic α 0.821 0.765 0.725 0.839 0.775 0.730 0.824 0.760 0.712 0.823 0.762 0.712
Table 1: F-score values for all group categories per α value, per iteration.
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Abstract
Recently, group recommendations have gained much attention. Nevertheless, most
approaches consider only one round of recommendations. However, in a real-life scenario,
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not only which items the system suggested, but also the reaction of the members to these
items. This work introduces the problem of sequential group recommendations, by exploit-
ing the concept of satisfaction and disagreement. Satisfaction describes how well the group
received the suggested items. Disagreement describes the satisfaction bias among the group
members. We utilize these concepts in three new aggregation methods, SDAA, SIAA and
Average+, designed to address the specific challenges introduced by sequential group rec-
ommendations. We experimentally show the effectiveness of our methods using big real
datasets for both stable and ephemeral groups.
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1 Introduction

Recommendations have become a standard in many services that target a consumer. From
listening to music to health information, recommender systems are employed to make the
user experience better and smoother. One of the most widely used methods to produce a user
recommendation is the Collaborative Filtering (CF) method. Here, the system assumes that
if two users had previously interacted with a set of items in a similar way, then the patterns
of one user can be used to predict the other’s future interactions.

With the expansion of social media, another form of recommendations has emerged;
namely the group recommendations (Amer-Yahia et al., 2009; Ntoutsi et al., 2012; Ntoutsi
et al., 2014). It is often the case that a group of users asks a recommender system for sugges-
tions instead of a single user. A typical instance of group recommendations is the following.
A group of friends wants to see a movie. Each friend has his/her preferences for what kind
of movie he/she would like to watch. The recommender system needs to address these pref-
erences adequately and report a set of items that have a degree of relevance to each group
member. There is extensive research on the selection process of the items. Two approaches
are the most popular. The first is to create a pseudo user by combining each group mem-
ber’s data and then applying a standard recommendation method. The second and most
used approach is to apply a recommendation method to each member individually and then
aggregate the separate lists into one for the group.

One of the most common requirement that the aggregation phase of a group recom-
mender system needs to fulfill is fairness towards all the members of the group (Serbos
et al., 2017; Stratigi et al., 2017; 2018; Machado & Stefanidis, 2019). A rudimentary defini-
tion of fairness is to recommend to the group the item that has the best relevance. Intuitively,
a way to find such an item is to use the Average method on all group members’ preference
scores for it. In this case, all group members are considered equals. However, this method
has a big drawback. For example, consider the following scenario with a group that con-
sists of three users. Two of them have similar preferences to each other, while the third does
not. The average method is prone to ignore the opinion of the last user. Another option is
the Least Misery approach. Here, the user with the minimum preference score will act as a
veto to the rest of the group. This method has a drawback as well. It only takes the opinion
of one group member under consideration while ignoring the others. Subsequently, in most
cases, the system recommends an item that is acceptable for all members, but it will be an
item with a somehow low preference score.

In many works, a hidden assumption is that each time the group interacts with the recom-
mender system is distinct from the rest. In a real-life scenario, however, the system needs
to keep a history of the group’s interactions to tailor its suggestion accordingly. Returning
to the previous example, where the group meets every week for a movie night, the system
cannot suggest the same list of items each time, regardless of whether those items have the
best relevance for the group. Internally, the system needs to log all the items suggested to
the group and the members’ reaction to the proposed items (either with explicit feedback
from the users or with an implicit method). To illustrate this requirement of group history,
in our running example, one user has completely different preferences to the rest of the
members. So each time the group meets, the same user is dissatisfied with the recommender
system’s suggestions. To remedy that, we introduce the notion of sequential group recom-
mendations where the system considers the entire sequence of interactions for a group in
order to produce its recommendations.

The concept of multiple rounds of recommendations allows us to make a conjecture. If
a group member is dissatisfied with the proposed items at a specific iteration, he/she was
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either satisfied in the previous round or will be satisfied in the next. Subsequently, we exploit
the notion of satisfaction, which estimates the degree of satisfaction in the recommendations
for each group member, and disagreement which calculates the discrepancy among these
satisfaction scores. We incorporate these satisfaction and disagreement scores during the
group recommendation aggregation phase to ensure all members of a group are overall
satisfied with the system’s performance after several iterations.

Standard group recommendation approaches, such as Average and Least Misery, do not
work very well when applied in a sequential scenario (Stratigi et al., 2020). Average produce
good satisfaction scores but mediocre disagreement scores, while Least Misery produces
reasonable disagreement and poor satisfaction scores. In this work, we propose three new
aggregation methods.

The Sequential Dynamic Adaptation Aggregation, SDAA, method draws its inspirations
from the individual advantages of the Average and Least Misery methods, while mitigat-
ing their drawbacks. It considers the group as a whole and dynamically at each iteration,
estimates a weight based on the group members’ satisfaction scores, to combine the equal-
ity of the Average method and the inclusivity of the Least Misery method. In contrast, the
Sequential Individual Adaptation Aggregation, SIAA, method is user-centric. It calculates a
weight for each member based on his/her satisfaction and disagreement scores, and applies
this weight on the group members’ preference scores during the aggregation phase. Finally,
we propose a heuristic method, named Average+. Contrary to the others, which examine
each item individually, Average+ considers the entire list of data items. It builds upon the
average method to take advantage of the good satisfaction scores, but considers more than
the requested k items. It incrementally adds items to the group recommendation list that
produce the least disagreement scores when examined together with the rest of the list.

In a nutshell, the contributions of our work are the following:

– We introduce the problem of sequential group recommendations that targets to offer
results that maximize the overall group satisfaction, and minimize the variance between
the users satisfaction scores.

– We exploit the concept of satisfaction and disagreement for proposing three new
aggregation methods designed to address the challenges of sequential group recom-
mendations. Satisfaction describes each group member’s degree of satisfaction for the
items recommended at each iteration, and disagreement describes the degree of bias a
user and the group faces at each iteration.

– We experimentally evaluate our methods, using two big real datasets, MovieLens and
GoodReads, and test the methods for different types of groups. Furthermore, we study
the performance of stable groups, where the group members are the same for all itera-
tions, and ephemeral groups, where at the end of each iteration, a member of the group
leaves, and a new one enters it.

A preliminary version of this work appears in Stratigi et al. (2020), where we introduced
the SDAA method. In this article, we also propose the SIAA and Average+ methods. Fur-
thermore, we evaluate the methods using a second real dataset, GoodReads, in addition to
the MovieLens dataset used previously. Finally, we consider stable and ephemeral groups.
In stable groups, the members remain the same throughout all the system’s iterations. In
contrast, after each iteration in ephemeral groups, a member of the group leaves, and a new
one enters it.

The rest of the paper is structured as follows: Section 2 presents basic concepts
on recommender systems, and Section 3 introduces the problem of sequential group
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recommendations. Sections 4, 5 and 6 describe the SDAA, SIAA, and Average+ aggregation
methods, respectively. Section 7 presents our experimental setup, and Section 8 presents our
evaluation results. Finally, Section 9 reports the related work, and Section 10 concludes this
work with a summary of our contributions.

2 Basic concepts

In this section, we introduce a simple group recommendation process. It is a stand-alone
process and does not consider any past interactions that the group may have had with the
system. We use the group recommendation approach to aggregate the individual group
members’ preference lists into one group preference list. We define a preference list to be
the list we recommend to each member individually or the group.

Specifically, let U be a set of users and I be a set of items. Each user ui ∈ U has given a
rating from 1 to 5 to an item dz ∈ I represented as r(ui, dz). The subset of users that rated an
item dz ∈ I is denoted by U(dz), while the subset of items rated by a user ui ∈ U is denoted
by I (ui). Let’s assume also a group of users G of size n, G ⊆ U . Having applied a single
user recommendation algorithm to all group members in G and produced their preference
lists Au1 , . . . , Aun , the next step is to aggregate these lists into one. After the aggregation
phase, each item will have just one group preference score and the top k will be reported
back to the group as the final recommendations.

Typically, two well established aggregation methods are used (Baltrunas et al., 2010).
The first is the Average method. The basic concept of this approach is that all members
are considered equals. So, the group preference of an item will be given be averaging its

scores across all group members: avgG(dz,G) =
∑

ui∈G p(ui ,dz)

|G| , where p(ui, dz) gives us
the preference score of dz for user ui (computed by a standard single user recommendation
algorithm). The second is least misery aggregation method, where one member can act as
a veto for the rest of the group. In this case, the group preference score of an item dz is the
minimum score assigned to that item in all group members preference lists: minG(dz, G) =
minui∈Gp(ui, dz).

3 Sequential group recommendations

In this section, we introduce the notion of multiple rounds to the previous group recommen-
dation process. Consequently, we do not consider each group query to the system as a stand
alone process, but as a sequence of queries submitted to the system by the same group. We
call each group query to the system an iteration. Each iteration has the main components
of a standard group recommendation method: single user recommendations followed by the
aggregation phase. Formally, let GR be a sequence of μ group recommendations (Gr1, . . . ,

Grμ). We use pj (ui, dz) for the preference score of user ui for item dz at iteration j , 1 ≤ j

≤ μ. A single user recommendation algorithm estimates these scores.
In contrast to the previous one, this new model introduces the notion of multiple

iterations or sequence of recommendations. We use these interactions to modify the recom-
mender system’s output in such a way that if a user had a low satisfaction score in a previous
iteration, he/she will likely have a higher one during the current iteration.
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3.1 Satisfactionmeasure

To examine the effectiveness of our group recommender algorithm through a series of iter-
ations, we need to define a measure that will help us elevate the problem from examining
each iteration independently to examining a series of iterations. We introduce the notion of
satisfaction that represents each group member’s gratification for the recommended items
after each iteration of the system. We define two variations of satisfaction: single-user
satisfaction and group satisfaction.

For ease of reference, Table 1 holds all the symbols and notation used in the next sections.

3.1.1 Single user satisfaction

First, we want to provide a formal measure of the degree of each user’s satisfaction, ui ∈ G,
to the group recommendation Grj received at step j . We do so, by comparing the quality
of recommendations that the user receives as a member of the group with the quality of the
user’s recommendations as an individual. We consider the user’s individual recommenda-
tion list, as his/her ground truth because to the best of the system’s knowledge, this list is
the only information about the user.

Let A(ui, j) returns a list with the top-k items for user ui , that is, the k items with the
highest prediction scores for ui . Our goal is to directly compare the user’s satisfaction from
the group recommendation list with that user’s ideal case. Doing so gives us a clearer view
of the user’s satisfaction than the average method since we consider the top items for each
user, not only the top items for the group. Formally:

sat (ui,Grj , j) =
∑

dz∈Grj
pj (ui, dz)

∑
dz∈A(ui ,j) pj (ui, dz)

. (1)

In the nominator, we calculate the user’s satisfaction based on the group recommendation
list. For every item in Grj , we sum the score as they appear in each user’s top-k list. The
denominator, calculates the ideal case for the user, by simply sum the scores of the k top
items in the user’s individual recommendation list. This way, we are able to normalize the
user’s satisfaction score. For example, if a user gives mainly low scores to items, then (1)
can compensate for it.

Note that we do not use the scores as they appear in the group list, but as they appear in
the individual preference list of the user. Since the aggregation phase of the group recom-
mendation process somewhat distorts the group members’ individual opinions, we opt to
take into consideration only the personal preference scores of each group member.

Still, (1) remains static, in the sense that we calculate the satisfaction of a user for one
iteration only. As stated before, what we want is to define a measure that considers the
satisfaction scores from previous iterations of the system. Such a score will represent each
group member’s overall satisfaction with the entirety of the μ group recommendations.

Definition 1 (Overall Satisfaction) The overall satisfaction of user ui with respect to a
sequence GR of μ iterations is the average of the satisfaction scores after each iteration:

satO(ui,GR) =
∑μ

j=1 sat (ui,Grj , j)

μ
. (2)

231Journal of Intelligent Information Systems (2022) 58:227–254



Ta
bl
e
1

T
he

lis
to

f
sy

m
bo

ls
an

d
no

ta
tio

ns
us

ed
in

th
is

pa
pe

r

N
ot

at
io

n
D

es
cr

ip
tio

n
N

ot
at

io
n

D
es

cr
ip

tio
n

G
G

ro
up

.
s
a
tO

(u
i
,
GR

)
T

he
u

i
’s

ov
er

al
ls

at
is

fa
ct

io
n

fo
r

th
e

se
qu

en
ce

.

GR
Se

qu
en

ce
of

ite
ra

tio
ns

g
r
o
u
p
S
a
t(

G
,
G

r j
,
j
)

G
ro

up
sa

tis
fa

ct
io

n
fo

r
G

r j

μ
N

um
be

r
of

ite
ra

tio
ns

in
th

e
se

qu
en

ce
g
r
o
u
p
S
a
tO

(G
,
GR

)
O

ve
ra

ll
gr

ou
p

sa
tis

fa
ct

io
n

fo
r

th
e

se
qu

en
ce

G
r j

G
ro

up
re

co
m

m
en

da
tio

n
lis

ta
ti

te
ra

tio
n

j
u
s
e
r
D

is
(u

i,
G

,
G

r j
,
j
)

u
i
’s

di
sa

gr
ee

m
en

ti
n

G
r j

at
ite

ra
tio

n
j

p
j
(u

i
,
d
z
)

u
i
’s

pr
ef

er
en

ce
sc

or
e

fo
r

ite
m

d
z

at
ite

ra
tio

n
j

g
r
o
u
p
D

is
(G

,
G

r j
)

G
ro

up
di

sa
gr

ee
m

en
tf

or
th

e
G

r j
.

A
(u

i
,
j
)

u
i
’s

in
di

vi
du

al
re

co
m

m
en

da
tio

n
lis

t
g
r
o
u
p
D

is
O

(G
,
g
r
)

O
ve

ra
ll

gr
ou

p
di

sa
gr

ee
m

en
tf

or
th

e
se

qu
en

ce

s
a
t(

u
i
,
G

r j
,
j
)

u
i
’s

sa
tis

fa
ct

io
n

sc
or

e
fo

r
G

r j
at

ite
ra

tio
n

j

232 Journal of Intelligent Information Systems (2022) 58:227–254



3.1.2 Group satisfaction

Having defined each group member’s satisfaction score, we can now define the satisfaction
score of the entire group. Specifically, we define group G satisfaction concerning a group
recommendation list Grj as the average of the satisfaction of the users in the group:

groupSat (G,Grj , j) =
∑

ui∈G sat (ui,Grj , j)

|G| . (3)

Subsequently, we define the overall group satisfaction of a group G for a recommenda-
tion sequence GR of μ group recommendations (Gr1, . . . , Grμ), as:

groupSatO(G,GR) =
∑

ui∈G satO(ui,GR)

|G| . (4)

This measure indicates if the items we report to the group are acceptable to its members.
Higher group satisfaction means that the group members are satisfied with the recommenda-
tions. However, since we average the members’ satisfaction scores, a user’s dissatisfaction
can probably be lost in the computations. To counter this problem, we focus on the potential
disagreements between the users in the group. For representing such group disagreement
for just one instance of recommendations, we define the groupDis measure:

groupDis(G,Grj , j) = maxui∈Gsat (ui,Grj , j) − minui∈Gsat (ui, Grj , j). (5)

Subsequently, we define the overall group disagreement of G for the entire recommen-
dation sequence as:

groupDisO(G,GR) = maxui∈GsatO(ui,GR) − minui∈GsatO(ui,GR). (6)

Intuitively, we define the group’s disagreement as the difference in the overall satisfac-
tion scores between the most satisfied and the least satisfied member in the group. Ideally,
we want this measure to take low values, indicating that the group members are all satisfied
to the same degree. Higher groupDis values will demonstrate that at least one member of
the group is biased against.

To further portray our system’s behavior, we define the user disagreement of a user to be
the difference between the satisfaction score of the most satisfied group member and his/her
satisfaction score. Formally:

userDis(ui,G,Grj , j) = max∀ul∈G
sat (ul,Grj , j) − sat (ui,Grj , j). (7)

This allows us to determine better if a group member is systematically being favored
(he/she will have very low user disagreement scores) or is disregarded (he/she has very high
user disagreement scores).

3.2 Problem definition

Our sequential group recommender system needs to achieve two independent objectives that
are critical to the success of the model. The first objective considers the group as an entity:
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we want to offer the best possible results for the group. The second objective considers the
group members independently: we want to behave as fairly as possible towards all members.

Definition 2 (Sequential Group Recommendations) Given a group G, the sequential group
recommender produces at the j th iteration a list of k items Grj , Grj ∈ GR, that:

1. Maximizes the overall group satisfaction, groupSatO(G,GR), and
2. Minimizes the overall variance between users satisfaction scores:

groupDisO(G,GR).

To achieve the first objective, we target to maximize the groupSatO value. For that,
we require the items with the highest preference scores for the group as a whole. Since
groupSatO expresses the average satisfaction of the group members, and the dissatisfac-
tion of just one member is easily lost, we also need to achieve the second objective, to
minimize groupDisO, which represents the degree of dissatisfaction between the members
of the group.

Depending on the similarity between the group members, these two objectives may be
conflicting with each other. A simple example is a group of three members, two are highly
similar to each other, and one is very dissimilar to them. To achieve high groupSatO val-
ues, we need to recommend items relevant to the two similar users to increase the average
satisfaction of the group. On the other hand, by doing so, groupDisO will take high val-
ues since we do not address the needs of the third member. Overall, we need to recommend
items that are not just good enough for all members, since that still returns low groupSatO

values, but items that have high relevance to the group, without sacrificing the opinions of
the minority.

4 Sequential dynamic adaptation aggregationmethod

Generally speaking, both the Average and the Least Misery aggregation methods have draw-
backs when we consider them for sequential recommendations. Simultaneously, both have
advantages (namely, equality for Average and inclusion of all opinions for Least Misery)
that are assets for a recommender. Furthermore, it has been proven that to compute the best
suggestions for a group that minimizes the gap between the least and highest satisfied group
members is an NP-Hard problem (Xiao et al., 2017). We want to achieve that throughout
the multiple iterations of the system, to be equally fair to all members of the group.

The first method we examine, capitalizes on the advantages of the Average and the
Least Misery aggregation methods and proposes a novel aggregation method that is a
weighted combination of them. We call the method sequential dynamic adaptation aggre-
gation method, or shortly SDAA. The preference score of an item for a group in SDAA is
computed as follows:

score(G, dz, j) = (1 − αj ) ∗ avgG(G, dz, j) + αj ∗ leastG(G, dz, j). (8)

The function avgG(G, dz, j) returns the score of the item dz as it is computed by the
average aggregation method during iteration j , and function leastG(G, dz, j) returns the
least satisfied user’s score of dz at iteration j . The variable α takes values from 0 to 1. If
α = 0, then the sequential hybrid aggregation method becomes average aggregation. At the
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same time, when α = 1, it transforms to a modified least misery aggregation, and we only
consider the preferences of the least satisfied member.

Intuitively, when α = 0, our method satisfies the first part of the fair sequential group
recommendation problem since the average aggregation considers the best options for the
group as a whole. The benefits of α = 1 can be seen for higher values of μ. At the first
iterations, the group disagreement may remain high since it considers the users’ overall
satisfaction (2).

Given that our goal is to fulfill both the problem definition’s objectives, we need to set
the value of α between 0 and 1. Furthermore, we want this value to self-regulate, to describe
the consensus of the group more effectively. Thus, we set the value of α dynamically in each
iteration by subtracting the group members’ minimum satisfaction score in the previous
iteration from the maximum score.

αj = maxu∈Gsat (u,Grj−1, j − 1) − minu∈Gsat (u,Grj−1, j − 1), (9)

where j > 1. When j = 1 (the first iteration of the system), then α = 0, and the aggregation
method reverts to that of a classic average aggregation.

By having this dynamically calculated α, we counteract the average and least mis-
ery’s drawbacks. Intuitively, suppose the group members are equally satisfied at the last
round. In that case, α takes low values, and the aggregation will closely follow that of
an average, where everyone is treated as an equal. On the other hand, if one group mem-
ber is extremely unsatisfied in a specific iteration, α takes a high value and promotes that
member’s preferences on the next iteration. Formally:

Property 1 Let u be a user in a group G, such that,
sat (u,Grj−1, j − 1) < sat (ui, Grj−1, j − 1), ∀ui ∈ G\{u}. Then, ∃uy ∈ G\{u}, such
that, sat (uy,Grj , j) < sat (u,Grj , j).

Proof For the purpose of contradiction, assume that sat (u,Grj , j) < sat (uy, Grj , j),
∀uy ∈ G\{u}. Then, this means that u is the least satisfied user at iteration j , which in
turn means that α takes values not leading towards a least misery approach at this iteration,
meaning that u was not the least satisfied user at iteration j−1, which is a contradiction.

The SDAA method is described in Algorithm 1. The input to the algorithm is the group
G, the iteration j , and the size k of the group recommendation list Grj , which we report to
the group after each iteration is finished. n Line 1 we construct a set, Gl, that contains all
the items that appear in the group members individuals recommendation lists. In Lines 2–6,
we calculate the α; if it is the first iteration, meaning j = 1 (Line 2), then α = 0, otherwise,
we use (9) (Line 5) to calculate it. In Lines 7–10, we perform the SDAA method. For all the
items in Gl, we calculate the item score using (8) (Line 8) and insert them in the group list
Grj (Line 9). After we have examined all the items in Gl, we sort the items in the group list
(Line 11), and finally, we report the top-k of them to the group (Line 12). The complexity
of our algorithm is O(n log n) due to the time complexity of the sorting function, where
n = |Gl|.

235Journal of Intelligent Information Systems (2022) 58:227–254



5 Sequential individual adaptation aggregationmethod

The goal of the SDAA method is to calculate a weight score in order to combine the average
and least misery methods. This weight was the same for all group members, and even though
it was calculated using all members’ satisfaction scores, we did not directly address each
individually. Thus a member’s interest can be ignored. As a result of this observation, we
propose a new aggregation method that concentrates on each group member individually.
We accomplish that by assign each member a weight score. This weight is based on each
user’s statistics, namely the satisfaction and disagreement scores, to calibrate the system for
each user independently.

Specifically, during the group recommender’s aggregation phase, we exploit the con-
cept of overall user satisfaction and user disagreement. Each group member is assigned an
individual weight, which is applied to an item’s relevance score given by the recommender
system (10). The final score of that item for the group is the summation of its weighted
relevance score for all group members.

score(G, dz, j) =
∑

ui∈G

wui,j ∗ pj (ui, dz). (10)

Taking into consideration the particulars of our problem, we pay attention to satisfaction
and disagreement values. Since we want them to be applied to each group member indi-
vidually, we do not use the group variant of these measures, but instead, we focus on the
individual ones (2 and 7).

The satisfaction score of a user offers a way to balance the recommendations for all
members of a group through a series of recommendation iterations. These members that
were not satisfied in the previous iterations are promoted for the next ones. A straightfor-
ward approach to accomplish this is to utilize the overall satisfaction of a user. We want the
users with a low overall satisfaction score to have a higher weight compared to those with
a high overall satisfaction score. More specifically, let assume that the group is in the j -th
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iteration. We calculate the overall satisfaction score for all j −1 iterations (2). Subsequently,
the weight that is assigned for each member at iteration j is:

wui,j = 1 − satO(ui,GRj−1). (11)

where GRj−1 are all previous recommendations at the j − 1 iterations of the system.
The users with high overall satisfaction are assigned a lower weight, while the users with

lower satisfaction scores are assigned a higher one. If the group members are satisfied to
the same degree, then they are assigned similar weights. Since we compute a user’s overall
satisfaction score, we ensure that a user that is systematically biased against will have the
highest weight.

Such an aggregation method is based only on the user’s overall satisfaction score, which
is his/her average satisfaction scores. As with any Average approach, it makes the aggrega-
tion method slow to react in extreme cases. Suppose a user was highly satisfied in the first
μ iterations and then extremely dissatisfied in the rest. In that case, the method will require
some iterations to assign him/her a higher weight to promote him/her. The same is also true
in the reverse case, where a user was dissatisfied and then became highly satisfied. This
leads to an aggregation method that promotes him/her even though he/she is satisfied during
some iterations.

A way to counter this drawback, is to shorten the iterations needed for a change in user’s
satisfaction to be reflected in the user’s assigned weight. To achieve this, we introduce the
sequential individual adaptation aggregation method, or SIAA, that considers not only the
overall satisfaction of a user, but also the user disagreement of the previous iteration.

wui,j = (1 − b) ∗ (1 − satO(ui,GRj−1)) + b ∗ userDis(ui,G,Grj−1, j − 1), (12)

where b is the weight we use to balance the overall satisfaction and user disagreement
scores. This is a constant variable and we found experimentally its best value. Given that
we are in the j -th iteration of the system, GRj−1 expresses the recommendations of all the
previous j − 1 iterations. Finally, Grj−1 includes the recommendations of the immediately
preceding iteration.

To generalize, if a user was severely dissatisfied in the previous iteration and is overall
dissatisfied, then the weight is high. If the user was dissatisfied in the previous round but
overall has a high satisfaction score, then the weight is significantly lower. This is in accor-
dance with the previous method that disregards any disagreements. However, the added
variable of the user disagreement influences the next iteration. Specifically, suppose the
user was considerably biased against in the current iteration (has a low satisfaction score
while another member has a high one). In that case, he/she will be promoted faster than the
plain satisfaction weighted method. Furthermore, if a user is the most satisfied in the current
iteration, then his/her weight will be lowered to promote alternative group members.

The SIAA method is described in Algorithm 2. The output and Line 1 are the same as
Algorithm 1. Additionally, we have the same input as 1 but with the added variable b, which
is used to calculate the weight score (Line 5). This calculated weight is then applied to
group members’ preference score that the recommender system has predicted for each item
dz, denoted as pj (ui, dz), ui ∈ G, dz ∈ Gl. The final score of the item is the weighted sum
for all users (Line 6). Finally, as in Algorithm 1, we sort the group recommendation list Grj
and report to the group the top k items (Lines 10-11). The complexity of our algorithm is
O(n log n), due to the time complexity of the sorting function, where n = |Gl|.
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6 Average+ aggregationmethod

All the previous aggregation methods examine how good a single item is for the group
and add it in the group recommendation list, without taking into account the items already
present there. Since we examine the users’ satisfaction based on the entire list, adding to
the list each item individually may not produce the best suggestions. Based on this obser-
vation, we propose the Average+ aggregation method that exploits the Average method that
offers the best group satisfaction (Stratigi et al., 2020). Specifically, Average concentrates
on finding the items that will satisfy the majority of the group. At the same time, Average
also has high group disagreement scores because it is prone to ignore the outlier of a group.
If one group member is dissimilar to the rest of the group, due to the Average method,
he/she is almost always dissatisfied. This observation drives us to propose a new aggrega-
tion method, which not only secures the advantages of the Average method but, at the same
time, mitigates the problems that the drawback mentioned above creates.

This aggregation method has two phases. In the first phase, we capitalize on the advan-
tage of the average method, and, in the second phase, we counter its drawback. The first
phase is straight-forward. The average aggregation method does all the work for us. Since
it is the method with the best group satisfaction scores, we use a standard average aggrega-
tion method for the group. However, we do not take the last step of a group recommender
process: a group recommendation system produces a long list of potential items but it only
presents to the group the top ones with the highest predicted score. Instead of only keeping
that short list, we keep a significantly longer one that contains the items with the highest
scores.

After experimentation, the size of the list that provides the best results is 5k, where k is
the number of items we propose to the group. We denote this list as AvgListGj for group
G at iteration j . We do not want to take a longer list since the items further down typically
do not have good enough group relevance scores (meaning that the items are not relevant to
most of the group), and hence are not good enough for us to use to take advantage of the
performance of the average aggregation method.
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Having found the most relevant items for the group and subsequently have secured a high
group satisfaction, we next want to minimize the group disagreement. We first exploit a
simple idea. For each item in the AvgListGj list, we calculate the group disagreement score
they would have generated if they were the only item proposed to the group. Meaning that
Grj consists of only that item (13). We return to the group the k ones with the lowest group
disagreement.

Grj = Grj ∪ {dz | min∀dz∈AvgListGj
(groupDis(G, dz, j)) ∨ dz /∈ Grj }. (13)

This allows us not only to narrow our search to items that are relevant to the group, but
at the same time ensure that they have the lowest group disagreement possible.

This is a simple idea because it examined each item individually. However, the system
returns to the group a list of items, and we calculate the various satisfaction and dis-
agreement scores based on the entire list. We consider the list as a whole, not each item
independently. For example, a user may not be interested in one item but be excited for
another. These two items can balance each other out and offer better group satisfaction and
disagreement scores. Therefore, we propose a more sophisticated method.

To find the best k items to propose to the group based on the group satisfaction and group
disagreement scores they generate is a hard problem. It has been proven that to compute the
best suggestions for a group that minimizes the gap between the least and highest satisfied
group members is an NP-Hard problem (Xiao et al., 2017).

Thus, we propose an incremental heuristic method. This method consists of two steps.
In the first step, we include in the group recommendation list Grj the item with the highest
predicted score in AvgListGj . The second step of the method is recursive. At each step, we

examine one by one all the items in the AvgListGj . We include in the list the item that its
inclusion generates the lowest group disagreement score (14). We perform this step until we
have included k items in the group recommendation list.

Grj = Grj ∪
{
dz | min∀dz∈AvgListGj

(groupDis(G,Grj ∪ dz, j)) ∨ dz /∈ Grj

}
. (14)

By incrementally filling the group recommendation list, we can examine all the items
and the effects they collectively have for the group.

We describe this process in Algorithm 3. As input, we have the group G, the iteration j

of the system, the number k of the reported items, and the list AvgListGj , which contains the
5k items with the highest predicted scores after applying the average aggregation method.
The output of the algorithm is the group recommendation list Grj . In Line 1, we insert in
the group recommendation list Grj the item with the highest predicted score given by the
average aggregation. The recursion starts in Line 2 and stops when we have included in the
Grj the requested k items. In Line 3 we iterate over all the items in the AvgListGj list and
select the item dz that produces the minimum group disagreement score and it is not already
included in the group recommendation list Grj . In Line 4 we insert the selected item to
the list. Finally, we report to the group the recommendation list. The complexity of this
algorithm is O(n2) where n = |Grj |. We perform the inner loop n times, over 5n items.
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7 Experimental setup

7.1 Datasets

For the experimental evaluation of our sequential group recommender system, we do not
have access to any dataset that contain ratings for groups. We instead artificially created
groups using two real datasets, namely the 20M MovieLens Dataset (Harper & Konstan,
2015), and the 15M book reviews from GoodReads (Wan et al., 2019). MovieLens contains
20M ratings across 27,3K movies given by 138,5K users between 01.1995 and 03.2015. The
GoodReads dataset contains around 15M ratings from 465K users for about 2M books. To
simulate multiple iterations of suggestions, we split the datasets into chunks. Each chunk is
added to the system, representing new information, and along with the already existing data
in the system, is used for locating the suggestions for the next iteration.

MovieLens dataset Initially, we divide the dataset into two parts of roughly the same size.
The first part that contains the ratings given between 01.1994 and 12.2003, is the starting
dataset of the recommender. This gives us an initial dataset that consists of 8.381.255 rat-
ings, 73.519 users and 6.382 movies. We initiate the system with this starting dataset to
avoid any issues emanating from the cold start problem.1 The second part of the dataset
is further split into chunks based on timestamps. We create 22 chunks, where each one
includes information for a period of 6 months. During the first iteration, the system will have
access only to the initial dataset. When that iteration ends, the system will be enhanced with
one additional chunk, and after each subsequent iteration, the system will be given access
to the next chunk.

GoodReads dataset For GoodReads, we altered the splitting process due to the difference
in the ratings’ distribution over time. The distribution is skewed towards the latter years,
with the starting years having very few ratings. The starting data for MovieLens corre-
sponded to around 40% of the entire dataset. We take a comparable size for GoodReads,
which amounts to around 6.296.000 ratings, and split the rest into equal-sized chunks that

1The cold start problem in collaborative filtering appears when there is not enough information about a user
and we are unable to find similar other users to him/her. This problem is beyond the scope of this research,
and to overcome it, we initialize our system with a large enough dataset.
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contain 674.565 additional ratings each. It is worth noting that GoodReads is far more sparse
than MovieLens. Subsequently, this is going to have an adverse effect on the quality of the
recommendations.

7.2 Group formation

The experimental procedure of (Stratigi et al., 2020) was focused on stable groups. This
means that the group members do not change between iterations. We extend the experiments
for this work to also include ephemeral groups. We now allow group members to leave the
group and new ones to enter it. The users that have left a group are allowed to participate in
the group again.

We examine our recommender on three types of groups based on the similarity shared
between the members. We calculate the similarity between the group members, employing
the starting dataset, using Pearson Correlation (Resnick et al., 1994), which takes values
from −1 to 1. Higher values imply a higher similarity between the users, while negative
values indicate dissimilarity:

s(ui, ul) =

∑

dz∈X

(r(ui, dz) − r̄ui
)(r(ul, dz) − r̄ul

)

√
√
√
√

∑

dz∈X

(r(ui, dz) − r̄ui
)2

√
√
√
√

∑

dz∈X

(r(ul, dz) − r̄ul
)2

, where X = I (ui) ∩ I (ul)

and r̄ui
is the mean of the ratings in I (ui), i.e., the mean of ui’s ratings.

We consider two users to be highly similar to each other if they share an above 0.5
similarity score, while dissimilar when they have -0.5 or lower similarity score. The types
of groups we are considering are the following:

4 similar – 1 dissimilar (4+1): The four members of the group share a high similarity
score, while the dissimilar one shares a low similarity score with the rest of the group
members.
3 similar – 2 similar (3+2): We divide the group into two subgroups. The members
of each subgroup are similar to each other, while at the same time, the subgroups are
dissimilar to one another, i.e., all members of one subgroup are dissimilar to all members
of the other subgroup.
5 dissimilar: All members of the group are dissimilar with each other.

With these group formats, we want to simulate three different real-life scenarios. First,
when a new person enters an established group, and his/her interests may very well be
dissimilar to the rest of the group. For example, consider a working environment in which
a new colleague joins an existing project team. Second, when two different groups join
together for a single activity, such as two working groups that need to collaborate on a new
project. The final group type simulates the case when random people join together for an
activity, like in a business lunch or a tour offered by a travel agency.

We will also examine the performance of our aggregation methods for ephemeral groups.
The initial members of the group will be the same as the stable ones. To simulate the
ephemeral groups’ dynamic characteristics, we randomly remove a group member after
each iteration and randomly include a new user in the group so as the group size to remain
the same. The new member selected is such that the type of the group does not change.
For example, if we have a 4+1 group, and the one dissimilar user is removed, then the new
member has to be dissimilar to the four remaining group members.
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8 Experiments

8.1 Experimental procedure

In our experiments, we examine the behavior of the three types of groups. For each type, we
consider 100 different groups with five members. For all the groups in the set, we calculate
the average of groupSatO(G,GR) and groupDisO(G,GR) at the end of each iteration.
In the ephemeral groups, at each iteration, we focus only on the users that are currently
members of the group. Additionally, to examine the overall performance of the aggrega-
tion methods, we utilize the harmonic mean of groupSatO and groupDisO, namely their
F-score. Considering the input functions that F-score needs, we use 1 − groupDisO to
simulate the group agreement. F -score = 2 groupSatO∗(1−groupDisO)

groupSatO+(1−groupDisO)
.

To further analyze the methods’ quality, we use the Normalized Discounted Cumulative
Gain (NDCG), where we want the best possible items for a user to appear with the highest
ranking possible in the group recommendations:

NDCG(ui,G, j) = DCG(ui ,G,j)
IDCG(ui ,G)

, with DCG(ui,G, j) = ∑
dz∈Grj

|dz∩A(ui ,j)|
log2(r(dz,Grj )+1)

,
where r(dz.Grj ) is the rank of item dz in the group recommendation list Grj . IDCG is the
best possible outcome for user ui . We supplement the results from NDCG, with the Dis-
counted First Hit (DFH) metric that counts if a user has seen an item that is highly relevant to
him/her in the early ranks of the group recommendation list: DFH(ui,Grj ) = 1

log2(f h+1)
,

where f h is the rank of the first item that appears both in the group recommendation list
and the individual preference list of the user. Since NDCG and DFH refer to one user, we
apply them to the group by computing them for each member and then taking the average
over them. We do this at the end of each iteration.

We find similarities between users by utilizing the Pearson Correlation. We consider two
users as similar if the similarity is greater than a threshold and if they have rated more than
5 identical items. Due to the difference in each dataset’s semantics, the similarity threshold
we set for the MovieLens dataset is 0.8, and for the GoodReads dataset is 0.7. To predict
preference scores for a user, we use the Weighted Sum of Others Ratings (Su & Khoshgof-
taar, 2009), and take into account only the top 100 most similar users (denoted as Pui

) to

him/her: p(ui, dz) = r̄ui
+

∑
ul∈(Pui

∩U(dz)) s(ui ,ul )(r(ul ,dz)−r̄ul
)

∑
ul∈(Pui

∩U(dz)) |s(ui ,ul )| . We recommend to the group

the 10 items with the highest group preference score that are not previously recommended.
For the ephemeral groups, we simultaneously perform all aggregation methods with the

same group. Since the members’ exit and entry is done randomly, this ensures that the
experiment is as fair as possible for all different aggregation methods.

We consider six different aggregation methods.

– Avg is the classic Average aggregation method.
– RP80 (Amer-Yahia et al., 2009) combines group relevance and group disagreement

scores. As group relevance it utilizes the average method and as a group disagreement
method it uses the Average Pair-wise Disagreement:

dis(dz,G) = 2
|G|(|G|−1)

∑
(|p(ui, dz)−p(ul, dz)|), where ui, ul ∈ G, and ui �= ul .

The Average Pair-wise Disagreement reflects the degree of consensus in the relevance
scores for dz among group members. The final score for item dz for the group G is:
F(dz,G) = (1−w)∗avg(dz,G)+w∗dis(dz,G). We choose to set variable w to 0.8,
since it performs better based on the experiments presented in Amer-Yahia et al. (2009).
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Fig. 1 Group Satisfaction and Disagreement for all aggregation methods for 15 iterations for stable and
ephemeral groups, using MovieLens and GoodReads

– Par (Xiao et al., 2017) generates a group recommendation list by incrementally adding
to it items that have the best combination of Social Welfare (SW) and Fairness (F)
scores. The Social Welfare of an item is the average satisfaction of all members for

Fig. 2 Group Satisfaction and Disagreement for all aggregation methods for 15 iterations for stable and
ephemeral groups, using MovieLens and GoodReads
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Fig. 3 Group Satisfaction and Disagreement for all aggregation methods for 15 iterations for stable and
ephemeral groups, using MovieLens and GoodReads

that item. As Fairness it employs the variance over the member’s satisfaction. The final
score of an item for the group is: F(dz,G) = λ ∗ SW(dz, G) + (1 − λ) ∗ F(dz,G),
where λ = 0.8 according to (Xiao et al., 2017).

– SDAA is the Sequential Dynamic Adaptation Aggregation method proposed in this
work.

– SIAA is the Sequential Individual Adaptation Aggregation method proposed in this
work.

Table 2 F-score for all aggregation methods for both stable and ephemeral groups

Stable Groups Ephemeral Groups

It Avg SDAA RP80 Par SIAA Avg+ Avg SDAA RP80 Par SIAA Avg+

4+1 Groups / MovieLens Dataset

1 0.855 0.855 0.812 0.865 0.855 0.875 0.855 0.855 0.812 0.865 0.855 0.875

5 0.724 0.774 0.660 0.746 0.771 0.770 0.805 0.802 0.716 0.817 0.815 0.821

10 0.649 0.704 0.585 0.671 0.697 0.695 0.781 0.783 0.690 0.791 0.798 0.792

15 0.594 0.650 0.532 0.616 0.643 0.640 0.732 0.748 0.657 0.746 0.760 0.756

4+1 Groups / GoodReads Dataset

1 0.576 0.576 0.535 0.599 0.576 0.655 0.576 0.576 0.535 0.599 0.576 0.655

5 0.567 0.612 0.465 0.592 0.619 0.631 0.613 0.602 0.493 0.635 0.646 0.655

10 0.533 0.587 0.412 0.559 0.588 0.595 0.567 0.572 0.466 0.591 0.611 0.622

15 0.510 0.559 0.378 0.536 0.559 0.562 0.539 0.561 0.446 0.569 0.593 0.602

With bold is the best value and with italics the second best
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Table 3 F-score for all aggregation methods for both stable and ephemeral groups

Stable Groups Ephemeral Groups

It Avg SDAA RP80 Par SIAA Avg+ Avg SDAA RP80 Par SIAA Avg+

3+2 Groups / MovieLens Dataset

1 0.885 0.885 0.855 0.889 0.886 0.891 0.885 0.885 0.855 0.889 0.886 0.891

5 0.743 0.784 0.678 0.767 0.787 0.790 0.826 0.827 0.759 0.840 0.831 0.844

10 0.654 0.706 0.575 0.676 0.702 0.700 0.790 0.791 0.708 0.803 0.810 0.809

15 0.592 0.648 0.510 0.614 0.641 0.637 0.768 0.762 0.673 0.782 0.787 0.787

3+2 Groups / GoodReads Dataset

1 0.493 0.493 0.458 0.506 0.493 0.565 0.493 0.493 0.458 0.506 0.493 0.565

5 0.473 0.510 0.398 0.490 0.519 0.537 0.522 0.526 0.454 0.537 0.548 0.578

10 0.455 0.493 0.371 0.473 0.502 0.521 0.495 0.515 0.436 0.516 0.538 0.558

15 0.444 0.486 0.343 0.466 0.493 0.502 0.487 0.498 0.413 0.512 0.537 0.546

With bold is the best value and with italics the second best

– Avg+ is the Average+ Aggregation method proposed in this work.

8.2 Experimental results

In Figs. 1, 2 and 3, we show the group satisfaction and group disagreement scores for the
varying group types for 15 iterations of the system. We want to achieve high group satisfac-
tion and low group disagreement scores. In Tables 2, 3 and 4, we depict their corresponding
F-scores. In Tables 5 and 6 we present the NDCG and DFH scores for each aggregation
method, for both stable and ephemeral groups, in the MovieLens and GoodReads datasets.
We calculate the average scores for all iterations of the system for each aggregation method.

Table 4 F-score for all aggregation methods for both stable and ephemeral groups

Stable Groups Ephemeral Groups

It Avg SDAA RP80 Par SIAA Avg+ Avg SDAA RP80 Par SIAA Avg+

5 Dissimilar Groups / MovieLens Dataset

1 0.882 0.882 0.846 0.891 0.882 0.893 0.882 0.882 0.846 0.891 0.882 0.893

5 0.745 0.774 0.641 0.766 0.782 0.789 0.824 0.829 0.751 0.837 0.831 0.843

10 0.653 0.695 0.522 0.674 0.696 0.700 0.793 0.795 0.699 0.806 0.808 0.815

15 0.591 0.637 0.466 0.611 0.633 0.636 0.759 0.752 0.643 0.774 0.781 0.784

5 Dissimilar Groups / GoodReads Dataset

1 0.755 0.755 0.698 0.773 0.755 0.793 0.755 0.755 0.698 0.773 0.755 0.793

5 0.639 0.684 0.526 0.660 0.687 0.696 0.682 0.690 0.561 0.699 0.714 0.716

10 0.580 0.627 0.445 0.603 0.632 0.637 0.605 0.613 0.487 0.629 0.653 0.655

15 0.546 0.589 0.401 0.568 0.592 0.595 0.566 0.574 0.445 0.589 0.608 0.615

With bold is the best value and with italics the second best
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Table 5 NDCG and DFH scores for the stable groups

NDCG DFH

Avg SDAA RP80 Par SIAA Avg+ Avg SDAA RP80 Par SIAA Avg+

MovieLens Dataset / Stable Groups

4+1 0.042 0.044 0.020 0.042 0.043 0.034 0.894 0.861 0.803 0.906 0.889 0.933

3+2 0.042 0.044 0.020 0.043 0.043 0.035 0.905 0.867 0.809 0.918 0.898 0.939

5 Dis 0.041 0.042 0.017 0.042 0.041 0.034 0.892 0.838 0.780 0.909 0.885 0.934

GoodReads Dataset / Stable Groups

4+1 0.055 0.062 0.014 0.057 0.057 0.045 0.829 0.759 0.696 0.847 0.826 0.887

3+2 0.053 0.057 0.013 0.055 0.055 0.042 0.784 0.742 0.607 0.796 0.782 0.829

5 Dis 0.057 0.062 0.018 0.058 0.058 0.047 0.861 0.777 0.766 0.877 0.859 0.919

With bold is the best value and with italics the second best

8.2.1 Stable groups

For the stable groups, we see from the overall performance of the methods (F-scores) that the
SDAA method outperforms the classic Average method for all group types. SDAA, SIAA,
and Average+ are the best three performing methods for all group types for both datasets.

In the MovieLens dataset, for the more homogeneous group types (4+1 and 3+2), SDAA
performs slightly better in the latter iterations, with our new proposed methods SIAA and
Average+ being a close second. The differences in performance between SDAA, SIAA, and
Average+ are very low for all group types. This especially apparent in the latter iterations,
where the differences in the scores are around 2%.

For the GoodReads dataset, Average+ is the most effective method for all group types.
Average+ offers the best group disagreement scores after the RP80 method. In contrast, in
the MovieLens dataset, SDAA performs better in group disagreement than Average+. At the
same time, for both datasets, the group satisfaction scores for both methods are comparable,
with SDAA clearly outperforming Average+ in the early iterations. This discrepancy in the

Table 6 NDCG and DFH scores for the ephemeral groups

NDCG DFH

Avg SDAA RP80 Par SIAA Avg+ Avg SDAA RP80 Par SIAA Avg+

MovieLens Dataset / Ephemeral Groups

4+1 0.059 0.062 0.033 0.059 0.060 0.043 0.972 0.951 0.927 0.976 0.967 0.981

3+2 0.055 0.058 0.032 0.055 0.056 0.039 0.980 0.957 0.943 0.985 0.975 0.986

5 Dis 0.052 0.055 0.030 0.052 0.053 0.038 0.977 0.956 0.926 0.983 0.976 0.986

GoodReads Dataset / Ephemeral Groups

4+1 0.069 0.080 0.025 0.070 0.070 0.053 0.898 0.828 0.769 0.908 0.895 0.928

3+2 0.066 0.078 0.023 0.066 0.067 0.050 0.846 0.782 0.681 0.854 0.842 0.875

5 Dis 0.063 0.072 0.025 0.047 0.065 0.050 0.907 0.842 0.820 0.915 0.902 0.939

With bold is the best value and with italics the second best

246 Journal of Intelligent Information Systems (2022) 58:227–254



group disagreement values’ performance allows Average+ to be constantly better than the
rest of the methods in the GoodReads dataset. The discrepancy of performance between the
two datasets is because the GoodReads dataset is more sparse than the MovieLens dataset.
This negatively affects the single recommender system and reduces the number of items
that are equally good for all members. Subsequently, SDAA tends to use the Least Misery
approach, while Average+ considers the entire group recommendation list and overcomes
the sparse obstacle.

In more detail, we can see from Figs. 1a, c, 2a, c, 3a and c that depict the stables groups,
that Average and Par offer best group satisfaction scores but the worst group disagreement
scores. The high group disagreement scores culminate in the Average’s low overall perfor-
mance. The Par method suffers from the same problem as Average. This is understandable
since the Par method focuses more on the group satisfaction rather than disagreement. In
the opposite case, the best disagreement scores are achieved by RP80, which mainly focuses
on finding items with low disagreement, but at the same time, it also produces the worst
group satisfaction scores. SIAA achieves the same group satisfaction as the Average but
also produce lower group disagreement scores. Thus, out-performing Average.

For Average+, we can observe lower group satisfaction scores. This is expected since
we build the group recommendation list based on an expanded list provided by Average
aggregation. We do not limit ourselves on the items that are going to provide the best group
satisfaction score (those are the top k returned by Average) but also consider items that may
offer lower satisfaction but considerable better group disagreement scores. Consequently,
the satisfaction scores for Average+ are lower than the scores of the Average method.

8.2.2 Ephemeral groups

As we can observe in the F-score tables, the aggregation methods’ performance vastly dif-
fers in the ephemeral groups’ scenario. Overall, Average+ and SIAA are the best for all
cases, with the difference between them to be around 8% in the early iterations and dropping
to 1% in the latter ones.

We can observe a discrepancy on the performance of the SDAA method. The constant
change of members in the group has an adverse effect on the SDAA method, with its per-
formance dropping drastically. The addition of a new unknown member at each iteration
forces the SDAA to utilize higher α values. The new member has no previous satisfaction
score, which in turn makes the value of α to be the highest possible at each iteration (9).
SDAA does not perform well with high α values (Stratigi et al., 2020). With new members
repeatably being added to the group, SDAA cannot keep an optimal performance and is
outperformed by the classic Average method.

In the early iterations, Par has comparable results as SIAA and Average+, but in latter
iterations the difference becomes greater. This is because in the latter iterations, with a high
probability the most relevant items have already been suggested to the group (and cannot
be suggested again, per our experimental scenario), so the old members are disadvantaged.
Their items were suggested in the previous iterations and the interests of the new members
are more likely to be recommended. Additionally, the Par method only considers the current
iteration, without taking into account if a member was not satisfied in any of the previous
iterations. This culminates to the high disagreement scores, observed in the ephemeral group
scenario.

In Figs. 1b, d, 2b, d, 3b and d, we examine the performance of the methods in more detail.
As in the case with the stable groups, the best group satisfaction scores are achieved by the
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Average and Par methods and the best group disagreement scores by Average+. In contrast
to the stable groups scenario, Average+ now achieves better disagreement scores than RP80.

Although in the early iterations, Average+ has lower satisfaction scores than the rest of
the methods except RP80, in the latter ones, it manages to outperform SDAA. However,
it is considerably below both Average, Par and SIAA. SIAA has maintained exemplary
group satisfaction scores throughout all the scenarios, but with ephemeral groups, it can now
achieve good disagreement scores. This is due to the user-focused concept of SIAA. It can
cope better with the added new group member than a group-focused method like SDAA.

8.2.3 Stable versus ephemeral groups

In general, all aggregation methods perform better overall for ephemeral groups rather than
the stable ones. This can be seen in the latter iterations when comparing the ephemeral and
the stable groups scenarios. This is expected, since our group recommender system does
not suggest items to the group that it has already suggested before. In the stable groups, the
best items for each member were probably suggested in the early iterations. Now that the
members interchange, the system is able to suggest to the new members items that are the
best for them.

This can be further corroborated by the satisfaction scores shown in the figures. For the
ephemeral groups, we can observe that the group satisfaction scores tend to remain high
throughout the iterations, without the notable slope noted in the stable groups. Furthermore,
in correlation to the high satisfaction scores, the disagreement scores are again lower for
the ephemeral groups than the stable ones. The new interests that the added members rep-
resent in the sequential group recommendation help the system maintain high performance
throughout many iterations.

We can also observe that the stable groups’ disagreement scores tend to increase uni-
formly as the satisfaction scores drop. This again represents that the group recommender
system achieves increasingly lower quality suggestions for the group over the passage of the
iterations. Meanwhile, for the ephemeral groups, we can see high and low spikes in the dis-
agreement scores. These spikes represent the new group members and how their inclusion
slows down the overall disagreement scores’ deterioration.

8.2.4 Methods quality

In Tables 5 and 6, we show the NDCG and DFH scores for each aggregation method, for
the various test conditions. For both stable and ephemeral groups and both datasets, SDAA
is the best performing, as far as NDCG scores, while SIAA is the second best. Average+ has
low NDCG scores since we build the group recommendation list with items that can have
lower relevance to the group. It is able to report back items that are relevant (it generates
good satisfaction scores), but most of them are not the best for each user; thus, it has lower
NDCG scores. Once again, we observe a difference in the quality of the methods when
they are applied to stable and ephemeral groups. These results supplement the results from
before, where the methods perform better in the ephemeral group scenario.

In contrast to NDCG scores, Average+ has the best scores for DFH. This means that
Average+ succeeds in proposing at least one item in the group recommendation highly rel-
evant to each member. However, the rest of the list is composed of unsatisfactory items (in
terms of relevance), hence the low NDCG scores. On the other hand, the DFH scores for
SDAA are relatively low. This indicates that SDAA, although able to propose many items
relevant to the members, high NDCG scores, cannot suggest the best items for these users.
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Table 7 The percentage of time each scenario was enacted for all 100 groups

MovieLens GoodReads

Nothing 36.58% 35.45%

Insert 34.99% 35.98%

Remove 28.43% 28.57%

8.2.5 Fluctuating group size

In this final test case, we want to observe the performance of each aggregation method,
when the size of the group is not fixed. We examine the 4+1 group format. We want to keep
this group format for the duration of the experiment i.e., for all 15 iterations. Since the group
size is not fixed, we require that at each iteration 20% of the group members be dissimilar
to the rest. For example, when the group size is 7, then 6 members should be similar to each
other and 1 is dissimilar to them (20% of 7 is 1.4, which gives us 1 dissimilar user when
rounding down). If in the next iteration we add another user to the group, then that user will
have to be dissimilar to the 6 others (20% of 8 is 1.6, which gives us 2 dissimilar users when
rounding up).

With equal probability we enact one of the three scenarios:

– Nothing: No new members will enter or exit the group.
– Insert: Insert a new member to the group.
– Remove: Remove a member from the group.

In Table 7, we show the number of times each scenario was enacted for all 100 groups in
the two datasets. In Fig. 4, we show the group satisfaction and disagreement scores for the
15 iterations, and in Table 8 the average values after 15 iterations for the F-Score, NDCG
and DFH.

We can observe the same trend as the previous results in Fig. 1b and d. Meaning that the
Average and Par methods offer the best group satisfaction scores and simultaneously the
worst group disagreement scores. SIAA performs comparable good in satisfaction to Aver-
age and Par but has better group disagreement scores and finally Average+ has noticeable
lower satisfaction scores but far better disagreement scores.

This is further corroborated by the values in Table 8, where both SIAA and Average+
have the best F-Score. The high disagreement scores that Par produces lower its overall

Fig. 4 Group Satisfaction and Disagreement for all aggregation methods for 15 iterations for fluctuated group
size, using MovieLens and GoodReads
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Table 8 Average scores after 15 iterations

MovieLens GoodReads

F-Score NDCG DFH F-Score NDCG DFH

Avg 0.719 0.052 0.963 0.567 0.062 0.915

SDAA 0.734 0.055 0.920 0.579 0.069 0.827

RP80 0.629 0.025 0.801 0.459 0.020 0.710

Par 0.736 0.052 0.975 0.591 0.064 0.929

SIAA 0.749 0.052 0.963 0.608 0.063 0.914

Avg+ 0.749 0.039 1.000 0.618 0.050 0.969

With bold is the best value and with italics the second best

performance. SDAA identifies more relevant items to the group in terms of quantity, as
indicated by the highest NDCG score, but under-performs in terms of quality with low DFH
scores.

The effect of the fluctuating group size can be observed in the lower group satisfac-
tion scores and the higher group disagreement scores. If we again compare these results to
Fig. 1b and d, we can see that all methods perform slightly worse when the size of the group
is not fixed. This is an expected result. As it has been shown in the literature, the size of the
group has an adverse effect in the performance of a group recommender system. The more
members a group has the more difficult is for the system to find items that are relevant to
all members. In Table 7, we show that in most cases we add a member to the group, which
results in groups bigger than 5; the size used in the previous experiments.

9 Related work

Group recommendations One of the most popular methodology to achieve group rec-
ommendations is to apply a standard recommendation algorithm to each group member
individually and aggregate their lists into one. During the aggregation phase, many crite-
ria can be taken into account. Yuan et al. (2014) proposes a group recommendation model
that considers the influence that each member has on the group’s final choice, stating that
a member has more influence on the group if he/she is more knowledgeable about the rec-
ommended items. In our work, we propose that if a group member is more dissatisfied than
the rest, then that member will have more influence in the group decision. Cao et al. (2018)
learns the aggregation strategy from data, which is based on the recent developments of
attention network and neural collaborative filtering (NCF), while we dynamically change
our proposed aggregation method based on the satisfaction of the group members. Yin
et al. (2019) also utilizes an attention mechanism as well as a Bipartite Graph Embedding
Model (BGEM) to learn the influence that each member has on the group decision. Salehi-
Abari and Boutilier (2015) exploits the social interactions between the group members, via
a preference-oriented social network, in order to make group decisions without complete
knowledge of the group members’ preferences. In our work, we require the full knowledge
of the group members’ preferences. Vinh Tran et al. (2019) learns the aggregation strategy
based on the interactions between group members. To simulate how a group consensus is
reached, they model these interactions as multiple voting processes, and proposed a stacked
social self-attention network to learn the voting scheme of group members. Qin et al. (2018)
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offers a novel approach to producing recommendations for a large group of people by divid-
ing the big group into different interest subgroups. For each subgroup, they find a potential
candidate set of media-user pairs and finally aggregate the CF produced recommendation
lists for each pair.

Recently, there is also some research work on ephemeral groups. Quintarelli et al. (2016)
determines the preference of a group that meets for the first time by combining the group
members’ individual preferences based on their contextual influence, where the contextual
influence represents the ability of a member to guide the decisions of the group. Liu et al.
(2012) proposes a probabilistic model, namely the personal impact topic (PIT) model. An
individual member’s preference is modeled as a distinct distribution over the system’s top-
ics. Each topic is expressed as a distinct distribution over all the items known to the system.
We explicitly use the users’ profiles (ratings) to provide the group with a group list.

Fairness in group recommendations Some of the first approaches to achieving fairness
Pitoura et al. (2021, 2020) in group recommendations, exploit ideas from voting theory.
For example, Naamani Dery et al. (2010) assumes that the recommender has probabilistic
knowledge about the distribution of users’ ratings, and through voting theory recommends
to the group a “winning” item. From a different perspective, Guzzi et al. (2011) proposes
a group recommendation method by allowing a group member to comment on the choices
of the rest of the group. This allows each user to get new recommendations similar to the
proposals made by other group members and to communicate the rationale behind their own
counter-proposals.

More recently, Serbos et al. (2017) proposes two definition of fairness: fairness propor-
tionality and envy-freeness. In the former, the user u considers the list of recommended items
fair for him/her, if there are at least m items that the user likes. In the latter, u considers the
package fair, if there are at least m items for which the user does not feel envious. Xiao et al.
(2017) presents yet another definition of fairness. It defines a utility score for each group
member based on how relevant are the recommended items to them. Then, it models fairness
as a proximity of how balanced the utilities of users are when group recommendations are
given. Sacharidis (2019) defines a user’s utility to be the similarity between the user’s indi-
vidual and the group recommendation lists. They construct the group recommendation list
by considering sets of N-level Pareto optimal items. Kaya et al. (2020) proposes the notion
of rank-sensitive balance in order to achieve fairness during the aggregation phase. All these
works, for achieving fairness, consider one instance of group recommendations and do not
take into account the sequential group recommendation problem, as we do in our work.

Sequential recommendations In general, there are three categories of sequential recom-
menders, and they are divided based on how many past user interactions they consider:
Last-N interactions-based recommendations, Session-based recommendations and Session-
aware recommendations (Quadrana et al., 2018). In the first approach, only the last N user
actions are considered (Cheng et al., 2013; Lian et al., 2013; Liu et al., 2016). This is because
the system has logged a huge amount of historical data for the user, with many of them be
duplicates, which do not offer relevant information to the system. In session-based recom-
mendations, only the last interaction of the user with the system is used. They are typically
found in news (Garcin et al., 2013) and advertisement (Hidasi et al., 2016) recommenders.
In the last category, we have information about both the last interaction of the user with the
system, as well as the history of the user. These recommenders are often implemented in e-
commerce or for app suggestions (Hariri et al., 2012; Jannach et al., 2015; Quadrana et al.,
2017). In our work, we use the last method to approach sequential group recommendations.

251Journal of Intelligent Information Systems (2022) 58:227–254



Hansen et al. (2020) proposes another session-aware system for music recommendations. It
uses a neural network architecture that models users’ preferences as a sequence of embed-
dings, one for each session, suggesting that the user’s recent selections and the session-level
contextual variables (such as time and device used) are enough to predict the tracks a user
will listen to. Borges and Stefanidis (2019) presents a multi-round recommender system
using Variational Autoencoders (VAEs) and tries to achieve fairness during multiple rounds
by introducing randomness in the regular operation of VAE, while (Borges & Stefanidis,
2021; 2020) penalize scores given to items according to historical popularity for mitigating
the bias and promoting diversity in the results. The above works have been done for sin-
gle user recommenders, and to our knowledge, our work is the first one in sequential group
recommendations that handles the notion of fairness.

This article extends (Stratigi et al., 2020), where we first presented SDAA. We now
examine two more aggregation methods, SIAA and Average+, designed to deal with sequen-
tial group recommendations. Instead of focusing only on the group, like with SDAA, now
with SIAA, we focus more on the user side. We also examine a heuristic method, Average+,
where we try to find the best possible items to offer to the group based on the satisfaction
and disagreement score they generate. In addition, we also consider the ephemeral group
scenario, where at the end of each iteration, a group member leaves the group, and a new
one enters the group.

10 Conclusions

In this paper, we introduce the notion of sequential group recommendations. We treat the
single user recommender system as a black-box, and focus on aggregating the individual
group members’ recommendation lists into a group list. We propose three new methods
for aggregating group members’ recommendation lists. Specifically, SDAA focuses on the
group as a whole, and dynamically, based on the degree of users’ satisfaction, balances the
advantages of the average and least misery methods. With SIAA, we concentrate on sin-
gular members, focus on their needs, and assign personal weights. Finally, we propose the
Average+ method that takes advantage of the satisfaction scores that a classic average aggre-
gation can produce and mitigates the high disagreement scores by incrementally building
the group list with the best possible item. These aggregation methods focus on the sequen-
tial aspect of the group recommendation process and how we can achieve fairness for all
group members in multiple recommendation rounds. We evaluate the proposed methods
using two large real datasets, MovieLens and GoodReads, and test the methods for three
different group types for both stable and ephemeral groups. We experimentally show the
effectiveness of our methods. SDAA outperforms in the latter iterations for the stable group
scenario. However, in the ephemeral groups, SDAA cannot perform optimally primarily
due to the users’ transitory attitude. In contrast, SIAA and Average+ are the best for the
ephemeral groups and among the best in the stable groups’ scenario.
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a b s t r a c t

Nowadays, sequential recommendations are becoming more prevalent. A user expects the system to
remember past interactions and not conduct each recommendation round as a stand-alone process.
Additionally, group recommendation systems are more prominent since more and more people are
able to form groups for activities. Subsequently, the data that a group recommendation system nee-
ds to consider becomes more complicated — historical data and feedback for each user, the items
recommended and ultimately selected to and by the group, etc. This makes the selection of a group rec-
ommendation algorithm to be even more complex. In this work, we propose the SQUIRREL framework
— SeQUentIal Recommendations with ReinforcEment Learning, a model that relies on reinforcement
learning techniques to select the most appropriate group recommendation algorithm based on the
current state of the group. At each round of recommendations, we calculate the satisfaction of each
group member, how relevant each item in the group recommendation list is for each user, and based on
this the model selects an action, that is, a recommendation algorithm out of a predefined set that will
produce the maximum reward. We present a sample of methods that can be used; however, the model
is able to be further configured with additional actions, different definitions of rewards or states. We
perform experiments on three real world datasets, 20M MovieLens, GoodReads and Amazon, and show
that SQUIRREL is able to outperform all the individual recommendation methods used in the action set,
by correctly identifying the recommendation algorithm that maximizes the reward function utilized.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recommendation systems have developed into one of the
most influential part of research for projects, spanning from e-
health to movie recommendations. This is because recommenda-
tion systems are to a great degree responsible for the end-users
satisfaction with an application. They analyze a user’s past in-
teractions (in the various forms these interactions may take like
reviews, like/dislike, clicks, etc.) to enhance the experience of the
user. To achieve this, the recommendation systems have to con-
sider not only the user’s current information but also their past
interactions with the system. That is, the system should not only
rely on the current session but also consider historical ones and
the response that the user had on them, i.e., which items the user
ultimately picked or liked. The system should consider a historical
sequence of interactions or rounds of recommendations for a user,
instead of focusing on just the current session. This is a relatively
new approach to recommendations, since typically most systems
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examine the user’s available ratings but do not consider how well
the user received the past recommended items.

In this work, we consider a sequential recommendation sys-
tem as a system that considers a sequence of rounds of rec-
ommendations for users. A previous work done on sequential
recommendations is [1], where user and item dynamics are
captured by historical sequences on the user side and the item si-
de, respectively. In [2], a neural network is used, and every round
of recommendations is represented by an embedding of the users’
preferences. [3] uses variational autoencoders (VAEs) to propose
a multi-round recommendation system, which involves introduc-
ing randomness into the regular operation of VAEs in order to
promote fairness, while [4] penalizes items for their historical
popularity in an effort to minimize bias and promote diversity.

In addition to sequential recommendation, in recent years,
greater attention is given to group recommendations, where the
recommendation system needs to balance the interests of a group
of users instead of focusing on just one user. For example, assume
a group of friends that wants to watch a movie. The group
recommendation process is more complicated than a single rec-
ommendation system, since each group member has their own
likes and dislikes and the group recommendation system needs
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to balance them, in order to propose a group recommendation list
that ideally is relevant to all members interests.

There are many different ways to achieve group recommen-
dations, but one of the most popular is to employ a single rec-
ommendation system for each group member and receive their
corresponding recommendation lists. Then, the group recommen-
dation system takes over and tries to combine these lists into
one group recommendation list via an aggregation method [5].
Many strategies, with different advantages and disadvantages,
can be applied during this aggregation step. However, even after
years of research, and according to the Arrow’s Theorem [6], no
aggregation function has been proven to be the most effective
one.

Both of these areas of recommendation systems, sequential
and group recommendations, are complex on their own right, but
they become even more complex when they are combined. This
new area of recommendations, the sequential group recommenda-
tions, is important to explore in more depth. Similarly to single
recommendation systems, a sequential group recommender will
be able to provide to a group a more robust experience if it
analyzes its past interactions with that group. Specifically, a
sequential group recommender has to resolve the challenges of
group and sequential recommendations simultaneously. That is,
it has to balance the interest of all group members and propose
relevant items to all, while accurately determining how to infer
users’ dynamic preferences between rounds of recommendation.

Although there are many ways one can approach group rec-
ommendations, it is not always clear which approach is the best
for each test case. The vast amount of group recommendation
methods and their widely distinct approaches to recommenda-
tions, make it very difficult and time consuming to not only
evaluate all of them but to also see which one works best for each
test scenario. Some of the methods work very well in a specific
recommendation domain, for example movie recommendations,
but straggle when they are applied to a different one [7]. As a
result it is not an easy task to simply transfer a recommender
system to another domain.

In this work, we propose a model that is able to be applied
to any given domain without major alterations and minimum
time invested, while simultaneously, it is also able to maintain
high performance. The SQUIRREL framework, SeQUentIal Group
Recommendations through ReinforcEment Learning, is a model
that is based on Reinforcement Learning (RL), a natural choice,
since the sequential nature of RL directly mirrors the sequential
nature of our problem. It consists of three main components:
state, actions and reward. The state describes the current status
of the group, the actions are the different group recommendation
methods that can be applied and finally, the reward is the primary
goal that the system wants to achieve. In most recommendation
systems that goal is the group members’ satisfaction with the
proposed items, meaning how relevant are the items in the group
recommendation list for each group member.

At each round of recommendations, the system examines the
state of the group, for example, how satisfied each group member
is, and based on that, it selects an appropriate action to make,
i.e., it selects a group recommendation method to apply. Based
on this selection, a group recommendation list is produced and
returned to the group and a reward is calculated. Then, the state
of the group is updated to reflect the changes made by the action,
i.e., how satisfied are the group members after the latest recom-
mendation round. Note that to simulate time passing between
each round of recommendations, we augment the system with
additional data (i.e., the users rate more items, hence the user
profiles change between rounds of recommendations).

All the components of the model can be configured to the
specifications of the user and the criteria of the test scenario,

and are easily altered. For instance, if we want to evaluate a
new group recommendation method, then that method is simply
added as a new action in the model. If the goal of the recom-
mender needs to change, for example, the system’s new primary
goal is changed from promoting satisfaction to promoting di-
versity, then a new reward can be defined. If the system is
transferred to a new recommendation domain then a new state
can be specified. However, it is worth noting that if a component
changes, then the model will have to be trained again.

Since the variations of scenarios and group recommendation
methods that can be applied are numerous, in this work we
mainly focus on rank aggregation group recommendation meth-
ods. As the state of our model, we use the notion of user’s sat-
isfaction, i.e., how relevant the items in the group recommenda-
tion list are to each group member. Finally, we study two reward
functions: one based on satisfaction and the second based on the
combination between user’s satisfaction and user’s disagreement,
which is defined as the difference between the most and least
satisfied group member.

Overall, the main contributions of our work are the following:

• We introduce the SQUIRREL framework, a model that based
on principles of reinforcement learning is able to identify the
best possible group recommendation method to apply based
on the information it has available and the goal it wants to
fulfill.

• We focus on rank aggregation group recommendation meth-
ods, and exploit the notion of user satisfaction and user dis-
agreement to define the various components of our model.

• We evaluate the SQUIRREL model and all individual meth-
ods used as actions, using three real world datasets, 20M
MovieLens, GoodReads and Amazon. Additionally, we ex-
amined the behavior of all methods on different types of
groups.

The rest of the paper is structured as follows. In Section 2, we
formally present the SQUIRREL model, while in Section 3, we go
into more detail about all the components of the model; state,
actions and rewards. In Section 4, we showcase the datasets we
utilized, and in Section 5, we present the experimental process
and analyze the results. Furthermore, in Section 6, we describe
the related work, and finally, in Section 7, we conclude this work.

2. Reinforcement learning for group recommendations

Let I denote a set of data items and U a set of users. G denotes
a group of users where G ⊆ U . For each user u in the group, we
denote as B j

u an ordered list of recommended items, as they have
been generated by a single recommender system at a specific
recommendation round j for user u. At round j, the SQUIRREL
model chooses an appropriate aggregation function based on the
current state of the group, to combine the individual members’
recommendation lists B j

u into one group recommendation list GLjG.
We apply the SQUIRREL model for a sequence of rounds in

order to produce µ group recommendation lists for a group G,
defined as GR = (GL1G,GL

2
G, . . ., GL

µ

G ). At each round, we calculate
each group members’ individual user utility scores, as well as the
group utility scores. The first set of scores portrait how satisfied
each member is with the proposed group recommendation list,
as well as the disagreement between the group members, i.e., the
variance between the satisfaction scores of the group members.
The latter set of utility scores describe the degree of satisfaction
and disagreement for the entire group. Namely, how can we
exploit the user utility scores to reflect the entire group. We
further expand on these notions in Section 3.2.

The SQUIRREL model can be described as a Markov decision
process, where an agent interacts with an environment E, in order
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Table 1
Summary of the notations used in this work.
Notation Definition Notation Definition

I Set of items GLjG Group recommendation list at round j
U Set of users GR Sequence of group recommendations
G Group µ Number of rounds in the sequence

u User SQUIRREL model

d Item S State of the environment
j Round A Set of actions
Bj
u Recommendations list for user u at round j Pa(s, s′) Probability of transitioning from state s to state s′

Bj
u,k Top k recommendations for user u at round j Ra(s, s′) Reward from transitioning from s to s′ under action a

pj(u, d) User u’s relevance score for item d at round j π Policy of the model

to maximize the accumulative reward after each recommenda-
tion round. The Markov decision process can be described by a
tuple of (S,A, P, R), where:

• S is a continuous space that describes the environmental
state, i.e., the group state and we express it via the utility
scores of the group members. We keep an individual state
for each group member u at each round j. It can be defined as
s ju = satO(u, j), where satO is the overall satisfaction of user
u at round j. This satisfaction score will be discussed in detail
in Section 3.1. Briefly, it describes how relevant are the data
items in the group recommendation list, compared to the
best case scenario for the user, which is their individual
recommendations B j

u.
• A is a set of distinct actions that consists of the different

aggregation functions employed by the SQUIRREL model,
where |A| = m. These functions can range from simplistic
ones, like a classic Average, to far more complex ones like
SDAA first proposed in [8], without any restriction in regards
to the number of actions we can include. We go in more
detail about each aggregation method used in Section 3.3.

• Pa(s, s′) defines the probability to transition from state s
to state s′ during round j under the action a. Formally,
Pa(s, s′) = Pr(sj+1 = s′|sj = s, aj = a).

• Ra(s, s′) is the reward gained from transitioning from state s
to state s′. The reward describes the quality of recommenda-
tions given by the model. We define two reward functions
by utilizing group utility scores. First, we examine only the
overall satisfaction of the group by averaging the individual
satisfaction of all group members. Second, in addition to
the overall satisfaction, we also consider the disagreement
between the group members. This is defined as the dif-
ference in the satisfaction scores between the most and
least satisfied group member. We expand on these reward
functions further in Section 3.2.

The goal of the model is to find a policy π (a|s) that takes action
a ∈ A during state s ∈ S in order to maximize the expected
discounted cumulative reward after µ recommendation rounds:

maxE[R(µ)] (1)

where

R(µ) =
µ∑

t=0

γ Rα(s, s′) (2)

with 0 ≤ γ ≤ 1.
It is worth noting that the individual component of the SQUIR-

REL model can be altered and fine-tuned for a specific purpose.
For example, an application that wants to minimize the differ-
ences between users’ perceived overall performance may need to
define a different state and/or reward, while an application that
wants to find the best variable for an aggregation function may
want to define a different action space. For instance, in the case

of a simple Weight Sum aggregation function [9], the action space
will be the different weights.

As any RL model, SQUIRREL requires a training phase. To
achieve this, the system depends upon having a large amount of
data to utilize for this training phase. During training, the model
will learn what action (i.e., what aggregation method) is more
effective to use based on the current state of the environment.
If any of the model’s components (state, actions or reward) is
changed, then the model will have to be re-trained.

In Fig. 1, we show how a recommendation round is structured
in the SQUIRREL model. At the beginning of the round j, the group
is given to a single user recommender system that produces a set
of recommendation lists for each group member, B j

u. These lists
are then given to the SQUIRREL model, where the agent observes
the state of the environment Sj, mainly how satisfied the current
group is. Then it selects an appropriate action αj to aggregate the
lists B j

u. This results in the transitioning of the model to the next
state Sj+1 where we update the overall satisfaction of the users
and the calculated reward Rj+1. Finally, the model returns to the
group the generated group recommendation list GLjG. For ease of
readability, Table 1 describes all the notations used in this work.

3. The SQUIRREL model

In this section, we go into details for every major component
of the SQUIRREL model, namely state, action and reward. These
components are flexible and can be adjusted to the needs of
the user. For this work, to demonstrate our model we utilized
elements from previous works in group recommender systems
[8,10,11]. Namely, to define the state of the model, we use user
utility scores that describe the satisfaction of each user individu-
ally with the group recommendations. For the reward, we focus
more on the group as an entity with group utilities scores which
showcase how relevant are the recommended data items for the
entire group. Finally, we utilize a number of different aggregation
functions as the actions of the model.

3.1. State definition via users utility scores

One of the most essential parts of the SQUIRREL model, is
the definition of the state of the environment. The state is the
component that describes the current status of the group mem-
bers. Accordingly, we need a state that is focused on each group
member individually. This will help the model to make the best
possible choice in the policy, without accidentally disregard any
group member, something that is probable if we only consider the
group in its entirety. It is often the case where a more generalized
picture, will disguise individual needs.

In order to describe how satisfied a user is with the group
recommendation list, we calculate two different utility scores.
Their satisfaction with the proposed items and their disagreement
with the rest of the group. As in a typical group recommender,
we apply a recommendation algorithm for each group member u
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Fig. 1. The SQUIRREL Model.

and generate their corresponding individual recommendation list
B j
u at round j. We consider the user’s individual recommendation

list, as their ground truth, making SQUIRREL more flexible, by
allowing it to consider the single user recommendation system
as black-box. Note that since after a recommendation round we
augment the system with additional ratings, the ground truth of
each user changes between rounds.

Let Bj
u,k be a list that contains the k items with the highest

scores in the B j
u, and GLjG be the group recommendation list that

also contains k items. To define a user’s satisfaction with the items
in the group recommendation list GLjG, we will directly compare
them to the best items for the user u, i.e., the B j

u,k list. This is
commonly referred as the individual loss with respect to the
group recommendations [12]. Specifically:

sat(u,GLjG) =

∑
d∈GLjG

pj(u, d)∑
d∈B j

u,k
pj(u, d)

. (3)

where pj(u, d) defines the score of the data item d as it appears in
the list B j

u. That is, the recommendation score of item d for user
u at round j, as it has been calculated by a single user recom-
mendation algorithm. In the nominator, we calculate the user’s
satisfaction based on the group recommendation list. For every
item in GLjG, we sum the score as they appear in each user’s top-k
list. The denominator, calculates the ideal case for the user, by
simply sum the scores of the k top items in the user’s individual
recommendation list. This way, we are able to normalize the
user’s satisfaction score. Note that we do not use the scores as
they appear in the group list, but as they appear in the indi-
vidual preference list of the user. Since the aggregation phase of
the group recommendation process somewhat distorts the group
members’ individual opinions, we opt to take into consideration
only the personal preference scores of each group member.

To demonstrate how satisfied a user is after a sequence of µ
iterations, we define the overall satisfaction of a user. Meaning,
that this score demonstrates how satisfied the user is with the
performance of the system after multiple rounds of recommen-
dations.

Definition 1 (Overall Satisfaction). The overall satisfaction of user
u with respect to a sequence GR of µ rounds of recommendations
is the average of the satisfaction scores after each round:

satO(u, GR) =

∑µ

j=1 sat(u,GL
j
G)

µ
. (4)

After each round, we update the internal state of the model to
be the new overall user satisfaction. For each group member, we
keep their overall satisfaction up to the current round.

3.2. Reward definition via group utility scores

The reward that is generated by an action given the state of
the environment, is the only mechanism that the model has to
determine if an action it took was an appropriate one. This reward
can be very flexible in its definition based on what we want our
model to achieve. Commonly, we want our model to propose
items that are relevant to the entire group. For this, we need
to define the group utility scores, that portrait how good are the
recommendations for the group as a whole.

One option to define the reward is via the group satisfaction
score. We generalize the user satisfaction score to describe the
satisfaction of the entire group. This score will indicate how well
the system is able to balance the individual needs of the group
members. A high group satisfaction score means that the system
is able to identify items that are relevant to the majority of the
group members, and alternatively, a low group satisfaction score
indicates that the system has failed in this task.

Specifically, we define the group G’s satisfaction concerning a
group recommendation list GLjG to be the average of the satisfac-
tion of the users in the group:

groupSat(GLjG) =
∑

u∈G sat(u,GL
j
G)

|G|
. (5)

Subsequently, we define the overall group satisfaction of a
group G for a recommendation sequence GR of µ group recom-
mendations as:

groupSatO(GR) =
∑

u∈G satO(u, GR)
|G|

. (6)

This overall group satisfaction can be used for expressing the
reward achieved at recommendation round j by action a.

Rs(GRj) = groupSatO(GRj) (7)

where GRj refers to all the rounds up to the jth one.
However there is a drawback to the definition of the group

satisfaction score, that is we consider the average of the group
members’ individual satisfaction scores. This can lead us to some-
how ignore the dissatisfaction of a user. If all members of the
group are highly satisfied with just one exception, a user that has

4



M. Stratigi, E. Pitoura and K. Stefanidis Information Systems 112 (2023) 102128

low satisfaction scores, the group satisfaction score will still be
high and is probable that the least satisfied user will be ignored.
This observation leads us to define a new user utility score,
namely the user disagreement. We define the disagreement of a
user u as the difference between the u’s satisfaction score and the
maximum satisfaction score among the group members.

userDis(u,GLjG) = max∀ul∈Gsat(ul,GL
j
G)− sat(u,GLjG). (8)

This allows us to better determine if a group member is syst-
ematically being favored (the user will have very low user dis-
agreement scores) or is disregarded (the user has very high user
disagreement scores).

We can generalize this in a group score by considering at each
recommendation round the lowest and highest satisfaction scores
among the group [12].

groupDis(GLjG) = maxu∈Gsat(u,GL
j
G)−minu∈Gsat(u,GL

j
G). (9)

Subsequently, we define the overall group disagreement of G for
the entire recommendation sequence as:

groupDisO(GR) = maxu∈GsatO(u, GR)−minu∈GsatO(u, GR). (10)

As a second alternative reward of the SQUIRREL model, we can
utilize the harmonic mean of groupSatO and groupDisO, namely
their F-score. Considering the input functions that F-score needs,
we use 1− groupDisO to simulate the group agreement.

Rsd(GRj) = 2
groupSatO(GRj) ∗ (1− groupDisO(GRj))
groupSatO(GRj)+ (1− groupDisO(GRj))

. (11)

Overall, this strategy consists of two components, groupSatO
and groupDisO, reflecting the degree to which an item is preferred
by the members of the group and the level at which the members
disagree or agree with each other, and targets an appropriate
balance of these components.

In this work, we utilize these two different reward functions,
namely the reward function Rs which is based on the overall
satisfaction of the group and the reward function Rsd which is
based on the overall satisfaction and disagreement. However, the
reward function is very flexible and can be altered to complement
the specific purpose that the framework is used for.

3.3. Actions as aggregation methods

The actions are the driving force behind our model. The agent
observes the state of the environment and the history of the
rewards it has already achieve and decides to apply an action. The
action will generate changes to the state which will then enable
us to calculate a reward. Since the actions are the only mechanism
that can effect change, they are the natural selection to imple-
ment the group recommendation process. As we have already
mentioned, we employ a single recommender system to generate
recommendation list for each group member. For our model, we
consider this process as a black box. The group recommendation
process can then be distilled down to aggregating these distinct
recommendation lists into one group recommendation list. We
consider different approaches for this with each one being a
different action.

We consider the following 6 different aggregation methods for
the SQUIRREL model. Specifically:

Average. It is the classic Average Aggregation method, where
the group predicted score for an item is the average across all
predicted scores for that item across all group members. In this
case, all the predicted scores of an item for the group members
are considered to be of equal importance.

RP80 [10]. This method combines group relevance and group
disagreement scores. The authors define group relevance, avg(d,

G), of an item d to be the average prediction score that was
produced from the single recommendation system across all
the members of group G. They define the group disagreement,
dis(d,G) for item d to be Average Pair-wise Disagreement be-
tween the predicted scores of the group members. dis(d,G) =

2
|G|(|G|−1)

∑
(|p(ui, d)−p(ul, d)|), where ui, ul ∈ G, and ui ̸= ul. The

Average Pair-wise Disagreement reflects the degree of consensus
in the relevance scores for the data item d among group members.
The final score for d for the group G is: RP80(d,G) = (1 − w) ∗
avg(d,G)+w ∗ (1− dis(d,G)), where w is a tuning parameter for
the group relevance and disagreement. Overall, in this case, all the
group members’ predicted scores about an item are considered of
equal importance and additionally, the method takes into account
the group’s disagreement about that item.

Par [11]. This method generates a group recommendation list
by incrementally adding to it items that have the best combi-
nation of Social Welfare (SW) and Fairness (F) scores. The Social
Welfare of an item is the average satisfaction of all members for
that item. [11] uses a similar satisfaction measure as our own
work (Eq. (5)), if the group recommendation list GLjG only con-
sisted of one item, d. Thus, SW (d,G) = groupSat(d). As Fairness,
F (d,G), it employs the variance over the member’s satisfaction
scores. The final score of an item for the group is: PAR(d,G) =
λ ∗ SW (d,G) + (1 − λ) ∗ F (d,G). Overall, this method takes into
account the average satisfaction that an item produces for the
group members and balances it with the variance of the group
members’ satisfaction for that item.

SDAA [8]. The Sequential Dynamic Adaptation Aggregation
method, at round j, dynamically computes a weight w, which is
defined as the difference in the satisfaction scores in the previous
round of recommendations between the most satisfied and the
least satisfied group member, w

j
SDAA = maxu∈Gsat(u,GL

j−1
G ) −

minu∈Gsat(u,GL
j−1
G ). This weight is utilized to compute the final

group prediction score for each proposed item d, as a weighted
sum between the item’s average score across all group members
at round j, avgG(d,G, j) and the item d predicted score for the
least satisfied user in the group: score(G, d, j) = (1 − w

j
SDAA) ∗

avgG(G, d, j) + w
j
SDAA ∗ leastG(d,G, j). The function avgG(G, d, j)

returns the average score across all group members for item d
at round j. The function leastG(G, d, j) returns the score for d
for the least satisfied user at the beginning of round j. That is,
the least satisfied user after round j − 1. When j = 1, i.e., the
first recommendation round, the aggregation function turns into
a simple average aggregation function. Overall, this method takes
into account the past satisfaction of the group members to calcu-
late a weight. This weight balances the average predicted score of
an item for the group and the least satisfied member’s predicted
score for that item.

SIAA [8]. Similarly to SDAA, the Sequential Individual Adapta-
tion Aggregation method also utilizes a weight for aggregations.
In contrast to SDAA, which considers the group as an entity, SIAA
focuses on each group member individually. For each member,
it calculates a weight based on their overall satisfaction and the
user disagreement of the previous iteration: w

j
SIAA(u) = (1− b) ∗

(1− satO(u, GRj−1))+ b ∗ userDis(u,GLj−1
G ), where b is the weight

we use to balance the overall satisfaction and user disagreement
scores. Given that we are in the jth round of recommendations,
GRj−1 expresses the recommendations of all the previous j − 1
iterations. We apply this weight directly to the predicted score
for each item after the single recommendation process is done.
The final group prediction score for an item is the average over
all group members’ weighted scores. Overall, this method calcu-
lates a weight for each group member and applies it during the
aggregation phase. The weight is based on the overall satisfac-
tion of the user and their satisfaction on the previous round of
recommendations.
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Avg+ [8]. From evaluations performed in previous works, we
observed that the classic average aggregation function offers one
of the best group satisfaction scores, but simultaneously one of
the worst group disagreement scores. In order to counter this
drawback, we propose the Avg+ aggregation method that con-
sists of two phases. In the first phase, we employ an average
aggregation. Then, in the second phase, we iteratively populate
the group recommendation list, with items that generate the
minimum possible group disagreement score: GLjG = GLjG ∪ {d |

min
∀d∈AvgList jG

(groupDis(GLjG ∪ d))∨ d /∈ GLjG}, where AvgList jG is the
list of the top k items after the first phase of the aggregation.

In this work, we study the above mentioned aggregation met-
hods as our actions in the model, however they can be augmented
by any additional method.

3.4. Problem formulation

Given the state, actions and reward we have defined, the pu-
rpose of our model is the following. At the jth round of recom-
mendations, the model is given as input a group G and a set of
recommendation lists B j

u, for all u ∈ G generated by a single
user recommendation system for the current round. The model
consists of the following: (1) a state S - each group member
overall satisfaction up to the j − 1 round, (2) a set of actions A
- the different aggregation methods that the model has available,
and (3) a reward function R - either based on the overall group
satisfaction or the combination of group satisfaction and group
disagreement.

At the jth round and all former and subsequent rounds of re-
commendations, the model considers the state of the group, and
selects an action a that maximizes the expected chosen reward.
Then, the selected action is applied to aggregate the set of rec-
ommendation lists B j

u to a group recommendation list GLjG and
further transition the state from sj to sj+1.

4. Experimental set up

4.1. Datasets

For the evaluation section of our work, we did not have ac-
cess to datasets that contain interactions between groups and
a system, where for example, the group as an entity has rated
an item.1 In lieu of such a dataset, we artificially created groups
based on information taken from three real datasets. The 20M
MovieLens Dataset [14], the 15M book reviews from GoodReads
[15], and the Amazon dataset [16]. MovieLens contains 20M rat-
ings across 27,3K movies given by 138,5K users between 01.1995
and 03.2015. The GoodReads dataset contains around 15M ratings
from 465K users for about 2M books. Finally, the Amazon dataset
contains 18M reviews given by 1.1M users spanning from May
1996 to July 2014.

Since we want to evaluate our model for a sequence of rec-
ommendations rounds, we need to simulate a time flow, where
between the rounds some time has passed. This means that
the recommender does not start with all the data available, but
the information is sequentially augmented after each round. To
simulate this, we first sort each dataset chronologically by the
time that each rating was given. Then we split the datasets into
chunks and after each round a new chunk is introduced to the
system.

MovieLens Dataset. Initially, we divide the dataset almost
evenly into two parts. The first part is the starting dataset of the

1 An experimental method that can be used for observing the group deci-
sion-making process appears in [13].

system, and contains the chronologically first ratings, which were
given between 01.1994 and 12.2003. This initial dataset consists
of 8.381.255 ratings, 73.519 users and 6.382 movies. The reason
we initiate the system with such a large dataset is to avoid the
cold start problem.2 The second part of the dataset is further split
into chunks based on timestamps. We create 22 chunks, where
each one includes information for a period of 6 months. Of those
22 chunks, we utilized the first 14 for our experiments.

GoodReads Dataset. Due to the difference in the distribution
of ratings in the GoodReads dataset, we used a slightly different
splitting process, since we have very few ratings in the first
years and numerous in the latter. The initial dataset for the
MovieLens was almost the 40% of the whole dataset. We initiate
the system with a proportional sized data for the GoodReads,
which translates into around 6.296.000 ratings. We split the rest
of the dataset into chunks of equal size, which contain 674.565
additional ratings each.

Amazon Dataset. An additional pre-processing step is needed
for the Amazon dataset. Unlike the MovieLens and GoodReads
datasets, in the Amazon dataset the minimum number of ratings
that a user has reported is five (5), whereas in the former are
twenty (20). We further prune the dataset and exclude all the
users that have rated less than 20 items. This results in a dataset
that consists of 10.5M ratings from 180.118 users for 722.003
items. We split the Amazon dataset following the same process
as the GoodReads dataset. The initial Amazon set consists of
roughly the 40% of the overall dataset, which is translated to
roughly 4M ratings. The rest of the dataset is split equally to
14 chunks. Finally, unlike MovieLens and GoodReads, Amazon
contains duplicate ratings, meaning that the same user has rated
the same item more than once. We only keep the most recent
rating in this case.

All three datasets are split evenly in terms of their overall size.
The initial chunk is equivalent to their 40% of the entire size and
the rest 60% is split into 14 chunks. However, all three datasets
differ in terms of their sparsity (i.e., how many ratings are missing
over |I × U |). Fig. 2 shows the sparsity of all three datasets
with C1 being the initial chunk. The sparsity of each subsequent
chunk is computed after it has been augmented into the system,
with C15 being the entire dataset. The sparsity of the datasets
increases after the inclusion of each chunk, because we insert
into the system additional new users and items with relatively
low number of ratings that correspond to either (i.e., the number
of ratings given by a new user and the number of ratings a new
item receives). It is worth noting that the GoodReads and Amazon
datasets are far more sparse than the MovieLens, leading to have
an adverse effect on the quality of recommendations (we discuss
this in Section 5.4).

4.2. Group formation

Our goal is to evaluate our model using some real life scenar-
ios. Since we do not have information, for example, which users
are friends or have liked a review given by a user, we presume
that if two people share the same interests, then they have
similar ratings for the same data items. We want to simulate two
different real-life scenarios. First, when a new person enters an
established group, and their interests may very well be dissimilar
to the rest of the group. For example, consider a new friend
that joins an already established group in a movie nights series.
Second, consider the case when random people join together for

2 The cold start problem in recommender systems appears when there is not
enough information about a user and the system is unable to propose to him/her
relevant items. This problem is beyond the scope of this research.
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Fig. 2. The sparsity of the three datasets, MovieLens, GoodReads and Amazon, when each chunk is augmented into the system.

an activity, like a book club, where each member has their own
tastes, however, they will have to read the same book.

We evaluate our model on these two types of groups based
on the different degree of similarity shared between the group
members. We utilize only the initial datasets from the splitting
process to calculate the similarity scores and form groups. We
use the Pearson Correlation [17] similarity function, which takes
values from −1 to 1. Higher values imply a higher similarity
between the users, while negative values indicate dissimilarity:

s(ui, ul) =
∑

d∈X (r(ui,d)−r̄ui )(r(ul,d)−r̄ul )√∑
d∈X (r(ui,d)−r̄ui )

2
√∑

d∈X (r(ul,d)−r̄ul )
2
, where X is a set

that consists of the items that are rated by both users, r(u, d) is
the rating that user u gave to item d and r̄u is the mean of u’s
ratings.

We regard two users to be similar if they have an 0.5 similarity
score or above, and dissimilar when they have −0.5 or lower
similarity score. The types of groups we are considering are the
following:

4 similar – 1 dissimilar (4+1): The four members of the group
are similar to each other, while the single member is dissimilar
to all the rest.

5 dissimilar (5 Diss): All members of the group are dissimilar
with each other.

4.3. Single user recommendations

In our evaluation, we derive the group recommendation list
by combining the individual recommendation lists of each group
member. We consider this first step, the single recommendation,
as a black box, and our system recognize the individual recom-
mendation lists of each user as that user’s ground truth, since this
is the only information that it has for that user. The actual single
user recommendation system can be any system available, and
is not restricted in any fashion beyond the fact that it needs to
generate a recommendation list for a user. Systems that generate
only one item can be used, but then the aggregation phase is
rather trivial.

For this work, we use a user-based Collaborative Filtering (CF)
recommender [18]. It generates a recommendation list by first
finding similar users and then exploiting their likes and dislikes to
propose items. The similarity function we used in CF is once again
the Pearson Correlation. We consider two users similar if they
share a similarity score greater than a threshold and they have
given a rating to at least 5 common items. Due to the difference
in each dataset’s semantics, we set different similarity thresholds
for each dataset. The MovieLens similarity threshold is 0.8, and

for the GoodReads and Amazon dataset is 0.7.3 Given a user u, to
predict preference scores for item d, we use the Weighted Sum of
Others Ratings [19], p(u, d) = r̄u+

∑
u′∈(Pu∩U(d)) s(u,u

′)(r(u′,d)−r̄u′ )∑
u′∈(Pu∩U(d)) |s(u,u

′)| . Since
a user may have many similar other users, we only consider the
top 100 most similar to them denoted as Pu and U(d) describes
all the users that have rated item d.

5. Experimental results

5.1. Preliminaries

In our experiments, at each round, we propose to the group a
list of 10 recommended items. Given that the group is aware of
all data items presented to the group in a previous round, we do
not recommend these items again.4

We also use the two format of groups that correspond to two
life scenarios. (1) 4 similar – 1 dissimilar (4+1), and (2) 5 dis-
similar (5Diss). For each type, we generate 100 different groups
with five members from each dataset, MovieLens, GoodReads
and Amazon. From those, we use 80 groups as a training set
for our model and the remaining 20 groups as the test dataset.
Additionally, we use the test dataset to individually evaluate all
the aggregation functions we use as actions, namely Average,
SDAA, SIAA, Avg+, RP80 and Par.

Training the model for only a specific group type is rather
limiting since it will force the model to learn only that model.
However, there is a case to be made about the need of such an
approach. For example, if there is an application that groups peo-
ple randomly for an activity for more varied social interactions,
then a system that specializes in balancing the different needs
of people that are dissimilar to each other is more advantageous.
Nonetheless, we want our model to be able to be utilized in more
universal conditions. To achieve this, we randomly selected 40
groups from the training sets for each group type and 10 from
their corresponding test sets. This generated three additional
training and test sets, one for each dataset, MovieLens,GoodReads
and Amazon, with 80 groups in the training set and 20 groups
in the test set, denoted as the AllGroups test set. To avoid over-
tuning the model for a specific group type, during the training
phase we randomized the order of the groups.

3 Due to the fact that MovieLens is more dense than GoodReads and Amazon,
we selected a higher similarity threshold for it, enabling Pearson Correlation to
return approximately the same number of similar users for all datasets.
4 Alternatively, we can imagine that the group is presented with one item

only. Given that we target at the group consensus, the prediction model
regarding the group choice for this item is a worth studying problem without
a straightforward solution that we leave it for future work.
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To create our SQUIRREL RL model, we use the Tensorforce
library,5 with the Proximal Policy Optimization (PPO) as our
learning policy, with probability to transition from state s to state
s′ under a random action is set to 0.3, while the γ parameter is
set to 0.99. Since each dataset is fundamentally different from the
other, notably the GoodReads and Amazon datasets are far more
sparse than the MovieLens (Fig. 2), we experimentally found the
best learning rate, namely, the speed at which the model learns,
for each dataset individually. This was done through extensive
experiments that we do not present due to space constrains. We
used 0.0022 learning rate for the MovieLens dataset and 0.0020
for the GoodReads and Amazon.

Furthermore, each individual aggregation method has further
parameters to tune. For the RP80 aggregation function, we choose
to set the variable w to 0.8, since it performs better based on the
experiments presented in [10] for the MovieLens dataset, which
we also use. This weight is used in balancing the group relevance
and group disagreement. According to [11], the Par method uses
λ = 0.8 to combine the social welfare and fairness scores. In [8],
for the SIAA aggregation function, we empirically found, using
the same datasets, the best value for variable b, which is used
to combine the overall satisfaction and disagreement of a user, is
0.2. Finally, in the same work, for Avg+, we found that the best
results are given when k = 50, where k is the number of items
with the highest prediction score.

5.2. Measures

At each round, we propose to the group a list of 10 recom-
mended items. At the end of each recommendation round, we
calculate the average of groupSatO(G, GR) and groupDisO(G, GR)
for all the groups in the test set. These measures are used to
calculate the reward functions Rs and Rsd.

To further analyze the methods’ quality, we use as secondary
measure the Normalized Discounted Cumulative Gain (NDCG),
where we want the best possible items for a user to appear with
the highest ranking possible in the group recommendations:
NDCG(u,G, j)= DCG(u,G,j)

IDCG(u,G) , with DCG(u,G, j)=
∑

d∈GLjG

|d∩Bju|

log2(r(d,GL
j
G)+1)

,

where r(d,GLjG) is the rank of item d in the group recommenda-
tion list GLjG. IDCG is the best possible outcome for user ui. We
supplement the results from NDCG, with the Discounted First Hit
(DFH) metric that counts if a user has seen an item that is highly
relevant to him/her in the early ranks of the group recommenda-
tion list: DFH(u,GLjG) =

1
log2(fh+1) , where fh is the rank of the first

item that appears both in the group recommendation list and the
individual preference list of the user. Since NDCG and DFH refer
to one user, we apply them to the group by computing them for
each member and then taking the average over them, as recent
papers on group recommendations do (e.g., [20]). We do this at
the end of each round.

5.3. Analyzing the actions selected

In Tables 2 and 3, we present the actions that the model sel-
ected during both the training and testing phase for both versions
of the reward function. Table 2 presents the actions selected
when utilizing the reward function Rsd, which is based on sat-
isfaction and disagreement (Eq. (11)), while Table 3 shows the
actions selected when we use the satisfaction reward function Rs
(Eq. (7)).

With either reward function SQUIRREL selects the most ap-
propriate aggregation to apply, based on what maximizes that

5 https://tensorforce.readthedocs.io/en/latest/.

Table 2
Actions chosen during the training and testing phase for all group formats, while
utilizing the reward function based on satisfaction and disagreement, Rsd .
MovieLens Dataset

4+1 5Diss AllGroups

Train Test Train Test Train Test

Avg 50 0 70 0 69 0
SDAA 869 280 917 280 387 280
SIAA 69 0 47 0 317 0
Avg+ 122 20 105 20 315 20
Par 71 0 54 0 93 0
RP80 19 0 7 0 19 0

GoodReads Dataset

4+1 5Diss AllGroups

Train Test Train Test Train Test

Avg 28 0 7 0 165 0
SDAA 22 0 35 0 24 0
SIAA 65 20 227 20 216 20
Avg+ 860 280 676 280 590 280
Par 190 0 51 0 144 0
RP80 35 0 204 0 61 0

Amazon Dataset

4+1 5Diss AllGroups

Train Test Train Test Train Test

Avg 149 0 193 0 127 0
SDAA 64 0 222 0 106 0
SIAA 333 240 356 240 504 240
Avg+ 242 60 296 60 216 60
Par 199 0 56 0 87 0
RP80 213 0 77 0 160 0

reward function. In more detail, in Table 2 showcasing the actions
tested and selected for the reward function Rsd for the MovieLens
dataset, we can observe that the model has predominantly chosen
the SDAA aggregation function with minimal exceptions. We can
explain this choice with Figs. 4–6, where we show the Rsd values
for all aggregation methods for the MovieLens dataset. SDAA is
the best action for the model to take, since it produces the best
Rsd scores due to its lower group disagreement scores in the latter
rounds.

It is also worth to examine the number of times the model
did not select SDAA. For all test sets, the model does not select
the SDAA function in favor of the Avg+ function, exactly 20
times (see Table 2). These numbers correspond with the number
of groups present in each test set. This is significant because
the Rsd scores for the first round are comparable between many
aggregation functions but the Avg+ function perform slightly
better since it has lower group disagreement scores. Again we
can corroborate this, when we examine the Rsd scores generated
by all aggregation methods shown in Figs. 4–6. This is because
two of the proposed aggregation functions, SDAA and SIAA, do
not have the necessary information during the first round of
recommendations. SDAA defaults to a classic Average for the first
round and SIAA utilizes the user disagreement of the previous
round, something that does not exist during the first round. So
both of them default to a classic average aggregation for the
first round. On the other hand, Avg+ does not have any such
drawback. The model is able to identify this, and selects the better
performing aggregation function for the first round.

SQUIRREL behaves similarly when utilizing the GoodReads
dataset as well. As we can observe in Figs. 8–10, the Avg+ aggre-
gation function offers the best Rsd scores out of all the aggregation
methods used as actions. However, during the first round, many
aggregation functions share the same Rsd scores, so the system
has selected a different action for that round. Amazon presents
similar results, where now the aggregation that produces the best
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Rsd scores is SIAA with the exception of the first three rounds
where Avg+ is better, as it is shown in Figs. 12–14. This is why we
can see in Table 2 that the Avg+ aggregation method is selected
60 times during the test phase.

Finally, Table 2 also shows that the actions that were selected
during the testing phase for the reward function Rsd remain
the same across all different training sets (i.e., 4+1 and 5Dis).
Subsequently, the same action is selected when we train the
model using the AllGroups training set that contains all different
formats of groups.

Table 3 shows the actions taken during the training phase
and selected by the SQUIRREL model during the test phase when
utilizing the reward function Rs. As we can see in Fig. 3[a,b,c]-left
for MovieLens, Fig. 7[a,b,c]-left for GoodReads, and Fig. 11[a,b,c]-
left for Amazon, the satisfaction generated by the aggregation
functions are approximately the same with two notable excep-
tions. First, RP80 is designed to offer the best possible group
disagreement in lieu of the group satisfaction, thus it has lower
satisfaction scores. Second, Avg+ is based on the Average method,
which offers one of the best group satisfaction scores. However,
Avg+ also considers sub-optimal items (in regards to the group
satisfaction score they produce) so as to discover items with also
good group disagreement.

The similar satisfaction scores of the various aggregation meth-
ods make it difficult for our model to select an aggregation
function that is universally good for each dataset. This is because
Rs considers just the overall group satisfaction, and multiple
aggregation functions (i.e., actions) produce very high satisfac-
tion scores. This results in different functions to be selected for
the various training sets. In contrast, Rsd is more refined, as it
considers both group satisfaction and group disagreement, and is
able to identify the most effective aggregation function for each
dataset (see Table 2).

5.4. Analyzing the satisfaction and disagreement scores

The SQUIRREL model primarily selects one aggregation func-
tion, the one that maximizes the selected reward function, but
is also more flexible during the first round of recommendations.
Due to this small change that the model makes, the primary
aggregation function (the one that the model uses for the rest of
the rounds) performs differently. For example, when we compare
the results in Fig. 3a that shows the group satisfaction and group
disagreement for the 4+1 test set for the MovieLens dataset, and
Fig. 4 that shows the Rsd scores for all aggregation methods,
we can see that SQUIRREL correctly identifies that the primary
aggregation function (in this case the SDAA) under-performs in
the first round, so it selects the best one which is the Avg+. In this
case, SDAA underperforms in the first round of recommendations,
since we do not have the previous disagreement of the users and
so the aggregations defaults to the classic Average. This selection
of a different aggregation method in the first round has a cascade
effect on the results for the rest of the rounds. We can observe a
similar behavior for the rest of the test sets.

In general, the small change on the first round, makes the mo-
del perform better for the rest of the rounds both for group sat-
isfaction and group disagreement. In terms of group satisfaction
SQUIRREL offers the best group satisfaction scores. This difference
is mainly due to first round of recommendations, where as al-
ready stated, the model chooses a different aggregation function
than the one typically used in the rest of the recommendation
rounds. Thus, it now has a different pool of items to recommend
to the group in the next rounds. Subsequently, this makes it
behave differently than the aggregation method that is primarily
used in the rest of recommendation sequence. This is more appar-
ent in the latter rounds of recommendations, where SQUIRREL is
able to perform better than the rest of the aggregation methods.

Table 3
Actions chosen during the training and testing phase for all group formats, while
utilizing the satisfaction reward, Rs .
MovieLens Dataset

4+1 5Diss AllGroups

Train Test Train Test Train Test

Avg 83 20 48 0 130 0
SDAA 22 0 90 20 132 0
SIAA 366 0 26 0 140 280
Avg+ 7 0 25 0 553 0
Par 701 280 940 280 187 20
RP80 21 0 71 0 58 0

GoodReads Dataset

4+1 5Diss AllGroups

Train Test Train Test Train Test

Avg 32 0 20 0 319 269
SDAA 229 20 278 20 159 11
SIAA 135 0 62 0 143 0
Avg+ 35 0 40 0 233 20
Par 659 280 772 280 158 0
RP80 110 0 28 0 188 0

Amazon Dataset

4+1 5Dis AllGroups

Train Test Train Test Train Test

Avg 412 220 237 20 533 270
SDAA 47 0 166 0 96 0
SIAA 163 0 517 280 184 0
Avg+ 59 0 27 0 129 0
Par 382 80 192 0 235 30
RP80 137 0 61 0 23 0

When comparing the results between the two reward func-
tions, for example the last two bars in Fig. 3[a] for the MovieLens
dataset and the 4+1 training set, the Rs reward function of-
fers better group satisfaction scores (Fig. 3[a]-left), since that
reward function maximizes group satisfaction. However, it gener-
ates worse group disagreement compared to Rsd (Fig. 3[a]-right).
This is expected, since the Rsd considers both group satisfaction
and disagreement. When we compare the rest of the aggregation
functions, for group satisfaction SIAA, SDAA, Par and Average have
very comparable results, while the Avg+ falls slightly behind
since it also considers sub-optimal items in terms of the group
satisfaction they generate. On the other hand, RP80 offers very
low group satisfaction scores, but one of the best group disagree-
ment scores. This is because, it was designed to minimize the
disagreement score. Additionally, RP80 has better group disagree-
ment in more homogeneous group formats like 4+1 while it falls
slightly behind in 5Diss test set. SDAA and SIAA have very good
group satisfaction but average group disagreement scores. On the
other hand, Average and Par have very good group satisfaction
scores but also very high group disagreement.

We can observe that the aggregation methods have different
behaviors in the three different datasets. For example, the best
performing one for MovieLens is SDAA, for GoodReads is Avg+
and for Amazon dataset is SIAA. The discrepancy of performance
between the three datasets is because the difference in their spar-
sity, namely GoodReads and Amazon datasets are more sparse
than the MovieLens. This negatively affects the single recom-
mender system and reduces the number of items that are highly
relevant to each individual group member. On the one hand, in
the MovieLens dataset which is the most dense dataset of the
three (see Fig. 2), the single recommender system generates more
relevant items per group member. This benefits the SDAA aggre-
gation, since it directly balances the group satisfaction and group
disagreement. Thus the more common items that are relevant to
most group members the more beneficial it is for the aggregation
method.
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Fig. 3. MovieLens Dataset: Group Satisfaction (left) and Group Disagreement (right) for all aggregation methods and all test scenarios, (a) 4+1, (b) 5Diss and (c)
AllGroups.

On the other hand, the sparsity of the GoodReads and Amazon
datasets benefits the Avg+ and SIAA aggregation methods. A
lower number of highly relevant items per user means that during
Avg+’s first phase where it selects the top 50 items with the
highest Average score, all the best possible items for the group
are considered. Then, Avg+ can select the items that produce the
best group disagreement. SIAA only takes into consideration each
individual group member’s satisfaction and disagreement scores
and not the group’s, thus is better equipped to handle the sparsity
of the datasets. The SQUIRREL model is able to adjust to the
different datasets and outperform all the individual aggregation
methods.

Finally, we can see from Figs. 3, 7 and 11 that for all test scen-
arios the performance of all aggregation methods is reduced
after each round of recommendations. This is because of two

main reasons. First, as Fig. 2 shows, the sparsity of all datasets
is increased after each additional chunk of data is augmented
in the system. Second, after each round, we eliminate the top
10 most suggestions for the group, i.e., these items cannot be
recommended again.

5.5. Quality of recommendations

In Table 4, we show the NDCG and in Table 5 the DFH scores
for all aggregation functions, as well as, for the SQUIRREL model
when utilizing the two reward functions. We present the aver-
age scores after the end of all 15 rounds of recommendations.
The NDCG scores in Table 4 reflect how good the recommen-
dations were for the group, i.e., how many items in the group
recommendation list are also included in the user’s individual
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Fig. 4. MovieLens Dataset: Rsd scores for all aggregation methods under the 4+1 test scenario.

Fig. 5. MovieLens Dataset: Rsd scores for all aggregation methods under the 5Diss test scenario.

Fig. 6. MovieLens Dataset: Rsd scores for all aggregation methods under the AllGroups test scenario.

recommendations. The DFH scores in Table 5 describe how rel-
evant at least one item in the group recommendation list is for
the users.

In Table 4, we see that the SQUIRREL model’s higher NDCG
values mean that it is able to identify more relevant items for
the groups. Also it recommends items that are highly ranked
by each user, given that the DFH scores are high. In contrast,
the Avg+ aggregation method has lower NDCG scores, because
it also considers items that may not be highly relevant to each
user. This is further corroborated by the group satisfaction scores
shown in Figs. 3-left, 7-left and 11-left. The aggregation methods

that have high satisfaction scores, like Average, SDAA, SIAA, Par
and both SQUIRREL models also have high NDCG scores. This is
because both the group satisfaction score and NDCG describe the
same general principle of how relevant are the items in the group
recommendation list for each user.

Finally, to better visualize the results, Figs. 15 and 16 show
the NDCG and DFH values, respectively, per round. We showcase
the results for the MovieLens dataset and the 5Diss test scenario.
These values are the average for all groups in the 5Diss test set
per round. The reward function Rs has the best overall NDCG
values since it also has the best group satisfaction (Fig. 3b-left).
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Fig. 7. GoodReads Dataset: Group Satisfaction (left) and Group Disagreement (right) for all aggregation methods and all test scenarios, (a) 4+1, (b) 5Diss and (c)
AllGroups.

Fig. 8. GoodReads Dataset: Rsd scores for all aggregation methods under the 4+1 test scenario.
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Fig. 9. GoodReads Dataset: Rsd scores for all aggregation methods under the 5Diss test scenario.

Fig. 10. GoodReads Dataset: Rsd scores for all aggregation methods under the AllGroups test scenario.

Table 4
NDCG values for all datasets, MovieLens, GoodReads and Amazon and all test scenarios, 4+1, 5Diss and AllGroups.
MovieLens Dataset

Average SDAA SIAA Avg+ Par RP80 SQUIRREL-Rsd SQUIRREL-Rs

4+1 0.038 0.041 0.038 0.033 0.039 0.021 0.054 0.052
5Diss 0.043 0.044 0.043 0.036 0.043 0.017 0.054 0.060
AllGroups 0.042 0.044 0.041 0.034 0.042 0.019 0.058 0.057

GoodReads Dataset

Average SDAA SIAA Avg+ Par RP80 SQUIRREL-Rsd SQUIRREL-Rs

4+1 0.041 0.053 0.043 0.032 0.042 0.020 0.046 0.063
5Diss 0.042 0.057 0.042 0.031 0.043 0.017 0.040 0.065
AllGroups 0.042 0.053 0.042 0.030 0.042 0.020 0.043 0.066

Amazon Dataset

Average SDAA SIAA Avg+ Par RP80 SQUIRREL-Rsd SQUIRREL-Rs

4+1 0.028 0.047 0.035 0.025 0.033 0.003 0.044 0.026
5Diss 0.030 0.052 0.031 0.024 0.030 0.005 0.029 0.024
AllGroups 0.032 0.056 0.036 0.030 0.035 0.003 0.052 0.043

Additionally, it is more apparent that during the first round of
recommendations all aggregation methods have a higher per-
formance which is then significantly reduced in the following
rounds. As already stated, this is because, as shown in Fig. 2, the
sparsity of all datasets is increased after each chunk is augmented
in the system, as well as, because after each round we eliminate
from consideration the top 10 items for each group.

5.6. Group size evaluation

For all the previous evaluations, the group size was set to five.
Next, we evaluate our model when the group size is increased.

We selected the MovieLens dataset to experiment with since its
higher density allowed us to form larger groups. We expand on
the 5 dissimilar test scenario and introduce two new test cases,
7 dissimilar (7Diss) and 9 dissimilar (9Diss). Fig. 17a shows the
group satisfaction (left) and group disagreement (right) for the
7Diss test scenario. Fig. 17b shows the respective scores for the
test scenario 9Diss.

The performance of all aggregation methods lowers when
the group size is increased. This is expected since it is more
difficult to satisfy a larger group. However, SQUIRREL, overall,
is able to more effectively handle a large number of dissimilar
group members. It is largely unaffected by the increased group

13



M. Stratigi, E. Pitoura and K. Stefanidis Information Systems 112 (2023) 102128

Fig. 11. Amazon Dataset: Group Satisfaction (left) and Group Disagreement (right) for all aggregation methods and all test scenarios, (a) 4+1, (b) 5Diss and (c)
AllGroups.

Fig. 12. Amazon Dataset: Rsd scores for all aggregation methods under the 4+1 test scenario.
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Fig. 13. Amazon Dataset: Rsd scores for all aggregation methods under the 5Diss test scenario.

Fig. 14. Amazon Dataset: Rsd scores for all aggregation methods under the AllGroups test scenario.

Table 5
DFH values for all datasets, MovieLens, GoodReads and Amazon and all test scenarios, 4+1, 5Diss and AllGroups.
MovieLens Dataset

Average SDAA SIAA Avg+ Par RP80 SQUIRREL-Rsd SQUIRREL-Rs

4+1 0.900 0.868 0.897 0.936 0.913 0.810 0.923 0.937
5Diss 0.886 0.819 0.871 0.932 0.899 0.743 0.914 0.940
AllGroups 0.915 0.875 0.905 0.945 0.925 0.807 0.930 0.936

GoodReads Dataset

Average SDAA SIAA Avg+ Par RP80 SQUIRREL-Rsd SQUIRREL-Rs

4+1 0.968 0.923 0.967 0.982 0.977 0.936 0.957 0.987
5Diss 0.962 0.893 0.958 0.979 0.968 0.929 0.954 0.973
AllGroups 0.976 0.929 0.975 0.985 0.982 0.955 0.964 0.985

Amazon Dataset

Average SDAA SIAA Avg+ Par RP80 SQUIRREL-Rsd SQUIRREL-Rs

4+1 0.795 0.679 0.779 0.838 0.825 0.554 0.832 0.935
5Diss 0.886 0.755 0.876 0.916 0.903 0.714 0.890 0.935
AllGroups 0.820 0.677 0.804 0.860 0.844 0.579 0.837 0.872

size with the fall in performance between the 7Diss and 9Diss
test cases being minimal. These results are further corroborated
when we examine Figs. 18 and 19 showcasing the Rsd scores
for the various aggregation methods. All aggregation methods
have similar results in the first round of recommendation with
SQUIRREL outperforming the rest in the latter rounds.

6. Related work

6.1. Group recommendations

Group recommendations have a significant research back-
ground [21]. In general, there are two main approaches for group
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Fig. 15. MovieLens Dataset: NDCG values per recommendation round for the 5Diss test scenario.

Fig. 16. MovieLens Dataset: DFH values per recommendation round for the 5Diss test scenario.

recommendations [22]. In the first approach (e.g., [23,24]), we
combine the group members ratings to form a virtual user so that
a standard recommendation approach can be applied. The second
approach, and the most popular for group recommendations
(e.g., [10,25,26]), is to employ a standard single-user recom-
mender system and apply it to each individual group member.
Then, we aggregate the group members lists into one single
group recommendation list. In this work, we follow the second
approach, since it is more flexible [27] and offers opportunities
for improvements in terms of effectiveness.

In the aggregation stage, a group recommender system can
take into consideration many different criteria. For example, work
done in [28] suggests a group recommendation model which
takes into account each individual group member’s influence
during the aggregation phase. They state that the more knowl-
edgeable a member is about the items considered for recom-
mendation, the more influence they have, meaning they have a
higher weight during the aggregation phase. Additionally, [29]
draws from recent advancements in attention network and neural
collaborative filtering to deduce the aggregation strategy from the
available data. In the same vein, [30] in addition to an attention
mechanism, it also employs a Bipartite Graph Embedding Model
(BGEM) to infer each member’s influence to the group’s final
choice. [31] uses a preference-oriented social network and the
social interactions among the group members, to finalize the
group’s choice without having access to complete preferences of
the members.

By observing how group members interact with one another,
[32] determines the best aggregation strategy. These interactions
were modeled as multiple voting processes in order to simulate

how a consensus is reached, and a stacked social self-attention
network was proposed to learn the voting scheme of the group
members. In dividing a large group of people into subgroups
based on their own interests, [33] offers a novel method of
producing recommendations for a large group. Specifically, it
identifies a set of potential candidate media-user pairs for each
subgroup and aggregate the CF recommendations lists for each
such pair. [34] proposes a two-phase group recommender that,
tries to satisfy all the group members. In the first phase, they try
to satisfy the whole group. In the second phase, they try to satisfy
the members individually by filtering out irrelevant items to each
member.

In [11], each group member is assigned a utility score based
on how relevant the recommended items are to them. Then it
balances the utility of the group members and generates a group
recommendation list. In [20], the utility of a user is defined by the
similarity between the individual and group recommendations
of the user. Their approach involves considering sets of N-level
Pareto optimal items when creating the group recommendation
list. As part of the aggregation phase, [35] proposes a notion of
rank-sensitive balance. As far as possible, the first recommenda-
tion should balance the interests of all group members. Similarly,
the first two items together must also do the same; and so on.

Any of these rank aggregation methods can be modified to
work on the SQUIRREL model as an additional action. Depend-
ing on the requirements of the method, supplementary changes
should be made to the model, such as a different state or reward
definition or additional input should be given to the model. Addi-
tionally, depending on the complexity of the aggregation method,
the overhead of retraining them can be large; a complex group
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Fig. 17. MovieLens Dataset: Group Satisfaction (left) and Group Disagreement (right) for all aggregation methods under the 7Diss and 9Diss test scenarios.

Fig. 18. MovieLens Dataset: Rsd scores for all aggregation methods under the 7Diss test scenario.

recommendation method needs more time for training than the
simple Average aggregation method. In future work, we aim to
further develop our model so as other than rank aggregation
methods for group recommendation can be readily included as
actions.

6.2. Sequential recommendations

It is generally considered that sequential recommenders fall
into three broad categories, according to how many past in-
teractions they take into account: Last-N interactions-based rec-
ommendations, Session-based recommendations and Session-aware
recommendations [36]. The first approach considers only the most
recent N user actions [37–39]. This is due to the amount of
historical data logged by the system for the user – many of which

are duplicates as well as not providing any useful information –
and as a result the system is overwhelmed. The only interactions
that are taken into account when making session-based recom-
mendations are the ones that the user performed during the
current session. The most common places to find them are in the
news and advertisements [40,41]. In the last category, the system
has information about the last interaction between it and the
user, as well as the user’s history. E-commerce and app recom-
mendations often employ these recommenders [42–44]. Another
session-aware music recommendation system is proposed in [2].
Based on a neural network architecture, users’ preferences are
represented as a sequence of embeddings, one for each session.
The user’s recent selections and session-level context (such as de-
vice usage and time) can predict the tracks a user will listen to. [3]
proposes a multi-round recommender system using Variational
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Fig. 19. MovieLens Dataset: Rsd scores for all aggregation methods under the 9Diss test scenario.

Autoencoders (VAEs) and introduces randomness into the regular
operation of VAEs to achieve fairness [45] during multiple rounds,
while in order to minimize bias and promote diversity, [4,46,47]
penalizes scores given to items based on historical popularity.

The framework in [1] uses cross-neighbor relation model-
ing to uncover collaborative information using a bipartite graph,
where the users and items are depicted as nodes and the inter-
actions between them as the links. They not only consider the
directly linked nodes but also the 2-hop neighbors as well, which
they call high-order collaborative relations. They utilize them
and both user-side and item-side historical sequences to capture
user and item dynamics more effectively. The work in [48] pro-
poses the GLS-GRL system, where an item–item co-occurrence
graph captures user–item interactions in the entire history, as
well as an item–item co-occurrence graph containing the same
information for the current time period. As a result of graph
representation learning, the GLS-GRL system is able to achieve
long-term and short-term representations of users and subse-
quently merge them to obtain integrated representations of users.
A constraint-based user-interactive attention mechanism encodes
relationships between group members into group representations
used for recommendations.

The work presented here, employs methods for sequential
group recommendations, that were first proposed in [8,49]. SDAA
considers the group as a whole, and dynamically calculates a
weight based on the satisfaction of the group members. This
weight is then used to combine two scores; the average prefer-
ence score of an item for all group members and the preference
score of the item for the user that is the least satisfied in the
previous round of recommendations. In contrast, SIAA considers
each group member individually. At each round it calculates a
weight for each user based on the user’s overall satisfaction and
the user’s disagreement in the previous round. Finally, Avg+
capitalizes on the advantages of the classic Average method while
simultaneously tries to minimize its drawbacks. Overall, the pre-
vious works mentioned concern recommendation systems for
single users.

Under specific application examples, [50,51] perform empir-
ical research to investigate different aggregation strategies for
suggesting a sequence of television items and music tracks, re-
spectively, to groups of users. The proposed framework in this
work is the first to focus on selecting an aggregation strategy,
among a pool of available ones, for each round of group recom-
mendations, relying on reinforcement learning.

6.3. Reinforcement learning in recommendations

In recent years, more and more research is focused in utilizing
reinforcement learning for recommendations [52]. One of the first

works in this domain was done in [53], where they propose a
web recommender system, where the state of the environment
is the last N pages that the user visited, actions are the page
recommendations and reward is a weighted sum between the
ranking of the recommended page and the time the user spend
on that page. [54] proposes a DQN-based reinforcement learning
framework for online personalized news recommendation. The
framework is composed of two parts, offline and online. During
the offline stage, the model is trained and during the online stage
the agent produces a recommendation and logs the user feedback.
After a period of time, the model enters again in the offline
stage and depending on the logged feedback may make changes
to the model. The system can accurately model the dynamic
features of the news, in addition to the user preferences, in order
to increase reward in the long term. In addition to click/no-
click feedback, they also consider user return pattern in order to
determine the user behavior, and employ an exploration strategy
for more recommendation diversity. [55] employs reinforcement
learning techniques to optimize the recommendation model for
long-term accuracy of recommendations. They consider two main
areas; cold-start and warm start. The model relied on the in-
teractions between the recommender system (environment) and
users (agents). This allowed it to be applied to environments with
inadequate content information.

The work done in [56] proposes a list-wise recommendation
framework based on deep reinforcement learning, a method that
reduces redundant computation in scenarios with a large and
dynamic item space. They train and evaluate the model offline,
while applying the recommender system online. To successfully
evaluate the model in offline stage, they simulate the response
of a user (reward) using a user–agent interaction environment
simulator, where the reward is calculated based on the similarity
between the current state and the action taken with other his-
torical data. [57] proposes a deep learning movie recommender
model based on reinforcement learning, which utilize prioritized
experience replay to depict the changes in the interests of the
user over time. The system models the recommendation process
as reinforcement learning, and in order to recommend movies
based on user preferences, they use agents to learn about users’
interests and movie features.

The work done in [58] proposes a user-side system for sequen-
tial music recommendation. It combines in a Markov Decision
Problem (MDP) the users’ explicit and implicit feedback. The
explicit feedback consists of the users’ music channel preferences
and the implicit is generated by the users when they request
a new music track. An MDP is also used in [59] where they
propose a commercial system that utilizes an ordered sequence of
selections for each user as the state of the environment, to predict
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and recommend a new item. However, since the e-commerce
environment of this model is different than a classic recom-
mendation system, several assumptions are made in order to be
readily deployed as an application.

Each of these works offers a solution to the recommendation
problem through reinforcement learning, but in most cases are
centered around a specific domain of recommendations. In our
work, we propose a framework that aspires to be more flexible
in terms of the domain it can be applied and is able to combine
different techniques to counter-balance the drawbacks that are
inherently present in each recommendation solution.

7. Conclusion

In this paper, we propose the SQUIRREL framework, which
enables sequential group recommendations via reinforcement
learning. We treat the single user recommendation system as a
black-box, and focus on aggregating the individual group mem-
bers’ recommendation lists into a group list. Specifically, we focus
on producing group recommendations via rank aggregation, thus
the actions that the model can take are various rank aggregation
methods. The state of the model is the overall satisfaction of the
individual group members, and we examine two different reward
functions. The model is able to be further configured; additional
rank aggregation methods can be applied, a different state can
be defined and further reward functions can be considered. The
model is able to dynamically select the most appropriate group
recommendation method to apply depending on the state of the
group.

We used three real-world datasets, 20M MovieLens, Good-
Reads and Amazon, to evaluate not only our proposed model
but additionally, all the individual aggregation methods used as
actions. The different semantics of each dataset alter the perfor-
mance of all methods, but typically do not alter their performance
comparative to each other. We train our model using different
formation of groups, which depict different scenarios for group
recommendations. Additionally, we combined the different group
types into one test set to simulate a more general scenario.
Although the actions selected for each group type are different,
the overall performance of the SQUIRREL model did not change
between the test cases. The SQUIRREL model is able to correctly
identify the aggregation method that best maximizes the reward
function utilized. We corroborate this with extensive evaluation
of all methods used as actions in our model, and test it with
two reward functions. Additionally, the model recognizes the
drawbacks of certain aggregation methods and counters them by
selecting different ones at the opportune moments. This has as
a result to completely alter and enhance the performance of the
primary aggregation method used. Finally, we evaluated the qual-
ity of the recommendations provided by calculating the NDCG
and DFH values for the SQUIRREL model and all the aggregation
methods used as actions. We show that SQUIRREL is able to
provide quality recommendations, with one of the best NDCG and
DFH scores.

In our future work, we want to extend our model by combing
individual user and group satisfaction scores to define new states
and rewards. Moreover, we want to expand the SQUIRREL model
so as to be able to consider as actions other group recommenda-
tion algorithms in addition to the rank aggregation methods. This
will require a restructure on the input that the model receives
and further optimizations, depending on the complexities of the
selected group recommendation methods.
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Abstract. Throughout our digital lives, we are getting recommenda-
tions for about almost everything we do, buy or consume. However, it
is often the case that recommenders cannot locate the best data items
to suggest. To deal with this shortcoming, they provide explanations for
the reasons specific items are suggested. In this work, we focus on expla-
nations for items that do not appear in the recommendations they way
we expect them to, expressed in why-not questions, to aid the system
engineer improve the recommender. That is, instead of offering explana-
tions on every item proposed by the system, we allow the developer give
feedback about items that were not proposed. We consider here the most
traditional category of recommenders, i.e., the collaborative filtering one,
and propose ways for providing explanations for why-not questions. We
provide a detailed taxonomy of why-not questions on recommenders, and
model-specific explanations based on the inherent parameters of the rec-
ommender. Finally, we propose an algorithm for producing explanations
for the proposed why-not questions.

Keywords: Explanations · Why-not questions · Recommendations ·
Collaborative filtering · Recommender systems

1 Introduction

Recommendations have been integrated in many of the services available to users
in recent times. Although, recommenders try to accurately propose interesting
items to users according to their preferences, it is often the case that they cannot
locate the best data items to suggest. This can be due to many different reasons.
One reason can be the cold start problem, where the system does not have
enough information about a user to make accurate predictions. Another cause
may be the over-specification on the part of the users. This means that a user
has previously expressed a preference for a specific category and the system is
unlikely to propose items that belong to a different category. Furthermore, often
the systems can be misdirected due to ambiguous information on the users and
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their preferences. Finally, as a system relies a lot on its hyper-parameters and
thresholds, unlucky recommendations may be tight to the system’s configuration.

The problem of explaining recommendations is a long-standing problem,
which is most regularly approached by introducing explanations along with rec-
ommendations (e.g., [4,16,22]). This way, the user or the system’s designer gets
insights on why an item is suggested. The explanations can then vary on granu-
larity or presentation format based on the final consumer, i.e., the final user of
the recommender or the designer of the system. In this work, we expand on the
concept of post-hoc, model-based explanations [23], i.e., explanations provided
after the recommendations have been produced and based on the knowledge of
the system, by exploiting the concept of why-not questions. These questions are
not about why items were proposed, but why items were not proposed. We judge
that this kind of questions are necessary for the system engineer, who needs to
better understand the system and get hints on how to debug it. For example,
assume a system that recommends products to users. If the engineer finds that
the products of a specific company are never proposed to a user, he/she may
need to understand why, and find the best way(s) to turn the situation around.
This could be in the benefit of the diversity of recommendations proposed to
the final user, or even for promotional campaigns of the specific company, who
does not see their products proposed by the system. On the other side, asking a
why-not question may not be such a straightforward task for a final user, who
is totally unaware of the context or his/her preferences. However, it can still be
applied in the case of a knowledgeable user, who is aware of the context of the
recommendations. For instance, a female user of a career development site may
wonder why she never gets suggestions for managerial positions. In this case, a
why-not explanation would help the user gain trust on the system and promote
its gender-fairness. In this work, we assume the system designer as the consumer
of the explanations, and leave the case of the final user as a future work.

One could suggest that explaining why a certain item is not proposed is dual
to explaining why all the recommended items are proposed. With the standard
explanation method, a user has to go over the recommended list and under-
stand the differences between the proposed items and the one(s) expected. This
would be a time consuming, or even impossible, task, depending on the user’s
understanding of the data set and the recommendation model. For this rea-
son, already existing systems that treat the ‘why’ aspect of explanations cannot
trivially explain missing recommendations, especially without the user feedback
in the form of a why-not question. By having the system answering why-not
questions, this process is streamlined and not strictly dependent on the user
knowledge.

In this paper, we consider the traditional paradigm of a user-based collab-
orative filtering recommendation system for providing explanations to why-not
questions. First, we provide a detailed categorization of why-not questions char-
acterized by three main properties: (i) the level of absenteeism that the why-not
questions mention (absence or low position in the ranking of a result set), (ii)
their granularity (referring to a single result or a set), and (iii) their dependency
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to existing recommended items. Note, that a why not question may belong to
multiple classes. Second, we provide fine-grained and personalised model-based
explanations targeted for system engineers. The explanations are not dependent
on the context of the system (e.g., social, product, PoI recommendation). We
distinguish explanations between the general ones, based on the general set-
ting of the problem, and the model-specific explanations, based on the inherent
parameters of the recommendation model. Fourth, we propose an algorithmic
method for computing explanations for why-not questions in collaborative fil-
tering. Finally, we conduct a preliminary experimental study that explores the
explanations space and motivates their usage by a system designer.

2 Preliminaries and Related Work

For a general setting of our recommender, assume a set of data items I and a set
of users U , where each user provides ratings for a subset of I. Specifically, a user
u ∈ U rates an item i ∈ I with a score s. The subset of users that rated an item
i is denoted by Ui, whereas the subset of items rated by a user u, is denoted
by Iu. For every item i not rated by a user u, the recommender estimates a
relevance score, p(u, i). The items with a high relevance score for u will compose
the recommendation list (called also recommended items) for the user.

The literature regarding how to estimate the relevance score of an item for
a user is extensive. In this work, we will focus on collaborative filtering, a well
established recommendation approach that recommends items that users with
similar preferences like (e.g., [3,11,13]). Specifically, the collaborative filtering
(CF) approach is based on the idea that people who agreed in their evaluation
of certain items in the past are likely to agree again in the future. The steps of a
CF algorithm to produce a list of recommendations for a user u are: (1) Find the
most similar users Peersu with u by means of a similarity function sim(u, u′)
between u and every other user u′. (2) Predict a relevance score p for each item
not rated by u based on his/her similar users Peersu. (3) Recommend a list Ru

with the top-k items with the highest relevance score.
The first step of the CF algorithm is to compute similarities between the

users. To measure the similarity sim(u, u′) between two users, we exploit their
ratings that are available in the recommender. Several metrics appear in the
related work for counting similarities between users based on ratings. We employ
here the Pearson correlation measure [11], which is fast to compute and performs
very well for the case of collaborative filtering. It directly calculates the correla-
tion between two users with a score from -1 for entirely dissimilar users, to 1 for
identical users. A user u′ is considered similar to u if their similarity is above a
threshold th and if they have rated more than numI common items. We further
refine the process, by keeping only the numP users with the highest similarity
scores. We name these users as peers of u, Peersu. In the second step of the algo-
rithm, we use the peers of u to predict a relevance score p(u, i) for any item i that
u has not yet rated. To this end, we use the weighted sum of others ratings [18].
We only recommend items to u if more than numPI peers have rated them. In
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this way, we have a more robust understanding of the items’ preference by the
peers. Additionally, we do not have many false positives, by avoiding proposing
an item only liked by one (or few) peer(s), while it is unknown to the rest. In
the final step, we sort all the items we have predicted a score for and return the
k items with the highest score in the list Ru. Furthermore, we denote by posRu,i

the index of the item i in the list Ru.

Related Work on Explanations in CF. CF explanations are typically provided
based on users implicit or explicit feedback (for a survey of explanations in rec-
ommenders, refer to [20]). For example, a direct solution is to first find a set of
peers for the user in question and then produce a recommendation to this user.
The explanation is that the user is similar to the peers, and the peers made
good ratings on the recommended item [14]. [9] compares the effectiveness of
different display styles for explanations in CF. Specifically, explanations can be
displayed as an aggregated histogram of the ratings of the peers, or be displayed
as the detailed ratings of the peers. Alternatively, explanations can be provided
by telling the user that the recommended item is similar to other items the user
liked before, where several highly rated items by the user are shown as expla-
nations [15]. To study the usefulness of explanations in recommender systems,
[19] developed a prototype system to study the effect of different types of expla-
nations. In brief, this study shows that providing appropriate explanations can
benefit the recommender system over specific goals, like transparency, persua-
siveness, trustworthiness and satisfaction. More recently, there exist approaches,
e.g., [2,6,21], for generating explanations with methods using matrix or tensor
factorization, where the goal is to make latent factors more tangible. From a
different perspective, [8] studies the problem of computing minimum subsets
of user actions to change the top-ranked recommendations in a counterfactual
setup. The concept of why-not questions is used also for probabilistic range
queries in [5], either by modifying the original query or by modifying the why-
not set. [7] offers a similar framework for why-not questions on reverse top-k
queries. To the best of our knowledge, we are the first to define and study the
problem of providing explanations based on why not questions in recommender
systems.

3 Why-Not Questions

In this paper, we expand on the concept of explanations in recommender sys-
tems, by exploiting the concept of why-not questions. These questions are not
about why an item is recommended but why an item is not recommended in the
expected way. Instead of offering explanations on every item that is proposed
by the system, we allow the user to give feedback in the form of questions. For
instance, in a movies recommender if the user is not satisfied with the movies list
provided by the system, he/she can ask questions like: Why were there not any
comedies recommended? The system will answer with information based on the
system characteristics and the data associated with these items. This paradigm is



Why-Not Questions & Explanations for Collaborative Filtering 305

not yet explored in recommendation systems, while it has been recently explored
in other contexts like in explaining query results in relational databases [1], in
reverse skyline queries [10], and briefly in machine learning systems [12].

We propose to characterise why-not questions by three main properties: (i)
their level of absenteeism, (ii) their granularity, and (iii) their dependency to
existing recommended items. The first property is naturally derived from the
notion of false negative results, i.e., the items that should have been returned
(in a certain position) but are not. The second property goes one step beyond
to express groupings of missing items (that can be regarded as false negatives).
The third property, corresponds to the need of the system expert to express the
fact that an item that is returned (true positive) and an item that is not (false
negative) should be encountered together in a result set.

First, we examine why-not questions based on absenteeism. In this respect,
we further distinguish between (i) total absenteeism, and (ii) position absen-
teeism. Question such as Why not Titanic? belong to the total category, since
they are about items that do not appear in the recommendation list, without
a specific requirement for the position on which they should appear. Questions
that ask about the ranking of items, such as Why not rank Titanic first? belong
to the position category. It is evident thus, that a position absenteeism why-
not question can be applied on items that are recommended, but still not as
highly as expected. Second, we review Granularity. Granularity describes the
level of detail of the question that is asked, distinguishing between atomic cases
and group cases. In more detail, the user is able to ask questions about spe-
cific items (atomic case), such as: Why not Titanic?, or about set of items that
share a common characteristic (group case), such as: Why not comedies? Third,
the Dependency property describes items that usually appear together in the
answers, or should be returned in a specific order. Example questions are Why
there are not any comedies but there are dramas? This kind of questions fall also
in the case of group recommendations, when users expect to find groups of items
together. We subsequently define why-not questions in a formal way.

Definition 1. Let I be a set of items, u a specific user of a recommender system
built on I, Ru ⊆ I the set of recommended items for user u by a recommender
system. A why-not question is a set of the form

wn = {(m, pos, d) | m ∈ I and pos ∈ {1, . . . , |Ru|} and d ∈ Ru}

Definition 1 is general enough to cover all the cases that we mentioned before,
i.e., absenteeism (m and pos), granularity, and dependency (d). Even though not
explicitly apparent, a granularity why-not question can be derived by expanding
the group to the related items in I. For example, a why-not questions of the
style Why not comedies? can be represented by wn = {(Big, , ), (Zoolander, , )},
given that the system can find these two comedies in its database. Moreover,
if the user wants to ask one specific type of a why-not question that does not
involve all three parts m, pos, and d, then he/she can leave that part empty.
For example, in the case of a total absenteeism why-not question of the style
Why not Titanic?, the corresponding wn would be {(Titanic, , )}. In the next
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paragraphs we elaborate more on the different types of why-not questions that
we consider and how they are expressed using Definition 1.

Next, we specify Definition 1 to express the different properties of why-not
questions (absenteeism, granularity, dependency). As the absenteeism property
is always apparent in a why-not question, we discuss both sub-categories of the
absenteeism property (total and position), with respect to granularity and depen-
dency. In order to keep the notation from becoming too cumbersome, we will
only give the notation for set of items (the group subcategory of the granularity
property). This does not affect the formalization of the why-not questions, since
both granularity questions can be noted using a set format (an individual item
belongs to a set that consists of just one item). For each case, we present an intu-
itive description, examples in the context of a movie recommendation system,
and the formal expression corresponding to that case of why-not question.

– Total Absenteeism:
• Independent : The user asks why some items do not exist in the recom-

mendation list.
Example-Atomic: Why is there not Titanic?
Example-Group: Why are there not any comedies?
Formally, an independent total absenteeism why-not question is:

wnti = {(m, , ) | m ∈ I \Ru}

• Dependent : The user asks why certain items do not exist while other (that
usually appear together) exist.
Example-Atomic: Why is there not Titanic while there is Up?
Example-Group: Why not any thrillers when there are action films?
Formally, a dependent total absenteeism why-not question has the form:

wntd = {(m, , d) | m ∈ I \Ru and d ∈ Ru}

– Position Absenteeism:
• Independent : The user can question the ranking of a set.

Example-Atomic: Why is Titanic not ranked first?
Example-Group: Why are comedies not in a higher ranking?
Formally, an independent position absenteeism why-not question is:

wnpi = {(m, pos, ) | m ∈ Ru and posRu,m < pos}

• Dependent : The user asks why certain items do not appear higher in the
recommendation list than other recommended items.
Example-Atomic: Why not place Titanic before Up?
Example-Group: Why not place comedies before dramas?
Formally, an independent position absenteeism why-not question is:

wnpd = {(m, pos, d) | m ∈ I and pos > posRu,d and d ∈ Ru}
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4 Why-Not Explanations

To answer a why-not question, we seek to provide meaningful explanations to the
system designers. By meaningful, we mean the information that is adequate to
help the designer understand why the items are not recommended in the expected
way, and subsequently use this information in order to repair the system. For
this reason, we split the input of the problem to distinct components that can
explain - either individually or combined - the why-not question provided by the
user. These components are: the input item set, the sets of all and of similar
users given the user in question, the set of ranking scores, and the recommender
system design (hyperparameters) itself. To accommodate the different sources
of error, we define a multi-type structure, called an explanation, as follows:

Definition 2. A why-not explanation for a why-not question on the recommen-
dations of a user u is a set of parameters of the recommender system, responsible
for the absence of the missing item(s) from the (specific positions of the) recom-
mendation list.

We distinguish between general explanations, which can appear in any recom-
mender system, and model-specific explanations that are based on the inherent
parameters of the CF recommendation model. We further describe the general
and CF explanations in Sects. 4.1 and 4.2, respectively, while we provide an
algorithm to compute them in Sect. 5. We accompany the discussion with exam-
ples of why-not questions and respective possible explanations, summarized in
Table 1. For clarity, we include in this table a description in natural language for
the question and the explanation. The descriptions of the explanations can be
regarded as the output of a statistical analysis of the resulting explanations.

4.1 General Explanations

Users, in most cases, ask about an item that does not appear in the recommen-
dation list. So, it is very likely that this item does not exist in the database of
the system. The explanation, then, is straightforward; this item is not suggested
because it is unknown to the system. Another explanation emerges from the
number of returned top-k items. If that number is low, then the missing item
may be further down the recommendation list. However, we do not consider that
the selected k may be the problem if the item is found at an index greater than
2k, to promote other potential (model-specific) explanations. Finally, the system
may produce the same score for different items. To break the ties, it adopts a
specific method, e.g., it will place first the first encountered item in the database.
So, when a user poses a why-not question on an item that has been neglected due
to the tie-breaking method, the system may designate the tie-breaking method
as a culprit. E1-E3 in Table 1 are examples of such explanations.

4.2 CF Explanations

The concept behind CF is that the system suggests items to a user that his/her
similar users have liked in the past. This makes all the possible explanations
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revolving around the user’s peers. One scenario is that none of the peers have
rated an item. In this case, the item is invisible to the system and cannot be
suggested. A similar scenario is for that item to have never been rated before by
any user. This again makes the item invisible to the system. Aside from these two
explanations, an answer for a “Why not item A?” question is the combination
of the results for the three following questions: (i) how many peers have rated
it, (ii) what scores they have given it, and (iii) how similar they are to the user.
If just one or two peers have rated an item, then the system ignores it, to avoid
a false suggestion. If all or most of the peers have given a low score to an item,
then the system, in turn, calculates a low score for it. Finally, the similarity that
a peer shares with the user is also primordial. If a peer who has a high similarity
with the user does not like an item, then this has an impact on that item’s final
predicted score. E4-E11 in Table 1 are examples of such explanations.

We represent the results of the three aforementioned questions “How many
peers have rated it?”, “What scores have they given it?” and “How similar are
these peers to the user?” as a set of tuples of the form (peer, score, similarity).
Each tuple describes a peer who has rated the targeted item and consists of three
values: (i) the peer’s id, (ii) the score that he/she has given to the item, and (iii)
the similarity shared between the peer and the user. If the set is empty then none
of the peers have rated this item and we provide explanation E10 (Table 1). If the
set consists of only one or two tuples (peers) then it corresponds to explanation
E4. To produce the rest of the explanations, we combine into a user-friendly
explanation the number of peers that have rated the item, the similarity that
these peers share with the user and the scores they have given to the item.

When a user questions the item’s ranking in the recommendation list, the
system again checks the same information. The system answers questions like:
“Why was not item A ranked higher?” by explaining the item’s statistics: how
many peers have rated the item, if they favored it and how similar these peers are
to the user. This type of question is vague, in the sense that the user questions the
general ranking of an item without comparing it to another item; the user issued
an independent question. So the system treats it as if it was a total absenteeism
question. For this reason, explanations E17-E19 are the same as for a total
absenteeism why-not question. Another alternative for handling these types of
questions is to transform them from independent to dependent by arbitrarily
selecting an item in the list. We select this item according to the specifics of the
question - higher or lower ranking. For example, a question like “Why was not
item A ranked higher?” can be transformed into “Why not place item A before
item B?”. In this case, the system returns a more detailed explanation as shown
in lines E20-E23 in Table 1.

Explanations to dependent why-not questions, such as “Why not item A but
item B?” or “Why not place item A before item B?”, are more complicated
since they involve multiple items, some of which exist and others not, mixing
explanations and why-not explanations. We explain the process for the first
question. The second is answered in a similar way. First, we decompose the why-
not question to two separate queries. The first is a part of the user’s question:
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Table 1. Examples of why-not questions and explanations in CF.

WN Question Model WN Explanation Description Id

Any why-not question

General/I Item A does not exists in the database E1

General/k You asked for few items E2

General/Tie Item had the same score as another item E3

Why not suggest

item A?

wn = (A, , )

CF/numPI Only x (<numPI) of your peers has rated this
item

E4

CF/{(peer, s, sim)} x of your peers have given a low score to this item E5

CF/{(peer, s, sim)} x of your most similar users have given a low
score to A

E6

CF/{(peer, s, sim)} x peers like A, but y dislike it E7

CF/{(peer, s, sim)} All of your peers have given the item a low score E8

CF/numP None of your most similar users have rated A,
but x with a lower similarity have given it a
high/low score

E9

CF/Peers None of your peers has rated this item E10

CF/S No one has rated this item E11

Why not suggest

item A but suggest B?

wn = (A, , B)

CF/numPI x of your peers have rated item B but only y
(<numPI) has rated item A

E12

CF/{(peer, s, sim)} x of your peers like item B but dislike A E13

CF/{(peer, s, sim)} x peers like item B and y dislike item A E14

CF/numP Your most similar peers have not rated A but
have rated B

E15

CF/Peers Your peers have rated B but none of them have
rated A

E16

Why is not item A

ranked higher?

wn = {(A, posRuA − 1, )}

CF/{(peer, s, sim)} x of your peers have given a low score to this item E17

CF/{(peer, s, sim)} x of your most similar peers have given a low
score to A

E18

CF/{(peer, s, sim)} x peers like A, but y dislike it E19

Why is not item A

higher than B?

wn =

{(A, posRuB − 1, B)}

CF/{(peer, s, sim)} x of your peers like item B but dislike A. E20

CF/{(peer, s, sim)} x peers like item B and y dislike A E21

CF/numP Your most similar peers have not rated A but
have rated B

E22

CF/Peers Your peers have rated B but none of them have
rated A

E23

Why not suggest

comedies?

wn = {(C1, , ), ..., (Cn)}

CF/Peers None of your peers rated the same movie E24

CF/{(peer, s, sim)} Your peers dislike comedies E25

CF/Peers None of your peers has rated a comedy E26

CF/{(peer, s, sim)} Only x of your peers like comedies E27

CF/numP Your most similar peers do not like comedies but
x of your least similar do

E28

“Why not item A”. The second query we make is “Why not item B”1. Intuitively,
since the system has promoted item B to the user instead of A (either by not
even suggesting A for total why-not questions or with a better ranking in the
recommendation list for position why-not questions), the results of the questions
“How many peers have rated it?”, “What scores have they given it?” and “How
similar are these peers to the user?” have higher values than the results for A.
Then, we combine the answers of these two why-not questions. For example, see
E12-E16 in Table 1. We choose to explain the existence of item B as a why-not
explanation, because it allows us to combine the results of the two questions
more effectively than if we used a generic explanation method, such as [9].

When the user formulates a group why-not question, for example “Why not
more comedies?”, the explanation that the system provides is a union of all the
answers that it would have provided for individual items. For each item in the
same category as the one the user asked about and a peer has preferred in the
past, we formulate a why-not question. Since this can become very cumbersome
for the user to consume, one can summarize the results into a user-friendly
output. For instance, “Your peers like comedies, but they have not liked the

1 An alternative here could be to employ a solution for explaining recommendations.
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same one”, meaning that the peers have shown some preference for comedies,
but each peer has rated a different movie. This explains why none of them were
suggested. To reduce the number of questions we issue to the system, we can
take into consideration the items that the peers have shown a great preference
for. These items are the most important for us, since they have the highest
probability to be suggested. For example, in a system where the ratings are in
the range from 1 to 5, we can only consider the items that have a rating higher
than the average 2.5. We provide more explanations for a group why-not question
in lines E24-E28 of Table 1.

Algorithm 1: WNCF

Input: item set I, user set U , user u, why-not question {(i, , )}, rating scores S,
recommendation list Ru for user u, threshold numPI, threshold
numP ,peers of u Peers, relevance score function p(u, i)

Output: e, explanation
1 if i /∈ I then
2 e.add(‘I’);

3 else if ∃i′ : p(u, i)=p(u, i′) and posRi′ ≤ k then
4 e.add(‘Tie’);

5 else if i in the 2k first entries of expanded R then
6 e.add(‘k’);

7 else if i has no ratings in S then
8 e.add(‘S’);

9 else if at least one peer of u has rated i then
10 for peer ∈ Peers do
11 if peer has rated i then
12 e.add((peer, s(peer, i),sim(u, peer)));

13 if less than numPI most similar peers of u have rated i then
14 e.add(‘numP’);

15 if less than numPI peers of u have rated i then
16 e.add(‘numPI’);

17 else
18 for u′ user in U do
19 if u′ has rated i then
20 e.add((u′, s(u′, i),-));

21 e.add(‘Peers’);

22 return e;

5 WNCF Algorithm

In this section, we introduce WNCF (standing for Why-Not in Collaborative
Filtering), an algorithm for the computation of why-not explanations for the CF
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model (Algorithm1). WNCF addresses total absenteeism for atomic granularity
independent why-not questions. The extension of this algorithm to explain other
types of why-not questions, as discussed in Sect, 4, is trivial for some cases,
e.g., group independent why-not questions, but not for all. We postpone the
extensions to future work.

As mentioned in Sect. 4, we first check if a general explanation can be pro-
vided; if not, we proceed with the model-specific explanations modeled in tuples
representing the peers who have rated i, along with information on their rat-
ing on i and the similarity to user u. If such peers do not exist, we provide
explanations based on other users who have rated i.

In more detail, WNCF receives as input the item set, user set, the ranking
scores, and the threshold values numPI and numP of the CF system, as well
as the why-not question for a user u. We also consider known the peers of u and
the recommendation list calculated for u, as well as the relevance score function.
Line 1 checks if the specific item exists in the database. If it does not, we return
the explanation code I, to indicate that the source of error is the input data set.
Line 3 checks if the item shares the same relevance score with another item that
appears in the list. In this case, we return the explanation code Tie, to indicate
that the source of error is the tie breaking method. Line 5 checks if the item
appears between the kth and 2kth entry. In this case, we return the explanation
code k, to indicate the the k maybe too low. Line 7 checks if any user in the
system has rated i. If none of them did, then we return the explanation code S,
to indicate that there are not rating scores for i.

Lines 9–16 check the peers of the user. For every peer who has rated i, we
report the score he/she has given, as well as the similarity he/she shares with u
(Line 12). Then, we check the numP most similar peers of the user (Line 13).
If less than numPI of them have rated the item, we return the code ‘numP’
to express that there are not enough most similar peers who have rated the
item. Subsequently, we check the rest of the peers and if there were not at least
numPI peers who have rated i (Line 15), then we return the explanation code
‘numPI’. This indicates that from all the peers of user u less than numPI peers
have rated this item. Finally, if none of the peers has rated this item (Line 17)
we return the explanation code Peers to indicate that there are no peers who
have rated the item. We also return information about the users (non-peers) who
have rated the item and their scores.

Overall, our rational for returning the extra information on the users (peers
or not), their ratings for the item in question and their similarity to the user u
for CF systems, is two-fold. First, we can compute statistics that can be easily
consumed by the developers (in their raw format or as visualisations) and help
them understand more about the setting. Second, we can use this information
as input to a repair mechanism, which would propose changes to the system so
as to make the missing item appear in the list.
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6 Experiments

We studyWNCF with respect to different parameters, namely the characteristics
of the users for whom we pose the why-not question, and the popularity of the
missing movie. Moreover, we perform an experiment that shows the next step
that a developer can take, after he/she receives a WNCF explanation.

Experimental Setup. In the experiments we used the MovieLens 20 Million Rat-
ings2 that consists of 27.278 movies and 138.493 users. To study the behavior
of the algorithm for different types of users we randomly selected 100 users that
have rated a few items (45 to 55), called Moderate Users, and 100 users that have
rated many items (145 to 155), called Active Users. To experiment with the char-
acteristics of the movies that comprise our why-not questions we used movies
of varying popularity. We randomly selected 4 sets of 100 movies that have 2K
(least popular), 4K, 6K and 8K (most popular) ratings, respectively. We denote
these sets as Movies2K, Movies4K, Movies6K, and Movies8K. We ensured that
the movies selected are not in the recommendation lists of the users, in order to
be able to run why-not questions with them. To find the peers of a user, we used
the Pearson Correlation with a threshold of 0.8 (th), while to predict a score for
an unrated item we utilized 100 (numP ) peers. An item cannot be considered
for addition in the recommendation least, unless 3 (numPI) or more peers of
the user have given it a rating. We report to the user the top-10 movies with the
highest predicted scores.

Explanations Study. First, we define a total absenteeism why-not question for
each item in the varying popularity movie sets, for moderate and active users
(Fig. 1(a) and (b) respectively). Then, we runWNCF for each user and why-not
question, and we calculate the percentage of occurrences of each explanation
depending on the different parameters as they appear in the different segments
of Algorithm1. The k explanation indicates that the item in question was further
down in the list that was provided to the user. The numP explanation means
that we should augment the numP threshold to be able to find enough most
similar peers that have rated this specific item. The Peers explanation occurs
when none of the peers of the user has rated an item. Finally, by Tuples we denote
explanations comprised by information on the peers of the user, calculated in
Algorithm1 line 12, and when the conditions in lines 13 and 15 are false.

Let us further analyze the result of the experiment in Fig. 1. When we use
the more popular movies, more of them are in the k range, almost all of them
are rated by a peer of the user and most of them are rated by a top peer. This
is most evident when we compare the results for Movies2K and Movies8K. For
Movies2K, less than 20% of the movies could be explained by the information
provided on the peers in the moderate case, while for the Movies8K more than
95% of explanations were composed by the peers. Additionally, in the Movies2K
more than half of them were not rated by any of the user’s peers, while in the

2 https://grouplens.org/datasets/movielens.
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Fig. 1. Explanations for varying popularity of missing movies for (a) moderate, and
(b) active users.

Movies8K this number has dropped down to almost zero. We can observe similar
numbers for the Active Users for the Movies2K and Movies8K movie sets. This
is a self-evident result since the more popular movies have a higher chance to be
rated by the peers of a user. This is further corroborated by the Tuples values.
For the Movies2K, it has low values, since the movies are not that popular. With
each subsequent movies set, as the popularity of the movies rises, so does the
the values of the Tuples variable. The most popular movies are more likely to
have been voted by a top peer.

When comparing the results for the two sets of users, the Active Users have
more explanations about the top peers not having rated an item (numP) than
the Moderate Users. This is because the more ratings a user has given, the more
similar other users he/she has. Since the number of peers we use is a constant
variable and not a percentage, there is a higher chance the selected users have
not rated the movies questioned. At the same time, we can see that the number
of movies that were not rated by any of peers is lower than that of the Moderate
Users. This is again because Active Users have a higher number of peers.

To demonstrate how the developer can proceed when he/she has acquired
one explanation, we considered the case of Peers explanations. We took all the
movies that were not rated by any peer (corresponding to Peers explanations),
and we examined all the users in the system in order to find the new threshold
needed in the similarity function, so as the recommender to be able to calculate
a preference score for that item for the considered users. Then, we calculated
the difference between the threshold we used originally (in our experiments, 0.8)
and the new calculated threshold. Figures 2a and 2b show the results for the
Moderate and Active users, respectively. In both experiments, we excluded the
Movies8K set because the number of movies that were not rated by any of the
peers is very small (less than 5 in both user sets). In both cases the adjustments
needed in the similarity threshold are small. The average values (denoted with x
in the figures) is below 0.04. While the Active Users have more outliers (dots in
the figures) their ranges are similar to those in the Moderate user set. Finally,
the median value (line inside the box) is comparable for both user sets across all
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movie sets. Thus, we see that with the provided explanation the developer can
directly explore the right direction for debugging his system.

(a) (b)

Fig. 2. The similarity threshold (th) adjustment needed for the recommender to be
able to calculate a preference score for the missing items corresponding to a Peers
explanation for (a) moderate, and (b) active users.

7 Summary

In this work, we pay special attention on transparency provided via explanations
in recommender systems. We exploit the concept of why-not questions, allow-
ing the user to give feedback in the form of questions about why items are not
proposed in the expected way. We consider the collaborative filtering approach,
and propose ways for providing explanations for why-not questions. We provide
a detailed taxonomy of why-not questions with respect to three main properties:
(i) the level of absenteeism that the why-not questions mentions (absence or low
position in the ranking of a result set), (ii) their granularity (referring to a single
result or a group), and (iii) their dependency to existing recommended items. An
explanation for a why-not question is meant to inform the user about the possi-
ble sources of error linked to the why-not question. We distinguish explanations
between general ones, i.e., explanations that are independent to the recommen-
dation model used, and model-specific ones, based on the inherent parameters of
CF. Finally, we provide an algorithm for computing why-not explanations in CF
systems. Clearly, there are many directions for future work, including propos-
ing explanations for content-based, hybrid and sequential [17] recommendation
models, as well as efficient algorithms and implementations in specific contexts.
Furthermore, we target the automatic refinement of the recommendations com-
puted for the users, by exploiting the defined explanations.
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Abstract: Providing useful resources to patients is essential in achieving the vision of participatory
medicine. However, the problem of identifying pertinent content for a group of patients is even
more difficult than identifying information for just one. Nevertheless, studies suggest that the group
dynamics-based principles of behavior change have a positive effect on the patients’ welfare. Along
these lines, in this paper, we present a multidimensional recommendation model in the health domain
using collaborative filtering. We propose a novel semantic similarity function between users, going
beyond patient medical problems, considering additional dimensions such as the education level,
the health literacy, and the psycho-emotional status of the patients. Exploiting those dimensions,
we are interested in providing recommendations that are both high relevant and fair to groups
of patients. Consequently, we introduce the notion of fairness and we present a new aggregation
method, accumulating preference scores. We experimentally show that our approach can perform
better recommendations to small group of patients for useful information documents.

Keywords: recommendations; group recommendations; semantic similarity; group aggregation

1. Introduction

Medicine is undergoing a revolution that is transforming the nature of healthcare from reactive to
preventive. These changes came to pass due to new approaches to disease, which focus on integrated
diagnosis, treatment, and prevention of disease in individuals. One of the major challenges to this
path is the amount and the quality of information that is available online [1] considering that health
information is one of the most popular research field on the Web. Furthermore, there is a significant
increase to the number of people who search online for health and medical information. In the United
States, estimations show that ~80% percent of all adults have searched the Web for health information,
whereas in 2006, 23% of the Europeans were utilizing the Internet to be informed about their health
problems [2]. However, despite the increase in those numbers, it is very hard for a patient to accurately
judge how relevant the information is to their own health issues and additionally if the source of this
information is reliable.

A healthcare provider that is responsible for providing reliable sources to patients may be an
optimal solution for this problem [1]. This guided solution leads to patient empowerment, meaning
that a patient receives information from accurate sources, which increases the understanding of their
problems and their way of thinking about them. Accordingly, the patients depend less on the doctors
for the appropriate information. Additionally, patients feel autonomous and more confident about the
management of their disease [3]. Most primary care providers have their patients’ health background
and interests in paper, electronic, or mental records. This helps them determine what information

Algorithms 2020, 13, 54; doi:10.3390/a13030054 www.mdpi.com/journal/algorithms
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would be the most constructive for each individual patient. However, the amount of time that a health
provider can dedicate to each patient has greatly declined. Consequently, they have an even more
difficult task in guiding their patients.

Aside from the guidelines provided by health providers, another support for the patients is their
social circle. The use of group dynamics-based principles of behavior change have been shown to
be highly effective in enhancing social support, e.g., through promoting group cohesion in physical
activity [4] and in reducing smoking relapse [5]. Especially for cancer, the latest studies [6] suggest
that group therapy improves the well-being of cancer patients because of enhanced discussion and
social support. In these counseling meetings, the patient is directed towards the most informative
and reliable sources on the Web. However, the effort of locating pertinent information for a group of
participants is far greater than identifying information for just one patient.

This motivates us to concentrate our efforts on recommending to a group of patients relevant and
interesting health documents that were selected by health professionals. We utilize the collaborative
filtering (CF) recommendation model for this task. Our motivation for this work is to offer to a caregiver
that is in charge for a group of patients a recommendation list that consists of health documents that
are relevant to the group members. The relevance of the recommended documents is calculated based
on the patients’ current health profiles. In addition, we would like to identify information that is
equally fair to all members, meaning no member in the group is unsatisfied.

We incorporate fairness during the aggregation phase of our recommendation model. To produce
group recommendations, one must first produce recommendation lists for each group member and
then aggregate those into one list that is then reported back to the group. There are many methods
to ensure that the aggregation is done fairly [7,8]. Intuitively, to achieve fair recommendation we
consider that all the group members are equal to each other. Therefore, the group score for an item i is
the average score across all the group members’ preference scores for that item. Such an approach,
however, can easily ignore the opinion of the minority. For example, in a group that consists of
three patients, if for all items two of the members have high relevance score, but the third is low,
then the opinion of the third member is overshadowed by the other two. To counter such a drawback,
we propose a new aggregation method that is done in phases. In each phase, we select one item to
include in the group recommendation list. At the beginning of each phase, if there is a member that is
not as satisfied as the rest of the group, we select an item based on two criteria. First, it has to have
high relevance for that user, and second, it is the best one available for the rest of the group.

As we have already mentioned, to generate these recommendations we use the collaborative
filtering method. The basic principle of CF is to find similarities between users. Given a target
user, we locate other similar users, who are often called peers or neighbors, and utilizing the ratings
that peers have given, we estimate relevance scores for the items that the target user has not yet
rated. In our work, to calculate similarities between two patients, we consider their health profiles.
The information that is included in these health profiles is the following; the ratings that the patient
has given to health documents and the health problems they have. Additionally, each patient has been
questioned about their education level and their health literacy—meaning to what degree they are
able to understand basic information and services related to the health domain. Furthermore, they
are periodically questioned about their psycho-emotional status. Specifically, they regularly fill in a
questionnaire about their anxiety levels and cognitive closure, meaning the patient’s need when faced
with a decision, to have an answer instead of continued uncertainty. We propose a new similarity
measure that combines all these different sources of information to different degrees to find similarities
between patients across all dimensions.

In the past, we have proposed a semantic similarity function that takes into account the patients
medical profiles, showing its superiority over a traditional measure [9,10] in group recommendations in
the health domain. In addition, we have focused on the notion of fairness [11], devising an aggregation
method for ensuring that if the group recommendation list provides a high relevant document for a
patient, then that patient may be tolerant of the existence of documents that are not relevant to him/her.
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However, although usually health professionals target closely related health problems, the education
level, health literacy level, and psycho-emotional status of the group are of high importance, as the
content that the health professional should recommend, should be based on the aforementioned
axes. To this direction we further extend the dimensions considered for finding similar users and we
introduce a new aggregation method called AccScores, outperforming existing ones.

More specifically, the contributions of our work are the following.

1. We demonstrate a multidimensional group recommendation model in the health domain, using
collaborative filtering.

2. We propose a novel semantic similarity function that takes into account, in addition to the patients
medical problems, the education, the health literacy and the psycho-emotional status of the
patients, showing its superiority over a traditional measure.

3. We introduce a new aggregation method accumulating preference scores, called AccScores,
showing that it dominates other aggregation methods and is able to produce fair recommendations
to small groups of patients.

4. We experimentally show the value of our approach, introducing the first synthetic dataset with
such information for benchmarking works in the area.

This paper significantly extends our previous work in [11], by introducing two new similarity
measures and a way to combine the different similarities functions into one. Furthermore, we introduce
a new aggregation method and we present the relevant experiments. To our knowledge, this is the first
work in group recommendations in the health domain considering multiple dimensions for increasing
the quality of the proposed recommendations. The requirements for generating such a tool originally
came from the iManageCancer [12] and the BOUNCE [13] H2020 EU research projects.

The rest of this paper is structured as follows. Section 2 presents related work. Section 3 focuses on
identifying similarities between users and on how to produce single user recommendations. Section 4
focuses on the group recommendations model, and Section 5 presents the synthetic dataset constructed
for evaluation. Finally, Section 6 presents experimental evaluation, and Section 7 concludes the paper.

2. Related Work

Typically, recommendation approaches [14] are distinguished between content-based, which
recommends items similar to those the user previously preferred (see, e.g., [15]), and collaborative
filtering, which recommend items that users with similar preferences like (see, e.g., [16]). Nowadays,
recommendations have more broad applications [17], beyond products, like links (friends)
recommendations [18], query recommendations [19], open source software recommendations [20],
diverse venue recommendations [21], sequential recommendations [22,23], or even recommendations
for evolution measures [24,25].

Although traditional research on recommender systems has almost exclusively focused on
providing recommendations to single users, there exist many cases where the system needs to suggest
items to groups of users [26,27]. As an example consider a group of friends deciding to dine at a
restaurant. Typically, for producing group recommendations, we first compute recommendations for
each group member separately, and then employ an aggregation strategy across them to compile the
group recommendations (see, e.g., [28,29]). Various aggregation strategies can be applied to find a
consensus between users for particular items, by minimizing, for instance, the disagreements between
the group members. More recently, the authors of [30] analyze the problem of recommending sets of
items to groups incorporating factors, like user impact, viability, and fairness.

Recommendations in the Health Domain

Nowadays, patients turn towards the Web to inform themselves about their diseases and their
possible treatment. This suffers from two main problems. First, the information found on the Web is not
always accurate, and second, it is very diverse. To face these problems a personalized recommender
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would allow the users to have a seamless, secure, and consistent bidirectional linking of clinical
research and clinical care systems, and thus empowering the patients to extract the relevant data out
of the overwhelming large amounts of heterogeneous data and treatment information. The authors
of [31] portray the requirements that a Health Recommender System (HRS) needs to fulfill, whereas
the authors of [32] analyze common pitfalls of such systems. For a recent survey for recommender
systems for health promotion, the interested reader is forwarded to [33].

In this line of work, there have been already developed many recommendation systems focusing
on citizen’s wellbeing. For example, the authors of [34,35] propose web-based recommender systems
that provides individualized nutritional recommendations according to the user’s health profile
defined, by following the main guidelines furnished by a medical specialist, whereas the authors
of [36] suggest messages relevant to the user to support the smoking cessation process. The work
in [37] is a recommender system proposing physical activities using only user’s history and employing
machine learning, whereas for chronic conditions, other works focus on integrating recommender
systems with electronic health records [38,39], proposing the best course of treatment. Other approaches
adapt past recommendations to the current state of the user for Diabetes patients [40] or propose
context-aware recommendation methods [41] to establish personalized healthcare services. However,
all these works use techniques that are principally found in pure group recommendations systems for
composing the group recommendation list. However, we have tailored our recommendations for the
health domain, exploiting the semantically annotated PHR profile of the users. This directly allows us
to endorse documents that are relevant to a user not only on the level of appreciation (meaning the
ratings that each item has gained), but also on the level of his personal health profile (we recommend
items relevant to him because of related health artifacts). Furthermore, by introducing the concept of
fairness in our approach, we make sure that the output of the group recommendation process, remains
fair and unbiased towards all group members. This is particularly important in our domain, where we
explicitly want all members of the group to be satisfied.

More similar works to our approach are [42–46]. In [42], the authors combine two health
information recommendation services—a collaborative filtering and a physiological indicator-based
recommender—providing to the users useful health information. The authors of [43,44] present a
tool aiming to empower patients to extract relevant data out of the overwhelmingly large amounts of
heterogeneous data and treatment information, by semantically annotating both the patient profiles
and the past user queries. From a different perspective, the authors of [45] decouples users and items,
considering properties related to users and items, based on which a collaborative filtering model is
defined. On the other hand, the authors of [46] focus on helping help health providers acquire new
knowledge in real-time. However, even in those works, notions like group recommendations and
fairness are not considered, nor interesting profile dimensions like the educational level, the health
literacy, and the psychoemotional status.

For groups there have been only a small amount of works. The authors of [47] focus on
recommending video content in group-based reminiscence therapy. Besides this work, in our previous
line of work, we focused on group recommendations in the health domain [9,10] by proposing
a semantic similarity function that takes into account the patients medical profiles, showing its
superiority over a traditional measure in group recommendations, and by introducing the notion of
fairness [11], paving the way for our contribution in this paper. Nevertheless, we are not aware of any
other work in the area considering dimensions like the educational level, the health literacy, and the
psychoemotional status of the patients for recommending high-quality information.

3. Single User Recommendations

Assume a set of documents I and a set of patients U in a health-related recommender system.
Each patient is associated with a personal profile that contains the user’s personal health information.
Each user is able to score documents that they have read in the past. This set of ratings is also contained
in the user’s profile.
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For the documents that a user has not seen previously, the recommender estimates a relevance
score relevance(u, i), u ∈ U, i ∈ I. For computing relevance scores, in this line of work, we apply the
collaborative filtering approach. That is, given a user, we first look for similar users/patients employing
a similarity function that evaluates their proximity (Section 3.2). Then, we compute the documents
relevance scores using the most similar users to the user in question (Section 3.3). In this paper,
in addition to traditional similarity functions, we exploit the patient profiles for finding similarities,
targeting at improving the quality of the recommendations.

3.1. User Profiles

To take advantage user profile information, we need as a first step to be able to record it.
For this reason, besides capturing patient problems, specific short validated questionnaires (i.e.,
the ALGA-C questionnaire [48]) have been employed that are being answered by the members of a
group. All information obtained is then modeled and stored by exploiting an ontology. The answers
of the questionnaires are then used to automatically compute particular values that are stored in
the patient profiles, regarding key profile areas. Among others, numerical scores (1 to 5) exists
for health literacy level, educational level, cognitive closure, and anxiety that we further use for
providing recommendations. Health literacy is the degree to which individuals have the ability to obtain,
process, and understand basic information and services related to the health domain, needed to make
appropriate health decisions [49]. Although initially the term was related to the individual educational
level, it is has now been acknowledged as an inconsistent indicator of skill level [50] and, as such,
we believe it should be captured individually. Cognitive closure, on the other hand, characterizes the
extent to which a person, faced with a decision, prefers any answer in lieu of continued uncertainty [51].
Cognitive closure and anxiety have been related with more rapid and lower quality of decision-making
and as such different type of information should be recommended to those patients.

Besides user profiling, the documents also need to have information regarding the target
population concerning the aforementioned dimensions. As such, all documents entered by the
caregivers are annotated with numbers regarding target population health literacy and education level.
In addition, the documents are automatically annotated using ICD-10 (http://www.icd10data.com/)
ontology, and all annotations are stored into the document corpus.

Concerning the rating dataset the patient, u ∈ U might rate a document i ∈ I with a score r(u, i),
in the range of [1, 5]. Commonly, patients give ratings only for a few documents, whereas, concurrently,
the cardinality of I is high. We denote the subset of patients that rated a document i ∈ I as U(i),
and the subset of documents rated by a user u ∈ U as I(u).

3.2. User Similarities

The information that is available to us to find similarities between users is diverse. First, we have
the ratings that each user has given to documents. Second, we can utilize the users’ personal
information; their health problems, health literacy, and education levels; as well as their anxiety
and cognitive closure scores. Because the knowledge that we gain from each source is distinct, we can
define four different similarity functions. To better utilize all of our data, the final similarity score
between two users will be the combination of the similarity scores from these four methods.

3.2.1. Similarity Based on Ratings

We assume that two patients have similar interests, and in turn are similar, if they gave similar
ratings to the documents of the recommender. We employ here the Pearson correlation measure [16],
which is fast to compute and performs very well in the case of collaborative filtering. It directly
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calculates the correlation between two users with a score from −1 for entirely dissimilar users, to 1 for
identical users.

RatS(u, u′) =
∑
i∈X

(r(u, i)− µu)(r(u′, i)− µu′ )

√
∑
i∈X

(r(u, i)− µu)
2
√

∑
i∈X

(r(u′, i)− µu′ )
2

(1)

where X = I(u) ∩ I(u′), µu denotes the mean of the ratings in I(u).

3.2.2. Similarity Based on Health Information

It is quite common in health-related informatics to consider people as similar if they have similar
health problems, which in turn leads to similar consumption of health documents. In this work,
we use the International Statistical Classification of Diseases and Related Health Problems (ICD10),
which is a standard medical classification list maintained by the World Health Organization, to keep
track of and recognize similarities between health problems and users. We describe ICD10 as a tree,
with health problems as its nodes. We use the 2017 version of ICD10, which includes four levels in tree
representation, plus one for the root level. Because of the structure of the taxonomy (acyclic), there is
only one path that connects two individual nodes. Another characteristic of the structure is that sibling
nodes that appear at lower levels have greater similarity than siblings in the upper levels.

Table 1 presents an example of four pairs of sibling nodes from the ICD10 ontology, with their
code id, their description, and the level they belong to. From their descriptions, we can identify
that the siblings that reside in the forth level share a far greater similarity than the ones in the first
level. Because of this discrepancy of the similarity of the health problems at different levels, we
assign different weights to nodes taking into account their level. These weights will allow us manage
differently sibling nodes at various levels. Intuitively, the goal is to have sibling nodes in the higher
levels with greater similarity than those in the lower levels.

Table 1. An instance of the ICD10 ontology.

Code ID Description Level

S27 Injury of other and unspecified intrathoracic organs 1
S29 Other and unspecified injuries of thorax 1

S27.3 Other injury of bronchus, unilateral 2
S27.4 Injury of bronchus 2

S27.43 Laceration of bronchus 3
S27.49 Other injury of bronchus 3
S27.491 Other injury of bronchus, unilateral 4
S27.492 Other injury of bronchus, bilateral 4

Definition 1 (Weight). Let A be a node in the ontology tree. Then,

weight(A) = w ∗ 2maxLevel−level(A) (2)

where w is a constant, maxLevel is the maximum level of the tree, and level(A) is a function that returns the
level of each node.

Moreover, assume that anc(A) is the direct ancestor of A. Intuitively, we need a formula that not
only takes into account the distance between two nodes, but also the level that those nodes belong.
To achieve that, we make use of the notion of the lowest common ancestor (LCA).

Definition 2 (LCA). Let T be a tree. The lowest common ancestor LCA(A,B) of two nodes A and B in T is the
lowest node in T that has both A and B as descendants, where each node can be a descendant of itself.

Then, for counting the distance between A and B, we calculate their distance from LCA(A, B).
For doing so, we identify first the path that connects A (and B, respectively) with LCA(A, B).
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Definition 3 (Path). Let T be a tree, and A and B two nodes in T, with LCA(A, B) = C. path(A, C) returns
a set of nodes including A, its direct ancestor anc(A), its direct ancestor anc(anc(A)), and so on, until we
reach C, without including C in the set.

The distance between A and C is computed as the summation the weight of each node in the path:

dist(A, C) = ∑
n∈path(A,C)

weight(n) (3)

Overall, for computing the similarity between two nodes A and B, we use the following formula.

Definition 4 (simN). Let T be a tree, and A and B two nodes in T, with LCA(A, B) = C. Then,

simN(A, B) = 1− dist(A, C) + dist(B, C)
maxPath ∗ 2

(4)

Note that we divide the sum of the two distances with maxPath ∗ 2, to normalize the overall
similarity, so that the function simN, returns a value in the range of [0,1]. We define maxPath as follows.

Definition 5 (maxPath). Let T be a tree, and A and B two nodes in T, with A being a node in the highest level
and B the root. Then,

maxPath = dist(A, B) (5)

Figure 1 presents a snippet of the ICD10 ontology tree, where each node is associated with a
weight (in this example, w = 0.1). The root has not been assigned a weight, because when calculating
the path that connects a node with its ancestor, we do not include the actual ancestor in the path.
Table 2 presents various similarities between nodes from Figure 1.

Figure 1. A snippet of the ontology tree along with the assigned weights in parenthesis.

Table 2. Examples of similarities between nodes using Figure 1.

Node A Node B LCA(A,B) simN(A,B)

S27.43 S27.49 S27.4 1− (0.2 + 0.2/3) = 0.87
S27 S29 root 1− (0.8 + 0.8/3) = 0.47

S27.492 S27.49 S27.49 1− (0 + 0.1/3) = 0.97
S27.3 S27.49 S27 1− (0.4 + 0.6/3) = 0.67

S27.492 S29.001 root 1− (1.5 + 1.5/3) = 0
S27.491 S27.492 S27.49 1− (0.1 + 0.1/3) = 0.93

Overall Semantic Similarity Between Two Users

Using the measures described above, we can compute the similarity between two health problems.
However, a patient typically has more than one health problem in his/her profile.

Let Problems(u) be the set of health problems of a patient u ∈ U. Given two patients, u and
u′, their overall similarity is calculated by considering all possible pairs of health problems between
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them. Then, for each single problem from u, we consider only the health problem of u′ with the
maximum similarity.

Definition 6 (SemS). Let u and u′ be two patients in U. The similarity based on semantic information between
u and u′ is defined as

SemS(u, u′) =
∑iεProblems(u) ps(i, u′)
|Problems(u)| (6)

where
ps(i, u′) = max(∀jεProblems(u′){simN(i, j)}) (7)

Instead of the maximum function used in the above process, one can employ the average function.
However, according to our experiments, such an approach leads to a large number of unrelated pairs
of health problems.

3.2.3. Similarity Based on Education and Health Literacy Level

Nowadays, there are a lot of sources where users can receive information about their health
problems. These sources can vary in terms of how complex and how in-depth they go to showcase
the problem. A user will be more attractive to sources that are inline with his/her health literacy and
education level. For example, a patient with a low health literacy score will not be interested in a
document that describes their health problem in great detail, but will be drawn to a document with a
clear description of how to manage it. On the other hand, a patient with a high literacy score will be
far more interested in the first document.

For documents regarding the same information, people have similar interests in health documents
that require the same educational and health literacy level to be comprehended. As such, the similarity
between two patients is calculated by the Euclidean distance between their corresponding values.

EducStatusS(u, u′) = 1−
√
(HLit(u)− HLit(u′))2 + (EducLvl(u)− EducLvl(u′))2

√
2 ∗maxDi f 2

(8)

HLit(u) is a function that reports the health literacy level of user u and Educlvl(u) reports his/her
education level. To better combine these scores with the ratings and health problems similarity scores,
we normalize them so that the function returns values in the range of [0, 1]. The variable maxDi f
represents the maximum difference between the two education or health literacy scores. Finally, as we
want the similarity score and not the distance between the users we subtract the distance score from 1.

3.2.4. Similarity Based on Psycho-Emotional Status

Finally, anxiety and cognitive closure have an important impact on the documents preferred by
people in specific periods of time, as anxiety and cognitive closure can change over time. As such, we use
the Euclidean distance between the values of those two properties. As psychoemotional questionnaires
are being answered periodically, we consider each time only the latest measurements on these.

PhychStatusS(u, u′) = 1−
√
(Anxiety(u)− Anxiety(u′))2 + (CognCl(u)− CognCl(u′))2

√
2 ∗maxDi f 2

(9)

Anxiety(u) is a function that provides the anxiety level of user u and CognCl(u) provides his/her
cognitive closure status. Similarly with the similarity based on education and health literacy levels,
we normalize the euclidean score and subtract it from 1 to get the similarity score.
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3.2.5. Similarity between Users

Having defined all the different methods to compute similarity scores between two users, we need
a way to combine all the different values into a final similarity score. We propose that not all different
information perspectives are equally important to all aspect of collaborative filtering, so we assign
weights on each similarity score which determines their significance.

S(u, u′) = α ∗ RatS(u, u′) + β ∗ SemS(u, u′) + γ ∗ EducStatusS(u, u′) + δ ∗ PhychStatusS(u, u′) (10)

where α + β + γ + δ = 1.

3.3. Single User Rating Model

Let Pu define the set of the most similar patients to u. Here, we refer to Pu as the peers of
u. Formally:

Definition 7 (Peers). Let U be a set of patients. The peers Pu of a patient u ∈ U include the patients u′ ∈ U
that are similar to u with respect to a similarity function S(u, u′) and a threshold δ, that is, Pu = {u′ ∈ U :
S(u, u′) ≥ δ}.

Given a patient u and his/her peers Pu, if u has no liking for a document i, the relevance of i for u
is computed as

relevance(u, i) = µu +
∑u′∈(Pu∩U(i)) S(u, u′)(r(u′, i)− µu′)

∑u′∈(Pu∩U(i)) |s(u, u′)| (11)

where µu denotes the mean of the ratings in I(u). Typically, after computing the relevance scores of
the unrated documents for a user u, the documents Au with the top-k scores are presented to u.

4. Group Recommendations

We are not only interested in recommending valuable suggestions to single patients, but to groups
of patients via the caregivers who are responsible for the groups. Specifically, we focus on suggestions
that are both related and fair to the group members. In Section 3.2, we discussed about the similarity
functions and the relevance function was mentioned in Section 3.3. In this section, we will examine
four different aggregation methods.

4.1. Group Rating Model

Typically, the related work in recommender systems targets at satisfying the interests of individual
users. Recently, group recommenders that produce suggestions for groups of users (see, e.g., [29,52])
that are in the focus of the research literature. Commonly, group recommenders predict relevance
scores for the unrated items for each group member, separately, and aggregate these scores to estimate
the suggestions for the group. Formally, the relevance of an item for a group is defined as follows.

Definition 8 (Relevance). Let U be a set of patients and I be a set of documents. Given a group of patients G,
G ⊆ U, the group relevance of a document i ∈ I for G, such that, ∀u ∈ G, @rating(u, i), is

relevanceG(G, i) = Aggru∈G(relevance(u, i)) (12)

With respect to the items relevance scores, the items with the top-k best scores for the group are
reported to the group.

4.2. Fairness in Group Recommendations

In this work, our aim is to identify and suggest documents highly related and fair to the patients
of the group. Specifically, given set of recommendations for a group to its caregiver, it is possible to
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have a patient u that is the least satisfied one in the group for all documents in the recommendations
list, that is, all items are not relevant to u. That is, this set of documents is not fair to u. In real life,
the caregiver is responsible for the needs of all group patients, and the recommender should suggest
documents that are relevant and fair to the majority of the group. Inspired by work in [30], to increase
the quality of the recommendations, we exploit a fairness definition that evaluates the quality of the
recommendations set. Therefore, given a patient u and a set of recommendations D, we define the
degree of fairness of D for u as

f airness(u, D) =
|X|
|D| (13)

where X = Au ∩ D. Remember, Au are the items with the top-k relevance scores for u. Note that
we only consider the intersection of the two lists as only those are going to be given to the patient.
The group list is actually suggested to a caregiver, who then distributes the documents to the rest of
the group according to how relevant they are to each patient. This is also why we do not take into
account the ranking of each document in the group recommendation list.

To better determine the group cohesion and to understand if any member of the group is biased
against, we define the group discord as the difference between the maximum and minimum fairness in
the group.

groupDiscord(G, D) = maxu∈G f airness(u, d)−minu∈G f airness(u, d) (14)

The group discord takes values from 0 to 5. Ideally, we want group discord to take low values, as this
will mean that the member of the group are treated equally. High values will indicate that at least one
member is not as satisfied as the rest.

4.3. Aggregation Designs

For the aggregation method Aggr, we employ four different designs, each one carrying different
semantics. Specifically, we divide the designs into the score-based and rank-based ones.

Score-based design predictions for documents are calculated with respect to the relevance of the
documents for the group members.

In the case of the average aggregation method, our goal is to indulge the the majority of the group
and report the average relevance for each document. Namely, relevance is computed as

relevanceG(G, i) = ∑
u∈G

relevance(u, i)/|G| (15)

In turn, a rank-based design aggregates the patients recommendations lists using the positions of
their elements. Here, we follow the Borda count method [53], based on which each document gets 1
point for each last place in the ranking, 2 points for each next to last place, and so forth, all the way up
to k points for the first place in the ranking. The document with the more points takes the first position
in the list, the item with the next more points gets the second position, and so on, up to collect the best
k items. The points of each document i for the group G is calculated as follows,

points(G, i) = ∑
u∈G

(k− (pu(i)− 1)), (16)

where pu(i) defines the position of item i in Au.
The Fair method [11] belongs as well to the rank-based methods. Fair considers pairs of patients in

the group to make predictions. Specifically, a document i belongs to the top-k suggestions for a group
G, if for a pair of patients u1, u2 ∈ G, i ∈ Au1

⋂
Au2 , and i is the document with the maximum rank

in Au2 .
To produce recommendations, Fair incrementally creates an initially empty set D by choosing

for each pair of patients ux and uy, the document in Aux with the maximum relevance score for uy

(Algorithm 1). If k (i.e., documents to be reported to the group) is greater than the documents, we are
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able to find recommendations using the method above: we add documents to D by iterating the Au

lists of the group members and adding each time the document with the maximum rank that does not
appear in D.

Algorithm 1: Fair Group Recommendations Algorithm
Data: A group of users G = {u1, . . . , un}, the sets of recommendations Aux , ∀ux ∈ G.
Result: The z documents in the recommendations list D for G.

1 D ← ∅

2 while |D| < z do
3 for x = 0; x < n; x++ do
4 for y = 0; y < n; y++ do
5 if x 6= y then
6 Locate the document i ∈ Auy with the max relevance(ux, i)
7 D = D ∪ i
8 end
9 end

10 end
11 end
12 return D

In addition, we propose a new aggregation method, called AccScores method, which is inspired
by the Borda method, but instead of accumulating the points of each item, we accumulate the scores of
the items. We add the scores as they appear in the Au of all the group members in a set called accDoc.
The first item we select to include in the group recommendation list is the one with the highest score
in accDoc. After each selection, we update a helper structure accUser that consists of the users and
their accumulating preference scores. For each user, we accumulate the scores of the items that were
selected as they appear in the individual preference list Au. If there is a user u that has a lower score
than the rest, in the next selection, we will choose an item that exists in the Au and at the same time
has the highest possible score in the accDoc. If many users have the same lowest score, we select the
user that has been chosen the least amount of times. This process is shown in Algorithm 2.

In Lines 1–10, we populate the sets accDoc and accUser. If all the users have the same accumulated
score (Line 12), then we select the item with the highest score in accDoc (Line 13). Otherwise, we find
the user with the lowest score (Line 15), and then we locate the item that appears both in the user’s
preference list and has the highest possible score in accDoc (Line 16). Then, we add to the structure
accUser the score of the selected item for each member (Lines 18-20). Finally, we include the item in
the group recommendation list D.
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Algorithm 2: AccScores Group Recommendations Algorithm
Data: A group of users G = {u1, . . . , un}, the sets of recommendations Aux , ∀ux ∈ G.
Result: The z items in the recommendations list D for group G.

1 for u ∈ G do
2 for i ∈ Au do
3 if i ∈ accDoc then
4 accDoc[i] = accDoc[i] + relevance(u, i) ;
5 else
6 accDoc[i] = relevance(u, i) ;
7 end
8 end
9 accUser[u] = 0;

10 end
11 while |D| < z do
12 if allEqual(accUser) then
13 id = addTop(accDoc);
14 else
15 p = f indMinUser(accUser);
16 id = addMaxDoc(Ap, accDoc);
17 end
18 for u ∈ G do
19 accUser[u] = accUser[u] + relevance(u, id);
20 end
21 D = D ∪ id;
22 end
23 return D;

5. Dataset

Nowadays, it is quite common for patients to search for information related to their health
problems, as well as to rate the related documents that appear on the Web. However, the profiles of
such patients are not accessible and linked to those documents. For several reasons, including ethical
and legal constraints, the collection and use of such a data is prohibited.

To experiment with such a dataset, we initially exploited 10,000 chimeric patient profiles [54].
These profiles contain characteristics similar to the ones existing in a real medical database.
For example, we consider the patients’ admission details, demographics, socioeconomic details,
labs, and medications. Additionally, we use the ICD10 ontology for describing the health problems for
each patient, making this dataset ideal for our semantic similarity approach.

Then, by exploiting these profiles, we create a synthetic dataset that includes a document corpus
and user ratings. Specifically:

• Document Corpus

– Create document corpus. Initially, we generated numDocs documents for each node in
the second level of the ontology tree that represents the ICD10 ontology. For each such
document, we selected randomly numKeyWords words from the nodes descriptions in each
subsequent subtree.

– Assignment of Education and Health Literacy Levels. We divide the documents based on five
percentage scores eduHLit1 . . . eduHLit5 that correspond to the five different education
levels. We assign to the documents in each subgroup their corresponding education level.
We propose that a document cannot have a vastly different education and health literacy
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score. A document that has high education level is improbable to be for users with low
literacy score and, similarly, a document with high health literacy is not probable to have a
low education level. Therefore, with equal probability, we assign to each document a health
literacy score that is the same, one highest or one lowest level than that of its education level.

• Rating Dataset

– Divide the patients into groups. We assume that all patients have assigned numRatings
ratings to documents. For doing so, we distinguish the patients between occasional, regular,
and dedicated. The users in each group gave few, average and a lot of ratings, respectively.

– Assignment of Education and Health Literacy Levels. The procedure to assign education and
health literacy levels to the patients is the same as the one to assign them to the documents.

– Assignment of Anxiety and Cognitive Closure. Anxiety and cognitive closure scores are regularly
measured for each patient since these tend to change rapidly. This is why in our methods
we only take into account the most recent ones. Therefore, in our dataset, we generate one
anxiety and cognitive closure score for each patient. We follow a similar method as the one
for education and health literacy levels and divide the patients based on five percentage
scores AnxCognCl1 . . . AncCognCl5. However, now anxiety will be the score that will define
cognitive closure. The more anxious a person is about their health problems the more he/she
needs to understand them.

– Simulate a power law rating distribution. When ranking documents with respect to real users
preferences, the documents typically follow the power law distribution. To show this, we
randomly chose popularDocs documents and consider them as the most popular.

– Generate documents to rate. For each patient, we distinguished the ratings that he/she will
give between healthRelevant and nonRelevant. Given the assumption that patients are
interested in both documents related to their health problems, as well as to other documents,
we assigned ratings to both such groups of documents.

– Generate ratings. Last, for each item generated above, we randomly assigned a rating from 1
to 5.

The parameters that were used to generate the datasets needed for our experiments are shown is
Tables 3 and 4, which contain the parameters for the document corpus and rating dataset, respectively.
The education percentages eduHLit1 . . . eduHLit5 are only showcased in Table 4, but the same values
were used for the generation of document corpus.

Table 3. Input parameters for generating the document corpus.

Parameter Name Explanation Value

numDocs # of documents generated for each category of health problems. 200
numKeyWords # of keywords appended to documents. 10
popularDocs The # of the most popular documents in each category, for simulating a power law distribution. 70
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Table 4. Input parameters for generating the ratings dataset.

Partitions Parameter Name Explanation Value

Group Partition
Group occasional # of ratings given by patients in this group is 20 to 100 50% of all patients

Group regular # of ratings given by patients in this group is 100 to 250 30% of all patients
Group dedicated # of ratings given by patients in this group is 250 to 500 20% of all patients

Education Levels

EduHLit1 Patients with Education Level 1 5% of all patients
EduHLit2 Patients with Education Level 2 10% of all patients
EduHLit3 Patients with Education Level 3 40% of all patients
EduHLit4 Patients with Education Level 4 30% of all patients
EduHLit5 Patients with Education Level 5 15% of all patients

Anxiety Scores

AnxCognCl1 Patients with Anxiety Score 1 30% of all patients
AnxCognCl2 Patients with Anxiety Score 2 40% of all patients
AnxCognCl3 Patients with Anxiety Score 3 15% of all patients
AnxCognCl4 Patients with Anxiety Score 4 10% of all patients
AnxCognCl5 Patients with Anxiety Score 5 5% of all patients

Scores Partition

One # of ratings that have as score 1 20% of all ratings
Two # of ratings that have as score 2 10% of all ratings

Three # of ratings that have as score 3 30% of all ratings
Four # of ratings that have as score 4 20% of all ratings
Five # of ratings that have as score 5 20% of all ratings

Ratings Partition

healthRelevant # of relevant to some health problems documents each user will
rate

40% of ratings from
each user

nonRelevant # of non relevant to any health problems documents each user
will rate.

60% of ratings from
each user

6. Evaluation

In this section, we present the metrics we used for the experimental evaluation of the similarities
functions and aggregation methods as well as the results of these evaluations.

6.1. Evaluation Measures

To evaluate the similarity functions, we used the normalized Discounted Cumulative Gain [55].
The nDCG values for all users’ recommendation lists can be averaged to get a measure of the average
performance of a recommendation system. The nDCG can be calculated as follows,

nDCGu =
DCGu

IDCGu
(17)

where

DCGu =
k

∑
i=1

2relevance(u,i) − 1
log2(i + 1)

(18)

and

IDCGu =
k

∑
i=1

2r(u,i) − 1
log2(i + 1)

(19)

The DCGu part of the equation calculates the relevance of the items that appear in the
recommendation list of a user and the IDCGu calculates the relevance of the items in an ideal scenario.
Note that in an ideal recommendation list, DCGu equals to IDCGu producing an nDCG of 1.0. Then,
nDCG scores are relative values on the interval 0.0 to 1.0.

To evaluate the top-k results of each aggregation method, we counted the average of the distance
between the top-k recommendation list produced for the group and the list produced for each user
separately. For computing the distance, we used the Kendall tau distance that numerates the number
of pairwise disagreements between two ranking lists [56].

K(t1, t2) =|{(i, j) : i < j, (t1(i) < t1(j) ∧ t2(i) > t2(j))

∨ (t1(i) > ti(j) ∧ t2(i) < t2(j))}| (20)
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where t1(i) and t2(i) are the rankings of the element i in t1 and t2, respectively.

6.2. Evaluation Results

6.2.1. Evaluation of Similarity Functions

To evaluate the proposed similarity functions, we used the recommendations produced for single
users. We used 50 users, for which we hidden 20% percent of their ratings. We then applied the
recommendation algorithm using different values for the variables α, β, γ, and δ and predicted a
score for them. We used the hidden items as the ground truth for the calculation of the IDCG. Finally,
we averaged these scores. The results are shown in Figure 2. In our experiments, for computing the
semantic similarity function SemS, we used the value of 0.1 for constant w that is needed in Definition
1. As a reminder, α is the weight that corresponds to the rating similarity RatS, β to health problems
similarity SemS, γ to education/health literacy similarity EducStatusS, and δ to anxiety/cognitive
closure similarity PhychStatusS.

Figure 2. nDCG values for different values of α, β, γ, and δ.

In our previous work [11], we showed that SemS outperforms RatS. We now want to focus
on what effect the EducStatusS and PhychStatusS has on them. When we introduce the two new
similarities to the old ones, we can still observe that the SemS gives better results. However, if we
combine all the similarities we get the best nDCG values. The SemS and RatS similarities can
compensate for the faults of each other. SemS can find patients with similar health problems which
means that they have an interest in the same documents. RatS can find all the other patients that
are not necessarily related with similar health problems, but have a similar interest in documents.
The results improve further when we EducStatusS and PhychStatusS. They further refine the selection
of the peers, so the recommendations are more accurate.

We did not make any evaluations for γ and δ on their own as the EducStatusS and PhychStatusS
similarities offer more auxiliary and not defining information for the patients. They need another
similarity to augment their knowledge in order to function as intended.

6.2.2. Evaluation of Aggregation Methods

To evaluate the effectiveness of each aggregation method, in regards to the construction of the
final group recommendation list, we use the Kendall tau distance. In more detail, we calculate the
distance between the top-k list of each group member, and the recommendation list for the group.
Additionally, we have normalized all distance scores to the range of [0,1]. Intuitively, a low distance
score between the two lists, meaning that the recommender system suggests close to optimal items
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for that user. In this way, we can estimate the difference between the lists, and consequentially how
many of the most highly recommended documents for each user, have been included in the group
recommendations. These experiments help us identify whether each aggregation method makes
adequate use of the individual top-k list of the members of the group.

To produce these results, we selected randomly 40 different groups with approximately the
same group similarity. Group similarity is defined as the summation of the similarity of all pairs
of users in the group, averaged over the number of the pairs. As our working study case is for
a care provider responsible for a group of patients, it makes sense for these patients to be similar.
Furthermore, we propose that during the formation of the groups the most important factor is the
health similarity followed by their education/health literacy similarity. Their anxiety levels (which are
ephemeral) or their ratings (personal preferences) are not of equal importance when we want to group
people that will be cared for by just one person. We assign the following weights to Equation (10):
α = 0.25, β = 0.4, γ = 0.3, δ = 0.05.

After generating the group recommendation list, we compute for each group member the distance
between the individual top-k list and the group recommendation list. The distance score for one group
for each aggregation method is the average score of the sum of these distances over the size of the
group. After following the same process for all 40 groups, the overall score for each aggregation
method is the mean of the previously calculated scores, over the number of groups. We set k to be 20,
meaning the group recommendation list consists of 20 items. Figures 3 gives the results for groups with
similarity 0.6. This figure will give a general overview of the effectiveness of each aggregation design.

Figure 3. The Kendal tau Distances for groups with group similarity 0.6.

We can see that both the Borda and AccScores aggregation methods perform the best, followed by
the Fair method. Average has the worst results. However, the differences between the aggregation
methods are minuscule. Due to our case study, all the group members are similar to each other
to a degree. When trying to aggregate their top-k recommendations, regardless of the aggregation
design, the most relevant items to the group are suggested. Additionally, as we calculate the average
distance score for each group, it is expected to have higher values of distance scores for each method.
Although the methods identify many of the users relevant documents, the high distance scores mostly
correspond to the difference in the positions of the items between the two lists. What we are more
interested in is the individual satisfaction of each group member. Remember this group does not ask
for recommendations before proceeding to make a decision. We give a list of recommended items to a
carer who proceeds to distribute them to a group of patients that he/she is responsible for.

To better understand the individual impact of the recommendation list to each group member,
we have calculated the group discord. Ideally, we want all the members to be treated equally, meaning
that the group recommendation list should be fair to all group members. This is especially important in
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the health domain, where information about people’s health should be as accurate as possible. In that
regard, the system should not return a list that is biased against one member. Therefore, the lower
group discord values an aggregation method generates, the better it is for our purposes.

Figure 4 shows the group discord values for the same 40 groups we used in the previous experiment.
Even though the previous experiment did not show any huge difference in the behavior of the aggregation
methods, when we compare their fairness aspect, there is a distinct disparity between them. This higher
variance in the group discord scores of the different aggregation methods compared to the ones from the
distance measure is attributed to the different natures of the two measures. Kendall tau distance not only
takes into account the existence of an item in the two lists, but also their position. On the other hand, our
fairness method (Equation (13)) only considers if two items are present in both lists.

Figure 4. Group Discord for groups with group similarity 0.6.

The AccScores method manages to identify a set of items that are almost equally fair to all
members (group discord is lower than 0.5), whereas the Average method has the worst results with
values above 2.5. Borda and Fair methods offer median results, with Borda being slightly better than
Fair. This experiment makes more apparent the advantage of the AccScores method over all the
rest. Even though in the previous experiment it had the same scores as the Borda method, AccScores
manages to be fairer to the members of the group. For our case study, being fair to all members is a top
priority for any system.

7. Conclusions

In this work, we focus on multidimensional group recommendations in the health domain, using
collaborative filtering. For identifying similarity among patients, we go beyond ratings to also consider
the medical problems, the education, the health literacy, and the psycho-emotional statues of the
patients, all available in their personal profile. Based on those dimensions, we introduce a new
aggregation method accumulating preference scores and we experimentally show that it manages to
identify set of items that are almost equally fair to all members of the group.

The semantic similarity measure proposed assumes that the health information of a patient is
captured using standard terminologies. Although this is a common practice nowadays, there is still a lot
of textual information that are not always mapped to standard terminologies. Nevertheless, today there
exist many tools that annotate effectively textual descriptions to terminological terms. For example,
the Bioportal Annotator (https://bioportal.bioontology.org/annotator) exposes programmatically
an API for annotating textual information with multiple terminologies. An extension of our work
could use this API to annotate textual descriptions as well. The same assumption holds for the
interesting documents recommended to the patients. Additionally, as future work, we intend to
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explore whether introducing additional patient characteristics (e.g., gender, stress, and medications) to
our recommendation model can further improve the quality of the recommendations.
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