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ABSTRACT 

Pinja Karttunen: Large Language Models in Healthcare Decision Support 

Bachelor’s thesis 

Tampere University 

Biotechnology and biomedical engineering 

August 2023 
 

Large language models (LLMs) have recently garnered significant attention due to their re-
markable ability to assimilate vast amounts of information and effectively process natural lan-
guage. In healthcare, natural language constitutes a substantial portion of medical data, render-
ing LLMs highly promising for various healthcare applications. This study seeks to explore the 
potential of LLMs in healthcare and clinical decision support (CDS), following PRISMA guide-
lines for reviews. 

The analysis encompasses 44 LLMs, each influenced by several factors impacting their per-
formance. Notably, the datasets utilized for pretraining and fine-tuning processes play a crucial 
role in determining the model’s domain specificity. Furthermore, distinct model architectures are 
tailored for specific tasks, while prompting strategies are frequently employed to refine and en-
hance the model’s performance. 

LLMs exhibit considerable promise for a wide array of healthcare applications. For instance, 
LLMs possess the potential to efficiently handle and analyse medical information, facilitate con-
textual understanding among clinicians and patients, as well as automating the documentation 
of clinical notes and reports. Presently, however, their implementation within the field remains 
limited. 

Notable improvements have been witnessed in the performance of current healthcare-
oriented LLMs, with some achieving expert-level competence in medical question-answering 
(MQA). However, these LLMs face prominent challenges, encompassing ethical concerns, is-
sues related to accountability, and a lack of appropriate regulations. 

Nevertheless, this study reveals numerous promising applications in healthcare where LLMs 
could significantly augment the efficiency, accessibility, and manageability of healthcare deliv-
ery. Addressing the challenges LLMs encounter is essential for their seamless integration into 
practical healthcare applications. As a relatively new technology, the development of LLMs is 
still in its early stages, but their potential is evident through this study. Consequently, fostering 
collaboration among healthcare professionals, developers, regulators, and other stakeholders is 
imperative to cultivate dependable LLMs that align with the demands of the healthcare sector. 
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Suuret kielimallit ovat keränneet valtavasti huomiota lähiaikoina, sillä ne ovat osoittautuneet 
kyvykkäiksi ymmärtämään ja prosessoimaan suuria määriä tietoa sekä tuottamaan luonnollista 
kieltä ihmisen kaltaisesti. Terveydenhuollossa luonnollisen kielen käyttö on merkittävässä 
roolissa lääketieteellisessä datassa, mikä tekee suurista kielimalleista lupaavia teknologioita 
terveydenhuollon sovelluksissa. Tämä kirjallisuuskatsaus on toteutettu noudattaen PRISMA-
ohjeistusta ja sen tavoitteena on tutkia suurten kielimallien potentiaalia terveydenhuollossa sekä 
niiden käyttöä kliinisessä päätöksenteossa. 

Tässä tutkielmassa tarkastellaan 44:ää kielimallia, joiden suorituskykyyn vaikuttavat useat 
tekijät. Mallin esikoulutusdata ja hienosäätödata määrittelevät sen soveltuvuuden tietylle 
toimialueelle. Lisäksi erilaiset kielimallien arkkitehtuurit on suunniteltu erityisesti tiettyihin 
tehtäviin, ja syötteiden järjestelmällistä suunnittelua hyödynnetään usein tavoiteltujen tulosten 
saavuttamiseksi. 

Suurilla kielimalleilla on useita käyttömahdollisuuksia terveydenhuollon sovelluksissa. Ne 
voivat esimerkiksi tehokkaasti käsitellä ja analysoida lääketieteellistä tietoa, helpottaa 
kliinikoiden ja potilaiden välistä informaation ymmärtämistä sekä automatisoida 
lääkärinlausuntojen ja muiden dokumenttien laatimista. Toistaiseksi suuria kielimalleja on 
kuitenkin hyödynnetty vielä melko vähän käytännön sovelluksissa terveydenhuollossa. 

Viime vuosina suurten kielimallien suorituskyky on kehittynyt huomattavasti. Jotkut mallit 
ovat jopa saavuttaneet asiantuntijoiden tason vastatessaan lääketieteellisiin kysymyksiin. 
Kuitenkin nämä mallit kohtaavat myös merkittäviä haasteita, kuten eettisiä ongelmia, 
vastuullisuuskysymyksiä ja tarvittavien sääntelyjen puuttumista. 

Tämä tutkimus esittelee lukuisia lupaavia terveydenhuollon käyttökohteita suurille 
kielimalleille, jotka voisivat olennaisesti parantaa terveydenhuollon tehokkuutta, 
saavutettavuutta ja hallittavuutta. Jotta näitä kielimalleja voitaisiin laajasti hyödyntää 
terveydenhuollon sovelluksissa tulevaisuudessa, on tärkeää käsitellä niiden kohtaamia 
haasteita. Vaikka suuret kielimallit ovat suhteellisen uusi teknologia ja niiden kehitys on 
edelleen alkuvaiheessa, tämä tutkimus osoittaa niiden lupaavat mahdollisuudet mullistaa 
terveydenhuolto. Seuraavaksi terveydenhuollon ammattilaisten, mallien kehittäjien, virkamiesten 
sekä muiden sidosryhmien tulisi tehdä yhteistyötä luotettavien mallien kehittämiseksi, jotka 
vastaavat alan vaatimuksia. 

 
 
Avainsanat: suuri kielimalli, kliinisen päätöksenteon tuki, keskustelubotti, suorituskyky, 

terveydenhuolto 
 
Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla. 
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1. INTRODUCTION  

LLMs have garnered significant attention recently due to their impressive performance 

in various natural language understanding tasks (NLU), such as question-answering 

(QA), machine translation, text summarization and sentiment analysis [1]. In the con-

text of healthcare delivery, LLMs have the potential to play a crucial role, facilitating in-

teractions between healthcare providers, researchers, and patients [2]. These models 

have been described as the most remarkable achievements in the field of artificial intel-

ligence (AI), as they possess the capacity to absorb vast amounts of information and 

interact in a manner resembling human communication [3]. Nevertheless, the extent of 

LLMs’ performance in the healthcare domain remains uncertain – do they meet expec-

tations, or do they fall short of satisfying the specific needs and limitations of 

healthcare?   

For decades, the field of AI has experienced waves of heightened excitement, followed 

by disappointments and setbacks, leading to slow progress. The transformer model ar-

chitecture, introduced by Google in 2017, served as a foundation for more advanced 

LLMs capable of containing trillions of parameters [4]. Consequently, various LLMs 

emerged such as the Generative Pretrained Transformers (GPT) series by OpenAI and 

the Bidirectional Encoder Representative from Transformers (BERT) by Google. These 

models, often referred to as foundation models, laid the groundwork for other LLM vari-

ants like ChatGPT and BioBERT. LLMs find prominent use in conversational AI, com-

monly referred to as “chatbots”. Notably, the release of ChatGPT chatbot in November 

2022 marked a noteworthy turning point for LLMs, attracting over 100 million users ex-

ploring the capabilities of LLMs within two months of its launch [5]. 

In the context of healthcare, LLMs have exhibited potential in assisting clinicians with 

administrative tasks, medical text summarization, data analysis, and optimizing CDS. 

Additionally, LLM chatbots can serve as personalized assistants for patients, providing 

health guidance and support. LLMs also offer translation capabilities for medical texts 

and can be valuable in educational and examination contexts. However, there are no-

table concerns, including privacy issues, bias amplification, tendency to produce hallu-

cinations or false information, and ethical considerations. This thesis aims to address 
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both the advantages and challenges associated with the application of LLMs in 

healthcare. 

Given the rapid advancements in LLM technology over the past few years, this review 

focuses on literature from 2020, primarily centred on the use of LLMs in CDS for 

healthcare. This review first introduces the methodology employed, followed by ad-

dressing theoretical aspects. Subsequently, this study explores the current and poten-

tial applications of LLMs in CDS, reports the performance of existing models, discusses 

prevailing challenges, and considers future prospects.  

This study aims to thoroughly investigate the potential of LLMs in healthcare and CDS 

systems. Through an examination of the current literature, this review endeavours to 

determine whether LLMs can effectively overcome the challenges of implementation in 

the healthcare domain. To achieve these objectives, this review analyses the suitability 

of current LLMs, considering essential aspects such as performance, domain specifici-

ty, model architecture, and prompting strategies, and their corresponding influence on 

model performance. By comprehensively analysing the current state and challenges 

faced by LLMs in healthcare, this study seeks to discover their potential to revolutionize 

healthcare practices in the future. Furthermore, the aim is to provide valuable insights 

into the necessary actions that different stakeholders must undertake to facilitate the 

practical utilization of LLMs. 
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2. METHODOLOGY 

This literature review was conducted by following the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines [6]. The PRISMA analy-

sis facilitated the organization of the material by clustering the articles according to the 

relevant keywords. The data were then categorized into mind maps centred around key 

topics. 

2.1 Search strategy and study selection  

Adhering to the PRISMA methodology ensured transparent collection and systematic 

evaluation of the selected reports for this review. The research questions were defined, 

and the topic was narrowed down to establish the inclusion criteria. 

Suitable reports were searched from databases including PubMed, Andor and Google 

Scholar. The selected search terms comprised “large language model*”, “disease*”, 

“diagnostic*”, “future”, “challenge*”, and “bias*”. The asterisk (*) symbol was used for 

truncation, indicating that any characters could appear after the specified term. Boole-

an operators such as “AND” and “OR” were employed to combine the terms appropri-

ately. Specific parameters were set to narrow down the search results, focusing on 

medical research and the publications started from 2020. 

After identifying the records, a screening process was performed, and certain studies 

were excluded based on predetermined criteria. The exclusion criteria encompassed 

records, that fell outside the scope of the study. Additionally, records that extensively 

discussed the operational principles of the large language model or provided a general-

ized coverage of covered artificial intelligence or natural language processing (NLP) 

were excluded. Furthermore, records presenting the usage of ChatGPT in medical ap-

plications without further deliberation were eliminated. 

From the aforementioned databases, 66 records were identified, of which six duplicates 

were removed. The abstracts and conclusions of these records were observed, result-

ing in the exclusion of nine reports. Furthermore, citation search 51 records were iden-

tified via citation searching and three from websites, which resulted in total of 109 re-

ports for full-text screening. After evaluating the full-texts, 46 reports were rejected, 

mainly due to content repetition with other included literature. Finally, 70 reports met 
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the eligibility criteria for the final review. Figure 1 illustrates the record selection process 

in the form of a PRISMA flowchart. 

 

Figure 1: PRISMA flowchart. [6] 

2.2 Data extraction and analysis 

The material was arranged by grouping the articles based on the keywords, facilitating 

a systematic approach that provided insight into the available information on each top-

ic. Keywords were identified manually from each article and for each keyword, the 

sources in which the keyword was used were documented. Using this method, the ex-

tracted information was recorded, and the clustered material proved advantageous for 

analysis, as it facilitated the identification of articles relevant to the research objectives. 

Additionally, full-article screening revealed recurring topics, around which mind maps 

were constructed to further analyse the studies. This technique aided in visualizing the 

relationships between similar findings. 

The Zotero software was employed to store and organize the collected records [7]. This 

tool automatically identified some keywords from each article, thus establishing a basis 

for keyword clustering. As the research progressed, notes were appended to Zotero, 

thereby augmenting the methodical organization of the articles. Furthermore, the capa-

bility to relocate excluded articles to a trash folder without irreversible deletion provided 

a practical solution. Notably, Zotero generated accurate citations for the sources, offer-

ing a time-saving advantage in the citation management process. 
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3. THEORETICAL BACKGROUND 

The term artificial intelligence refers to computer systems that aim to achieve the capa-

bility of learning, reasoning, and problem-solving in a way similar to that of humans [8]. 

When combined with vast amounts of data and powerful computing resources, ma-

chine learning (ML) comes into play. ML, a subfield of AI, functions without the need for 

explicit programming. The principle involves using training data as input to identify pat-

terns and train a predictive model. Once trained, the model can make predictions by 

analysing new, unseen data, continuously improving its performance. [8] ML can be 

classified into supervised learning, unsupervised learning, and reinforcement learning 

[9].  

Deep learning utilizes algorithms that operate at multiple layers of abstraction to identi-

fy complex patterns from input data. These layers progressively transform raw data into 

novel and more abstract presentations. The advantage of these non-linear operations 

lies in their ability to learn highly intricate functions, and these algorithms may be su-

pervised or unsupervised. [8,10,11] Recurrent neural network (RNN), convolutional 

neural network (CNN), and deep reinforcement learning are deep learning architec-

tures and algorithms that play significant roles in NLP [9,12]. NLP focuses on analysing 

and representing human languages for tasks such as speech recognition, machine 

translation, text generation, QA, and information extraction [8]. Figure 2 illustrates the 

relationships of the presented concepts. 
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Figure 2: The intersections of AI, ML, NLP, DL, and LLMs 

Transformer models, the most recent architecture models in NLP, are typically trained 

using self-supervised learning and fine-tuning [12]. In self-supervised learning, the 

model first learns about the specific medical field without explicit labels. The model lev-

erages vast amounts of unlabelled data to learn complex structures and features. Fol-

lowing this preliminary training, the models are further trained on a smaller labelled da-

taset specific to the medical domains. This fine-tuning process enables the model to 

connect its preliminary knowledge with the explicitly labelled dataset, enhancing its 

ability to solve its primary task. [13] 

Figure 3 presents different training approaches for LLMs. The first row demonstrates 

pretraining of domain-specific language models from scratch, solely focusing on the 

clinical domain dataset. The second row showcases models trained using Domain-

Adaptive Pretraining (DAPT), where a general-domain model is further pretrained with 

clinical domain’s dataset. The third row depicts fine-tuning a general model’s founda-

tion, while the fourth row represents a general-purpose model. In-context learning can 

be applied to all models, involving guiding the model with various prompting strategies, 

as discussed in Section 3.2, to enhance their adaptability and performance in specific 

tasks. [14]  
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Figure 3: Training Approaches for LLMs, edited from Lehman et al. [14] 

3.1 Large language models in healthcare 

In recent years, there has been a tremendous growth in the development of LLMs, with 

continuous updates and improvements to existing models. Moreover, new variations of 

models such as GPT and BERT are being specifically developed to cater to specific 

requirements and demands. For instance, domain-specific LLMs like BioGPT and 

PubMedBERT have been developed to address the unique needs of the biomedical 

field and its applications. To adapt the model for the healthcare domain, it can be either 

pretrained using clinical domain data or fine-tuned from a general model. 

LLMs can be classified into three distinct architectures: encoder-only, decoder-only, 

and encoder-decoder models, each differing in how they handle information between 

input and output. Encoder-only LLMs process and represent the input data by encoding 

the text into continuous vector representations, capturing contextual information in the 

process. In contrast, decoder-only models generate output based on the given context. 

They do this without explicitly encoding the input, often by predicting the next token in a 

sequence. Encoder-decoder models combine these approaches, first encoding the in-

put data and then decoding it to generate output. [15] The original transformer model 

[4], which serves as the basis for subsequent LLMs, employed an encoder-decoder ar-

chitecture. 

Decoder-only models are typically used for text generation tasks, while encoder-only 

models find applications in classification, sentiment analysis, named entity recognition 

(NER), and other downstream tasks. Encoder-decoder models are employed in tasks 

where output is generated from the input, such as text translation and summarization. 

[15] 
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LLMs can be trained using large general datasets from diverse domains to provide a 

broad understanding of various subjects. Alternatively, they can be trained using do-

main-specific data, such as healthcare data, to offer more precise information. If a 

model is initially trained with general data and subsequently fine-tuned with domain-

specific data, it is considered a general domain model. In this study, the model is clas-

sified as a specific domain model, if it is trained specifically for healthcare purposes 

without general domain data, as illustrated in the first row in figure 3. 

This study focuses on LLMs developed by companies and institutions. Companies like 

Google, OpenAI, Microsoft, DeepMind, Meta AI, NVIDIA, Healx, and ZoomRx, as well 

as institutions such as Stanford University, Massachusetts Institute of Technology, Uni-

versity of Florida, National Centre for Biotechnology Information, MosaicML, Allen Insti-

tute for AI, King’s College London, and University College London, have contributed to 

the development of these LLMs. 

Figure 4 illustrates the current healthcare LLMs reviewed in this literature study. The 

figure provides a timeline of LLM releases and the corresponding publishers. Encoder-

only models are represented in green, decoder-only models in red, and encoder-

decoder models in blue. General domain models and specific domain models trained 

are differentiated using lighter and darker colour, respectively. Additionally, the logos of 

companies are explicitly displayed in the figure, while models developed by institutions 

are represented by a unified icon.    
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Figure 4: LLMs utilized in healthcare [1,12,14–44] 
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In total, there are 15 domain-specific models and 29 general domain models among 

the 44 models analysed in this study. 19 models have been developed by institutions, 

with Stanford University and Massachusetts Institute of Technology contributing 5 

models from each. Google, OpenAI, DeepMind, and Microsoft being the most promi-

nent contributors among the models developed by companies. 

Figure 4 demonstrates that the release of OpenAI’s GPT-3.5 model in March 2022 trig-

gered a wave of model publications from other companies and institutes, some of 

which utilized the GPT-3.5 as a foundation. Recently, decoder-only models, have a ma-

jor role compared to other model types. This can be attributed to their architecture, 

which allows them to efficiently capture long-range dependencies and learn contextual 

representations [15].  

3.2 Prompting strategies 

Prompting strategies are frequently employed to enhance and refine the performance 

of models without any fine-tuning or updates. Given the considerable cost associated 

with fine-tuning LLMs and the remarkable success of in-context learning, these strate-

gies are widely adopted. In the standard prompting technique, a concise prompt is pro-

vided to the model to achieve the desired output. To further guide the model towards 

improved performance, more systematic prompting methods are employed. Utilizing 

defined prompting strategies, such as few-shot, zero-shot, chain-of-thought (CoT), self-

consistency (SC), ensemble refinement (ER), self-questioning (SQ), allows for reliable 

performance comparison. [1,2,23] 

In zero-shot prompting, the model is expected to perform without exposure to any la-

belled dataset. Conversely, in few-shot prompting, the model is given a few examples 

of input-output pairs for adaption. CoT involves providing a step-by-step explanation 

towards the final answer, guiding the model through logical reasoning. [1,23] 

Wang et al. introduced a strategy inspired by human-like reasoning, called self-

questioning prompting. SQ aims to deepen the model’s comprehension of the desired 

concepts by posing multiple targeted questions about the task. These questions are 

designed to cover different aspects of the key elements, thereby enhancing the model’s 

ability to provide improved answers. [1] 

In tasks that involve complex deductions, there may be multiple paths to arrive at the 

same answer. Therefore, it is beneficial to elicit multiple outputs from the model and se-

lect the final answer based on the majority vote. This prompting strategy is known as 

self-consistency. [2] 
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Singhal et al. devised the ER strategy, which combines the characteristics of CoT and 

SC. Firstly, the model is provided with CoT prompt and a question resulting in the gen-

eration of multiple reasoning paths towards various answers. Secondly, the model is 

prompted to produce a refined explanation and answer based on the generations from 

the previous step, the original prompt, and question. The second stage of ER, which 

can be interpreted as SC, is typically repeated multiple times, and the final answer is 

determined through a majority vote. [23] 

3.3 Definition of performance 

Considerable research has been done to evaluate the performance of current LLMs 

and compare different models. Performance assessment often relies on standardized 

benchmark datasets that encompass various forms of MQA [2]. Furthermore, biomedi-

cal benchmarks are used in medical licensing examinations [45]. Benchmarks involve a 

range of question types, including both long, narrative answers and shorter, multiple-

choice questions. Each dataset focuses on distinct aspects of medical knowledge, such 

as medical exams, medical research, or consumer health. Benchmarks can be further 

divided into closed domain or open domain datasets. In closed domain datasets, an-

swers are restricted to a predetermined set of sources, while open domain datasets 

have no such limitations. [2] 

For example, the MedQA dataset contains multiple-choice questions sourced from the 

US medical licencing exam (USMLE), and MedMCQA dataset is collected from Indian 

medical school entrance exams (AIIMS and NEET-PG) [2,46]. PubMedQA focuses on 

multiple-choice questions derived from biomedical scientific literature. On the other 

hand, MedicationQA provides long-form answers that cater to general medical 

knowledge sought by consumers. [2] Another dataset, MedSTS, comprises sentence 

pairs annotated from clinical notes and can be utilized for evaluating the semantic tex-

tual similarity of two texts [12]. 

Using benchmark datasets, the performance of LLMs can be evaluated on diverse clin-

ical language understanding tasks. In addition to straightforward QA, and semantic tex-

tual similarity (STS) task, a natural language inference (NLI) task intends to verify 

whether a conclusion can be inferred from text in question [12]. Relation extraction 

(RE) involves jointing and classifying the relationships and entities from text. If the in-

tention is to classify the document into predefined categories, the task is called docu-

ment classification. [20] Alternatively, if classification is performed according to prede-

termined entities, an NER task is in question [1]. 
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4. LARGE LANGUAGE MODEL APPLICATIONS 

IN HEALTHCARE AND DISEASE DIAGNOS-

TICS 

LLMs possess advanced capabilities in processing and generating natural language, 

rendering them highly suitable for a wide range of healthcare applications. These appli-

cations encompass the handling and analysis of medical information, as well as the fa-

cilitation of contextual understanding for healthcare professionals and patients. This 

chapter delves into the utilization of LLMs in healthcare, exploring various potential use 

cases and existing applications in the field. 

4.1 Potential use cases 

Electronic health records (EHRs) and electronic medical records (EMRs) are both re-

positories of medical information pertaining to patients. EMRs are typically confined to 

a specific healthcare organization, whereas EHRs cover information related to encoun-

ters with multiple components of the healthcare system throughout a person’s life, and 

can possibly be shared and accessed by multiple healthcare organisations [47]. For the 

sake of simplicity, this section employs the term EHR to encompass scenarios applica-

ble to both EHRs and EMRs.  

4.1.1 Clinical workflow 
Medical information is expanding rapidly, posing various opportunities but also signifi-

cant challenges for healthcare professionals. The retrieval process needs to be credi-

ble, relevant, accessible, fast, and user-friendly. EHRs contain extensive medical in-

formation about patients, including structured and unstructured data elements such as 

medical history, medications, diagnoses, and test results. [45,48] LLMs have the poten-

tial to assist healthcare professionals in managing medical literature, interpreting pa-

tient records, and developing personalized treatment plans [1]. 

Preventive care and overall health maintenance are crucial in disease prevention. 

Smartphone applications and wearable technology (wearables) offer solutions for pro-

moting people's health. LLMs can analyse personal health data from these modern 

applications. Moreover, integrating chatbots with these applications can provide health 
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guidance. For example, a chatbot can provide medication information including poten-

tial interactions with other substances and possible side-effects. Additionally, chatbots 

can serve as virtual assistants for evaluating the need for care, managing health in-

formation, scheduling appointments, or providing pre-operative instructions. [49] 

Efficient medical triaging of patients requires fast reasoning and ability to determine 

the severity and urgency of their conditions [49]. LLMs, capable of managing data from 

multiple sources, can utilize patient pre-test odds, diagnostic likelihood ratios, and 

EHRs to guide triage decisions and improve efficiency [50]. 

Clinicians often need to review a patient’s medical history before an appointment. LLMs 

can summarize patients’ EHRs, saving clinicians time by extracting meaningful infor-

mation such as symptoms, diagnoses, treatments, imaging reports, and lab results 

from the record. Clinicians can also pose specific questions to LLMs, leveraging the in-

formation within EHRs. [49,51] SNOMED CT is the world’s most extensive clinical ter-

minology, which determines the global standards for clinical terminology [52]. Patient 

records can be inputted into standardised ontology based LLMs, such as foresight 

GPT, to generate probabilistic forecasts [45]. Additionally, LLMs can summarize rele-

vant, patient-specific information from scientific research and medical papers to quickly 

identify key findings and insights for clinical decisions [53,54]. 

A CDS optimizes clinical decision-making by providing information and recommenda-

tions to physicians, patients, and other stakeholders [51,55]. The adoption of EHR has 

increased the use of CDS to enhance healthcare services and patient outcomes, since 

CDS can provide for example treatment planning and diagnosis suggestions from 

EHRs [55]. Integrating LLMs to CDS infrastructure can improve the accuracy and effi-

ciency of the systems [50]. Certified EHRs require rule-based and data-driven CDS 

alerts that provide task- and patient-specific recommendations, improving clinical quali-

ty and addressing disparities. These alerts include potential drug interactions, allergies, 

or other considerations that should be considered in decision-making. However, clini-

cians often experience alert fatigue due to the constant influx of alerts, resulting high 

rate of ignored or cancelled alerts. LLMs can improve CDS logic and optimize CDS 

alerts to mitigate these challenges. [55] 

With more accessible imaging technologies and aging population, medical imaging vol-

umes are predicted to increase [50]. LLMs hold potential for integration with computer-

aided diagnosis (CAD) systems in medical imaging. By combining the medical 

knowledge and logical reasoning of LLMs with the vision understanding capabilities of 

CAD systems, the interpretability of results can be enhanced for clinicians and patients. 
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For example, medical images can be processed by CAD models, and the output can 

be translated into natural language. LLMs can summarize these results and facilitate 

discussions on symptoms, diagnosis, and treatment. However, LLMs currently face 

challenges in understanding visual information, limiting their support in clinical decision-

making. The proposed strategy of Wang et al. for utilizing LLMs in CAD in Medical Im-

aging is illustrated in the Figure 5. [56]  

 

Figure 5: LLM utilization in CAD in Medical Imaging [56] 

Documentation consumes a significant amount of physicians’ and nurses’ time [57]. 

Clinical notes include various elements such as summaries of admissions, medical his-

tory, consultation notes, and examination findings [58]. LLMs can generate draft docu-

ments for medical professionals to review and edit [59]. By leveraging LLMs for paper-

work, clinicians can focus their attention on providing patient care [60]. LLMs specifical-

ly trained for certain field, such as radiology, can aid in creating report templates for 

specialists [27]. Furthermore, specific models can be trained to generate summaries di-

rectly from medical dialogues [61].  

Clinical notes are typically written in highly technical language containing jargon, which 

can be challenging for patients to understand as they are traditionally not meant for pa-

tients. LLMs can simplify clinical documents into patient-friendly language, significantly 

improving the accessibility of medical information. [54,60] Additionally, LLMs can trans-

late medical documents into a patient’s native language, utilizing appropriate medical 

terminology, further enhancing availability and comprehension [62]. 

Chatbots can be implemented in follow-up and postoperative care to respond to pa-

tients’ concerns in a timely manner. Chatbots can instantly provide educational in-

formation or care instructions tailored to the patient’s needs. [49,63] Furthermore, 

these applications can offer emotional and psychological support, allowing patients to 

discuss personal difficulties without judgement. The ability to provide remote support 

from home can be highly valuable for numerous patients. [63] 
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Wearables play a convenient role in remote patient monitoring. The devices can be 

incorporated into health coaching programs to prevent or improve chronic conditions 

such as obesity or cancer. [63] As previously discussed, LLMs can analyse data from 

wearable devices, providing results to the patient or to healthcare professionals for in-

tervention in potential setbacks [49]. Wearables can also include LLM-generated medi-

cation reminders to ensure patients receive the correct medication at the appropriate 

time and dosage [53]. Integrating these remote patient care systems with chatbots can 

harness the advantages of both approaches [63]. 

4.1.2 Other possibilities 
LLMs have a great potential for use in education of healthcare students, patients, and 

clinicians [53,57,64]. In the context of learning, LLMs can generate mnemonics, expla-

nations of concepts, and medical exams or questions to aid learners [64]. Moreover, 

LLMs can generate patient education materials to explain disease-specific concepts in 

a patient-friendly manner [53]. Additionally, LLMs can assist clinicians in efficient medi-

cal information searching, leveraging their powerful search engine capabilities [65]. 

These education materials can be translated into the recipient’s preferred language by 

LLMs to ensure comprehensibility [66]. 

LLMs can also support the process of writing medical reports for physicians [64]. 

Medical reports are composed of the patient’s clinical notes, which include background 

information, medical history, physical examination, specimens, treatments, and sug-

gested opinions. These reports serve as a means of communication between physician 

and legal system, often required for criminal or civil transactions involving entities such 

as the police, government tribunals, insurance companies, lawyers, or patients them-

selves. [67] In social media posts on platforms like TikTok [68] and Twitter [69], Dr Cliff 

Stermer, a rheumatologist, showcased the capability of ChatGPT to draft a letter ad-

dressed to an insurance provider. The demonstration involved the drafting of a com-

prehensive letter that included references and was centred around a patient with sys-

temic sclerosis who required approval for echocardiogram. These posts garnered con-

siderable attention, generating widespread views, and sparking discussions around the 

topic. 

For examination purposes, LLMs can enhance clinical trial matching and clinical trial 

enrichment processes through their abilities in clinical information extraction and clini-

cal reasoning. [57,70]. LLMs can improve compatibility between the EHRs and eligibil-

ity criteria by identifying relevant ontologies and terminologies and selecting appropri-

ate patients for trials [71]. Furthermore, LLMs can be utilized to identify patterns from 
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research data, and generate charts based on them [53,72]. LLMs can also assist re-

searchers in creating examination documents and translating articles and studies [53].  

Several studies have explored the use of LLMs in speech-related applications. Amini 

et al. and Agbavor et al. conducted studies demonstrating the potential of LLMs in early 

detection of Alzheimer’s disease and related dementias. Speech analysis can be a val-

uable predictor of cognitive impairments associated with Alzheimer’s disease. Both 

studies employed similar approaches, utilizing speech-to-text conversion for voice re-

cordings, and employing LLMs to detect cognitive impairments from generated text. 

[73,74] LLMs can also be utilized in other neurogenerative conditions that cause 

speech impairments. Willet et al. presented a study on decoding brain signals and at-

tempted handwriting movements into real-time translated text, where LLMs were ap-

plied to autocorrect errors in the generated output. [75] Figure 6 illustrates some of the 

potential use cases of LLMs. [76]  

 

Figure 6: Potential use cases of LLMs. Adapted from Meskó and Topol [76].   
Created with BioRender.com  

4.2 Current applications 

To assist physicians with their documentation tasks, Nabla Copilot, a GPT-3 based 

digital assistant accessed as a Chrome extension, proves beneficial [77]. Copilot tran-

scribes and repurposes information from patient encounters into prescriptions, refer-
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rals, follow-up appointment letters, and consultation summaries. The clinical notes can 

be edited and further updated in patients’ EMRs. The application provides a reliable 

tool to accurately capture every word from encounters, allowing physicians to shift their 

focus to the consultation with the patient. [77,78]  

Nuance, a leading provider of clinical speech recognition products for healthcare pro-

viders, is widely used in the U.S. with a significant market share among radiologists 

and other physicians [79]. In March 2023, Nuance introduced Dragon Ambient eXperi-

ence (DAX) Express, their latest documentation product, which leverages the revolu-

tionary capabilities of the GPT-4 model to enhance their previous market-leading DAX 

model. The integration of the generative AI model automates the drafting of clinical 

notes, saving valuable time for clinicians. [80] 

Doximity, in collaboration with ChatGPT, has developed a beta version called 

DocsGPT on their digital platform to assist physicians with administrative tasks. This 

product has been fine-tuned in collaboration with doctors to ensure accurate adaptation 

to the healthcare field. DocsGPT allows for the drafting and faxing pre-authorization 

and appeal letters to insurers digitally. As previously mentioned, LLMs cannot generate 

documents without doctors’ review, so the product prompts the user to ensure accura-

cy before submission. Doximity’s future goal is to further develop DocsGPT for com-

mercialization and broaden its functionalities. [81] 

One of the fastest-growing health service provider Babylon Health combines LLM in 

their AI-driven primary care chat service. LLM is used to assist healthcare provider, for 

example asking by questions about the patient’s symptoms and delivering personalized 

medical advice. [82]  

MedMatch Network serves as a platform for facilitating patient referral management 

and secure information exchange, connecting physicians, other service providers, and 

patients through over 1.7 million profiles. It integrates EHR systems, automates ap-

pointment scheduling, and provides updates and alerts to both providers and patients. 

MedMatch Network utilizes ChatGPT to offer a chatbot for MQA to assist patients. [83] 

The managed chatbot service ChatBeacon offers emotional assistance and support, 

particularly for individuals with mental health problems. It aims to empower individuals 

by providing self-care exercises and crisis support. The chatbot operates 24/7 and de-

livers individually tailored responses, making it valuable for those in need of non-

judgemental support. [84]  

Livewello and Amazfit incorporate chatbot features in their respective applications [85]. 

Livewello is a genome data-analysis tool that incorporates GeneChat, enabling users to 
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ask questions about their genetic data or their personal health record [86]. Amazfit 

manufactures health management wearables that offer LLM-powered chat for personal 

coaching [87]. 

Ferma is a chatbot specifically designed to answer life science questions. It utilizes 

ChatGPT along with specific pharma and clinical datasets for question-answering. 

What sets Ferma apart is that it provides step-by-step reasoning and used sources for 

the user. [39]  

Bionic Health has incorporated GPT-4 capabilities into their preventative care platform, 

which aims to connect patients to physicians and optimize their health between in-

person appointments. The GPT-4 based model analyses data points from patient’s di-

agnostic data to provide personalized solutions. By automating physicians’ tasks, LLM 

enhance the platform’s efficiency and accuracy, providing decision support for physi-

cians. [88]  

Be My Eyes Virtual Volunteer is a digital virtual assistant tool designed for individuals 

who are blind or have low vision. Powered by GPT-4, this application leverages ad-

vanced image-to-text functionality to assist users in their daily activities. By capturing 

images of their surroundings and posing questions, the Virtual Volunteer utilizes the in-

tegrated GPT-4 model to gain a deeper contextual understanding and effectively func-

tion as a conversational agent, simulating human interaction. [89] 

Epic Systems’ EHR software has a vast user base, with over 305 million patients’ EHR 

worldwide [90]. Apotti, the Finnish electronic health and social data record, also em-

ploys Epic for its operations [90,91]. Epic utilizes GPT-3 and GPT-4 models for draft-

ing message responses to patients and for data analysis purposes [90]. 

Dot Compliance provides electronic quality management system (eQMS) solutions 

for medical device and pharmaceutical organizations. Their latest eQMS product, QMS 

Xpress, incorporates a ChatGPT-powered platform that offers corrective and preven-

tive suggestions for quality managers. It monitors and analyses all processes conduct-

ed in the eQMS, ensuring that no quality issues go unnoticed. This technology im-

proves overall quality and efficiency while reducing costly regulatory penalties, recalls, 

and reputational damage. [92] 

Kahun’s pre-consultation tool integrates an evidence-based clinical reasoning tool 

with ChatGPT. The pre-consultation interview is utilized by using ChatGPT’s engines, 

forming the basis for the subsequent clinical assessment. [93] Kahun also automatical-

ly integrates with the patient’s EHR, connecting the original sources to the clinical rea-

soning path and recommending related workup for physicians. The tool offers trustwor-
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thy, patient-tailored clinical assessment to optimize physician time, along with a user-

oriented interface made possible by ChatGPT integration. [94] 

4.3 Performance of current models 

This section aims to delve into the performance and potential of LLMs in healthcare 

applications, while also discussing their accuracy rates, effectiveness, and benchmark 

scores. The objective is to examine the variations and distinctions among different 

LLMs addressed in this study. 

4.3.1 Diagnostics and triage 
In a study of Levine et al., GPT-3’s diagnostic and triage performances were com-

pared with those of lay Internet users and primary care physicians. Using 48 validated 

case vignettes for common and severe illnesses, the results indicated that GPT-3 per-

formed significantly better than lay individuals but fell short of the performance exhibit-

ed by physicians. [95] These findings suggest that while GPT-3 is not comparable to 

physicians on its own, it may have potential in assisting lay individuals with health-

related tasks. 

Agbavor et al. utilized GPT-3 to assist in the early diagnosis of dementia using speech 

data. The GPT-3 model generated text embeddings of transcribed speech, capturing 

the semantic meaning and providing a viable approach to predicting dementia from 

spontaneous speech. Their study demonstrated the potential utility of GPT-3 in detect-

ing dementia and interpreting a patient’s cognitive abilities [74]. 

4.3.2 Radiology 
Wagner et al. conducted an evaluation of the performance of ChatGPT-3 in radiologi-

cal QA. In their study, ChatGPT-3 provided correct answers to only two-thirds of the 

questions. Additionally, they discovered that the answers provided by ChatGPT-3 often 

lacked proper references or contained insufficient information to address the questions 

adequately [96]. 

Rao and her colleagues evaluated ChatGPT-3.5 in CDS for radiology. They evaluated 

the capability of ChatGPT-3.5 to identify appropriate imaging services for breast pain 

and breast cancer screening. They found that the accuracy varied by one-third, reach-

ing approximately 90 % accuracy in breast cancer screening and under 60 % for breast 

pain. They also observed significant differences in accuracy based on the employed 

prompting strategies. [50] Similarly, Bhayana et al. explored ChatGPT-3.5’s perfor-

mance in radiology using a dataset of 150 multiple-choice questions, resembling the 
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Canadian Royal College and American Board of Radiology examinations without imag-

es. They discovered that ChatGPT-3.5 performed better in questions requiring lower-

order understanding compared to those requiring higher-order thinking, particularly 

struggling with questions involving description of imaging findings, calculation, classifi-

cation, and concept application. Overall, it answered 69 % of questions correctly, near-

ly passing the radiology board-style examination without radiology-specific pretraining, 

suggesting exciting potential for LLMs in radiology. [65] 

Jeblick and co-authors and Lyu et al. utilized ChatGPT-3.5 to simplify radiology re-

ports. Jeblick et al. simplified 45 reports, which were evaluated by 15 radiologists who 

generally deemed them factually correct, though some statements were incorrect or 

lacked key information [97]. In Lyu et al.’s study, radiologists evaluated 138 simplified 

screening reports generated by ChatGPT-3.5. The model received an average score of 

4.268 on a five-point system, with a minimal incorrectness and missing information. 

However, the suggestions in the reports tended to be more general than specific.  The 

study also investigated the impact of different prompts on performance, revealing op-

portunities for notable improvements. Additionally, they compared ChatGPT-3.5’s per-

formance with that of GPT-4 in the same task, and GPT-4 generated reports were 

evaluated as significantly higher quality, achieving 96.8 % accuracy with the optimized 

prompt. These results illustrate the potential of LLMs for report simplification but em-

phasize the need for physician involvement and fine-tuning of the used model. [66] 

CheXbert is an LLM designed for automated radiology report labelling. It is fine-

tuned from BERT using existing radiology report labellers and expert annotations aug-

mented with backtranslation. CheXbert has demonstrated superior performance to pre-

vious models trained solely on radiologist labels or only on existing report labellers, 

nearly matching the performance of board-certified radiologists. [35] CXR-BERT is a 

radiology-specific text encoder trained from scratch, exhibiting improved performance 

in radiology NLI tasks, surpassing PubMedBERT, ClinicalBERT, and the score of the 

radiology NLI benchmark [27]. 

4.3.3 Benchmarks 
Zhong and his team conducted a comprehensive comparison between ChatGPT-3 and 

fine-tuned BERT models. Using the GLUE benchmark, they found that ChatGPT-3 per-

formed better in inference tasks due to its reasoning ability, while BERT models outper-

formed ChatGPT-3 in NLU tasks such as paraphrase and similarity. In sentiment anal-

ysis and QA, both models performed equally. The study also highlighted the significant 

performance improvement when utilizing advanced prompting strategies with 
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ChatGPT-3. [98] Additionally, Tang et al. showed that ChatGPT-3 underperformed 

compared to fine-tuned BERT models. They proposed a training paradigm to improve 

the performance of LLMs, but even with the improvement, it did not surpass the per-

formance of BERT models. [40] Similarly, Gutiérrez et al. reported similar results, with 

the GPT-3 model failing to surpass fine-tuned BERT models [99]. 

Liévin et al. demonstrated that various LLMs, including GPT-3.5, U-PaLM, PubMed-

BERT, BioLinkBERT, BioGPT, BioMedLM (PubMedGPT), and Galatica achieved com-

parable performance to humans in MedQA, MedMCQA, and PubMedQA benchmarks. 

They also highlighted the significant improvement in model performance when using 

CoT in MQA. [46] In comparison, Au Yeung et al. showed that ForesightGPT outper-

formed ChatGPT-3.5 in diagnosing form clinical histories, offering more transparent 

output and specific suggestions [45]. Additionally, Thirunavukarasu et al. found that the 

performance of ChatGPT-3.5 fell below the average passing mark on the Applied 

Knowledge Test of general practitioners in the UK, indicating the need for further de-

velopment [100]. 

According to Wang et al. GPT-4 outperformed Bard and GPT-3.5 in tasks such as NLI, 

NER, and STS. In RE, both GPT-4 and Bard performed comparably, surpassing the 

performance of GPT-3.5 depending on the dataset [1]. Additionally, GPT-4 demon-

strated superior performance to GPT-3.5 in a multiple-choice MQA benchmark, includ-

ing 30 % higher score on MedQA [54]. Wang et al. also introduced the SQ prompting 

technique, which outperformed standard and CoT prompting techniques, suggesting its 

utilization to maximize the effectiveness of LLMs in the healthcare domain [1]. 

Domain-specific LLMs, such as BioBERT, PubMedBERT, and BioGPT demonstrated 

superior performance compared to LLMs not trained with medical data, such as Open-

AI’s GPT models and Google AI’s BERT models [54]. For instance, BioBERT, fine-

tuned on biomedical text mining tasks like NER, RE, MQA, outperformed BERT in 

these tasks [17]. Similarly, BioGPT achieved performance comparable to BioBERT 

and other pre-trained biomedical LLMs, including PubMedBERT, BioLinkBERT, in 

three end-to-end RE benchmarks, and PubMedQA. [20] 

GatorTron outperforms BioBERT, ClinicalBERT and BioMegaTron on three bench-

mark datasets. Yang et al. explored the impact of scaling up the number of parameters 

and training data size in GatorTron models. The largest GatorTron model, with 8.9 mil-

lion parameters, achieved the best performance across NER, RE, NLI, and MQA tasks. 

The medium-sized model performed slightly better in STS tasks. Increasing the training 

data size also resulted in improved performance in most tasks, except for MQA. The 
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main challenge for GatorTron is to identify key information from longer paragraphs. 

These findings suggest the applicability of GatorTron models in medical AI systems 

due to their observed performance. [12]  

Flan-PaLM achieves 67.6 % accuracy on the MedQA benchmark, and it exhibits 

slightly superior performance in the MedMCQA dataset compared to Galatica, as well 

as comparable performance in PubMedQA alongside BioGPT and PubMedGPT. Fur-

thermore, Flan-PaLM outperforms PaLM, Copher, Chinchilla, and Galatica, in the 

MMLU dataset. [2] However, it falls short compared to GPT-4 in multiple-choice MQA 

benchmark with four datasets [54]. Singhal et al. corroborate these finding on different 

model size variants, aligning with the conclusions drawn by Yang et al. Additionally, 

Signhal et al. introduce Med-PaLM, which incorporates instruction prompt tuning based 

on Flan-PaLM [2]. 

Med-PaLM emerges as the first model to surpass the passing score on the MedQA da-

taset. The enhanced version, Med-PaLM-2, achieves a 19 % higher score than the 

previous state-of-the-art (SOTA). Furthermore, Med-PaLM achieves SOTA results in 

several other MQA benchmarks. Singhal et al. assess the performance of Med-PaLM-

2 on long-form questions and find that the model’s answers are preferred over those 

provided by physicians in eight of nine axes, including factuality and reasoning capabil-

ity. When comparing Med-PaLM-2 to Med-PaLM, it is evident that Med-PaLM-2 per-

forms significantly better across various axes, including lower risk of harm. Moreover, 

when compared to other LLMs in multiple-choice benchmarks, Med-PaLM-2 achieves 

the best results. Singhal et al.’s comprehensive study provides compelling evidence of 

Med-PaLM-2’s superior SOTA performance in both multiple-choice and long-form MQA 

tasks. [23] 

Several studies utilized the MedQA benchmark dataset, obtained from USMLE, to as-

sess the performance of LLMs. Figure 7 presents the accuracy of specific LLMs, ex-

pressed as percentages, within the MedQA benchmark. Additionally, the graph incor-

porates markers denoting the respective parameters of each model, providing a visual 

representation of their sizes. 
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Figure 7: Accuracy (%) of various LLMs in the MedQA dataset containing mul-
tiple-choice questions from the US medical licencing exam. The respective num-
bers of parameters of each model are given in parentheses. [2,23] 

 

The figure 7 reveals a clear upward trend over the past couple of years, indicating im-

provements in the model performance in USMLE accuracy. It can also be inferred that 

the size of the model is not directly proportional to its performance. For instance, Bio-

MedLM outperformed the similarly sized GPT-Neo by 17 %. Additionally, Galatica per-

formed approximately 3 % worse than DRAGON, despite being 300 times larger than 

DRAGON. Moreover, the two models with the highest accuracies, GPT-4 (86.1 %) and 

Med-PaLM-2 (86.5 %), differ in size, with GPT-4 being over 3 times larger than Med-

PaLM-2. 

4.3.4 Others 
Chintagunta and co-workers employed GPT-3 as the foundation of an algorithm for 

generating synthetic training data for medical dialogue summarization models. By 

combining medical knowledge with an ensemble of GPT-3 models, the algorithm gen-

erated synthetic labels that, when used alongside human-labelled data, produced high 

quality training data for summarization models. In comparison to models solely reliant 

on human-labelled data, the models trained using this proposed method exhibited en-

hanced precision and coherence in their summaries. Notably, the algorithm can effec-

tively address privacy concerns by utilizing a limited and predetermined dataset. Given 

the algorithm’s accuracy and privacy considerations, it holds practical potential for 

training medical dialogue summarization models. [61] 
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Ayers and colleagues conducted a study in which healthcare professionals compared 

the responses of physicians and ChatGPT-3.5 chatbot to patient’s questions. The 

study found that the chatbot’s responses were preferred over those of physicians. This 

is not surprising given the chatbot’s ability to generate high-quality, empathetic text 

compared to busy physicians who aim to minimize the time spent on administrative 

work. [101] 

Liu and her team employed ChatGPT-3.5 to generate suggestions for improving CDS 

alert logic. CDS experts evaluated these suggestions, and the results indicated that 

ChatGPT-3.5 could complement traditional CDS optimization, analyse alert logic, and 

be integrated into the alert development stage. [55] Furthermore, Rao et al. compared 

standardized clinical vignettes for CDS and found that ChatGPT-3.5 performs better 

when provided with more clinical information [102]. 

Yan and co-workers proposed an LLM based approach for patient-trial matching, 

employing ChatGPT-4 to generate augmented data while preserving the semantic co-

herence of the original trial’s eligibility criteria. They also utilized BERT as a text en-

coder for patient and eligibility criteria embeddings. The study demonstrated the effec-

tiveness of LLMs adapted to patient-trial matching, resulting in an average improve-

ment of 7.32 % in performance and 12.12 % in generalizability. [71]  

InstructGPT was found to perform reasonably well in assisting physicians in determin-

ing patient eligibility for clinical trials. To further enhance its performance, Hamer et al. 

involved a physician to supervise the process, resulting in a 90 % reduction in workload 

during the pre-screening. [70] 

Antikainen et al. evaluated the potential of BERT and XLNet in predicting mortality in 

cardiac patients using EHR data. Both models yielded similar results, with XLNet cap-

turing more positive cases, but BERT achieving higher positive predictive value. Over-

all, both models achieved approximately 76 % accuracy, suggesting their potential in-

tegration into EHR systems in clinical practice. [103] 

Lehman et al. conducted a study comparing the performance of Clinical-T5-Base, 

Clinical-T5-Base-Cktp, and Clinical-T5-Large, which are relatively small (ranging 

from 220 M to 770 M parameters), with larger models like GPT-3 (which has 175 B pa-

rameters). Their investigation revealed that these clinical domain models exhibit great-

er parameter efficiency compared to their larger counterparts. Furthermore, they ob-

served that pretraining these models from scratch on clinical data positively impacts 

their overall performance. Additionally, all proposed domain-specific encoder-decoder 

models, including SciFive [42], demonstrate superior performance when compared to 
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their general domain counterparts. However, it is worth noting that these encoder-

decoder models are not compatible with other encoder-only or decoder-only models in 

biomedical NLP tasks [14] 

Figure 8 illustrates various LLMs along with their corresponding training data and the 

public availability status of each model. The training data is categorized into clinical, bi-

omedical, and other scientific texts. The MIMIC-III dataset comprises approximately 

two million medical notes from the ICU of the Beth Israel Deaconess Medical Centre 

between the years 2001 and 2012 [104]. Notably, training with MIMIC-III poses gaps in 

completeness due to the outdated information. Additionally, the figure presents the 

evaluation tasks and the benefits for which each model was assessed in its original re-

search. This comprehensive figure effectively consolidates the discussed evaluation 

tasks and highlights the specific tasks for which each model can be utilized. 
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Figure 8: training, evaluation, and publication of various healthcare LLMs 
[105]  
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Upon examining Figure 8, it becomes evident that most of the models are trained solely 

on PubMed abstracts and/or full-text articles, either independently or in combination 

with other datasets. Among the models trained using clinical text, a significant portion 

utilized the MIMIC-III dataset. Additionally, it is noteworthy that nearly all models can be 

accessed publicly from online repositories such as HuggingFace. However, it is essen-

tial to highlight that while GatorTron has showcased exceptional performance, its ac-

cessibility to the public remains limited due to its training on private EMR datasets. 

Similarly, Med-Palm, another model exhibiting superior performance, has not disclosed 

the model’s weights nor the underlying code for the public access. [105] 
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5. CHALLENGES OF LARGE LANGUAGE MOD-
ELS IN HEALTHCARE AND DISEASE DIAG-
NOSTICS 

Despite the significant advancements and promising potential of LLMs in the 

healthcare field, the integration of these applications into actual medical practice re-

mains limited. To responsibly and safely develop LLMs into the practical applications, it 

is essential to consider the ethical, technical, and cultural aspects [57]. The guiding 

principles for addressing ethical issues in the responsible integration of AI with medi-

cine come from the World Health Organization [106]. This chapter will discuss the chal-

lenges and limitations of current LLMs when employing them in healthcare to supple-

ment human expertise and how to mitigate them. 

One major concern is the secondary use of medical data, such as EHRs or medical re-

ports, as training data of LLMs or as input data in LLMs, which raises privacy concerns 

[54]. Medical data may not be publicly available due to regulations or the patient’s pri-

vacy concerns [61]. Patients are often uncertain about the secondary usage of their 

personal information, fearing inappropriate usage, stigmatization, or discrimination. 

Since medical data is highly sensitive and private, privacy concerns can affect the phy-

sician-patient relationship, inhibiting the sharing of necessary clinical information. [63] 

Even if the medical data is de-identified before the secondary usage, the risk of re-

identifying patients from text data concerns both policymakers and the public, resulting 

in limited sharing of medical data outside of the clinical environment [107]. Additionally, 

utilizing medical papers in LLMs’ development without obtaining explicit consent raises 

privacy challenges [57].  

The functions of LLMs are highly opaque, leading to transparency issues for both de-

velopers and users. The underlying logic between the prompt and output often remains 

obscure, consequently reducing the reliability of LLM’s deductions. [63] However, de-

velopers have the responsibility to promote transparency by openly sharing their meth-

odologies, data sources, and potential biases. This practice is essential to enhance the 

understanding of the LLMs among users and regulators. [108] 

Moreover, most LLMs lack proper referencing for their generated content. Even when 

references are provided, they may not accurately represent the output due to the influ-
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ence of noisy training data [54]. For instance, Galatica was known to produce made-up 

references in its responses, leading to a rapid loss of trust in the model’s credibility. 

Similarly, ChatGPT may generate references that only appear plausible but lack actual 

authenticity [51]. This poses a significant threat as spreading misinformation as truth 

can lead to permanent contamination of knowledge bases [57]. Additionally, LLMs can 

inadvertently engage in plagiarism as they might copy phrases from other documents 

without providing appropriate references, potentially leading to intellectual property and 

credibility issues [62]. 

LLMs, especially those trained for general domains, are meant to generate content that 

appears factual rather than producing strictly factual content [90]. The accountability 

of these models is limited to the used training data, as most models do not have ac-

cess to the internet. Given that general domain LLMs are not specifically trained with 

clinical databases, questions may arise regarding the accuracy of medical facts. Addi-

tionally, the lack of common sense, variation of semantic expressions, and complexity 

of proper background information make LLMs prone to errors [63]. The strategies used 

by LLMs to improve the diversity of outputs can increase the occurrence of factual er-

rors [54]. Furthermore, the lack of transparency regarding the training data used in 

some models, including ChatGPT’s, makes it challenging to evaluate the originality of 

the data [96]. 

One major issue with LLMs is their tendency to amplify human bias. Biases can be re-

flected in LLMs directly from the training data collection and preparation. Biases can al-

so emerge from the algorithm’s design if it gives higher priority to certain data points. 

Unexpected biases may arise from the model’s architecture, resulting from the interac-

tion between parameters and biased training data. Moreover, if the training process in-

volves human feedback, the subjective viewpoints of individuals providing feedback 

can unintentionally influence the model’s behaviour, potentially leading to biased out-

comes. Furthermore, the biases of LLMs are exacerbated by the policies set forth by 

their developers, affecting the values and decisions made by the models. [72,108] 

These biases within LLMs are particularly concerning, especially in the healthcare field, 

as they can lead to inaccurate predictions, erroneous recommendations, misdiagnosis, 

and unequal access to care. Additionally, biases can amplify stereotypes, exacerbate 

disparities, and perpetuate inequalities within subpopulations, favouring certain individ-

uals based on attributes such as gender, race, ethnicity, ideology, politics or other fac-

tors. [72,108] 
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LLMs tend to be more proficient in English due to the abundance of English content on 

the internet, leading to linguistic biases. In clinical settings, local languages are often 

used, demanding equal performance of LLMs in all languages. Additionally, the models 

may lack understanding of historical or current issues due to training on specific data 

periods. Biases embedded in base models, such as BERT or GPT are carried over to 

variant models based on them, which expands the issue [109]. 

Despite the improved performance of fine-tuned large architecture models such as Ga-

torTron or Med-PaLM, they remain vulnerable to biases [110]. Collaboration between 

developers, clinicians, and users is required to mitigate and address biases [108]. 

Some models, like ChatGPT, prioritize data accessibility and availability over bias miti-

gation. Eliminating bias from models is complicated since they have already learned 

from biased data. Even when a model is tested for bias, such as Med-PaLM, constant 

auditing is required due to its probabilistic nature. [57] 

To use LLMs as reliable and accountable tools, end-users, such as clinicians or pa-

tients, must be educated about the capabilities, limitations, and risks of LLMs. Users 

should not rely on them as omniscient tools and must be critical in their interactions. 

[57] Proper training of users is essential to prompt the model accurately and avoid hal-

lucination, where the model generates factually incorrect output [45]. Generated con-

tent should be marked as AI-generated to avoid misinterpretation in clinical decision-

making. Another potential concern related to hallucination is that the developers of 

LLMs may not assume full responsibility for the generated outputs, which can lead to 

uncertainties regarding accountability for poor outcomes. [57] Support for users on 

managing hallucinations and biases is crucial, and collaboration between manufactur-

ers and users is key to success [108].  

Regulations play a vital role in ensuring the safe, ethical, and effective development of 

these new AI-based tools. Due to their adaptive nature, the algorithms change continu-

ously. In addition to the dynamic behaviour, the models’ scale and complexity sets 

them apart from any previous deep learning methods. The U.S. Food and Drug Admin-

istration’s FDA have started regulating software as a medical device, specifically to ad-

dress AI and ML technologies throughout their lifespan. FDA has not yet solved the 

regulation for algorithms, that are adaptive and utilizes self-supervised learning, such 

as LLMs. [76] The American Medical Association addresses appropriate integration of 

AI into healthcare through the Augmented Intelligence in Health Care policy [63]. The 

European Union’s General Data Protection Regulation GDPR applies to LLMs that pro-

cess personal data within or from EU, ensuring privacy protection [111]. Findata, an act 

on the secondary use of health and social data, aims for secure processing of individu-
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als’ personal data in Finland [112]. In Europe, LLMs intended for medical purposes 

may be classified as medical devices, and must adhere to the European Union Medical 

Device Regulation MDR, indicated by the CE marking [113]. Additionally, the Health In-

surance Portability and Accountability Act HIPAA aims to protect individuals’ privacy 

and security in healthcare [114]. Regular audits of data privacy and security policies 

and regulations are necessary to ensure the responsible utilization of LLMs [57].  

The categorization and regulatory oversight of LLMs intended for medical purposes 

pose intricate challenges, necessitating the establishment of a distinct regulatory cate-

gory. Continuous monitoring and updates are imperative to keep pace with the rapid 

advancement in these models. Furthermore, integrating LLMs into certified medical 

technologies raises questions about their regulatory control. Despite the encountered 

difficulties, effective implementation of regulations can significantly alleviate safety, pri-

vacy, bias, and ethical concerns. [76] 

Developing high-quality LLM systems in healthcare applications requires employing 

numerous highly skilled clinical experts to ensure model accuracy. However, this re-

sults in remarkable labour costs, which are often underestimated, leading to poor 

working conditions. [57] The cost of LLMs depends on the training procedure. While 

training from scratch incurs a high one-time cost, it reduces the cost of fine-tuning and 

running inference. On the other hand, models trained using general domain models as 

a foundation do not require pretraining costs, but may lead to more expensive infer-

ence and fine-tuning costs due to their larger size and technical expertise and infra-

structure requirements. [14] Additionally, training large architecture models consumes 

large compute-power resources, contributing to a large carbon footprint, making sus-

tainability an important consideration in the training process [57].  

Reinforcement Learning with Human Feedback (RLHF) has improved the safety and 

faithfulness of LLMs, but it raises cost concerns. Further research is needed to develop 

RLHF as a more cost-effective and resource-efficient method. An automatic method to 

evaluate the factual correctness of LLMs effectively would address this issue. [54]  

Another noteworthy challenge in the integration of LLMs into healthcare practice is the 

inherent conservatism observed within the healthcare system in general. Legacy sys-

tems continue to be extensively utilized due to healthcare practitioners’ inherent wari-

ness towards embracing novel technologies and demands regarding backwards com-

patibility with earlier investments. Experienced clinicians may exhibit resistance in de-

viating from established practices, preferring to adhere to traditional approaches rather 

than adopting the next generation of technology. Moreover, the challenges currently 
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faced by LLMs act as deterrents for healthcare practitioners. Additionally, there are ap-

prehensions regarding the potential unforeseen complications arising from the interac-

tion between AI systems and humans [115].  

To serve as reliable and accountable tools, LLM systems should be developed trans-

parently, defining values and purposes, and ensuring adherence to the defined frame-

work. Proper curation of training data, representing diverse insights, backgrounds, and 

histories, is crucial to minimize biases. Developing LLMs is a continuous process that 

involves active participation from developers, regulators, users, and other stakeholders 

to constantly evaluate, refine, and improve the models. [57,108] 
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6. DISCUSSION 

Originally, this study aimed to evaluate the performance of current LLMs in medical 

practice. However, due to LLMs being a relatively new technology and rarely used in 

practice yet, most of the current literature focuses on evaluating these models against 

standardized benchmark datasets to assess their performance in clinical language un-

derstanding tasks. Consequently, only a few studies have explored the practical usage 

of LLMs. Nevertheless, this literature review effectively demonstrates the current poten-

tial for LLM utilization in healthcare and comprehensively examines the prevailing chal-

lenges and potential solutions. 

The assessment of the value of LLMs presents a complex undertaking. On one hand, 

general domain language models face limitations in effectively capturing medical 

knowledge due to the scarcity of biomedical data in their training. Conversely, domain-

specific LLMs suffer from the restricted diversity of available biomedical training data, 

primarily because biomedical texts are not publicly accessible due to privacy concerns. 

Consequently, domain-specific models, solely trained on biomedical data, and fine-

tuned general models both have limitations. [54] 

Notwithstanding the challenges in data availability for domain-specific models, they are 

considered more parameter-efficient compared to general models. Even the integration 

of ICL fails to elevate the performance of general models to the level of specialized 

models. [39] Parameter-efficient models not only mitigate training expenses but also 

expedite the training process. Thus, further development of highly specialized models 

is imperative to cater to the precise demands of healthcare. Addressing privacy con-

cerns and elevating LLMs’ performance to new heights necessitates the establishment 

of proper regulations. 

The development of these specialized models requires a profound understanding of 

model architectures. Traditionally, the choice of architecture has been driven by the 

target task. For instance, encoder-only models have been employed for tasks requiring 

text comprehension or information extraction, while decoder-only models have been 

utilized in text generation, translation, and QA. Encoder-decoder models have found 

application in tasks where capturing relationships between the input and output is criti-

cal, such as text summarization. This study showed that although encoder-decoder 

models are designed for these tasks, they have not been widely developed or used. 
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Future research could investigate why these models have lagged encoder-only and 

decoder-only models. Furthermore, this study has indicated that these models can ex-

hibit impressive performance not only in their designated tasks but also in other tasks, 

as evidenced by GPT models excelling in text classification, sentiment analysis, and 

summarization.  

The prompting strategies should also be employed in the future to guide and refine the 

behaviour for optimized performance of LLMs. It has been demonstrated that employ-

ing prompting strategies considerable enhances model performance, yet the strategy 

and the prompting quality can affect the effectiveness. For example, the SQP intro-

duced by Wang et al. and the ER proposed by Singhal et al. demonstrated improved 

performance compared to standard and CoT strategies in healthcare settings [1,23]. 

Prospective research could potentially contribute to the advancement of novel and 

more efficient prompting strategies. 

Despite GPT models being widely acclaimed for their adaptability in various NLU tasks, 

encoder models, such as fine-tuned BERT variants, exhibit significant value in specific 

NLU tasks like RE and NER, where they outperform decoder models. Both GPT mod-

els and fine-tuned BERT did show promising potential in radiology applications. Nota-

bly, the study conducted by Lyu et al. highlighted the eminent performance of GPT-4 

with an optimized prompt, achieving an impressive 96.8 % accuracy, despite not being 

specifically trained for radiology [66]. In addition to the remarkable performance of 

GPT-4 and Med-PaLM-2, GatorTron has exhibited notable potential as well. The ad-

vancements in LLMs are moving in the right direction; however, current research high-

lights a lack of proper referencing, which poses challenges to the transparent supervi-

sion of these models. Addressing these concerns would further enhance the utility of 

current models in practical applications. 

Currently, LLMs confront numerous challenges, and it is noteworthy that there are no 

specific regulatory guidelines addressing them. Nevertheless, millions of individuals, 

including doctors and patients rely on LLMs daily. Moreover, the tokenization process, 

which plays a key role in how LLMs handle NLP, remains unregulated in the healthcare 

domain. [116] Apart from privacy protection, regulations could also help address vari-

ous ethical concerns. Therefore, regulators should create a new regulatory category 

tailored to LLMs, given their distinctive nature from other medical technologies. Wise 

development of regulations is essential to accommodate the continuous evolution of 

these extensive and dynamic models, which have the potential to revolutionize our so-

ciety. Regulators should also offer guidance to healthcare organizations, institutions, 

and companies on responsible LLM deployment. [76]  
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In fact, the active involvement of all stakeholders is necessary for the development of 

LLMs that effectively serve the demanding healthcare domain. Researchers should de-

vise solutions to overcome the current challenges, including accuracy improvements, 

reduction of hallucinations, addressing bias and ethical considerations, and ensuring 

patient data privacy and safety. For instance, further research could be dedicated to 

developing more effective debiasing methods, which have not yet succeeded in mitigat-

ing biases [36]. Companies should boldly experiment with LLMs and innovate to inte-

grate them into their products. Trial and error are crucial for the successful adoption of 

LLMs in healthcare applications. However, regulations should guide this process to en-

sure reliable LLM operation and to maintain human control throughout the application’s 

lifecycle. Clinicians and patients should collaborate with researchers and developers in 

the model development process, as they are the primary end-users. Additionally, in the 

implementation of the LLM applications, the end-users should be educated for the 

proper, effective, and safe usage. 

Most LLMs are trained using datasets limited to specific time periods. However, new 

diseases, treatments, and practices are continually being discovered, making LLMs 

employed in healthcare vulnerable to performance gaps if their training data becomes 

outdated. Therefore, clinical LLMs should undergo constant updates with current medi-

cal data, and applications utilizing these models should always be kept up-to-date to 

match the latest information. Regulations could also govern this perspective by restrict-

ing the use of LLMs trained on outdated data in healthcare applications. 

The current healthcare system faces diverse challenges, including financial constraints, 

managing increasing volumes of medical data, accessibility and equity concerns, and a 

raising need for healthcare services. LLMs have the potential to mitigate these chal-

lenges by optimizing healthcare operations, automating administrative tasks to reduce 

costs, processing, and analysing healthcare data rapidly to increase efficiency, and al-

lowing healthcare professionals to focus on their core tasks. LLMs can also improve 

access to healthcare by enabling remote medical care and enhancing patient-clinician 

engagement. Moreover, education capabilities and the CDS can elevate the quality of 

care. Applications likely to be employed for documentation purposes are anticipated to 

be the first to see practical implementation due to their ability to effectively address cur-

rent healthcare challenges. Their associated risks are also minimal, as they do not 

generate novel information. 

Physicians possess significant leverage to advocate for and influence political, eco-

nomic, and social decisions. However, due to limited time and lack of advocacy train-
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ing, physicians often fail to utilize this influence effectively. LLMs could play a role in 

this aspect by drafting tailored and appropriate communications to lawmakers. [51] 

Apart from improving LLMs’ performance in their current tasks, they are likely to ac-

quire entirely new capabilities. For example, the latest release of OpenAI, GPT-4, can 

process images alongside text, potentially offering unforeseen solutions for healthcare 

through image analysis. In the future, LLMs may be able to analyse sound and video 

formats, further expanding their versatile and comprehensive capabilities. Moreover, 

novel and innovative solutions using LLMs in less automation-prone healthcare appli-

cations are expected to emerge [116]. 
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7. CONCLUSIONS 

The objective of this study was to explore the potential and challenges of LLMs in 

healthcare and CDS applications. It was evident from the findings that developing 

healthcare domain-specific LLMs is imperative to meet the unique demands of the field. 

The performance evaluation demonstrated the substantial capacity of LLMs to enhance 

the effectiveness and accessibility of healthcare. Furthermore, the model architecture 

and prompting strategies were identified as critical factors impacting the suitability of 

LLMs. These aspects should be carefully considered during the development of 

healthcare LLMs to ensure their reliability and accuracy. 

Notwithstanding the significant progress made in LLMs, their widespread adoption into 

medical practice faces impediments posed by a range of challenges. These challenges 

encompass privacy concerns, transparency issues, accountability problems, potential 

hallucinations, and bias amplification. Moreover, the absence of tailored regulations for 

LLMs contributes remarkably to these issues. The implementation of specific regulatory 

guidelines tailored to LLMs would certainly ameliorate the current challenges, enhanc-

ing the accountability, ethics, and safety of LLMs in healthcare applications. 

Although LLMs are currently scarcely used in medical practice, this study has demon-

strated their promising potential to revolutionize the field in the future. While notable 

obstacles remain, the ongoing development of LLMs shows promise, and the current 

hype surrounding them suggests continuous improvement. To address all aspects 

comprehensively, the involvement of various stakeholders, including healthcare profes-

sionals, regulators, institutions, companies, and patients, is essential during the devel-

opment process. 

LLMs have the capacity to significantly enhance the efficiency of healthcare profes-

sionals by automating administrative tasks and analysing healthcare data. Additionally, 

they hold promise in optimizing CDS systems, thereby increasing the accuracy and 

speed of decision-making processes. For patients, LLM-powers chatbots can serve as 

virtual assistants, providing health guidance and enhancing healthcare accessibility. 

Embracing LLMs in these applications would be invaluable in managing vast volumes 

of medical data and meeting the growing demand for healthcare services. 
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This study has successfully illustrated the current state of healthcare LLMs and their 

potential for future development to address current challenges and facilitate their utili-

zation in medical practice. Future research efforts could focus on advancing LLMs to 

improve performance while considering the factors identified in this study to influence 

their effectiveness. Additionally, solutions should be sought to address the challenges 

unveiled in this study. Given the rapid evolution of LLMs and the challenges identified, 

the subsequent years will determine whether their utilization in healthcare remains 

merely a subject of hype or ultimately leads to a revolutionary transformation of 

healthcare technology.  

 

 



39 
 

REFERENCES 

[1] Wang Y, Zhao Y, Petzold L. Are Large Language Models Ready for Healthcare? A Com-
parative Study on Clinical Language Understanding. ArXivOrg 2023. 

[2] Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, et al. Large Language Models 
Encode Clinical Knowledge 2022. https://doi.org/10.48550/arXiv.2212.13138. 

[3] Pathak P. Large Language Models 101: History, Evolution and Future. Scribble Data 
2023. https://www.scribbledata.io/large-language-models-history-evolutions-and-future/ 
(accessed July 23, 2023). 

[4] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention Is All 
You Need 2017. 

[5] ChatGPT Statistics 2023 Revealed: Insights & Trends 2023. https://blog.gitnux.com/chat-
gpt-statistics/ (accessed July 23, 2023). 

[6] PRISMA n.d. http://www.prisma-
statement.org/PRISMAStatement/FlowDiagram?AspxAutoDetectCookieSupport=1 (ac-
cessed July 26, 2023). 

[7] Zotero | Your personal research assistant n.d. https://www.zotero.org/ (accessed July 27, 
2023). 

[8] Chen M, Decary M. Artificial intelligence in healthcare: An essential guide for health lead-
ers. Healthc Manage Forum 2020;33:10–8. https://doi.org/10.1177/0840470419873123. 

[9] The rise of artificial intelligence in healthcare applications - Tampere University Founda-
tion n.d. 
https://andor.tuni.fi/discovery/fulldisplay/cdi_scopus_primary_637306417/358FIN_TAMPO
:VU1 (accessed May 25, 2023). 

[10] Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to 
deep learning in healthcare. Nat Med 2019;25:24–9. https://doi.org/10.1038/s41591-018-
0316-z. 

[11] Ongsulee P. Artificial intelligence, machine learning and deep learning. 2017 15th Int. 
Conf. ICT Knowl. Eng. ICTKE, 2017, p. 1–6. https://doi.org/10.1109/ICTKE.2017.8259629. 

[12] Yang X, Chen A, PourNejatian N, Shin HC, Smith KE, Parisien C, et al. A large language 
model for electronic health records. Npj Digit Med 2022;5:1–9. 
https://doi.org/10.1038/s41746-022-00742-2. 

[13] Krishnan R, Rajpurkar P, Topol EJ. Self-supervised learning in medicine and healthcare. 
Nat Biomed Eng 2022;6:1346–52. https://doi.org/10.1038/s41551-022-00914-1. 

[14] Do We Still Need Clinical Language Models? - ProQuest n.d. 
https://www.proquest.com/docview/2777527015?pq-origsite=primo&accountid=14242 
(accessed May 22, 2023). 

[15] PhD PP. A fascinating tree of GPTs and LLMs reveals what’s been going on. Medium 
2023. https://medium.com/@paul.k.pallaghy/a-fascinating-tree-of-gpts-and-llms-reveals-
whats-been-going-on-4d4235f2a2b1 (accessed June 14, 2023). 

[16] OpenAI Platform n.d. https://platform.openai.com (accessed July 14, 2023). 
[17] Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al. BioBERT: a pre-trained biomedical 

language representation model for biomedical text mining. Bioinformatics 2020;36:1234–
40. https://doi.org/10.1093/bioinformatics/btz682. 

[18] Hagen A. Domain-specific language model pretraining for biomedical natural language 
processing. Microsoft Res 2020. https://www.microsoft.com/en-us/research/blog/domain-
specific-language-model-pretraining-for-biomedical-natural-language-processing/ (ac-
cessed July 14, 2023). 

[19] Alsentzer E, Murphy JR, Boag W, Weng W-H, Jin D, Naumann T, et al. Publicly Available 
Clinical BERT Embeddings 2019. 

[20] Luo R, Sun L, Xia Y, Qin T, Zhang S, Poon H, et al. BioGPT: generative pre-trained trans-
former for biomedical text generation and mining. Brief Bioinform 2022;23. 
https://doi.org/10.1093/bib/bbac409. 



40 
 

[21] Chowdhery A, Narang S, Devlin J, Bosma M, Mishra G, Roberts A, et al. PaLM: Scaling 
Language Modeling with Pathways 2022. 

[22] Chung HW, Hou L, Longpre S, Zoph B, Tay Y, Fedus W, et al. Scaling Instruction-
Finetuned Language Models 2022. 

[23] Singhal K, Tu T, Gottweis J, Sayres R, Wulczyn E, Hou L, et al. Towards Expert-Level 
Medical Question Answering with Large Language Models 2023. 

[24] Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough 
Performance 2022. https://ai.googleblog.com/2022/04/pathways-language-model-palm-
scaling-to.html (accessed July 14, 2023). 

[25] Shin H-C, Zhang Y, Bakhturina E, Puri R, Patwary M, Shoeybi M, et al. BioMegatron: 
Larger Biomedical Domain Language Model. Proc. 2020 Conf. Empir. Methods Nat. Lang. 
Process. EMNLP, Online: Association for Computational Linguistics; 2020, p. 4700–6. 
https://doi.org/10.18653/v1/2020.emnlp-main.379. 

[26] Yasunaga M, Leskovec J, Liang P. LinkBERT: Pretraining Language Models with Docu-
ment Links 2022. 

[27] Avidan S, Brostow G, Cissé M, Farinella GM, Hassner T. Making the Most of Text Seman-
tics to Improve Biomedical Vision–Language Processing. Comput. Vis. - ECCV 2022, vol. 
13696, Switzerland: Springer; 2022, p. 1–21. https://doi.org/10.1007/978-3-031-20059-
5_1. 

[28] BioMedLM: a Domain-Specific Large Language Model for Biomedical Text n.d. 
https://www.mosaicml.com/blog/introducing-pubmed-gpt (accessed July 14, 2023). 

[29] Yasunaga M, Bosselut A, Ren H, Zhang X, Manning CD, Liang P, et al. Deep Bidirectional 
Language-Knowledge Graph Pretraining 2022. 

[30] Beltagy I, Lo K, Cohan A. SciBERT: A Pretrained Language Model for Scientific Text 
2019. 

[31] Papanikolaou Y, Pierleoni A. DARE: Data Augmented Relation Extraction with GPT-2 
2020. 

[32] Taylor R, Kardas M, Cucurull G, Scialom T, Hartshorn A, Saravia E, et al. Galactica: A 
Large Language Model for Science 2022. 

[33] Kraljevic Z, Bean D, Shek A, Bendayan R, Hemingway H, Au J, et al. Foresight - Genera-
tive Pretrained Transformer (GPT) for Modelling of Patient Timelines using EHRs n.d. 

[34] Foresight n.d. https://foresight.sites.er.kcl.ac.uk/ (accessed July 14, 2023). 
[35] Smit A, Jain S, Rajpurkar P, Pareek A, Ng AY, Lungren MP. CheXbert: Combining Auto-

matic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using 
BERT 2020. 

[36] Lalor J, Yang Y, Smith K, Forsgren N, Abbasi A. Benchmarking Intersectional Biases in 
NLP. Proc. 2022 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol., 
Seattle, United States: Association for Computational Linguistics; 2022, p. 3598–609. 
https://doi.org/10.18653/v1/2022.naacl-main.263. 

[37] Chinchilla AI by Deepmind Review 2023. Writecream 2023. 
https://www.writecream.com/chinchilla-review-2023/ (accessed July 14, 2023). 

[38] An empirical analysis of compute-optimal large language model training n.d. 
https://www.deepmind.com/publications/an-empirical-analysis-of-compute-optimal-large-
language-model-training (accessed July 14, 2023). 

[39] FERMA | The quickest path to your next eureka. FERMA n.d. https://ferma.ai/ (accessed 
July 4, 2023). 

[40] Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, et al. Exploring the Limits of 
Transfer Learning with a Unified Text-to-Text Transformer 2020. 

[41] Lewis P, Ott M, Du J, Stoyanov V. Pretrained Language Models for Biomedical and Clini-
cal Tasks: Understanding and Extending the State-of-the-Art. Proc. 3rd Clin. Nat. Lang. 
Process. Workshop, Online: Association for Computational Linguistics; 2020, p. 146–57. 
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17. 

[42] Phan LN, Anibal JT, Tran H, Chanana S, Bahadroglu E, Peltekian A, et al. SciFive: a text-
to-text transformer model for biomedical literature. ArXivOrg 2021. 

[43] Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, Le QV. XLNet: Generalized Auto-
regressive Pretraining for Language Understanding 2020. 

[44] Rae JW, Borgeaud S, Cai T, Millican K, Hoffmann J, Song F, et al. Scaling Language 
Models: Methods, Analysis & Insights from Training Gopher 2022. 



41 
 

[45] Au Yeung J, Kraljevic Z, Luintel A, Balston A, Idowu E, Dobson RJ, et al. AI chatbots not 
yet ready for clinical use. Front Digit Health 2023;5:1161098. 
https://doi.org/10.3389/fdgth.2023.1161098. 

[46] Liévin V, Christoffer Egeberg Hother, Winther O. Can large language models reason 
about medical questions? ArXivOrg 2023. 

[47] EMR vs. EHR: Understand the Difference | Elevance Health. WwwElevancehealthCom 
n.d. https://www.elevancehealth.com/our-approach-to-health/digitally-enabled-
healthcare/know-the-difference-between-ehr-and-emr (accessed July 3, 2023). 

[48] Miller DD, Brown EW. Artificial Intelligence in Medical Practice: The Question to the An-
swer? Am J Med 2018;131:129–33. https://doi.org/10.1016/j.amjmed.2017.10.035. 

[49] Marr B. Revolutionizing Healthcare: The Top 14 Uses Of ChatGPT In Medicine And Well-
ness. Forbes n.d. https://www.forbes.com/sites/bernardmarr/2023/03/02/revolutionizing-
healthcare-the-top-14-uses-of-chatgpt-in-medicine-and-wellness/ (accessed June 29, 
2023). 

[50] Rao A, Kim J, Kamineni M, Pang M, Lie W, Succi MD. Evaluating ChatGPT as an Adjunct 
for Radiologic Decision-Making. MedRxiv Prepr Serv Health Sci 
2023:2023.02.02.23285399. https://doi.org/10.1101/2023.02.02.23285399. 

[51] Shen Y, Heacock L, Elias J, Hentel KD, Reig B, Shih G, et al. ChatGPT and Other Large 
Language Models Are Double-edged                     Swords. Radiology 2023;307:e230163. 
https://doi.org/10.1148/radiol.230163. 

[52] About us. SNOMED Int n.d. https://www.snomed.org/about-us (accessed July 5, 2023). 
[53] Moons P, Van Bulck L. ChatGPT: can artificial intelligence language models be of value 

for cardiovascular nurses and allied health professionals. Eur J Cardiovasc Nurs 
2023:zvad022. https://doi.org/10.1093/eurjcn/zvad022. 

[54] Xie Q, Wang F. Faithful AI in Healthcare and Medicine. MedRxiv 2023. 
https://doi.org/10.1101/2023.04.18.23288752. 

[55] Liu S, Wright AP, Patterson BL, Wanderer JP, Turer RW, Nelson SD, et al. Assessing the 
Value of ChatGPT for Clinical Decision Support Optimization. MedRxiv Prepr Serv Health 
Sci 2023:2023.02.21.23286254. https://doi.org/10.1101/2023.02.21.23286254. 

[56] Wang S, Zhao Z, Ouyang X, Wang Q, Shen D. ChatCAD: Interactive Computer-Aided Di-
agnosis on Medical Image using Large Language Models. ArXivOrg 2023. 

[57] Harrer S. Attention is not all you need: the complicated case of ethically using large lan-
guage models in healthcare and medicine. EBioMedicine 2023;90:104512. 
https://doi.org/10.1016/j.ebiom.2023.104512. 

[58] Clinical Notes n.d. http://www.healthit.gov/isa/uscdi-data-class/clinical-notes (accessed 
June 30, 2023). 

[59] Biswas S. ChatGPT and the Future of Medical Writing. Radiology 2023;307:e223312. 
https://doi.org/10.1148/radiol.223312. 

[60] Canes D. The Time-Saving Magic of Chat GPT for Doctors. Till Cavalry Arrive 2022. 
https://tillthecavalryarrive.substack.com/p/the-time-saving-magic-of-chat-gpt (accessed 
May 25, 2023). 

[61] Chintagunta B, Katariya N, Amatriain X, Kannan A. Medically Aware GPT-3 as a Data 
Generator for Medical Dialogue Summarization. ArXivOrg 2021. 

[62] Kitamura FC. ChatGPT Is Shaping the Future of Medical Writing But Still Requires                     
Human Judgment. Radiology 2023;307:e230171. https://doi.org/10.1148/radiol.230171. 

[63] Xu L, Sanders L, Li K, Chow JCL. Chatbot for Health Care and Oncology Applications Us-
ing Artificial Intelligence and Machine Learning: Systematic Review. JMIR Cancer 
2021;7:e27850. https://doi.org/10.2196/27850. 

[64] Bajaj RHD Simar S. Promises — and pitfalls — of ChatGPT-assisted medicine. STAT 
2023. https://www.statnews.com/2023/02/01/promises-pitfalls-chatgpt-assisted-medicine/ 
(accessed May 24, 2023). 

[65] Bhayana R, Krishna S, Bleakney RR. Performance of ChatGPT on a Radiology Board-
style Examination: Insights into Current Strengths and Limitations. Radiology 
2023:230582. https://doi.org/10.1148/radiol.230582. 

[66] Lyu Q, Tan J, Zapadka ME, Ponnatapura J, Niu C, Myers KJ, et al. Translating radiology 
reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limi-
tations, and potential. Vis Comput Ind Biomed Art 2023;6:9. 
https://doi.org/10.1186/s42492-023-00136-5. 



42 
 

[67] Clinical Practice Guidelines : Writing a good medical report n.d. 
https://www.rch.org.au/clinicalguide/guideline_index/Writing_a_good_medical_report/ (ac-
cessed July 3, 2023). 

[68] Clifford Stermer, MD (@tiktokrheumdok). TikTok n.d. 
https://www.tiktok.com/@tiktokrheumdok (accessed July 13, 2023). 

[69] Stuart Blitz [@StuartBlitz]. You: There’s no ChatGPT use case in healthcare Docs: Watch 

this 👇 https://t.co/2hX6vT4ncn. Twitter 2022. 

[70] den Hamer DM, Schoor P, Polak TB, Kapitan D. Improving Patient Pre-screening for Clin-
ical Trials: Assisting Physicians with Large Language Models. ArXivOrg 2023. 

[71] Yuan J, Tang R, Jiang X, Hu X. LLM for Patient-Trial Matching: Privacy-Aware Data Aug-
mentation Towards Better Performance and Generalizability. ArXivOrg 2023. 

[72] Pal R, Garg H, Patel S, Sethi T. Bias Amplification in Intersectional Subpopulations for 
Clinical Phenotyping by Large Language Models 2023:2023.03.22.23287585. 
https://doi.org/10.1101/2023.03.22.23287585. 

[73] Amini S, Hao B, Zhang L, Song M, Gupta A, Karjadi C, et al. Automated detection of mild 
cognitive impairment and dementia from voice recordings: A natural language processing 
approach. Alzheimers Dement 2022;19:946–55. https://doi.org/10.1002/alz.12721. 

[74] Agbavor F, Liang H. Predicting dementia from spontaneous speech using large language 
models. PLOS Digit Health 2022;1:e0000168. 
https://doi.org/10.1371/journal.pdig.0000168. 

[75] Willett FR, Avansino DT, Hochberg LR, Henderson JM, Shenoy KV. High-performance 
brain-to-text communication via handwriting. Nature 2021;593:249–54. 
https://doi.org/10.1038/s41586-021-03506-2. 

[76] Meskó B, Topol EJ. The imperative for regulatory oversight of large language models (or 
generative AI) in healthcare. Npj Digit Med 2023;6:1–6. https://doi.org/10.1038/s41746-
023-00873-0. 

[77] Lunden I. Nabla, a digital health startup, launches Copilot, using GPT-3 to turn patient 
conversations into action. TechCrunch 2023. https://techcrunch.com/2023/03/14/nabla-a-
french-digital-health-startup-launches-copilot-using-gpt-3-to-turn-patient-conversations-
into-actionable-items/ (accessed June 26, 2023). 

[78] Nabla Copilot · Superpowers for clinicians n.d. https://www.nabla.com/ (accessed June 
26, 2023). 

[79] Center MN. Microsoft accelerates industry cloud strategy for healthcare with the acquisi-
tion of Nuance. Stories 2021. https://news.microsoft.com/2021/04/12/microsoft-
accelerates-industry-cloud-strategy-for-healthcare-with-the-acquisition-of-nuance/ (ac-
cessed June 27, 2023). 

[80] Inc NC. Nuance and Microsoft Announce the First Fully AI-Automated Clinical Documen-
tation Application for Healthcare n.d. https://www.prnewswire.com/news-releases/nuance-
and-microsoft-announce-the-first-fully-ai-automated-clinical-documentation-application-for-
healthcare-301775640.html (accessed June 27, 2023). 

[81] LandiFeb 10 H, 2023 07:00pm. Doximity rolls out beta version of ChatGPT tool for docs 
aiming to streamline administrative paperwork. Fierce Healthc 2023. 
https://www.fiercehealthcare.com/health-tech/doximity-rolls-out-beta-version-chatgpt-tool-
docs-aiming-streamline-administrative (accessed July 4, 2023). 

[82] AI-powered, Physician-led Virtual Healthcare. Babylon Health n.d. 
https://www.babylonhealth.com/en-us/ (accessed July 26, 2023). 

[83] Dare A. ChatGPT Healthcare: for Patients and Healthcare Professionals. MedMatch Netw 
2023. https://medmatchnetwork.com/transforming-healthcare-access-how-chatgpt-and-
medmatch-network-revolutionize-patient-care-chatgpt-healthcare/ (accessed June 26, 
2023). 

[84] Find Support Anytime, Anywhere with Our AI-Powered Mental Health ChatBot n.d. 
https://www.chatbeacon.io/industry-chatgpt/mental-health-chatbot (accessed July 3, 
2023). 

[85] (14) 16 Healthcare Companies That Already Integrated ChatGPT: Infographic | LinkedIn 
n.d. https://www.linkedin.com/pulse/16-healthcare-companies-already-integrated-chatgpt-
mesk%25C3%25B3-md-phd/?trackingId=RocXXs0GQhSbkV30WN12qw%3D%3D (ac-
cessed May 19, 2023). 

[86] Livewello | Genome Data Analysis n.d. https://livewello.com/ (accessed July 4, 2023). 
[87] Amazfit Cheetah Round – amazfit-global-store n.d. 

https://www.amazfit.com/products/amazfit-cheetah-round (accessed July 4, 2023). 



43 
 

[88] Lunden I. Bionic Health raises $3M for its AI health clinic using GPT-4 and other ML mod-
els to design better preventative care. TechCrunch 2023. 
https://techcrunch.com/2023/03/21/bionic-health-raises-3m-for-its-ai-health-clinic-using-
gpt-4-and-other-ml-models-to-design-better-preventative-care/ (accessed July 4, 2023). 

[89] Introducing Our Virtual Volunteer Tool for People who are Blind or Have Low Vision, Pow-
ered by OpenAI’s GPT-4 n.d. https://www.bemyeyes.com/blog/introducing-be-my-eyes-
virtual-volunteer (accessed July 3, 2023). 

[90] Edwards B. GPT-4 will hunt for trends in medical records thanks to Microsoft and Epic. 
Ars Tech 2023. https://arstechnica.com/information-technology/2023/04/gpt-4-will-hunt-
for-trends-in-medical-records-thanks-to-microsoft-and-epic/ (accessed June 27, 2023). 

[91] Advancing Health and Social Care in Finland with Epic n.d. 
https://www.epic.com/epic/post/advancing-health-social-care-finland-epic (accessed June 
27, 2023). 

[92] Compliance D. Dot Compliance Launches First AI-Based ChatGPT Powered eQMS For 
Life Sciences n.d. https://www.prnewswire.com/news-releases/dot-compliance-launches-
first-ai-based-chatgpt-powered-eqms-for-life-sciences-301789665.html (accessed June 
27, 2023). 

[93] Renolayan J. Kahun integrates ChatGPT, bolstering its AI that masters the fundamentals 
of medicine. Tech Times 2023. https://www.techtimes.com/articles/289851/20230402/pr-
kahun-integrates-chatgpt-bolstering-ai-masters-fundamentals-medicine.htm (accessed 
June 27, 2023). 

[94] Kahun.com n.d. https://www.kahun.com/ (accessed June 27, 2023). 
[95] Dm L, R T, B K, A V, Sg F, A M, et al. The Diagnostic and Triage Accuracy of the GPT-3 

Artificial Intelligence Model. Medrxiv Prepr Serv Health Sci 2023:2023.01.30.23285067-
2023.01.30.23285067. https://doi.org/10.1101/2023.01.30.23285067. 

[96] Wagner MW, Ertl-Wagner BB. Accuracy of Information and References Using ChatGPT-3 
for Retrieval of Clinical Radiological Information. Can Assoc Radiol J 
2023:8465371231171125–8465371231171125. 
https://doi.org/10.1177/08465371231171125. 

[97] Jeblick K, Schachtner B, Dexl J, Mittermeier A, Stüber AT, Topalis J, et al. ChatGPT 
Makes Medicine Easy to Swallow: An Exploratory Case Study on Simplified Radiology 
Reports 2022. 

[98] Zhong Q, Ding L, Liu J, Du B, Tao D. Can ChatGPT Understand Too? A Comparative 
Study on ChatGPT and Fine-tuned BERT. ArXivOrg 2023. 

[99] Gutiérrez BJ, McNeal N, Washington C, Chen Y, Li L, Sun H, et al. Thinking about GPT-3 
In-Context Learning for Biomedical IE? Think Again 2022. 
https://doi.org/10.48550/arXiv.2203.08410. 

[100] Thirunavukarasu AJ, Hassan R, Mahmood S, Sanghera R, Barzangi K, El Mukashfi M, et 
al. Trialling a Large Language Model (ChatGPT) in General Practice With the Applied 
Knowledge Test: Observational Study Demonstrating Opportunities and Limitations in 
Primary Care. JMIR Med Educ 2023;9:e46599. https://doi.org/10.2196/46599. 

[101] Ayers JW, Poliak A, Dredze M, Leas EC, Zhu Z, Kelley JB, et al. Comparing Physician 
and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public So-
cial Media Forum. JAMA Intern Med 2023. 
https://doi.org/10.1001/jamainternmed.2023.1838. 

[102] Rao A, Pang M, Kim J, Kamineni M, Lie W, Prasad AK, et al. Assessing the Utility of 
ChatGPT Throughout the Entire Clinical Workflow. MedRxiv Prepr Serv Health Sci 
2023:2023.02.21.23285886. https://doi.org/10.1101/2023.02.21.23285886. 

[103] Antikainen E, Linnosmaa J, Umer A, Oksala N, Eskola M, van Gils M, et al. Transformers 
for cardiac patient mortality risk prediction from heterogeneous electronic health records 
2023. https://doi.org/10.1038/s41598-023-30657-1. 

[104] Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, et al. MIMIC-III, a 
freely accessible critical care database. Sci Data 2016;3:160035. 
https://doi.org/10.1038/sdata.2016.35. 

[105] Wornow M, Xu Y, Thapa R, Patel B, Steinberg E, Fleming S, et al. The Shaky Founda-
tions of Clinical Foundation Models: A Survey of Large Language Models and Foundation 
Models for EMRs. ArXivOrg 2023. 

[106] Ethics and governance of artificial intelligence for health n.d. 
https://www.who.int/publications-detail-redirect/9789240029200 (accessed July 18, 2023). 



44 
 

[107] Ford E, Oswald M, Hassan L, Bozentko K, Nenadic G, Cassell J. Should free-text data in 
electronic medical records be shared for research? A citizens’ jury study in the UK. J Med 
Ethics 2020;46:367–77. https://doi.org/10.1136/medethics-2019-105472. 

[108] Ferrara E. Should ChatGPT be Biased? Challenges and Risks of Bias in Large Language 
Models. ArXivOrg 2023. 

[109] Zhang H, Lu AX, Abdalla M, McDermott M, Ghassemi M. Hurtful Words: Quantifying Bias-
es in Clinical Contextual Word Embeddings 2020. 
https://doi.org/10.48550/arXiv.2003.11515. 

[110] Zakka C, Chaurasia A, Shad R, Hiesinger W. Almanac: Knowledge-Grounded Language 
Models for Clinical Medicine. ArXivOrg 2023. 

[111] (22) The EU GDPR and AI Systems: What Issuers Need to Know | LinkedIn n.d. 
https://www.linkedin.com/pulse/eu-gdpr-ai-systems-what-issuers-need-know-jonas-
frederiksen/ (accessed July 19, 2023). 

[112] Legislation. Findata n.d. https://findata.fi/en/services-and-instructions/legislation/ (ac-
cessed July 19, 2023). 

[113] Radley-Gardner O, Beale H, Zimmermann R, editors. Fundamental Texts On European 
Private Law. Hart Publishing; 2016. https://doi.org/10.5040/9781782258674. 

[114] Rights (OCR) O for C. Health Information Privacy. HHSGov 2021. 
https://www.hhs.gov/hipaa/index.html (accessed July 19, 2023). 

[115] Rajpurkar P, Chen E, Banerjee O, Topol EJ. AI in health and medicine. Nat Med 
2022;28:31–8. https://doi.org/10.1038/s41591-021-01614-0. 

[116] What’s Next For AI In Healthcare In 2023. Med Futur 2023. 
https://medicalfuturist.com/whats-next-for-ai-in-healthcare-in-2023/ (accessed July 26, 
2023). 

 


	1. Introduction
	2. MEthodology
	2.1 Search strategy and study selection
	2.2 Data extraction and analysis

	3. Theoretical background
	3.1 Large language models in healthcare
	3.2 Prompting strategies
	3.3 Definition of performance

	4. large language model applications IN HEALTHCARE and disease diagnostics
	4.1 Potential use cases
	4.1.1 Clinical workflow
	4.1.2 Other possibilities

	4.2 Current applications
	4.3 Performance of current models
	4.3.1 Diagnostics and triage
	4.3.2 Radiology
	4.3.3 Benchmarks
	4.3.4 Others


	5. challenges of large language models in healthcare and disease diagnostics
	6. discussion
	7. Conclusions
	REFERENCES

