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ABSTRACT

Timo Moilanen: Small-scale Apache Cassandra cluster as a high availability database
Master of Science Thesis
Tampere University
Master’s Degree Programme in Electrical Engineering
June 2023

This thesis investigates the usage of a small-scale Apache Cassandra cluster as an on-
premises database solution, focusing on single node and small multinode configurations. The
reason why small-scale clusters were investigated is because they are not that well researched
compared to larger cluster. The primary objectives of this thesis is to investigate typical use cases
that are encountered during long-term usage of Cassandra, and how to manage them in a way
that availability of the database is not compromised.

A series of tests were conducted as a part of a real-world application that utilizes Cassandra as
a time-series database. The tests went over aspects such as scalability, transition from single node
to multinode cluster, short-term and long-term node disruptions, software and operating system
upgrades, and establishing important diagnostics for monitoring cluster’s health and performance.
Using the cluster as a part of a real-world application provided a more accurate representation of
the situations encountered in actual deployments, as opposed to relying on synthetic benchmarks
or simulations.

The results demonstrated that it was reasonably straightforward to handle the different situa-
tions when following best practices. However, some issues were encountered which required
manual work. Notably, the main challenges during node disruption tests were related to insufficient
network capacity when using multinode configuration, which led to database repair failures and
dropped connections under heavy read loads. After the network infrastructure was upgraded,
problems in that regard stopped, but too large tables still caused repairs to end up in timeouts. In
a single node cluster, these issues are not as relevant, as the network overhead is significantly
lower and repairs do not need to be run.

On the client side, issues maintaining high availability were encountered a couple of times,
which caused temporary failures in client requests during server disconnection tests. Although the
exact cause for those problems was not investigated during the tests, it highlights the importance
of proper configuration of the client-to-cluster communication to prevent such situations from
happening in production deployments. In other cases, maintaining high availability was simple
when the cluster was configured correctly.

The scalability tests demonstrated that scaling a single node cluster to multinode enhances
performance while also providing fault tolerance benefits. On average, a three node cluster was
able to handle 94% more requests than a single node cluster, and a four node cluster further
improved the performance by 22% when compared to the three node cluster. The methods of
performing software updates and single node to multinode transitions were also explored in this
thesis. The tests were able to identify reliable techniques to ensure smooth system upgrades in
general cases.

Keywords: Apache Cassandra, high availability, NoSQL-database, time-series, scalability
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TIIVISTELMÄ

Timo Moilanen: Pienikokoinen Apache Cassandra klusteri korkean saatavuuden tietokantana
Diplomityö
Tampereen yliopisto
Sähkötekniikan DI-ohjelma
Kesäkuu 2023

Tässä diplomityössä tutkitaan pienikokoisen Apache Cassandra klusterin käyttämistä paikalli-
sena (on-premises) ja korkean saatavuuden omaavana tietokantaratkaisuna. Kohteena oli yhden
ja muutaman koneen kokoiset klusterit, joista aikaisempaa tutkimusta löytyy vähän verrattuna
suurempiin klustereihin. Työn tavoitteena on tutkia tyypillisiä Cassandran pitkäaikaisen käytön
aikana ilmeneviä käyttötapauksia ja niiden hallintaa siten, että tietokannan saatavuus ei vaarannu.

Työssä suoritettiin erilaisia testejä Cassandran ollessa osana sovellusta, joka käyttää sitä
aikasarjatietokantana. Testit käsittelivät muun muassa skaalautuvuutta, yhden solmun klusterin
päivittämistä monen solmun järjestelmäksi, lyhyt- ja pitkäaikaisia häiriötilanteita, ohjelmisto- ja
käyttöjärjestelmäpäivityksiä sekä klusterin monitoroinnin kehittämistä.

Tulokset osoittivat, että eri käyttötapausten käsittely oli suoraviivaista, kun noudatti Apachen
ilmoittamia parhaita käytäntöjä. Testeissä kuitenkin ilmeni ongelmia, jotka vaativat manuaalista
työtä. Suurimmat haasteet palvelinten häiriötilannetesteissä liittyivät verkkokapasiitettiin, mikä johti
tietokannan korjausoperaatioiden epäonnistumiseen ja yhteyksien katkeamiseen suurilla luku-
kuormilla. Verkkoinfrastruktuurin päivitettyä ongelmat siltä osin loppuivat, mutta liian suurikokoiset
taulut aiheuttivat edelleen korjausten epäonnistumisia. Yhden solmun klusterissa nämä ongelmat
eivät ole yhtä merkityksellisiä, sillä se vaatii huomattavasti vähemmän verkkokapasiteettia eikä
kannan korjausoperaatioita tarvitse suorittaa.

Asiakasohjelmapuolella korkean saatavuuden ylläpitämisessä koettiin muutaman kerran ongel-
mia, joiden takia luku- ja kirjoituspyynnöt epäonnistuivat kahden solmun ollessa päällä. Tarkkaa
syytä tälle ei testien aikana löydetty, mutta se korostaa asiakasohjelman ja klusterin välisen yhtey-
den oikeanmukaisen konfiguroinnin tärkeyttä, jotta tällaisilta tilanteilta vältytään tuotantokäytössä.
Muissa tapauksissa korkean saatavuuden ylläpitäminen oli yksinkertaista, kun järjestelmä oli konfi-
guroitu oikein.

Skaalautuvuustestit osoittivat, että yhden solmun klusterin laajentaminen useamman solmun
järjestelmäksi parantaa vikasietokykyä, mutta myös lisää suorituskykyä merkittävästi. Kolmen
solmun klusteri kykeni keskimääräisesti suorittamaan 94% enemmän lukupyyntöjä kuin yhden
solmun klusteri. Neljän solmun klusteri paransi suorituskykyä keskimääräisesti vielä 22% verrat-
tuna kolmen solmun klusteriin. Työssä myös tutkittiin ohjelmistopäivitysten tekemistä, ja yhden
solmun muuntamista useamman solmun klusteriksi. Kyseiset testit pystyivät tunnistamaan luotet-
tavat ohjeet varmistamaan sujuvat päivitykset normaaliolosuhteissa.

Avainsanat: Apache Cassandra, korkea saatavuus, NoSQL-tietokanta, aikasarja, skaalautuvuus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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LIST OF SYMBOLS AND ABBREVIATIONS

ACID-principle Acronym standing for Atomicity, Consistency, Isolation and

Durability. ACID is a set of properties that ensure database

transaction reliability.

CAP-theorem Theorem that states that a distributed system can simultaneously

only have two out of three guarantees of consistency, availability,

and partition tolerance.

CL Consistency Level

Cluster A collection of one or more nodes that form the Cassandra

database.

CommitLog A file that logs all mutations to the database. The logs are used to

recreate Memtables in the case of unexpected shutdown.

CQL Cassandra Query Language

DBMS Database management system

DC Datacenter

DMS Database Middleware Service

GC Garbage Collection

GiB Gibibyte

JSON JavaScript Object Notation

JVM Java Virtual Machine

KiB Kibibyte

Memtable In-memory data structure containing the latest writes to the

database. Memtables are periodically flushed to SSTables.

MiB Mebibyte

Mutation Insertion, deletion, or deletion operation

Node A Cassandra instance.

NoSQL A database that does not use the traditional relational model for its

data.

Partition Tables are divided into partitions according to the partition key. All

data of a partition resides in the same node.
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Primary key A unique identifier for each row in a database table. A primary key

consists of one or more partition keys and zero or more clustering

keys.

RDBMS Relational database management system

Relational Database A database that stores data in tables of rows and columns, and

allows data to be related between tables.

RF Replication Factor

Snitch Component that determines the cluster’s topology, enabling

efficient request routing and replica placement.

SQL Structured Query Language

SSTable An immutable file format used by Cassandra to store data on disk.

TTL Time-To-Live

Vnode Virtual node

XML Extensible Markup Language

YAML YAML Ain’t Markup Language
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1. INTRODUCTION

Scalable, fast, and high availability database management systems have become increas-

ingly important in today’s digital age. As the amount of data generated and stored is

growing, companies face new challenges in how to effectively store, retrieve, and manage

this data. The rise of modern applications has increased demand on system reliability

and recovery time, creating significant pressure on the need to improve the capabilities of

database management systems. High availability is now a vital part of these systems, as

businesses require 24/7 access to their data, and in some cases only allowing minutes of

downtime per year. Downtime in this context could lead to significant loss of revenue as

critical data can be lost.

Relational databases have been the most commonly used technology for data storage.

However, they were found to struggle with the scalability and performance demands of big

data. These problems have been tried to address in different ways, but each approach has

had its own set of challenges. Vertical scaling, achieved by buying better hardware, has

been expensive and has only offered temporary relief. Horizontal scaling, accomplished

by adding additional servers in a cluster of computers, has brought up the complications of

data replication and consistency, which has been difficult to handle in these systems. To

make databases perform better, queries have been optimized, new caching methods have

been implemented, and data denormalized. However, these approaches have created

even more consistency issues and increased the complexity of managing relational data.

These obstacles have made it difficult to achieve high availability in a reliable and efficient

manner. All of this led to the need for new solutions in early and mid-2000s. [1, pp. 3–4]

To meet these new demands, NoSQL databases, like Apache Cassandra, have emerged

as a popular solution. Their main points being performance, scalability, availability, and

fault tolerance. These databases are designed to handle large amounts of data across

multiple servers and provide high availability through data replication. The distribution of

data makes it possible that even if some servers become unavailable, data loss does not

occur.
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2. NOSQL DATABASES

The main difference between NoSQL, standing for "Not Only SQL", and relational

databases is in how the data is organized and stored, as well as the relationships between

the data. This affects how queries are executed, what their performance is, and the

ease of scalability. The most common features of NoSQL databases include a simpler

and more flexible data model, which has the ability to speed up processing and allow

handling of unstructured data, easier scaling to multiple machines in a distributed manner,

granular availability control, and the ability to handle vast amounts of data. The trade-offs

and challenges include the lack of support for RDBMS ACID transactions (atomicity,

consistency, isolation, and durability). As a consequence, some reliability is lost, but

there are often ways to mitigate this. Consistency of data requires some configurations,

and strong consistency can be difficult to implement, which can be a problem for some

applications. NoSQL databases lack a unified language (cf. SQL), resulting in a wide

range of query languages and ways to access data. Support for complex queries is often

limited due to the nature of the data. [2, pp. 216–220]

NoSQL databases have the shared feature of being non-relational, but beyond that there

is a diverse range of different kinds. Some of the most popular categories can be classi-

fied into the following [2, p. 218]:

• Key-value database (Amazon’s DynamoDB, Riak)

• Column-oriented database (Cassandra, BigTable)

• Document database (MongoDB)

• Graph database (Neo4j)

Key-value databases store key-value pairs where the key maps to the value using a

hash table. Values can be anything from simple to complex compound objects. Column-

oriented databases store data tables by column rather than by row. This make targeting

specific columns more efficient and is effective option for complex datasets due to its

scalability. Document based databases store data as documents which can contain

more complex data structures and relationships. A document can contain for example

multiple key-value pairs, arrays, or nested documents, often stored in JavaScript Object

Notation (JSON), Extensible Markup Language (XML), or YAML Ain’t Markup Language

(YAML) format. Graph databases store and represent data as graphs, consisting of nodes
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(entities) and edges (relationships). Graph databases are used to focus on relationships

between data rather than the data itself. [2, p. 218]
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3. APACHE CASSANDRA

Apache Cassandra is one of the databases that emerged in the NoSQL wave in the late

2000s. It was originally developed at Facebook in 2007 where it was used to improve

the performance of its inbox search functionality. In 2008, Facebook published it as an

open-source project, later in 2009 Cassandra was moved to an Apache Incubator project,

and finally in 2010 it was voted into an Apache top-level project. [1, pp. 28–29] Based

on information from 2021, some of the largest production deployments include Apple with

more than 160 000 instances that store more than 100 petabytes of data across more

than 1000 clusters. Netflix has more than 10 000 instances that managed millions of

transactions a second. [3] In 2012, eBay handled more than 400 million writes and 100

million reads per day using Cassandra [4]. In 2022, Discord had a 177 node system that

was used to store trillions of messages [5].

3.1 Cassandra as a distributed and decentralized database

Apache Cassandra is an open-source, distributed and decentralized NoSQL-database.

Its aim is to be easily scalable to large amounts of data and to be highly available without

compromising its read and write performance. The data model is based on Google’s

Bigtable [6] database and Architecture on Amazon’s DynamoDB [7] database. Modern

versions of Cassandra use CQL as its formal query language, which is similar to SQL

syntax. [1, p. 17]

Cassandra is distributed, which means that it can be run on multiple computers physically

located in separate places. There is no central master server, and the whole distributed

system appears as a unified whole to the client applications. This collection of machines is

also called a cluster. A single machine in the cluster is called a node, which is an instance

of the database, and stores a portion of the overall data. [8] Although Cassandra can run

on a single computer as a single node, it misses the advantages of running a multinode

system, which Cassandra is specifically designed for.

Scalability is claimed to be linear in nature, which implies that as the number of nodes

in the cluster increases, the system’s performance and capacity increases proportionally,

regardless of the size of the cluster. A client application can send a data write request

to any of the nodes, and Cassandra is able to synchronize it between the whole cluster.
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[8] In a production environment, this indicates that if at some point the data throughput

requirements of the database get bigger, you only need to add more machines to the

cluster, which can be done without downtime or interruption. This concept is called

horizontal scaling while vertical scaling is adding better hardware to existing machines

[1, p. 16]. Moreover, Cassandra is designed to take full advantage of multiple processing

units to improve its performance and optimizing for high write throughput [1, p. 24].

There is no single point of failure in the database, as the cluster is decentralized, meaning

that every node is similar and can do anything that any other node can. However, they do

have some short-term specialized responsibilities, but they are not limited to any node.

Internally, requests to the cluster are load balanced to generate better performance. This

design improves general database availability, as the system does not rely on a "master"

node like many distributed database solutions. The way how Cassandra manages this

is also called peer-to-peer design, which will be discussed further in Section 3.3. In the

case where a node drops out of the network, applications do not notice a difference if

the data accessed has been replicated from the offline node to another node. The traffic

intended for a failed node is forwarded to another node with the replicated data to handle.

This network of independent processing nodes with access to a replicated database is of

type active/active database [9]. In Cassandra, the occurrence of node and zone failures

is an expected scenario, and the system is designed against these incidents to achieve

high availability.

The mechanism of data replication is done based on the configurations set. For example,

a data replication factor of three means that every piece of data resides as three copies in

three different nodes, and it is safe to read either of those even if one of the nodes is down.

In comparison to the master-slave architecture, where a single master node manages the

whole cluster consisting of slave nodes, the functioning of the whole database can be

hindered if the master node goes offline. [1, p. 15]

On the surface, it may seem that Cassandra is able to and should be used everywhere,

but upon delving deeper, there are situations where its utilization may not be the best

choice due to the trade-offs that are required to make Cassandra’s features possible. If

a project does not need the benefits of running a multinode system, which Cassandra is

specifically engineered towards, it may be more suitable to investigate different databases

depending on the use case. It might be better to go for a relational database system like

MySQL or PostgreSQL as opposed to NoSQL options if the application uses small or

medium data. Medium data can be described to fit on a single machine with capability to

serve hundreds of concurrent users and where vertical scaling is enough for most cases.

Relational databases guarantee that consistency is always met through ACID compliance

[1, p. 6], but once horizontal scaling is taken into action, things get complicated quickly.

In those situations, Cassandra might be a good option.
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Cassandra does not provide full ACID compliance, which makes it not compatible with

applications that require it, for example, a banking application [10]. ACID is an acronym

used to refer to a set of properties that ensure database transaction reliability [1, pp. 6–7].

In short, one of the things that ACID operations ensure is that when there are multiple

simultaneous requests, they are processed sequentially, with the first request being com-

pleted before the processing of the second one begins. [1, p. 7] This maintains data

integrity and consistency. Consistency means that each server returns the right response

to each request, for example a read always returns the most recently written value.

With Cassandra and NoSQL databases in general, these things are not so straightforward.

Instead, trade-offs have been made to prioritize other factors such as scalability and fault

tolerance. Cassandra’s consistency can be adjusted according to the requirements of

the application to various levels. Different levels of consistency determine how many

nodes should acknowledge a database operation before it is considered successful. [10]

With one of the lowest consistency settings of "ONE", the operation is successful after

it is completed in one of the nodes that stores replicas of that data [11, p. 134]. The

data is being replicated according to the replication factor in this case, but it takes some

time to fully synchronize. During that short period of time, requests may return different

responses in different nodes. On the other end, consistency level can be set to "ALL",

which waits for all the replicas to complete the operation [11, p. 134]. With these settings,

the balance between consistency, availability, and performance can be optimized based

on the requirements of the application. This design is tied to Brewer’s CAP theorem [11,

p. 43].

Brewer’s CAP theorem ties distributed systems like Cassandra to balance between:

• Consistency

• Availability

• Partition tolerance

The theorem, presented in Figure 3.1, indicates that a distributed database system can

only have two out of three of those attributes. Consistency means that everyone has an

identical view of the data. With availability, every request receives a response without

downtime, although it does not guarantee if it is the most recent value or not. Partition

tolerance means that the system maintains operations despite any network errors in which

messages are dropped. Distributed databases are often either "AP"-type by prioritizing

availability over consistency or "CP"-type by prioritizing consistency over availability. Cas-

sandra is often described as an "AP"-system, but can be configured towards a "CP"-

system by replication factor and read or write consistency levels. [11, pp. 43–46, 134]

More on the topic is discussed in Section 3.3.3.

Cassandra’s data model is optimized for large-scale data and high-velocity workloads, but
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Figure 3.1. CAP Theorem (adapted from [11, p. 46]).

it has limitations when it comes to performing complex queries [1, pp. 83–85]. Conse-

quently, there is a learning curve to data modeling, and it requires thoughtful consideration

on how the data is stored to accommodate the used queries right from the beginning.

Schema changes or query extensions can be difficult to implement and require planning

and coordination.

If the system requires many writes, Cassandra might be a good fit. If it requires lots of

different types of queries (i.e., many queries with different WHERE clauses) with complex

multi-table relationships, further testing may be necessary to determine Cassandra’s

suitability. In Cassandra, there is no relational integrity between tables, which necessitates

designing the table schema in such a way that all fields required for a specific query are

present within a single table. This kind of query-centric model enhances query efficiency

because they do not involve multiple tables. [12] As a consequence, this often leads to

either handling table joins on the client side for queries that need data from multiple tables,

or data denormalization by creating more tables with redundant data. Denormalization

increases storage requirements and the need to handle data duplication and consistency.

The good thing is that storage is cheap, and writes are fast, and in Cassandra’s case

denormalization is almost always the preferred way and normal technique to handle these

cases. [13, p. 3]
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3.2 Data model

The data model refers to the way the data is organized and stored in the database. This

includes the structure of the data and the relationships between pieces of data. It also

includes the way data is accessed, what types of queries can be run and what is their

performance and limitations.

3.2.1 Basic Structural Elements

The data and storage engine model of Cassandra is based on Google’s BigTable and

uses terms that are inherited from it. The most relevant to understand the data model

being [1, p. 58]:

• Row: A row represents a collection of related data. Each row is identified by a

unique primary key.

• Column: Columns represent individual data points within a row.

• Table: Is the fundamental unit which defines the typed schema for a collection of

partitions. Tables contain partitions that contain grouped rows.

• Keyspace: Groups related tables together and defines replication strategies for

those tables.

The model can be described as a partitioned row store, where data is stored in multidi-

mensional hash tables as key-value pairs. In basic terms, a column is a unit of data that

consists of a key and a value, for example user_email as key and johndoe@example.com

as value. This pair is then stored as a separate entry in the hash table. [1, p. 27]

Additionally, each time data is written, a timestamp is generated for each column value

that gets updated. The timestamp is used to resolve conflicts. [1, p. 63] There is also a

fourth attribute called "time-to-live" or "TTL" that can be used to expire data on a column

basis after a specified amount of time [1, p. 65].

Multiple columns are grouped together in a row. The rows are sparse, meaning that

non-populated columns of the row do not take up space. Hence, null values can be given

to columns, which will not be stored in the hash table. In relational storages, the tables

are rigid, and each row has all the fields regardless of whether the cells have values or

are empty. [1, p. 27] Figure 3.2 demonstrates the row container.

To associate different cells to a row, a common unique identifier needs to be associated

to them. This is called a primary key or a row key. More specifically, Cassandra uses a

composite key as a primary key, which itself consists of one or more partition keys and

zero or more clustering keys. [1, p. 57] Primary keys are often called simple primary keys

if they only use one column name as the key.
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Figure 3.2. The basic layout of a row (adapted from [14, p. 30, 1, p. 57]).

The partition key of a composite key represents groups of related rows called partitions,

which determine how data is distributed across nodes. Once a primary key has been

chosen, every row needs to contain the columns defined in it. The clustering key on the

other hand determines how the data is ordered in within a partition and it is based on the

columns that are included in it. Sorting data using clustering keys improves the retrieval

of adjacent data. [12]

On the second most outer layer, rows are grouped together in tables. A table defines the

schema, which is the layout of the data inside the table. It contains the names and data

types of the columns, as well as the primary key components. [12] Figure 3.3 represents

how tables consist of rows. The row keys or primary keys must be unique to be able to

identify the rows. In the Figure 3.3, columns 2 and 3 are not part of the primary key, so

they do not need to be present in every row of the table.

Figure 3.3. The basic layout of a table (adapted from [12, 1, p. 58]).

The outermost layer for the data is a keyspace. A keyspace is a grouping of related tables

that allows easier data management. A keyspace defines some common configurations



10

to the tables inside it, for example data replication strategies [1, p. 59]. It can also be

used to isolate different data sets from each other.

In Cassandra, the rows have flexible schema. This means that you can have different

column names for different rows within the same table and not need to have the all

the other columns. The flexibility allows adaptation of the data model as the application

requirements change over time, but it also means that it is more important to have good

design and modeling practices to ensure that the data is stored in a way that makes it easy

to query and retrieve. Moreover, going schemaless means that the schema is nondirectly

implemented by the application and not enforced in the database side. In newer versions,

going schemaless is more restricted than in older versions of the storage engine where

you could have no definitions about what a row contains. This was possible by utilizing the

now removed database interface called Thrift API [1, pp. 27–28]. Thrift API was replaced

with the Cassandra Query Language (CQL).

3.2.2 Cassandra Query Language

CQL is the primary formal language used to interact with the database and it’s at the

center of data modeling in Cassandra with the building blocks described in this chapter.

CQL is similar to SQL syntax, which makes it easier to learn with prior experience.

Regarding this, it is important to keep in mind that using CQL should not be mixed

with relational database modeling ideology. CQL supports flexible schemas by offering

collections such as maps, lists, and sets to give the option for different number of field

values. The collections behave similarly to data structures found in programming lan-

guages like C++, but should not be used for big amount of data. In addition to that, CQL

supports all typical native data types, but also user-defined types, tuples, and custom

types. [15]

To begin using Cassandra with CQL, it is necessary to define keyspaces, tables, and

columns to establish the structure of the data. First, by creating a keyspace that defines

replication specific settings:

CREATE KEYSPACE my_keyspace

WITH replication = {’class ’: ’SimpleStrategy ’,

’replication_factor ’: 3};

Shortly, SimpleStrategy defines how the replicas are stored within the cluster, and every

data is in three copies. The CREATE TABLE command is used to create a table:

CREATE TABLE my_keyspace.my_table (

id uuid ,

name text ,

phone_number text ,
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age int ,

PRIMARY KEY ((id), age)

);

In the example, id is defined as the partition key as it is the first attribute, and age is used

as a clustering key that orders the data. Finally, data can be inserted:

INSERT INTO my_keyspace.my_table (id , name , phone_number , age)

VALUES (uuid(), ’Alice ’, ’555 -12345678 ’ , 30);

INSERT INTO my_keyspace.my_table (id , name , phone_number , age)

VALUES (uuid(), ’John ’, ’555 -87654321 ’ , 22);

Unique id is generated using uuid() function. Data can be accessed using SELECT:

SELECT * FROM my_keyspace.my_table

WHERE id = 647b6810 -6712 -48ed -a07e -9372 bf80c0dd;

3.2.3 Goals of data modeling

Designing the data model for collected data can be one of the most challenging parts of

using Cassandra because it requires careful consideration and planning to ensure good

performance. Basic goals of this process are [13, p. 5]:

1. Spreading data evenly across the cluster.

2. Minimizing the number of reads to different partitions per operation.

3. Designing the model with future scalability in mind.

Other things to consider are minimizing the number of writes and data duplication, al-

though they are expected in the design. If these can be minimized, the better it will be

in terms of the performance. Shortly put, partitions are groups of rows that have the

same partition key, and these rows are located on the same node. [12] Regarding the

first case, the goal is to distribute data as widely as possible in the cluster of multiple

nodes by choosing a good partition key. The result is a more even load on the system

when partitions are of similar size. The focus of minimizing the number of reads is to make

the tables correspond to a query pattern. Relational modeling starts from domain models,

which are represented in tables and their relationships, finally focusing on the queries that

need to happen to combine the information. In Cassandra, instead of starting from the

domain models, the starting point of data modeling is the actual use cases and queries

on which the data organization will be based on. The goal being the minimum number of

partitions read per request. In a bad designed model, a read can be unnecessarily divided

to multiple partitions, increasing request overhead and latency. [12] To counteract this,

data is commonly duplicated between tables, but as mentioned previously, denormaliza-
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tion is expected in Cassandra. Other ways are by using indexes and advanced querying

methods, but those areas are not the focus in this thesis.

For example, if our application is a bookstore inventory system, queries can be optimized

to different use cases. To query books by author, one can use a CREATE TABLE query

similar to the following:

CREATE TABLE my_keyspace.books_by_author(

author text ,

title text ,

ISBN text ,

publication_date date ,

PRIMARY KEY (( author), title)

);

A second table optimized for querying books by publication date could be:

CREATE TABLE my_keyspace.books_by_date(

publication_date date ,

title text ,

author text ,

ISBN text ,

PRIMARY KEY (( publication_date), title)

);

Since the partition key determines data locality between nodes, selecting the primary key

affects the performance of data accesses. In the first example, author is the partition key,

which results in that all entries with the same author’s name are located on the same

partition and the same physical node. Furthermore, because where are using title as a

clustering key, unique rows are determined by the combination of an author and a title. By

specifying the author’s name in query’s WHERE clause, resulting search happens only

inside one node and one partition without the need to access other nodes or partitions:

SELECT *

FROM my_keyspace.books_by_author

WHERE author = ’William Shakespeare ’;

The clustering key in that example orders the books by title name. If one were trying

to access all the books by one author from the second table where the partition key

is publication_date, it would require a scan of all partitions on all nodes with inefficient

access pattern. That is the importance of data denormalization for a query pattern.

When attempting to use the previous query, Cassandra will even respond with an error

message: "Cannot execute this query as it might involve data filtering and thus may

have unpredictable performance." and requires the use of ALLOW FILTERING command

in the request. Another way is to use secondary indexes to make accessing the data
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possible by using other attributes than those in the primary key. Using secondary indexes

is significantly more expensive than regular queries and should only be used in specific

use cases or when adding support for new queries that were not in the original data model

design [1, p. 147].

3.3 Architecture

The architecture of a database refers to the overall design and organization of the

database system that handles management of the data. It includes the physical and

logical components of the complete system, such as the hardware, software, and network

components. It also includes how the data is replicated and distributed across multiple

nodes, and the way the system handles failures and scalability.

3.3.1 Cluster Topology

Examining the underlying architecture is a good starting point to understanding how

clusters are organized in Cassandra. The main terms going from high-level to low-level

being:

• Cluster or ring

• Datacenter

• Rack

• Node

At the bottom of the physical topology are nodes, which are instances of Cassandra

running in a physical server or in a virtual machine. It stores a portion of the data and

handles read and write requests like any other node in the system. [16, p. 6] Every node

is in terms of responsibilities and actions the same, but they can have some temporary

responsibilities. For example, a node can have a special responsibility as a seed node.

When a new node is added to the cluster, it learns the topology of the network from seed

nodes [14, p. 17]. It is recommended that a cluster has at least two seed nodes in case

where one of them goes down. To clarify, marking a seed node is as simple as adding

that node’s IP to the seed node list in the cassandra configuration file cassandra.yaml,

and it can just as easily be removed from there.

Cassandra is often implemented as a system that is geographically dispersed to lessen

latencies and to increase the level of resiliency and performance in globally wide applica-

tions. For this reason, nodes are grouped in racks and the racks are grouped in data-

centers in the network topology [16, p. 6]. These terms may not correlate to the physical

world but can be based on them. A rack is a grouping of nodes that are located close

together, for example behind the same network switch [16, p. 6]. In a production system,
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racks can be used to make sure that data is not replicated only in a single rack, but evenly

between racks. Consequently, if one of the racks goes offline, data is not lost. Racks are

grouped in datacenters which can consist of multiple racks with multiple nodes, generally

in the same building. The cluster itself consists of these datacenters that can be located

in different parts of the world. [16, p. 6, 17]

Figure 3.4. Cluster Topology (adapted from [1, p. 108]).

Figure 3.4 highlights the hierarchical arrangement of the topology from top to bottom,

allowing organized management of the network. At each level, some of the configurations

are inherited from the higher level to the lower one. In addition to the physical topology,

there is also another element called virtual node or Vnode that is related to the data

distribution. Section 3.3.4 delves deeper into the concept of Vnodes.

3.3.2 Ring structure

Nodes of a cluster are organized in a peer-to-peer architecture where they can directly

communicate to each other through inter-node communications protocol called gossip.

Gossip is used to share information about the nodes’ state and, therefore, is used to keep

track of the condition of nodes. Some of the purposes of gossip are failure detection to

avoid routing client requests to offline nodes and acknowledging new additional nodes.

[1, pp. 109, 111]

One key component that uses gossip is called Snitch. Snitch determines the topology

of the Cassandra network by assigning datacenters and racks to nodes. The snitch is

then used primarily for two functions: first, spreading replicas around the cluster in a way
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that minimizes the risk of failures, and second, routing requests to nodes that will answer

the fastest. Some ways this is done is by determining the client’s relative proximity to

nodes and monitoring the performance of them. There are multiple kinds of snitches e.g.,

SimpleSnitch for single datacenter deployments and GossipingPropertyFileSnitch which

is recommended for multi-datacenter deployments. [1, pp. 110–111, 222]

Each node in a cluster manages a range of data based on a token calculated from rows’

partition key, and the range is determined by the number of nodes. When reading or

writing data, a partitioner function is called that derives a hash value with a consistent

hashing algorithm from the partition key that will determine the node that owns that row.

The nodes communicate their token ranges with each other through gossip so that they

know where a client request should be forwarded. With the token mechanism, every node

is assigned data partitions, and the partition key helps index the data in each node. For

better visualization, the token range used in the Figure 3.5 is from 0 to 191, but in the real

system the token is a 64-bit integer that ranges from −263 to +263 − 1. [1, pp. 111–113]

Figure 3.5. Node ring with example token ranges (adapted from [1, p. 112]).

The concept of partitioning is one of the most important things to understand about the

data modeling and architecture of Cassandra. Like previously discussed, choosing how

to partition data has a big effect on the performance of the queries. When designing a

model for the data, the first objective is to partition it in a way that makes queries fast

and minimizes the number of partitions read per query, but also so that partitions do

not become too bloated and the cluster having hot spots of unevenly distributed data.

For instance, using a boolean value for partition keys is not a good idea, as the data

would be distributed at most only across two nodes. Uneven partition sizes affect for
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example performance, memory usages and database repairs. Understanding how to

balance the two requires understanding the query patterns and the specific requirements

of the application.

3.3.3 Replication and tuneable consistency

Another important aspect is the replication of data. There are three main variables that

can be configured for replication and consistency [1, pp. 114–116]:

• Replication factor: The number of copies of each row.

• Consistency level: The number of copies of that must be read/written before a

request finishes.

• Replication strategy: Determines which nodes receive a copy of a token.

The first replica node will have its token in its primary token range and the rest will have

the token in their secondary range. The number of replicas is determined by replication

factor. A factor of three means that there are three copies of every row under a keyspace,

as the replication factor is a property of a keyspace. [1, p. 114] Replication factor of

three is commonly used in a typical setup as a starting point as it strikes a balance

between how much data is copied and failure tolerance. The chance that three servers

fail simultaneously is very small. The more the replicas, the better the failure tolerance,

however also the more data storage required and the more work for writes. A single write

to the cluster will in this case multiply to three writes that can affect the performance a

bit. The first replica is placed on the node that handles its token, and the following are

determined by an algorithm called replication strategy [1, p. 115]. Replication strategy

uses the information provided by the snitch to place replicas on the ring.

Consistency level is tightly related to replication. Consistency level means the level

of certainty that is wanted about the state of the data, ensuring that the replicas in

the system have the same version of the data. Cassandra has tuneable consistency

specifiable to individual requests, so that consistency can be modified to specific needs.

With higher consistency level, the stronger the guarantee of data accuracy, but also

increased latency, possible performance drop, and worse availability. [11, pp. 134–136]

By using this mechanism, it is possible to shift the system’s focus from "AP" towards "CP"

in CAP-theorem terms (see Figure 3.1). The main write levels are [11, pp. 134–135]:

• ANY: Lowest consistency, write will succeed if any node acknowledges.

• ONE|TWO|THREE: One|two|three replica node(s) acknowledge the operation.

• QUORUM: The majority of replica nodes acknowledge the operation. Additionally,

there is LOCAL_QUORUM for acknowledgment within the same datacenter and

EACH_QUORUM for acknowledgment from multiple datacenters.
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• ALL: Highest consistency, all replica nodes acknowledge the operation.

All of these except consistency level ANY are also available for read requests. QUORUM-

levels ensure strong consistency and, as such, are often used where strong consistency

is needed. There is an equation determined to represent strong consistency [1, p. 116]:

IF (R + W > RF)

THEN

strong consistency

ELSE

eventual consistency

Where R is read replica count, W is write replica count and RF is replication factor.

Table 3.1 represents various combinations between replication factor and consistency

Table 3.1. Interaction of replication factor and consistency level.

level and their consequences for consistency, availability, and performance. In the table

it is assumed that RF is smaller or equal to the cluster size. The larger the cluster size,

the better the availability, but the worst case is still limited to the replication factor. For

example, when using a replication factor of three with write consistency ONE, if the node

that receives a write goes down before having time to propagate the value to the replicas,

the data is lost. Impact to application happens after reads or writes cannot execute

anymore because consistency level cannot be achieved.

The impact of replication factor and consistency levels to performance have been studied

by Gorbenko et al., as presented in their paper [18]. The study was conducted on a

three node cluster running Cassandra 2.1 versions, with a replication factor of three.
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One of their goals was to examine the latency and throughput of Cassandra with varying

consistency configurations and workloads. In terms of latency, QUORUM showed an

average increase of 15% in read latency and 7% in write latency compared to ONE,

while ALL showed an average increase of 26% in read latency and 13% in write latency

compared to ONE. ONE had an average read throughput that was 15% better than

QUORUM and 25% better than ALL. For write throughput, ONE was an average 5%

more performant than QUORUM and 10% more performant than ALL in operations per

second. [18] These results confirm that Cassandra has better write speeds than read

speeds on larger loads.

3.3.4 Virtual nodes

Figure 3.5 demonstrates how a token is calculated from the primary key through the

partitioner. To be more precise, this illustrates the older way in which nodes were assigned

a single token but handled the range from the previous token up to its own token number.

The problems with this kind of simplistic data distribution were that setting the token for

a new node was a manual process, and rebalancing of tokens when adding or replacing

a node was slow. This is true especially for large databases, as it requires streaming the

data from a replica node to its new owner. With Cassandra version 1.2, Vnodes were

added to optimize this data distribution. Instead of assigning a single token to a node,

the token range is divided into multiple smaller ranges that are automatically assigned

by Cassandra. [19, pp. 37–38] These smaller ranges are distributed randomly and

noncontiguously in the cluster, as illustrated in Figure 3.6 [20]. For example, node 1 in the

Figure 3.6 with single-token architecture owns a primary token range A similarly how in

Figure 3.5 a node owns a range 1-32. The node 1 also contains replicas to ranges F and

E, while in the virtual node architecture the node 1 is assigned multiple smaller ranges.

Adding a node with Vnodes speeds up the rebalancing process because the load spreads

to several smaller ranges located in different nodes, improving fault tolerance. Thirdly,

Vnodes makes supporting a heterogeneous ring of nodes with varying computing power

easier. [19, p. 38]

3.4 Data reading and writing mechanisms

3.4.1 Write path

Another temporary responsibility a node can have is when it is handling a client request.

As a client application can see the cluster as a singular end point, it does not matter which

node answers a request. The node that performs the operation becomes the so-called

coordinator, and any node can become one. The coordinator determines which nodes

the requested replica resides in, and forwards the operation to them. [1, p. 117] How the
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Figure 3.6. Node ring with single-token architecture and Vnode architecture [20].

reads and writes function is determined by the consistency level described earlier. The

coordinator can be a replica for the requested data and in that case count as one of the

acknowledgments for the consistency level.

Figure 3.7. Write path in multinode cluster within a datacenter (adapted from [1, p. 117]).

For example, in Figure 3.7, a client sends a write to a system with a replication factor
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of three. The assigned coordinator determines the replica nodes using the partitioner

described earlier and sends a write operation to all of them. With consistency level

QUORUM, the operation will return after two out of the three replica nodes return acknowl-

edgment to the coordinator node. If the required number of replicas is up and in normal

state, the query will complete successfully. Otherwise, an error is returned. Some of the

replicas can be located in different datacenters, which requires the local coordinator to

send the writes to remote coordinators as well [1, p. 189]. There, replicas acknowledge

the write to the original coordinator in the first datacenter.

3.4.2 Storage engine

Understanding the physical storage structure of a node is important for comprehending

node behavior in database operations. During writes, Cassandra uses on-disk files called

CommitLogs to track every mutation that happens to the node. A mutation can be an

INSERT, an UPDATE, or a DELETE statement. The primary purpose of the CommitLog

files is to recover from service restarts or crashes, as the CommitLog data is not lost. [1,

p. 122] Every node has its own CommitLogs that are divided into segments on disk [21].

The next step during the write is to write the value to a data structure in memory called

memtable that acts as a buffer. After the value is written to the memtable, it is considered

successful, and the node acknowledges it by responding to the coordinator node or client.

When the memtable or CommitLog size limit is reached, the values of the memtable

are flushed to an immutable data structure on disk called SSTable or sorted string table.

SSTables are stored sequentially on disk and maintain data for each database table. Data

for a table can be stored in multiple SSTables but there is only a single active memtable

per table. The operations used for writing are designed to require only appends, resulting

in high write speeds. For this reason, one of the limiting factors for write performance in

Cassandra is the disk speed. [1, pp. 122–124]

With the combination of CommitLogs, a crashed node can restore the state of memtables

by replaying the writes stored in the CommitLog. [1, p. 124] When CommitLog’s segment

size exceeds its limit, it is synced to the disk and CommitLog continues to the next

available segment. Mutations maintained in a segment are marked as clean (i.e., flushed

to SSTables) or dirty (i.e., persisted only in CommitLog), and Cassandra can only delete

segments after all the mutations are persisted in SSTables. On a memtable flush, Cas-

sandra marks the CommitLog positions clean, and once the entire segment is clean, it is

deleted. [21]

As mentioned, SSTables are immutable and cannot be modified after they have been

created on disk. Over time, this means that there will be obsolete data collected on

older SSTables and large amounts of data files accumulated. Besides taking up disk

space, read performance is affected as more and more SSTables are accessed during
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Figure 3.8. Main data structures of a Cassandra node during write (adapted from [22]).

data retrieval. The process of compaction takes up similar sized SSTables and merges

them together, removing deleted data while persisting the other data. [1, pp. 125–126]

The compaction algorithm is chosen per table and configured by the types of operations

that happen. According to [1, p. 126], in general:

• SizeTieredCompactionStrategy for write-intensive workloads, it is also the default.

• LeveledCompactionStrategy for read-intensive workloads.

• TimeWindowCompactionStrategy for TTL’ed time series data.

Compaction is an automatic process that is done in the background. There is also a

specific type of compaction, a major or full compaction, that is executed manually and

combines all SSTables for a given table into a single SSTable. [1, p. 127] The usage

of major compaction has been discouraged in production environments because the

resulting large SSTable will likely not get compacted in the future by automatic com-

pactions due to its size. However, since Cassandra 2.2, there is a way to split the created

SSTable into smaller pieces [23].

3.4.3 Node repairs

Moving forward with the write operation and its implications when one of the replica nodes

is unresponsive due to various factors such as it being down, having network errors,

hardware problems, or being at an overloaded state. Over time, as these failed writes and

inconsistencies between nodes accumulate, it forms entropy in the system [11, p. 136].

To combat this, Cassandra has anti-entropy mechanisms that are repair during the write

path with hinted handoffs, repair during the read path with read repairs, and anti-entropy

repair [1, p. 189]. Repairs are designed to synchronize the data between nodes to get rid
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of these inconsistencies.

In the hinted handoff mechanism, the coordinator node saves the failed mutation as a hint

in its storage [1, p. 118]. In other words, if a node is storing hints, it’s an indication that

it cannot properly communicate with some of the other nodes. When the target node is

seen to be online through gossip, the hint is replayed and the write is completed in the

background [1, p. 118]. Understanding this, the distinction between consistency levels

ANY and ONE be differentiated more clearly. When using consistency level ANY, the

operation is considered successful even if only a hint is stored, whereas with ONE, the

write must complete. Hints are deleted after max_hint_window configuration, which is

three hours by default. That makes ANY a very low reliability setting. In the case of

Figure 3.7 and consistency level QUORUM, up to one of the nodes can be down for the

coordinator to acknowledge the query as successful. It will also store the hint for the

downed node.

Hinted handoffs improve making maintenance on the cluster because replaying hints is

an efficient method to make the downed node consistent again. If the node remains

down longer than the hinted handoff time, some of the hints from that period have already

been discarded and other measures must be taken. The next option is read repairs that

Cassandra uses to repair inconsistencies due to the node being down longer than hinted

handoff time [11, p. 136]. When reading data, the values of the replicas that were read

according to the consistency level are compared. If differences are found, a read repair is

executed, and the outdated values are updated with the most current value. A read repair

is a blocking mechanism that the client needs to wait before a response is returned.

[24] While the blocking read repairs are currently in use, background read repairs were

removed in Cassandra 4.0 because they caused extra internal load and were redundant

with other repair methods [25].

Read repairs are not a full substitute for anti-entropy repairs (coming up next) to resolve

data inconsistencies, but it has a place in fixing some corner cases during normal opera-

tion. The data in nodes could not be up-to-date even after a read repair has been

performed as seen in Figure 3.9. If the read consistency is not set to ALL, there will

be nodes that are not checked for inconsistencies during every read.

Anti-entropy repairs or manual repairs are designed to be run as a regular maintenance

to a cluster and in situations where the other methods are not sufficient. Anti-entropy

repairs are not executed automatically because they are disk- and memory-intensive and

time-consuming operations, but should be run regularly to keep the state of the cluster

healthy in the long term. Manual repairs consist of full repairs, that operate over the whole

data, and incremental repairs, that operate over new data since the previous incremental

repair. [1, pp. 275–276] Running these repairs ensures that the data stored on the node

and its replicas are consistent.
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Figure 3.9. Read repair performed during an EACH_QUORUM level read when data is
inconsistent across two datacenters. The nodes marked with (R) are replicas (adapted
from [24]).

3.4.4 Deletions

Deletes are handled in a special way due to the distributed design of Cassandra. When

a client sends a data deletion request, the data is not deleted immediately, but rather

marked with a tombstone. A tombstone is a marker to a column that indicates of expiration

date/time. Previously mentioned time-to-live attribute works similarly that after the defined

delay, the column or row is marked with a tombstone. Once the tombstone reaches the

time defined in the table’s gc_grace_seconds configuration (default 10 days), the data is

deleted as part of the compaction process. [1, pp. 210–211]

The design of the tombstone mechanism can be attributed to the scenario in which some

replica nodes are down during a delete request and do not receive any indication of

it. Without the tombstone mechanism, downed nodes would assume that the rest of

the replicas have been missing writes and stream the now deleted data back to them

upon getting back online. [1, p. 210] A row or column that reappears after deletion
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is called a "zombie" [26]. Now with tombstones, if the downed nodes come up within

the GC grace period and are repaired, they receive the tombstones and the previous

situation is solved [1, p. 210]. Despite some amount of delay, this approach enables a

more streamlined approach to distributed data deletion in a consistent matter across the

network despite varying states. If the node comes up within the hinted handoff time, hints

will deliver the tombstone mutation to it. If the node is down longer than the hinted handoff

time, Cassandra does not automatically replay the mutation, and a repair must be run. If

the node is down for more than the GC grace period, the node misses the tombstone

mechanism completely, meaning that the recommended action is to replace or rebuild the

node. [1, p. 285]

3.4.5 Read path

Cassandra read path is similar to the write path. A client sends a read request to a

node that becomes the coordinator, and it determines the replicas using the partitioner.

Similarly, in multi-datacenter reads (i.e., EACH_QUORUM), the request is handled by a

remote coordinator in each datacenter.

If the read’s coordinator is not a replica, it determines the fastest responding replica node

using the dynamic snitch discussed in Section 3.3.2 and sends a full read to it. Other

replica nodes determined by the consistency level receive a digest read in which only a

hash value of the data is returned. The coordinator then compares the hash values from

the digest reads and the hash value calculated from the full read for any discrepancies. If

all match, a response is sent to the client, otherwise read repairs are executed before the

response like in Figure 3.9. [1, p. 201]

The operations that occur inside a node during a read are more complex than those

in writes. As such, this section goes over the high-level overview of these operations.

First, a cache that stores a subset of data from SSTables in memory, a row cache, is

checked. If the row cache contains the requested data, response can be immediately

returned. The read does not require disk accesses and increases read performance

significantly. If the data is not in row cache, memtables and SSTables are searched

for the requested data. The complete response is created by merging the information

gathered from both. Since there are multiple SSTables for a single Cassandra table,

the search can potentially be expensive. [1, p. 202] For this reason there are multiple

optimizations implemented such as: partition key caching, bloom filter, SSTable indexes,

summary indexes and compression offset maps. For example, the bloom filter is used to

determine if the partition to be read exists in a given SSTable [27].
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3.5 Management of nodes and clusters

Doing regular maintenance to a cluster in Cassandra is an important task to do to ensure

that the database is healthy and performing as expected. Node level tasks include

monitoring the performance and health metrics, doing maintenance tasks, tuning settings,

and creating backups. Cluster level tasks include planning and monitoring the overall

capacity in terms of storage, performance, and network resources, managing the cluster

topology by adding new nodes, removing old nodes, or replacing nodes, and upgrading

Cassandra versions.

Adding new nodes to a cluster can improve the database’s performance and availability by

distributing data and processing power across more machines. It also releases disk space

to be used on the other nodes if replication factor stays the same because the added node

takes a part of the token ranges from other nodes. Removing nodes is a necessary action

when scaling down the size of the cluster or replacing failed nodes. Repairing a cluster

involves identifying and fixing inconsistencies between replicas of data which needs to be

done on a regular basis to maintain database’s consistency and to prevent data loss.

The simplest way to manage a cluster is by using Cassandra’s nodetool utility provided in

the cassandra-home directory. Nodetool is a command line tool for inspecting, configur-

ing, and doing various maintenance tasks to a node. Common operations are listed in

table 3.2, a complete list can be found in Cassandra’s documentation, see [28].

From the manual maintenance tasks, repair is the most important in keeping the cluster

consistent, and it should be run regularly and every time a major change happens, or a

node becomes inconsistent due to hardware, software, or network errors. For example,

in the following cases [29]:

1. Updating data on a node that is read rarely and hence not repaired by read repairs.

2. Recover missing data or corrupted SSTables, run a full repair in this case.

3. Node being offline longer than the hinted handoff time, but less than the smallest

value for gc_grace_period.

4. After node releases from being in an overloaded state.

5. After topology changes, i.e., node removal, node addition, node replacement, or

when changing replication factors.

When a node failure happens and it is down longer than the hinted handoff time, hints can

no longer make the node consistent again and a repair must be run using nodetool repair

on the node. Therefore, a repair should be run regularly, at least within gc_grace_period

as discussed in Section 3.4.4. Another case where a repair should be run is when a node

becomes overloaded. In those situations, the node might miss writes and make the data

inconsistent.
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Table 3.2. Common nodetool operations.

Given the increased complexity of managing larger clusters, big organizations typically

have dedicated operators to handle repairs and utilize various tools for these tasks. On

the other hand, with smaller cluster deployments, automated tools can be the primary way

to schedule most maintenance tasks, including manual repairs. This approach minimizes

the need for manual intervention, as it is not be desirable or needed for less complex

systems. Running a full repair is a common operation as well. Running it monthly is

generally adequate, but should be run more often if warranted [29].

Adding a new node to a cluster can be done in the following steps [30]:

1. Install Cassandra on the new node.

2. Configure cassandra.yaml settings and make sure that cluster name matches, and

seed nodes are set. If the nodes are identical, all the nodes can use the same

cassandra.yaml file as a basis, and then node specific settings like addresses

modified for each.

3. Start the node and the bootstrap process of joining the cluster will begin.

4. Verify that the node is up and normal with nodetool status.

5. Run nodetool cleanup on the other nodes to delete keys that now have been
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transferred to the new node. This frees up disk space.

If the new node is planned to be a seed node, it should be first be added to the cluster

as a non-seed node, and after the bootstrap process the node can be added to the seed

list in every cassandra.yaml file. Initialization of a new cluster is not that much different. It

includes installing Cassandra on each node, choosing the settings of the cluster including

the cluster name and determining seed nodes. Then do a rolling start first on the first

seed node, and then the rest of the nodes, transforming some of the nodes to be seed

nodes after they have bootstrapped. Non-seed nodes always require communication to

a seed node to join a cluster. Starting the nodes one-by-one prevents problems induced

by concurrent initialization, for example token collisions that prevent nodes from starting

normally. One important change that needs to be done on the system tables that come

automatically with Cassandra is to increase the system_auth table’s replication factor from

one to a higher number. Otherwise, it’s a single point of failure for authentication requests.

Removal of a node is done depending on which state the node to be removed is in by

checking with nodetool status.

1. If the node is up and its state is normal, executing nodetool decommission
streams its data to other nodes and removes itself from the ring.

2. If the node is offline, executing nodetool removenode <host_id> removes the

node, and its data is streamed from the replicas to a new node to maintain the

replication factor. If there are not enough nodes to maintain the replication factor,

adding --force flag to the command is required.

3. In other rare cases, nodetool assasinate <host_id> can be executed to force-

fully remove a node. No data is streamed.

There are several situations where a node needs to be replaced, e.g., due to hardware

failure. The recommended steps to replace a dead node are the following:

1. If the node is running, stop it by executing nodetool drain.

2. Install Cassandra on the new node and start it with a JVM flag indicating which

node to replace.

(a) cassandra.replace_address_first_boot=<node_ip>

3. Wait until data is streamed onto the new node, progress can be monitored using

nodetool netstats.

The method can be used to replace a running node as instructed in the first step, but it

will reduce the available nodes by one until the new node has finished the joining process.

The implications of this, for example, in a small three node system would be that during

the replacement period, no other nodes can go offline to maintain availability. Also, if

consistency level ONE is used, there is a risk of losing data even if RF is three because
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the replaced node can contain the only copy of a record at that specific moment [31]. The

other safer way is to first add the new node and then decommission the old node, but the

disadvantage is that the data is streamed twice. Once to the new node when it is added

and again when decommissioning the old node.

3.5.1 Cassandra monitoring

Cassandra is written in Java and runs as a Java process. As a Java application, Cas-

sandra uses Java Management Extensions (JMX) to allow remote management and

monitoring of nodes. For example, the nodetool acts as a JMX command-line wrapper

for managing a node. To make diagnostic data more easily understandable, Cassandra

uses a library called Dropwizard Metrics to collect and report diagnostic metrics [32]. The

metrics are organized into a hierarchical structure with JMX format:

[domain ]:[ key ]=[ property],[key2 ]=[ property2 ],[key3 ]=...

Metric names are formed with a combination of a domain name, a category, and a specific

metric name, which ultimately accesses an underlying MBean object. An MBean is a

managed Java object that represents a manageable resource and follows JMX specifica-

tion [33]. Cassandra specific domain names are prefixed with org.apache.cassandra.

Some of the Cassandra categories include: db, net, request, service, and metrics. For

example, compacted bytes are reported in

org.apache.cassandra.metrics:type=Compaction ,

name=BytesCompacted.
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4. SYSTEM TESTING AND ANALYSIS

4.1 Testing objectives

This thesis examines Cassandra’s suitability to be used in a small cluster, primarily con-

sisting of three nodes within a single datacenter. More specifically the focus is a three

node system, because it is the smallest recommended cluster size for a multinode system.

The evaluation of the system’s behavior under various use cases provides insights into the

technology’s reliability. The tests focus on common situations that occur in the long-term

usage of Cassandra on the software and hardware side, and what steps need to be taken

to handle them. Additionally, the benefits of scaling a single node cluster to multiple nodes

is inspected in one of the use cases.

At the center of the tests is a small-scale cluster. One of the reasons why smaller

multinode systems are inspected is because there is somewhat limited research available

into the characteristics of such clusters. This is relevant as transitioning from a single node

to a small multinode cluster is the first step when upgrading a simple database setup. For

this transition, the goal is to recognize and test what kind of additional configuration and

maintenance requirements arise, what the benefits and tradeoffs are, and assess how

the requirements of the infrastructure surrounding the cluster changes.

Often multinode clusters are run in the cloud because it provides flexible and scalable

resources that can be added or removed whenever demands change. In such cases, the

size of the cluster can quickly grow to tens of nodes when more performance is needed,

as horizontal scaling allows for a straightforward way to improve the database’s capacity.

However, in this thesis, Apache Cassandra is deployed as an on-premises database

where scaling to a cluster with tens of nodes is more difficult to achieve. On-premises

Cassandra is installed and runs on the computers located on the site rather than at a

remote facility. The upfront costs of such systems are higher compared to cloud systems

because they require purchasing and maintaining the hardware and other infrastructure.

Adding, replacing, and removing hardware requires extra work in on-premises systems,

but the long-term costs are potentially lower. Other benefits include fast access to data,

better data security because it is stored locally without outside access, and greater ease

of compliance with regulations.
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Although using two nodes as a cluster is technically possible, it is not recommended

due to the lack of benefits gained from it. The motivation behind upgrading from a

single node to multinode in this thesis is to gain the scalability and availability benefits

while maintaining strong consistency. In a two node cluster, high availability can only be

achieved with eventual consistency, because the only viable consistency level is ONE.

Using strong consistency would mean losing high availability as none of the nodes can

go down without causing service interruptions. For these reasons, two node clusters are

not inspected in this thesis. However, a three node cluster where only two nodes are

online is tested during the performance tests of Chapter 4.10.

4.2 Application context

Within the scope of this thesis, Cassandra is being utilized for handling time-series data.

The data model of the time series data includes each data point containing a timestamp,

a value, and a quality indicator that indicates the reliability of the value. Additionally, each

data point includes a tag id. A tag is a form of metadata that associates a data point to

some context. In the design’s data model, a tag corresponds to the source of the data.

The application uses data where samples are taken at a specified sampling rate, often in

the range of 0.5 - 10.0 seconds. A value is only stored to the database if it changes from

the previous cycle, hence the inputs are first buffered before being written to Cassandra.

Most of the write load occurs in batches, with each write request containing multiple data

points. Batch writes are good when atomicity is required, because either all succeed or

none of them do. They can also save network traffic especially when writing to a single

partition [34]. Data is accessed both on a per-row basis (i.e., querying the latest value)

and through range queries with lengths varying from minutes to weeks of data, generating

a significant read load on to the cluster.

4.3 System architecture

The architecture of the system under test, shown in Figure 4.1, consists of clients reading

and writing data, as well as the Cassandra servers. Each server includes a Cassandra

node and an associated database middleware service (DMS). The DMS provides an

abstraction layer that simplifies how clients perform requests as they do not need to

know CQL syntax or request internals. Instead, the clients can use application specific

structures and messages to write and retrieve data. The DMS is implemented in C++

and communicates with the cluster using DataStax C/C++ Cassandra driver [35]. In

this thesis, a client means the applications that send the read and write requests to

the DMS, which then sends the appropriate CQL queries to Cassandra using the client

driver. Additionally, the middleware layer can perform aggregation requests and publishes
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diagnostics about node health and performance. The aggregation requests consist of, for

example, calculating time weighted average data over a specified interval, or retrieving

the maximum good quality value within a given interval. Connections from the clients to

the middleware services are load balanced so that the requests are distributed evenly

between them. The DMSs are connected to the cluster and can communicate to any

node there with Cassandra’s internal load balancing policy. Double load balancing should

typically be avoided in Cassandra systems [1, p. 235], but it has been selected as the

best option for this kind of usage in the system architecture.

Figure 4.1. Overall system architecture.

The system under test uses Jolokia [36] version 1.7.1 to allow accessing JMX data over

HTTP from the database middleware service, as seen in Figure 4.1. Jolokia introduces

a new attack vector to the system if its endpoints are exposed to the network. For that

reason, it is configured only for local access inside a server. During the upcoming use

cases, most of the Cassandra diagnostics have been collected using Jolokia and stored

in database to be retrieved after the tests.
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4.4 Testing environment and Cassandra settings

The main test system was built to resemble a production system that is running on the

premises. It includes three identical machines with Intel Xeon Silver 4110 processor @

2.1 GHz with 8 cores and 16 threads, and 48 GB of DDR4 ram @ 3200 MHz. The servers

are located within the same rack and connected to the same network switch. The servers

are contained within their own subnetwork for easier network management and security.

Between the clients and the database is a hardware firewall that manages traffic. At the

beginning of the testing phase, a 100 Mbit/s network connection was tested, and later

upgraded to 1 Gbit/s connection during Section 4.8, when it was deemed inadequate.

The operating system was at first 64-bit Ubuntu 18.04 and later upgraded to Red Hat

Enterprise Linux 9 during Section 4.9. The storage medias for each server consisted

of a 1 TB hard disk drive, configured with hardware RAID 1 (mirrored disks) for extra

redundancy. RAID (Redundant Array of Independent Disks) of type 1 is a configuration

in which all data is maintained in two or more disks as exact copies. In this case, each

server contained two 1 TB drives with a combined storage of 1 TB.

Cassandra is set to have the following settings:

• Version: Cassandra version 4.1.0 is used, as it is the most recent version at the

time of writing.

• Replication: Replication factor of three with NetworkTopologyStrategy is used for all

keyspaces to ensure data durability and resilience against node failures.

• Partitioner: Murmur3Partitioner

• Endpoint snitch: GossipingPropertyFileSnitch

• Table settings: LZ4 compressor and Size Tiered Compaction Strategy

• Consistency level: LOCAL_QUORUM for all write and read operations.

• JVM: Heap size set to 8GB and upgraded to 24GB during use case 4, G1 Garbage

Collector

• Key cache size: 200 MiB

• Row cache size: 50 MiB

• Number of tokens: 256

• Request timeouts: 60000 ms

Rest of the main settings affecting performance were set to the default values.
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4.5 Use case 1: Monitoring cluster health and performance

An administrator responsible for managing the Cassandra cluster, whether large or small,

needs to actively monitor its health and performance to ensure that it is performing as

expected. This scenario focuses on how it is known that the cluster is healthy, specifically

what metrics need to be monitored. Additionally, it identifies what early warning signs start

to manifest when the cluster’s health is compromised. This allows for early detection of

issues and gives time to perform maintenance and troubleshoot problems before they

become critical. Additionally, regular checkups are beneficial to prevent and predict

capacity, performance, and data modeling issues. The goal is to find anomalies and

trends to proactively anticipate needs or changes.

To get a full picture of the system state, it is necessary to monitor not only how Cassandra

is operating on each node, but also other aspects of the servers itself. These can be

roughly categorized into system resources, JVM resources, and Cassandra diagnostics.

Tables 4.1, 4.2, and 4.3 list some of the most important metrics that were identified to

be monitored, based on a combination of sources [32] [37] [1, pp. 247–259, 263–268]

and testing of the database. System resource metrics contain information about the

underlying hardware and operating system, as listed in Table 4.1.

Table 4.1. System resources to monitor.

It is important to track the system resources as there are multiple processes running on

the server, each demanding a share of available resources. Metrics such as disk space

usage and disk I/O can be used to indicate when additional storage space is needed, or

disks need to be replaced. Other metrics such as CPU usage is a good indicator about

server overload.

The second area to monitor is Java Virtual Machine metrics, as shown in Table 4.2.

The JVM metrics mainly contain memory and garbage collection as the most crucial

area for monitoring. Tracking the total, heap, and non-heap memory usages reveals

if there are memory leaks, garbage collection issues, or other trends indicating slowly
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Table 4.2. Java Virtual Machine metrics to monitor.

rising memory usages. Tracking the frequency and duration of garbage collections helps

to identify potential GC-related performance issues and bottlenecks. During a garbage

collection pause, all operations of the Cassandra process are suspended for the duration

of the pause. Therefore, the cause of frequent pauses of more than a second should be

investigated [38].

The third category encompasses Cassandra specific diagnostics, which cover areas such

as request throughputs, latency measurements, error rates and their types, node states,

and communication-related metrics. These are composed in Table 4.3. From the node

Table 4.3. Cassandra diagnostics to monitor.

metrics, the state of the node should first and foremost be monitored (i.e., normal, boot-
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strapping, leaving, etc.) and its connection to the other nodes. By recording and aggregat-

ing these from all nodes, connection problems can be identified, and the affected nodes

determined, allowing for targeted investigation. The client request information is used to

identify bottlenecks in terms of performance, but also resource constraints, connection

and hardware issues, and cluster overloading. If timeouts, failures, or exceptions do not

show up in client request metrics, applications do not notice any difference even if nodes

have slight communication problems or one of the three nodes goes offline.

Information about misbehaving nodes first starts to show up in the 95th and 99th per-

centiles of client latencies as abnormal spikes. Local latencies (keyspace and table/col-

umn family latencies) give a better indication of node’s query latencies that describe the

time it takes to read and write to disk and memory. Thus, they can be used to identify

slower nodes and slow queries, as they exclude the time it takes to achieve consistency

(including network waiting time), unlike client latencies. Node communication metrics,

published by MessagingService, gives insight to network and performance problems

between nodes. For example, mutations are dropped when a node cannot keep up

with the requests sent to it, and cross-node latencies measure the latency of messages

between nodes. Assessing storage-related metrics enables evaluating cluster’s data

management efficiency and to address potential storage issues, for example, if large-sized

partitions start to appear, it is an indication that the data model should be refined. Cassan-

dra divides its operations into different stages and each of them maintains thread pools

to execute its tasks. Taking note of trends in the number of tasks per category is a good

way to know when to add more capacity to the cluster.

In many cases, effective monitoring can be achieved by focusing on key indicators such

as node states, connections between nodes, client and cross-node message information,

request throughputs, and exceptions. More comprehensive tracking provides a better

view of every aspect of the system, which becomes more and more important as the

size and workload of the cluster(s) increases. When performing periodic assessments or

debugging the source for problems, it is a good idea to first check the log files for any

indications of errors. Gc.log files records information about garbage collection events,

debug.log files record detailed information about Cassandra’s internal operations, and

system.log files contain information about the overall functioning and health of the node

on a higher level than debug logs.

4.5.1 Moderate write and read load

The three node system was run with a constant load of ~105 writes/second per node,

obtained using the OneMinuteRate attribute from:

org.apache.cassandra.metrics:type=ClientRequest ,scope=Write ,

name=Latency
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MBean. The writes were batch writes, each containing in the scope of 10-100 values

of time-series data. In total, there were writes to 20 000 different data tags and 250

diagnostic collection tags in Cassandra, with varying sampling rates, resulting in around

5000 values generated a second. The read load averaged 370 reads/second per node,

fluctuating between 100 and 1200. It was obtained using the OneMinuteRate attribute

from:

org.apache.cassandra.metrics:type=ClientRequest ,scope=Read ,

name=Latency

MBean. Most of the read load was created by 40 clients that made range queries to the

accumulated time-series data. For these queries, most of the processing time is taken by

Cassandra process with minimal DMS processing time as aggregation queries were not

used. The queries’ start timestamp was set to current time, while the end timestamp was

randomly selected within a range between current time and up to 15 hours prior. The rest

of the reads consisted of reading the latest value from a tag. As a result, the read load on

the server increased slowly throughout the test.

Results of the test:

• The network transmit speeds started at ~9 Mbit/s and increased to ~21 Mbit/s on

each server. The network receive speeds started from ~8 Mbit/s and increased to

~13.5 Mbit/s on each server. Network usage increased significantly as larger and

larger reads were executed towards the end, as seen on Figure A.1.

• Average server CPU usages started at 12-16% and increased to 14-19%, occa-

sionally jumping as high as 60-70%. Five-minute moving averages are depicted in

Figure A.2.

• The heap memory usage shows a pattern of increasing to 7.5 GB, near to the

configured maximum limit, and then decreasing to 1.5-4.0 GB before rising again,

as shown in Figure A.3. This kind of pattern is also called "a saw" and is caused

by the JVM garbage collection that deallocates unused objects automatically. This

was indicated by examining the gc.log file where a GC pause was logged during

the drop. The heap usage was monitored with HeapMemoryUsage attribute from

MBean

java.lang:type=Memory.

• The amount of data in each node (also called node load in Cassandra) increases

linearly at the rate of 4.25GB per day. The Figure A.4 depicting disk usage shows

a fluctuating pattern, indicated by increases with dips, which is attributed to the

compaction process of Cassandra. Node loads were monitored using Mbean

org.apache.cassandra.metrics:type=Storage ,name=Load.
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• No reported message timeouts.

• The mean client read latency started at ~2.5 ms and increased to ~6.0 ms. 99th

percentile of read latencies increased from ~30 ms to ~80 ms. The highest spikes

in 99th percentile latency were ~180 ms. Client latencies were monitored using

MBean

org.apache.cassandra.metrics:type=ClientRequest ,

scope=<RequestType >,name=Latency ,

where RequestType is Write or Read. As a sidenote, all latency numbers in the

tests refer to the time it takes for the request to complete between the DMS and the

cluster, and they do not include the time it takes between the clients and the DMS.

• Although the number of writes remained constant, the mean client write latency

increased from ~3.25 ms to ~7.5 ms with increasing read load. 99th percentile of

write latencies increased from ~25 ms to ~86 ms. At times there were quite large

spikes, the largest being 455 ms on node 2 when monitoring the 99th percentiles.

Average client request read and write latencies can be seen in Figure A.5.

• Column family latencies or local latencies were on average small, around 0.1-1.0

ms, as seen in Figure A.6. Interestingly, there were proportionally huge spikes only

in column family read latencies every 30 minutes, the height being affected by the

amount of read load. Towards the end of the test, the biggest was a 48 ms spike in

average read latency. Column family latencies were monitored using MBean

org.apache.cassandra.metrics:name=<LatencyType >,

type=ColumnFamily ,

where LatencyType is ReadLatency or WriteLatency.

• Cross-node latencies remained relatively constant without any spiking, as seen in

Figure A.7: the 50th percentile ranging between 3-8 ms with seemingly no effect

from the read load, and average 99th percentiles increasing from ~29 ms to ~50

ms. Cross-node latencies were monitored using MBean

org.apache.cassandra.metrics:name=CrossNodeLatency ,

type=Messaging.

These results provided a starting point for further analysis in subsequent testing.

4.5.2 Overloading one, two or three nodes by stressing the CPU

The primary objective of these tests was to introduce unevenness within the servers and

to observe how the situation is seen in diagnostic measurements. Another point was to

analyze the potential impact of such situations on the system’s performance and behavior.



38

For example, determining whether the cluster would still function well if one server was

temporarily utilized for other tasks. These tests were conducted by overloading the CPU

of one, two, and three servers, resulting in a total of three scenarios. The CPU stressing

was achieved by using a command called "yes", which was executed in parallel to match

the number of CPU cores:

for i in $(seq $(getconf _NPROCESSORS_ONLN));

do timeout 30m yes > /dev/null & done

The yes command repeatedly prints "y" to the output, in this case the "/dev/null" file,

which is a special file in Unix that discards anything written to it. The yes-processes are

terminated after 30 minutes. Cassandra was able to utilize some portion of the CPU

during this time, but the competing "yes" processes affected the utilization enough so that

it created disturbances.

The results of the tests are combined in Table 4.4. The averages were calculated from

a 20-minute period during the 30-minute test window, beginning 5 minutes after the

beginning of the test and ending 5 minutes before the end. The interval was chosen to

exclude any potential outliers in at the beginning or end of the test. The averages before

the tests were calculated from the preceding 2 hours to provide a baseline. Similarly like

before, latency numbers refer to the time it takes for a request to complete between the

DMS and the cluster. The same write load was used as in Section 4.5.1. The read load

consisted of 40 clients doing requests, with the data time range for each request varying

from 0 to 24 hours in duration. Each client would wait for a request to finish before sending

a new one.

During the tests no timeouts, failures or exceptions happened in client request statistics,

meaning that the load was moderate enough to not cause disruptions. These can all

be obtained using the ClientRequest metrics. Timeouts indicate that the configured

maximum time is exceeded and therefore the operation canceled, unavailable exceptions

mean that there are not enough nodes to fulfill the consistency level. Failures can occur

for several different reasons, which needs to be investigated to determine what went

wrong. Node communication metrics (MessagingService) on the other hand showed

some internode message timeouts, although very minimal amount, meaning that internal

communication of nodes noticed some slowness in the configured setting during the three

node overload.

The system returned to the original function quickly after the tests ended. As a conclusion,

client latencies seem to be a good way to determine node imbalances and issues within

the system. Both write latency and read latency increased, write latency slightly more.

However, keeping in mind that they are affected by their respective loads. Once imbal-

ances are detected, the problematic node can be identified by examining, for example,

system resource usages such as CPU and memory utilization, local latencies, client and
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Table 4.4. Results of CPU stress tests

internode timeouts and failures on each node. A direct way to notice an error situation

is to examine error and exception messages on a per-node basis in the Cassandra logs

and investigating the behavior of application drivers which usually raise programmatic

exceptions, for example UnavailableException and OperationTimedOutException. They

directly indicate of a failed operation. On the other hand, the default timeout values in

Cassandra configuration file are strict when used with lengthy read or range queries and

need to be set according to the types of requests used.

4.5.3 Overloading the system with read requests

In this test, the purpose was to overload the system with long reads to the point where it

could no longer function normally, resulting in client requests failing. Overload due to long

reads is more likely to happen in the production systems compared to overloading due to

writes, because they generate significantly more load than writes in this use case. The

44-hour test included 20 clients sending read requests to data that had been stored with

varying intervals, on average at two-second intervals. Read lengths increased from 0.1 to

10.0 day mark linearly by rising a day every 10 minutes, and then back to 0.1, repeating
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over the test. The data tags were randomly chosen and similarly like in the previous test,

the clients did not execute another read if the previous request from that client was still

ongoing. The DMSs did not do any data processing tasks for these requests but rather

just forwarded the answers to the clients.

Message statistics:

• Messaging service timeouts 16 000 - 20 500 per node.

• Client read failures 40 - 95 per node, write failures 40 - 95 per node, read timeouts

170 - 280 per node, and write timeouts 170 - 280 per node.

• Column family read latencies spiked from 0.1 to over 300 ms in regular intervals.

There was also write latency increase before the spike.

• Node 3 dropped the connection to another node once during the test, as seen when

monitoring DownEndpointCount and SimpleStates attributes from Mbean

org.apache.cassandra.net:type=FailureDetector.

The dropped connection persisted for a couple of seconds.

• Node 3 in general had more trouble functioning than the other nodes, rendering the

diagnostics monitoring data from that node unusable. This issue arose because in

the event of a complete connection drop, the DMS would cease transmitting data

to the clients that collect the diagnostics information, even if the connection came

back, which was identified to a software bug.

• Client write latency 99th percentiles rose as far as 2400 ms when 10 day range

queries were sent. The average write latency remained constant between 3.7 and

60.0 ms. The average client read latencies were smaller, ranging between 1.5 and

18 ms.

• The average CPU usage increased to 25%, but peaked at 100% frequently.

Client read and write timeouts as well as failures were maintained at identical levels.

First appearing during the first iteration of 10 day reads and then increasing linearly. At

26-hour runtime mark, there was a big increase in Node 1 timeouts, and then a couple

hours later client request failures started to occur. Signs of overloading started to be seen

immediately from messaging service timeouts, indicating that cross-node messages were

being slow. The number of timeouts increased linearly over time. The average network

usages were 35 Mbit/s during the longest reads, as seen in Figure A.8 but it frequently

reached the network’s maximum capacity of 100 Mbit/s, which was the main reason for

connection problems and request failures.
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4.6 Use case 2: Transition from a single node to a multinode cluster

Smaller installations of Cassandra often start with a single node system when its perfor-

mance is adequate for the application and high availability is not required. A single node

cluster is simpler to run than a multinode cluster for several reasons:

1. There are fewer configurations to think about. In contrast, multinode clusters require

adjusting data distribution, replication, and network communication settings more

carefully.

2. It is easier to maintain, as there is only one instance to monitor, update, and

troubleshoot.

3. All data resides in a single node, making data consistency more straightforward,

e.g., no need to think about performing repairs. Backups become more important

with no extra nodes to contain redundant data. On the other hand, its simpler to

manage backups with only one node.

4. The system architecture is less complicated.

5. Lower hardware costs, especially in on-premises installations. When transitioning

to a multinode environment there is not only the cost of buying the extra servers but

also often requiring upgrading various other components of the whole infrastructure.

This includes, for example, enterprise- or industrial-grade networking hardware,

which can be costly.

However, as the load grows and performance starts to degrade, it may become necessary

to migrate to a multinode cluster, providing better performance and the availability benefits

that the single node system lacks. The use case goes over the steps and configuration

changes that needs be done when going from single node to multinode cluster. For

future research, it would be valuable to perform a comparative analysis of similar costing

systems consisting of different amounts of nodes. For example, three high-cost nodes

versus five moderately priced nodes versus seven low-cost nodes.

4.6.1 Test runs

Changing from a single node to a multinode cluster requires several steps to ensure

that the cluster will meet performance expectations, maintain fault tolerance with high

availability, and accommodate the requirements of the application through correctly set

replication factors and consistency levels. As a first step, the number of nodes to be

added to the cluster should be determined. For a multinode cluster, a minimum of three

nodes is recommended, but the cluster can be scaled much further if needed. Another

point is to plan the topology of the nodes in the racks and datacenters. This test used

a single datacenter with a single rack. The number of nodes impacts aspects such
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as performance, fault tolerance, and operational complexity, which typically increase in

proportion with the number of nodes added. On that basis, the replication factor for all

keyspaces needs to be decided.

For a small cluster of three nodes, the replication factor of three is the most suitable

choice in the context of this thesis to meet the requirements of the application being

tested. It enables the use of QUORUM consistency levels, which simplifies achieving

strong consistency. The replication factor of three ensures that the system can tolerate a

failure of one node. Replication factor of four in a four node system does not provide any

extra benefit with QUORUM level requests, as they therefore require

QUORUM = RF/2 + 1 = 4/2 + 1 = 3

responses, still allowing only one node to go down. A replication factor of five requires

that QUORUM requests receive

QUORUM = RF/2 + 1 = 5/2 + 1 = 3.5

responses, which is rounded to three. This provides the benefit of two node failure

tolerance in a five node system. Replication factor should not exceed the number of

nodes in the cluster, as requests will require more responses than there are nodes with

that data.

In this use case, two approaches were explored for transitioning from a single node

system to a three node multinode system. First, most straightforward method is to add

the two extra nodes one at a time without altering any existing configurations. Once the

setup is complete, modifying the replication factors, consistency levels, and other settings

as needed. Running a full repair is mandatory after the replication factors have been

changed. The downside with this method, as seen with the upcoming test, is that read

requests will not be consistent across nodes until the repair has been completed.

The second way tested was by first changing the settings on the first node to accommo-

date the multinode system before the new nodes were added. This method requires

special attention, as some settings can be adjusted beforehand while others must be

altered later. To make it simple, only replication factors should be modified from RF = 1

to RF = 3, while keeping other settings same. The special case here is the system_auth

keyspace that will use the parameters auth_read_consistency_level and

auth_write_consistency_level defined in the cassandra.yaml file. By default they are set

to LOCAL_QUORUM and EACH_QUORUM, respectively. This means that if RF is set

to three for that keyspace, authentication requests will fail until more nodes have joined

the cluster or until the settings are changed. Setting these to consistency level ONE

should only be done temporarily. One of the advantages of the second method include not
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needing to run full repairs right away, as replica streaming is done automatically during

the bootstrap process of the added nodes. Secondly, the number of data streamings

required is reduced.

Both approaches were tested using a virtual machine setup with Docker [39] containers

running Cassandra instances. As a starting point, the single node system used the

following settings:

• Replication: RF = 1 for all keyspaces and SimpleStrategy

• Consistency level: ONE for all requests

• Snitch: SimpleSnitch

• Grace period: 0 for instant data deletion

The first approach was tested first. With one node running, two instances were installed

with the same Cassandra version with the single node settings. Cassandra.yaml files

were kept the same in all installations, but specifically properties cluster_name matched

the first node, seeds list contained the first node’s IP-address, and since SimpleSnitch

was still used, datacenter and rack names were the default values. After the nodes

bootstrapped and nodetool cleanup was executed on the first node, each node con-

tained approximately 33% of the cluster load. Next, the following multinode settings were

set:

• Replication: RF = 3 for all keyspaces and NetworkTopologyStrategy

• Consistency level: LOCAL_QUORUM for all requests

• Snitch: GossipingPropertyFileSnitch

• Grace period: 10 days

First, the multinode replication factor and replication strategy were set to each keyspace,

and grace periods to each table using ALTER clauses. It was observed that SELECT

clauses began to return different information on each node until a full repair was executed.

This resulted in that client read requests did not receive consistent data. Similarly, when

system_auth keyspace was set to have RF = 3, authentication requests started to fail

until full repair was executed for it. Finally, the snitch was updated to GossipingProperty

FileSnitch on each node as well as setting the datacenter and rack names to match the

previous ones within the rackdc configuration file. Consistency levels for the Cassandra

statements were changed to LOCAL_QUORUM. The cluster was now transitioned to the

multinode system with appropriate settings.

Then second approach was tested, first by changing all keyspaces to contain the multi-

node replication settings, except for keeping the system_auth at RF = 1. Request consis-

tency levels were kept at consistency level ONE. Similarly as before, the two nodes were

added one by one. During the bootstrap process, no issues were encountered with the
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client requests. After the bootstrap, system_auth keyspace was modified to contain RF =

3 and a full repair was run for it. The snitch was changed to GossipingPropertyFile Snitch,

and consistency level to LOCAL_QUORUM. Again, the datacenter and rack names were

changed to match the previous. As a result, this method proved to be a better way to

transform a single node cluster into a multinode cluster compared to the first approach

because fewer problems were encountered.

4.6.2 Test analysis

The previous approaches did not take into account how this affects the physical setup.

Upgrading to a multinode cluster is not only about increasing the number of nodes and

configuring the database, but it also involves addressing other components such as

the network hardware. The recommended network bandwidth is 1 Gbit/s with multiple

networked nodes. [1, p. 235] This means means that if the on-premises system did

not start with hardware that supports it, upgrading that component of the system would

be necessary. Depending on the circumstances, this might not be possible later on and

should be planned beforehand if an installation might require upgrading to a multinode

cluster in the future.

Second, the clocks on all nodes and clients should be synchronized, for example, using

Network Time Protocol (NTP). This is due to the fact that Cassandra resolves conflicts

using the timestamps of columns [1, p. 235]. Third, the inspected architecture requires

load balancing to happen when clients send requests to the database middleware ser

vices, which should be confirmed to be working correctly. Diagnostic monitoring becomes

more complex, as every node needs to be monitored and tools created that report when

problems are encountered in any of the nodes. Backup and recovery mechanisms need

to accommodate the multinode system. Finally, security configurations might need to be

updated. This may involve using encryption for node-to-node communication [40], and

adjusting firewalls to allow internode communication to pass.

4.7 Use case 3: Short term node disruption

Use case 3 focuses on performing maintenance work that causes a node to go offline

for a short period of time. This can be caused by, for example, upgrading software or

operating system versions, fixing software or network problems, or replacing hardware

such as the power supply or fans. The operations cause the node to go down for less

than the configured maximum hint window. Therefore, repairs do not have to be executed

because hints will restore the node’s state to be consistent with the other nodes. The

system should be able to maintain the data collection, consistency, and availability despite

a temporary node outage.
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To test this scenario, a short node drop was executed by taking a node offline for two

hours. For this test, the write load included the 5000 time series data points generated a

second, as in Section 4.5.1, minimal read load was induced to the system.

The expectations for this test were that the nodes would have been able to service the

clients without interruptions with high availability and consistency. However, during the

first test where the network cables were unplugged, it was observed that some of the

DMS’ had difficulties communicating with the cluster, and requests started to raise an

exception:

All hosts in current policy attempted and were either un -

available or failed.

The error message indicates that the affected middleware services were unable to estab-

lish a connection to the cluster. In this case, restarting the services fixed the errors and

requests started to flow again with two nodes out of three online. It is suspected that the

issue was attributed to a bug in the DMS’s code, specifically related to handling cluster

topology changes correctly. However, a more thorough investigation is required to confirm

the exact cause. Going over the diagnostics of the nodes, it was seen that the problem

was identified to originate from a previous incident where nodes were disconnected from

the network by unplugging them. The attribute OneMinuteRate obtained from MBean

org.apache.cassandra.metrics:type=ClientRequest ,scope=Write ,

name=Latency

reported that the nodes started to receive different amounts of writes: node 2 receiving

~35 writes/s, node 3 ~90 writes/s, and node 1 ~195 writes/s. When the DMS’s were

restarted, the number of writes returned to ~105 writes/s per node, as seen in Figure A.9.

After restarting the middleware services, the test was executed again, now without en-

countering problems. After the node came back up online, the hints processing took a

total of 15 minutes. The hinted_handoff_throttle was set to the default value of 1024

KiB/s and max_hints_delivery_threads to the default value of 2. During the drop, the

total number hints accumuled to 2.294 million on node 2 and 2.287 million on node 3. The

network receiving speed on the downed node increased to an average 20.5 Mbit/s during

the hints processing and decreased to 5.9 Mbit/s after returning to a consistent state.

The transmitting nodes used transmit speeds around 13.4 - 13.5 Mbit/s during the hints

processing and returned to 5.5 - 5.6 Mbit/s after all hints were processed. That is, both

nodes sent hints at speed of 8 Mbit/s, as configured by the hinted_handoff_throttle
value and max_hints_delivery_threads. During the time the node was offline, re-

quests divided evenly to the rest of the nodes, for example the write rate increased from

105 to 158 on the other two nodes, as seen in Figure A.10.

In conclusion, the cluster was able to handle a short-time node failure while maintaining
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high availability without the need to run repairs. The results indicate that even if the

Cassandra cluster is configured to operate with some of the nodes unavailable, it is crucial

that client communication is configured properly, since it can become the single point of

failure.

4.8 Use case 4: Extended node disruption

Long node drops can happen, for example, due to hardware failures, resulting in the

server being offline for an extended period of time. It’s important to ensure that the system

can maintain data collection, consistency, and availability during downtime, as well as

to know what steps must be taken when the server comes back online. Other issues

that can cause long node drops include datacenter or infrastructure problems, such as

network outages due to broken network switches, power outages, or even damage from

fire or water. This use case differs from use case 3 in that the node is down for more time

than the maximum hint window and requires repairs to be run to make it consistent again.

Performance aspects are inspected in Section 4.10.

To test the scenario, a long node drop was executed to simulate a node failure. As a

starting point, the nodes 1, 2, and 3 contained 494.16 GiB, 516.89 GiB, and 508.95 GiB

of data, respectively. The same write load as in Section 4.5.1 of 5000 values per second

was maintained throughout the process.

The node was offline for more than the hinted handoff time, meaning that running repairs

was mandatory to keep it consistent. Specifically, the following steps were taken:

1. Read and write load was induced into the system, and the following script was

executed on node 1:

sleep 32400; sudo service cassandra stop;

sleep 172800; sudo service cassandra start;

2. After 9 hours, Cassandra service was stopped and remained offline for 48 hours

until it was started again.

3. After that, the node had been online for ~7.5 hours, during which read repairs

where performing. Incremental repairs had never been run on the system, so the

PercentRepaired attribute acquired from MBean

org.apache.cassandra.metrics:type=ColumnFamily ,

name=PercentRepaired

returned near 0 value.

4. The command nodetool repair was attempted to run unsuccessfully. The error

encountered was the following:



47

org.apache.cassandra.db.repair.PendingAntiCompaction

$SSTableAcquisitionException: Prepare phase failed

because it encountered legacy sstables that don ’t

support pending repair , run upgradesstables before

starting incremental repairs

The test system had been used for a long time with different versions of Cassandra

up to this point without running nodetool upgradesstables.

5. nodetool upgradesstables was run to upgrade the old versions of the SSTables

to the current version. The only updated table was system_auth.roles.

6. Following several unsuccessful repair attempts, it was determined that the stream-

ing part of the repairs consumed the entire 100 Mbit/s network bandwidth during this

time. This resulted in dropped connections, client application request errors, and

nodes viewing each other as offline. Because of these issues, repairs experienced

failures and needed to be restarted from the beginning each time. The issue was

resolved by significantly limiting the streaming speeds in cassandra.yaml file:

entire_sstable_stream_throughput_outbound: 3250 KiB/s

entire_sstable_inter_dc_stream_throughput_outbound:

3250 KiB/s

stream_throughput_outbound: 3250 KiB/s

inter_dc_stream_throughput_outbound: 3250 KiB/s

One important note was that if the streaming bandwidth was set to for example 50

Mbit/s in each node, the node that is receiving data would effectively experience a

combined incoming speed of 100 Mbit/s (50 Mbit/s + 50 Mbit/s), which would still

lead to network overload.

7. Now repairs for tables started to complete successfully without failure midway.

Additionally, instead of running a repair for all unrepaired data, a more granular

approach was taken by executing repairs on a table basis by using command

nodetool repair <keyspace> <table>. The system was also upgraded to

have 1 Gbit/s network connections.

8. Another challenge encountered was when repairing large sized tables, approxi-

mately 330 GB in compressed size on the largest node, where the validation pro-

cess of a repair would take an extended period of time and timeout after 24 hours

with an error message:

WARN [OptionalTasks :1] 2023 -04 -03 02:56:53 ,864

LocalSessions.java :449 - Auto failing timed out

repair session LocalSession{sessionID=b21f76f0

-d0e8 -11ed -8da6 -19 b8cf42ca33 , state=REPAIRING
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INFO [OptionalTasks :1] 2023 -04 -03 02:56:53 ,865

LocalSessions.java :739 - Failing local repair

session b21f76f0 -d0e8 -11ed -8da6 -19 b8cf42ca33

And later logging:

ERROR [AntiEntropyStage :1] 2023 -04 -03 06:04:59 ,978

LocalSessions.java :933 - Error handling

FinalizePropose message for LocalSession{

sessionID=b21f76f0 -d0e8 -11ed -8da6 -19 b8cf42ca33 ,

state=FAILED , coordinator ...

java.lang.IllegalArgumentException: Invalid state

transition FAILED -> FINALIZE_PROMISED

In this case, the 330GB of compressed data on disk formed 760GB of uncom-

pressed data when inspected with nodetool compactionstats command during

a vali- dation. What slightly helped for the problem was modifying the heap size,

compaction throughput, and concurrent compactors according to guidelines [41],

but the problems persisted.

9. After deleting the overly large table, repairs could run without issues. Dropping the

table required increasing timeout values and retrying the operation multiple times.

The data on the table was successfully removed from the disk of two of the nodes,

but the third node still contained the SSTables when checked a couple of days later.

The files were then manually removed because it was known that these tables

were no longer used. In production systems, manually removing SSTables should

be avoided. Finally,

org.apache.cassandra.metrics:type=ColumnFamily ,

name=PercentRepaired

now returned near 100 value, indicating of a successful repair.

As a summary:

• When using a multinode Cassandra system, the 100 Mbit/s network speed is not

enough for medium or large workloads. Cassandra streaming speeds need to

be heavily limited, repairs can last days with large amounts of data, and cluster

topology changes such as removing, adding, or replacing nodes are very time

consuming. In this test, the read load was minimized when network problems began

to occur. However, during the tests for use case 2, network overload occurred only

due to high read load, causing message failures. When taking into consideration

typical read and write loads, backups, and repairs, a 100 Mbit/s network speed

seems to be inadequate for maintaining a three node cluster properly. In a smaller
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system with small workload, a 100 Mbit/s network can be suitable, but its capacity

would still be limited to a certain point. A single node configuration works better

under these conditions, as it does not need to perform repairs and synchronize

data with other nodes, thus avoiding additional network overhead.

• If any network problems occur and packets drop due to network overload, it is

highly probable that repairs will fail and subsequently other requests during this

time. When in limited environment, streaming speeds need to be restricted in

Cassandra’s configuration more strictly.

• It is advisable to perform repairs per-table or per-keyspace basis, so that if a repair

fails at any stage, it does not require restarting from the beginning, but rather only

for the affected table.

• Excessively large tables can cause capacity and performance problems. In several

tests, repair validation encountered timeout errors when attempting to repair large

sized tables. As a result, data storing must be managed in a way that prevents

these tables from increasing to such size. In a cluster with more nodes, each node

can have less of the table’s data stored, and these problems become less apparent.

4.9 Use case 5: Upgrading software versions

This use case focuses on upgrading the application and Cassandra versions in an existing

system to a newer release and examines a scenario in which different versions of Cas-

sandra are running temporarily in the cluster. This phase requires planning to ensure

minimal impact to clients. The other test case goes over the steps required to update the

operating system without losing data. In this case the targeted system undergoes partial

formatting by only preserving Cassandra’s data on disk.

4.9.1 Updating Cassandra versions

The three node cluster was running Cassandra versions 4.0.2, and the goal was to

upgrade them to version 4.1.0 without data loss. The upgrade process was performed

in a rolling manner, one node at a time. This ensures that if something goes wrong during

the update, the other two nodes can keep the cluster running normally. Generally, during

a cluster version update [42]:

• If some operations use consistency level ALL, they need to be temporarily lowered

to maintain functionality during the update process .

• Avoid running data definition or data control operations, including DROP TABLE,

TRUNCATE TABLE, CREATE TABLE, or operations about roles.

• Avoid running repairs during an upgrade, and run it after all nodes have been
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updated. There might be inconsistencies in the way different software versions

perform repairs.

• Similarly, taking backups during an upgrade should be avoided. They should be

taken before the cluster upgrade process is started.

• Do not bootstrap new nodes or decommission existing ones to avoid compatability

issues with streaming operations.

• Run the upgrade within gc_grace_seconds to ensure that repairs are completed

successfully.

• Client drivers might require updating for the communication to the cluster to work.

• It is a good idea to run nodetool upgradesstables before starting the upgrade

process to ensure that all SSTables are of current version.

When upgrading minor versions, like in this use case, breaking changes are likely not

going to be introduced. But when upgrading major versions, the guidelines should be

followed more strictly.

During upgrades, repairs should not be run because there are different versions of Cas-

sandra nodes in the cluster, which can cause compatibility issues. This approach was

tested during the updates, and even though the update was only one minor version apart,

some errors were logged:

ERROR [InternalResponseStage :29] RepairMessage.java :78 - [#

69dd1400 -b136 -11ed -8240 -2 bcde88317f8] SYNC\_REQ failed on

/192.168.15.31:7000: TIMEOUT

Followed by:

WARN [InternalResponseStage :29] RepairMessage.java :95 - [#

69dd1400 -b136 -11ed -8240 -2 bcde88317f8] Not failing repair

due to remote host /192.168.15.31:7000 not supporting

repair message timeouts (version = 4.0.2)

The outcome of the repair was unambiguous, as the logs showed errors about timeouts

but also messages indicating successful completion. After several iterations of updates,

the following steps were formulated for future upgrades:

1. Backup Cassandra data and configuration files.

2. Run nodetool drain on the node to flush the memtables in memory to SSTables

on disk and to stop the node from receiving new requests.

3. Stop Cassandra service using sudo service cassandra stop.

4. Download and extract updated Cassandra either via a tar package or a package

manager, compatible Java Development Kit (JDK), and other required packages.
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5. Customize the Cassandra installation with the same settings as the backed up

configuration files, including cassandra.yaml (data storage and other paths, net-

working, security), cassandra-env.sh (Java options and memory settings), jvm-files

(garbage collection), and set the same datacenter and rack name in the cassandra-

rackdc.properties file. The contents of the files can change from version to version,

so the best way to merge the values is by comparing them manually.

6. Configure the service file (systemd) for Cassandra when it is run as a service and

installed through the tar package.

7. Start the service.

8. Check the log files for errors or warnings.

9. Repeat until all nodes have been updated.

10. Run nodetool upgradesstables command to update SSTables.

11. The installation files of the previous version of Cassandra can now be removed from

the system.

Running nodetool upgradesstables is important when upgrading Cassandra versions

because old SSTables can result in repair failures and degraded performance when the

storage engine gets updated. Overall, the update process of a cluster was straightforward,

and no complications were encountered with the previous instructions.

4.9.2 Changing the operating system

Another update situation is when migrating from one operating system to another, and in

this test from Ubuntu 18.04 to Red Hat Enterprise Linux 9. Cassandra versions remained

at version 4.1.0 during the update. This process entails preserving the current Cassandra

data on disk, while the other system undergoes formatting during the installation.

As a prerequisite, Cassandra’s data needs to be on a separate partition on the disk,

which makes the update process simple. In addition, backups should be taken of the

data before initiating the migration to counter possible data loss because unexpected

things can happen. To keep the cluster functional, the update was performed in a rolling

manner, one node at a time.

The following steps were taken to update each server, noting that alternative approaches

may be used, for example some configurations can be done during or after the installation

wizard:

1. Drain the node running nodetool drain.

2. Start the installation process sudo reboot now and boot from the installation me-

dia.
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3. Setup the correct RHEL configurations and mount the preserved Cassandra data

partition. Other partitions on disk are formatted.

4. Configure rest of the system, including the firewall to allow CQL transport and

internode communication, and access rights of the data partition.

5. The clocks between the systems have to be synchronized, because Cassandra

resolves conflicts using timestamps.

6. Required packages (Python for cqlsh, Cassandra, JDK, etc.) can now be installed,

and Cassandra started.

7. Check the Cassandra logs for any warnings or errors.

Two out of three nodes were upgraded while preserving Cassandra’s data by keeping that

partition unchanged during the installation. This means that the data for the node came

from the disk when it booted. Specifically, this is achieved by mounting the Cassandra

data partition during the RHEL installation process, and then specifying that path to option

data_file_directories in cassandra.yaml. The writes that occurred during this time were

received through hints from the other two nodes after the boot. In this kind of transition

state, the cluster works at its minimum capacity with two nodes, and no other major tasks

should be executed to ensure its stability.

One of the nodes was upgraded by formatting all of Cassandra’s data. In this scenario,

the other two nodes will stream the appropriate data to the node and rebuild it when it

joins the cluster. During its setup, it was observed that Cassandra logged an exception

message in the debug.log file:

A node with address <ip > already exists , cancelling join. Use

cassandra.replace_address if you want to replace this node.

To resolve the error, starting Cassandra with cassandra.replace_address=<ip> JVM

flag or removing the old node id from the ring using nodetool removenode <id> is

required. The second option was executed in the test. Second, if the formatted node

was previously set to be a seed node, it first needs to be started as a non-seed node by

modifying the seed list in its cassandra.yaml file. Ideally, this change should be applied

to all of the nodes in the cluster and restarting them in a rolling manner or running

nodetool reloadseeds. As a reminder, the new node cannot bootstrap if it is a seed

node. If an upgrade takes more than three hours (default max_hint_window_in_ms),

meaning that the node has been offline for that duration, a repair must be run. Another

problem encountered was that when the network settings were being modified, Cassandra

could not connect to the other nodes until the whole server was rebooted.

Apart from those notes, the upgrades went smoothly and without any major complications.

It was possible to upgrade the cluster without data loss and keep it functional by doing

the upgrades one at a time.
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4.10 Use case 6: Expanding a small cluster through node addition

In this use case, scaling a single node cluster up to four node cluster is explored. Scaling

is a common scenario encountered when demands for the database increase, primarily

due to increased workload or fault tolerance requirements.

The system configurations chosen for the tests were:

1. four node cluster with four live nodes

2. four node cluster with three live nodes

3. three node cluster with three live nodes

4. three node cluster with two live nodes

5. single node cluster

In addition to the effects of scaling a cluster, the tests explored the impact of node drops

on performance in a small-scale environment. On multinode configurations, all data was

replicated with a replication factor of three and requests were performed with consistency

level LOCAL_QUORUM. All machines had the same specifications, which are listed in

Section 4.4. In the single node cluster, the replication factor was changed to one and the

consistency level to ONE.

An important point here is to note that since we are running the DMS on the same

hardware as the Cassandra node, it requires extra processing power from the server.

Doing data aggregation tasks is resource intensive and can become the limiting factor

of server performance. A simple way to improve performance is to parallelize these

requests to multiple servers and multiple nodes. This is supported by the load balancing

of the system architecture, as explained in Section 4.3. To estimate the performance of

a real-world production system, performance tests include testing the entire solution, not

only Cassandra.

The tests focus mainly on read request performance with a constant write load, as the

reads generate much bigger workload on to the cluster than the writes in this application.

The data used for these tests included 1000 tags, each storing one-second interval data

with float values ranging from 0.00 to 1.00 from a period of 30 days, totaling 2.592 million

data points for each tag. The same write load of 5000 values a second was used as in

Section 4.5.1, but these were not for the same tags that were read by the tests. The read

requests used were:

(A) Read for 1 tag, retrieve data for a 1-day period, and the DMS calculates the hourly

averages before sending a response to a client.

(B) Read for 10 tags, retrieve data for a 1-day period, and the DMS calculating the

hourly averages before sending a response to a client.



54

(C) Read for 1 tag, retrieve data for a 1-week period, and the DMS calculates six hour

averages before sending a response to a client.

(D) Read for 1 tag, retrieve data for a 1-month period, and the DMS calculates the daily

averages before sending a response to a client.

Initially, the cluster consisted of the three previously defined nodes, each containing 126

- 130 GiB of load. After adding the fourth node, the loads for nodes 1, 2, 3, and 4 were

130.40 GiB, 128.38 GiB, 126.83 GiB, and 95.94 GiB, respectively. As explained in Section

3.5, running nodetool cleanup command was necessary to free up disk space on the

other three nodes. The command took 8h 15min, 4h 33min, and 7h 35min to complete

on nodes 1, 2, and 3, respectively. During it, disk usages temporarily increased. As in

other kinds of compactions, a single cleanup task can increase disk usage by the size of

the largest SSTable on a node. After the cleanup, each of the nodes settled to around

96-100 GiB of load or around 75% from before, as expected. The load increase rate

dropped from ~4.25 GB per day to ~3.35 GB per day, or around 78-79%, including the

fourth server diagnostic measurements.

The results of the tests are presented in Tables 4.5, 4.6, 4.7, and 4.8. Figure 4.2 combines

the results of the performance tests. The values in Figure 4.2 represent the amount of

requests completed per second compared to the single node system for every test. For

example, the four node cluster was able to complete on average 2.50x amount of requests

compared to the single node during the tests for type A requests.

Network traffic caused by the read loads was surprisingly high in multinode environments.

The single node cluster utilized network speeds of a few megabits a second, whereas the

multinode clusters operated with network speeds in the range of a hundred megabits per

second during the tests. The write load generated on average 3.4 - 4.2 Mbit/s of network

traffic per node on a four node cluster. In a three node cluster, the same writes generated

on average 3.6 - 4.7 Mbit/s of network traffic per live node.

During each test, CPU utilizations were quite high on each node, generally decreasing

slightly as the number of live nodes increased. The single node cluster was an exception

in this regard, as its CPU usage was either lower or around the same as that of a three

node cluster machines. Additionally, node 4 appeared to use more CPU than the other

ones, suggesting a slight imbalance in hardware performance. In tests for read requests

of type C and D, CPU utilization was less of a limiting factor. Having three live nodes

in a four node cluster generated about the same performance as a three node cluster

with three live nodes. The performance of two live nodes was found to be almost exactly

halfway between that of the single node and three node configurations, as seen in Figure

4.2. The result suggests that if better performance is needed, investing in two nodes

instead of three could be a viable option. However, that makes fault tolerance worse

when strong consistency is used, because then there are two machines that can break
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down instead of one.

In the four tests, a three node cluster was able to process 95%, 95%, 61%, and 119%

more requests than the single node. A great performance boost was achieved, but it was

not linear to the number of servers added. The four node cluster was able to process

150%, 165%, 72%, ad 157% more read requests than the single node cluster, or 7 - 36%

more than the three node cluster. An outlier, where the performance improvement was

not that substantial, was the tests for 1-week read requests. The specific reason why

Cassandra had more trouble with those requests is unclear, but the results in Table 4.7

indicate that the servers utilized less CPU than in the other tests.

In conclusion, the use case tests demonstrated that upgrading a single node cluster

to three nodes greatly improves its performance, on average about 94% with the read

requests presented. Further upgrading to a four node cluster not only gives even better

performance, but also reduces disk usage as each node only contains 75% of overall data

with a replication factor of three. The performance improvement achieved with four nodes

was on average 22% better than with three nodes.

Table 4.5. Test results of type A read requests.
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Table 4.6. Test results of type B read requests.

Table 4.7. Test results for type C read requests.
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Table 4.8. Test results for type D read requests.

Figure 4.2. Summary of performance test results. The values represent the relative
amount of read requests completed per second compared to a single node cluster.
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5. CONCLUSIONS

This thesis aimed to investigate the behavior of a small-scale Apache Cassandra cluster

as a part of a real-world application under various conditions. These included scaling a

cluster, performing node disruption tests, and executing maintenance operations. The

results obtained provide insights and offers a foundation for further development and

optimization of the database in the system under testing.

The tests conducted in the thesis highlight the importance of monitoring the cluster’s

diagnostics and logs, as they serve as the primary indicators for performance, communi-

cation, and node health issues. Problems may not manifest immediately, but need to be

identified and addressed before they accumulate. If this area is lacking, issues may not

be detected in time, potentially leading to data loss and hindering the functioning of the

system.

Examining cluster scaling revealed that horizontal scaling a single node cluster to three or

four nodes was an efficient method to improve the databases performance and capacity.

Based on the results, the single node to three node upgrade did not provide linear im-

provement to the number of servers added, but it was nearly double in terms of read

requests completed. The fourth node improved the performance further 22% from the

three node cluster, indicating that the method can be used to further scale a cluster. In

on-premises systems, horizontal scaling requires buying additional hardware and config-

uring the present system to allow secure communications to it. A crucial point that

emerged in the single node to multinode transition was that it might not be possible to

scale to that kind of configuration with the existing single node network infrastructure.

This highlights the importance of planning for potential multinode upgrades from the very

beginning of doing on-premises installations, as it is expensive and might not be feasible

to upgrade all of the networking components later on.

The tests demonstrated that a small-scale cluster can continue to operate and recover

from node drops and unplanned network disconnections if proper actions are taken.

The main problems in this area were handling network overloading that caused repairs

and requests to fail in a limited environment, big tables causing repair timeouts, and

improper preparation of the cluster for repairs. This included ensuring that all nodes are

of same version and executing maintenance commands, such as updating SSTables to
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most recent version. It was observed that running repairs on a per-table basis worked

better when it was known that network issues were present. Furthermore, some issues

were encountered not only on the database level but also on the client side, which handles

the client-cluster communication, indicating that this component also requires attention.

Operating the database in these tests required quite a lot of manual work, but its important

to note that such situations are not persistent and occur relatively infrequently, most often

when something goes wrong or the overall topology is changed. The most common

operations can be automated somewhat easily by establishing basic guidelines for the

periodic maintenance tasks, and executing them through a task scheduler.

Various aspects of the system requires a good understanding of Cassandras internal

details, and the hands-on approach to troubleshoot runtime issues and fine-tune the

cluster played a big role in ensuring its overall health and stability. Various tools and

enterprise solutions have been developed to help overcome these issues and to automate

cluster management, which reduces the manual work required. However, exploration of

these tools was beyond the scope of this thesis. Overall, when the cluster was configured

correctly and the infrastructure was not a limiting factor, Cassandra was able to maintain

high availability while delivering robust performance.
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APPENDIX A: TEST FIGURES

Figure A.1. Network traffic during moderate write and read load
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Figure A.2. CPU usages during moderate write and read load

Figure A.3. Heap memory usage during moderate write and read load
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Figure A.4. Disk usage during moderate write and read load

Figure A.5. Client request latencies during moderate write and read load
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Figure A.6. Column family latencies during moderate write and read load

Figure A.7. Cross-node latencies during moderate write and read load
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Figure A.8. Network traffic during 4.5.3 tests

Figure A.9. Write request rates before and after middleware service restarts during 4.9
tests
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Figure A.10. Write request rates with one node down
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