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Abstract

Amyotrophic Lateral Sclerosis (ALS) is a fast-progressing disease with no cure. It is

diagnosed through the assessment of clinical exams, such as needle electromyography,

which measures the muscles’ electrical activity by inserting a needle into the muscle tissue.

Nevertheless, surface electromyography (SEMG) is emerging as a more practical and less

painful alternative. Even though these exams provide relevant information regarding the

electric structures conducted in the muscles, ALS symptoms are similar to those of other

neurological disorders, preventing a faster detection of the disease.

This dissertation focuses on implementing and analyzing innovative SEMG features

related to the morphology of the functional structures present in the signal. To assess the

efficiency of these features, a framework is proposed, aiming to distinguish healthy from

pathological signals through the use of a classification algorithm. The classification task

was performed using SEMG signals acquired from the upper limb muscles of healthy and

ALS subjects.

The results show the utility of employing the proposed set of features for ALS diagno-

sis, with an F1 Score higher than 80% in most experimental conditions. The novel features

improved the model’s overall performance when combined with other state-of-art SEMG

features and also demonstrated efficiency when used individually. These outcomes are

of significant importance in supporting the use of SEMG as a complementary diagnosis

exam. The proposed features demonstrate promising contributions for better and faster

detection of ALS and increased classification interpretability.

Keywords: Amyotrophic Lateral Sclerosis, Surface Electromyography, Time Series, Sig-

nal Processing, Feature Selection, Machine Learning
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Resumo

A Esclerose Lateral Amiotrófica (ELA) é uma doença incurável de progressão rápida. O

seu diagnóstico é feito através da avaliação de exames clínicos como a eletromiografia de

profundidade, que mede a atividade elétrica muscular com agulhas inseridas no músculo.

No entanto, a eletromiografia de superfície (SEMG) surge como uma alternativa mais prá-

tica e menos dolorosa. Embora ambos os exames forneçam informações relevantes sobre

as estruturas elétricas conduzidas nos músculos, os sintomas da ELA são semelhantes aos

de outras doenças neurológicas, impedindo uma identificação mais precoce da doença.

Esta dissertação foca-se na implementação e análise de atributos inovadores de SEMG

relacionados com a morfologia das estruturas funcionais presentes no sinal. Para avaliar

a eficiência destes atributos, é proposto um framework, com o objetivo de distinguir sinais

saudáveis e sinais patológicos através de um algoritmo de classificação. A tarefa de clas-

sificação foi realizada utilizando sinais de SEMG adquiridos dos músculos dos membros

superiores de indivíduos saudáveis e com ELA.

Os resultados demonstram a utilidade do conjunto de atributos proposto para o di-

agnóstico de ELA, com uma métrica de classificação F1 superior a 80% na maioria das

condições experimentais. Os novos atributos melhoraram o desempenho geral do modelo

quando combinados com outros atributos de SEMG do estado da arte, e também se com-

provaram eficientes quando aplicados individualmente. Estes resultados são de grande

importância na justificação da aplicabilidade da SEMG como um exame complementar

de diagnóstico da ELA. Os atributos apresentados demonstram ser promissores para um

melhor e mais rápido diagnóstico, e facilitam a explicação dos resultados da classificação

devido à sua interpretabilidade.

Palavras-chave: Esclerose Lateral Amiotrófica, Eletromiografia de Superfície, Séries Tem-

porais, Processamento de Sinal, Seleção de Atributos, Aprendizagem Automática
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1

Introduction

1.1 Context

Amyotrophic Lateral Sclerosis (ALS) is a chronic neurodegenerative disease with no cure

that leads to muscle atrophy due to progressive loss of motor neurons [2]–[5]. According

to a review on epidemiological studies proposed by [6], there has been an increasing

number of patients diagnosed with ALS over the last years, with an approximate inci-

dence between 2.1 to 3.8 per 100 000 person-years in Europe. Symptoms such as atrophy,

weakness, and fasciculations usually begin in one limb and tend to spread to the oth-

ers. However, the presentation of the disease can be very distinctive for each patient [7].

Gradually, the condition deteriorates up to a severely disabled state [5], leading to an av-

erage survival from the onset of symptoms of approximately three years, with respiratory

failure as the major cause of death [5], [7].

Since it has not yet been found one established biomarker for the disease diagnosis,

this is primarily achieved through clinical rather than medical examination, which means

that the process of identifying the disease is based mostly on symptoms and signs and

less in laboratory reports and medical exams. However, rarely does this diagnosis rou-

tine meets established criteria for a definite diagnosis of ALS. The authors of [8] stress

the significance of clinical neurophysiological examination, which can uncover the in-

volvement of body regions not initially regarded as affected by the disease. One of the

most frequently performed exams as part of the medical examination is Electromyogra-

phy (EMG), more specifically concentric Needle EMG (NEMG) [7]. This exam accurately

measures the electric potentials generated by muscular cells.

Artificial Intelligence (AI) is a growing field that has numerous open opportunities in

the most different domains. Its growth was mostly powered by the increasing amount of

data collection and computational power [9]. With large quantities of acquired data as

input, AI systems are able to "learn" and therefore make predictions when faced with new

data. One of the many areas AI has been applied is the medical field. These systems are

extremely helpful not only for disease detection and screening but also for prognosis pre-

diction, primary care delivery, creation of drugs, management of health records, auxiliary

1



CHAPTER 1. INTRODUCTION

devices development, etc. Particularly in ALS, these methods may be useful to improve

the way the disease diagnosis is performed and enhance ALS clinical studies design [10].

1.2 Motivation

The initial symptoms of ALS often mimic those of other neuromuscular conditions, with

the clinical diagnosis taking longer to demonstrate than the medical one. This frequently

leads to a delayed diagnosis, with the authors of [6] reporting that the mean diagnostic

delay could go up to 24 months, which is an extremely high value for a disease with such

low survival.

It is of strong relevance that more resources are allocated to ALS research, not only to

speed up diagnosis but also to provide an efficient prognosis to patients and healthcare

providers. This can improve the expectancy of life of these patients by anticipating the

therapeutic techniques that should be applied, as well as guarantee their earlier adaption

to support devices.

NEMG is used as the forefront medical examination tool in the electrodiagnosis of

ALS. This exam allows for the recognition of abnormalities in the structures compos-

ing the signal related to pathological states of the muscle. On the other hand, ALS is a

fast-progressing disease that demands constant re-evaluation and frequent medical ex-

amination to understand the advancement of the neuron’s degeneration. NEMG is not

a practical exam to include in routine medical appointments, as it is painful, and it can

not be performed in an outpatient regime, since it requires professional expertise. That is

one of the primary reasons for the recent growing interest in Surface EMG (SEMG) [11],

a method that also measures electrical activity of skeletal muscles, but instead of using

invasive electrodes, it relies on surface ones. Recently, a review on SEMG use in ALS

supported its practical flexibility, due to its non-invasive nature, and potential to help

determine an effective biomarker of the disease [12].

From these findings arises the need to understand the role and utility of SEMG in

predicting the ALS diagnosis through AI models. This is of particular interest if relations

can be established between the SEMG characteristics and the actual pathophysiology phe-

nomena of the disease. The technique has been around for a few years. Still, the medical

community has not been receptive to its use due to the often difficulty interpreting the

SEMG signal correctly. However, the advancement of hardware technology and software

of signal processing tools has allowed the improvement of the technique, leading to a

regained interest in its use.

1.3 Literature Review

The EMG signal consists of multiple action potentials originated in the Motor Units

(MUs) of the muscles, named Motor Unit Action Potentials (MUAPs). MUAPs are unique

in shape and size for each MU. The discrimination of single MUAPs is possible and

2



1.3. LITERATURE REVIEW

undoubtedly relevant for anatomical and physiological analysis. Nevertheless, it often

implies the use of complex techniques, which can limit its practical application in a

clinical framework, and still presents numerous restrictions, such as the difficulty in

separating superimposed MUAPs [13] and the SEMG decomposition strong dependency

on the experimental conditions [14].

The interpretation of quantitative data from a SEMG signal can be very informative,

namely through the use of time, frequency, and time-frequency features. A thorough

review of such features used in various types of contexts was made in [15]. Several

frequency-domain methods have been applied successfully for different purposes using

SEMG, such as implementing Fast Fourier Transform (FFT) derived feature sets [16], and

autoregressive coefficients as features [17]. Others have used the time-frequency distri-

bution to characterize the variations of the spectral components of the SEMG signal [18].

Time-domain features can sometimes be preferred due to the simpler data processing

methods they require [19]. Recent studies also explore the possibility of using wavelet-

based approaches, which can help to remove unwanted noise and improve feature ex-

traction [20], [21]. Additionally, fractal properties have demonstrated effectiveness when

used in recognition of upper limb movements. Fractal Dimension (FD) is considered a

truthful indicator of the complexity of the signal, and Detrended Fluctuation Analysis

(DFA) is a well-established algorithm commonly applied in EMG analysis. More recently,

Maximum Fractal Length (MFL) has been proposed as an accurate measure of the level

of muscle activity [22].

Several works have been proposed in the context of ALS diagnosis using similar fea-

tures and automated learning architectures to those presented above. The experimental

data collection setup on these experiments is often categorized into NEMG, High-density

Surface Electromyography (HDSEMG), and SEMG.

In the context of NEMG, these advances may also be relevant, especially since ex-

tracting spectral, temporal, statistical, and amplitude measures from NEMG has already

proven valuable in discriminating the disease [23]–[25]. NEMG has also been used by

[26] to evaluate the natural history and earliest changes in motor unit physiology of ALS

patients.

The authors of [27] proposed an automated machine learning pipeline with features

extracted from NEMG using tsfresh [28]. They used a dataset composed of 65 subjects (20

with inclusion body myositis, 20 with ALS, and 25 Healthy Controls (HCs)). Two classifi-

cation strategies were designed: muscle-level, meaning the prediction is accomplished for

each muscle of all subjects individually; patient-level, which relied on voting ensembles

on the muscles from the same patient. They classified each subject as either diseased or

healthy and achieved an Area Under the ROC Curve (AUC) score of 81.7% and 81.5% for

muscle-level and patient-level, respectively. FFT coefficients ranked highest according to

impurity-based importance scores.

The interest of time-frequency analysis of the NEMG signal was demonstrated in [29],

where neuropathy activity was differentiated through the visualization of Continuous
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Wavelet Transform (CWT). In parallel, an accuracy of 95% was obtained when using time

and frequency features, such as entropy and standard deviation, for ALS discrimination.

Nevertheless, some of these techniques rely on the characteristics of the interference

patterns of HDSEMG rather than on the single MU discrimination. HDSEMG is a SEMG

technique that uses arrays of individual electrodes designed to record simultaneously.

Some studies have addressed the potential advantages of inspecting the Fasciculation

Potentials (FPs), namely by examining their amplitude and frequency [30], and by im-

proving their detection [31]. The authors of [11] acquired data at different levels of

voluntary muscle contraction from 10 ALS subjects and 11 HCs. When using a combi-

nation of statistical features and the clustering index of the HDSEMG, they were able to

discriminate between the two classes with 90% sensitivity.

In the context of conventional SEMG, the analysis of parameters like coherence and

phase-locking factor has shown potential in indicating motor neuron integrity in patients

with ALS [32]. Classification tasks with multiple features have also shown promising

results, as [33] used a set of statistical, temporal, complexity, and fractal features from

SEMG recordings in the upper limbs. The authors used a dataset composed of 33 subjects

(13 with ALS and 20 HCs) and tested several Machine Learning (ML) classifiers, being

the decision tree, random forest, and AdaBoost, the ones that achieved the greatest per-

formance. The authors reached an average accuracy of 77% by combining differences

between features extracted from the hand and forearm recordings.

Multiscale entropy is a measure that provided great results when used as a feature

for the SEMG signal in [34], aiming to differentiate healthy and pathological signals that

included myopathic and neuropathic subjects. A dataset with a total of 27 subjects was

used, and SEMG signals at different contraction levels were acquired. Through the use

of C-support vector classification, the accuracy for the binary classification task reached

81.5%.

For further works using NEMG or SEMG in the context of ALS diagnosis, you might

refer to [35], which recently conducted a systematic literature review on machine learning

techniques and biomedical signals in the context of ALS. The number of works using

NEMG has been higher compared to SEMG, which motivates the need for more contribu-

tions in the context of SEMG.

The quantitative measurements calculated using feature extraction from the studies

identified above do not place a strong emphasis on the MUAPs morphology. Quite often,

prior studies use a set of statistical, temporal, and spectral features to evaluate the EMG

into a more high-level setting. Therefore, there is a gap in the literature regarding using

morphological features for MUAPs, which can later be used for learning algorithms. These

features would be representative of the morphology of the MUAPs based on their surface

SEMG representations. Furthermore, they could more objectively depict the changes

in the EMG caused by ALS: reinnervation potentials, which result in higher amplitude

MUAPs; loss of MUs, which results in an increased firing rate of the active MUs; and

evidence of FPs, marked by abrupt spikes.
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One of the limitations of using such features would be the process of detecting each

MUAP of the SEMG exam, since surface detected action potentials from different motor

units are identical [36], there is a higher amount of superposition of action potentials

from different MUs, and an augmented noise component [37] when compared to a NEMG

signal. Detecting the MUAPs of a SEMG signal is the process of identifying and isolating

the surface representations of MUAPs. Since the measured muscle has a limited num-

ber of MUs, each originating a unique MUAP, the signal can be decomposed into the

different firing MUAPs, which involves first the detection of MUAPs, followed by their

categorization into one of the originating MUs.

The SEMG decomposition into MUAPs is per si a challenging topic in signal pro-

cessing. However, MUAP decomposition is out of the scope of this work. Although it

might increase the robustness of the extracted morphology and peak-related features, we

adopted a simple approach for MUAP detection. Additionally, we can extract relevant

statistical information from the morphology of the surface portrayals of the MUAPs con-

tained in the signal. Therefore, we developed an optimized detection of local maxima in

the SEMG signal with the hypothesis that includes MUAPs, although we do not cluster

them according to their originating MU.

1.4 Objectives

In this dissertation, we propose a set of morphological features for SEMG analysis. Our

contributions are focused on the introduction of a signal processing pipeline to calculate

the morphological features on EMG and a validation study for automated ALS diagnosis

using a cohort of control and ALS patients. The use of morphological features to com-

plement the feature sets which are typically utilized would present some advantages.

For example, those features might capture complementary discriminate behaviors on the

waveform as the disease progresses. Additionally, since those features are inspired by

clinical interpretation, they can lead to more interpretable predictions from the classi-

fiers.

Consequently, two research questions were identified:

• Which quantitative measurements are currently used to characterize MUAPs during

NEMG and support the diagnosis criteria of ALS? Can these quantitative measure-

ments be extracted from SEMG?

• Can the SEMG quantitative measurements be used as features for machine learning

algorithms to predict the diagnosis of ALS?

The following objectives were outlined:

• Develop algorithms to calculate morphological features from MUAPs on SEMG

data;
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• Propose a signal processing and machine learning pipeline for automated ALS di-

agnosis based on SEMG;

• Validate the proposed approach using SEMG from on a cohort of control and ALS

patients;

• Study the relevance of the proposed features through feature importance and fea-

ture selection techniques.

1.5 Thesis Overview

This document contains six chapters and two appendices. The current chapter presents

the context and motivation behind the developed research, in addition to a review of the

state-of-the-art and the principal objectives of the dissertation. The next chapter details

the theoretical concepts that support the comprehension of this project, including a de-

scription of the ALS condition, the EMG exam, and the ML concepts. Chapters 3 and 4

specify the methodologies applied throughout the thesis. A summary of the proposed

features is found in Chapter 3. Chapter 4 explains the applied approach specific to this

diagnosis task in ALS using muscle signals, focusing on signal processing, feature extrac-

tion and selection, and classification algorithms. Lastly, the results and their discussion

are addressed in Chapter 5, which also contains a description of the analyzed dataset. The

last chapter summarizes the contributions and limitations of this work, along with some

recommendations for future work. Appendix A lists the employed computational tools.

Appendix B contains the complete set of results originated from multiple experiences

with the classification algorithm.
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2

Theoretical Background

This chapter encompasses the theoretical background information regarding the themes

that the dissertation will approach. First, a characterization of the nervous system and

its conduction mechanisms is introduced, followed by a description of ALS. Thirdly,

the medical exam of EMG will be explained, and lastly, the ML basic concepts will be

discussed.

2.1 The Motor Unit and the Electrical Conduction of Nervous

Impulses

Neurons are excitable nerve cells located in the brain or spinal cord, the two constituents

of the Central Nervous System (CNS). The spinal cord has an inner core of gray matter

surrounded by a layer of white matter. When seen on cross-section, the gray matter is an

H-shaped pillar with anterior and posterior gray columns or horns. The white matter is

divided into anterior, lateral, and posterior white columns [2].

Multiple pairs of spinal nerves are attached to the spinal cord by the anterior and

posterior roots. The dendrites and axons of the neurons are often referred to as nerve

fibers. Efferent fibers are nerve fibers that conduct nervous impulses from the CNS to

the peripheral nervous system, muscles, and glands and can be found in the anterior

root. The efferent fibers that connect to skeletal muscles are called motor fibers. Their

cells of origin are located in the anterior gray horn of the spinal cord. Afferent fibers are

responsible for conducting nervous impulses to the CNS and lie in the posterior root. The

cell bodies of these nerve fibers are situated on the posterior root ganglion. These areas

can be visualized in Figure 2.1 [2].

Neurons can be classified into different categories according to their form or function.

When they are classified functionally, two types of neurons can be recognized: sensory

neurons, responsible for carrying information from the receptor organs and muscles to

the CNS; motor neurons, located in the anterior horn of the spinal cord and capable of

carrying impulses from the CNS to the muscles and glands [2], [38]. Additionally, in-

terneurons exist throughout the grey matter of the spinal cord, which are smaller neurons
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Figure 2.1: Schematic representation of the regions of the spinal cord. Adapted from [2].

responsible for connecting different types of neurons [38].

The motor neurons are also divided into two types, both in the autonomic nervous

system, as in the somatic nervous system. In the latter, we find Lower Motor Neurons

(LMNs) and Upper Motor Neurons (UMNs). LMNs are contained in the gray horns of

the spinal cord, and they innervate skeletal muscle through the anterior roots of the

spinal nerves. On the other hand, UMNs, whose cell bodies are in the motor area of the

cerebral cortex, are composed of supraspinal neurons and respective descending tracts.

These tracts are nerve fibers from various supraspinal nerve centers that can be grouped

into nerve bundles when they descend through the white matter in the spinal cord, as

represented in Figure 2.2, being responsible for conducting impulses to the spinal cord

from the brain. In other words, the UMNs come from the cerebral cortex and descend

to relay in the motor nuclei of the cranial nerves and anterior horn cells of the spinal

cord. Additionally, the LMNs arise from the cranial nerve nuclei and anterior horn cells

to innervate skeletal muscles [38].

That are multiple descending tracts, and each is related to a different function. The

corticospinal tracts are of particular importance in ALS since these pathways are con-

cerned with voluntary and skilled movements of the distal parts of the limbs [2].

The LMN is seen as "the final common pathway" to the muscles [2]. Most of these

neurons are large, multipolar, and supply the extrafusal skeletal muscle fibers responsible

for muscle contraction. The remaining are equally multipolar, smaller, and connected to

the intrafusal muscle fibers, which have a sensory function [39]. The first ones are called

alpha motor neurons and the second ones are gamma motor neurons.

The long tubular extensions of these neurons are called axons, which branch out to

multiple muscle fibers, forming neuromuscular junctions where their terminals connect

with the muscle fiber. Each muscle fiber has only one neuromuscular junction, although

each neuron innervates more than one fiber. The muscle fibers supplied by the same
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IMPULSES

Spinal nerve

Motor output 
(lower motor 
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as descending tracts)
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Figure 2.2: Schematic representation of the LMNs and the UMNs. Adapted from [2].

neuron are spread throughout the muscle, assuring that if one neuron degenerates, others

will be able to compensate and make the entire muscle contract anyway [40].

The MU is an anatomical and functional element of the neuromuscular system [5],

since it can be described as a single alpha motor neuron and all of the muscle fibers that

it supplies [2], [38], [40], as illustrated by Figure 2.3. The size of the MU depends on

the muscles it innervates. If a muscle is required for precise movements, it tends to have

smaller MUs, with fewer muscle fibers. The opposite happens with big, weight-bearing

muscles [38], [40].

The nervous impulses are conducted through the afferent nerve fibers to the spinal

cord, where they make synaptic connections with motor neurons [2]. The depolarization

of the motor neuron generates an action potential that is transmitted through the axon,

or motor fiber, to as many muscle fibers as that particular motor neuron is connected

to. From there, the action potential propagates in all directions from the neuromuscular

junctions, resulting in the contraction of all the muscle fibers of that specific MU [40].

The contraction of a muscle is achieved with the activation of an increasing number

of MUs of that muscle with a simultaneous reduction of activity of antagonizing muscles’

MUs [2]. When a muscle initiates its contraction, smaller MUs are recruited since these

present lower thresholds of excitability. With increasing intensity, firstly MUs fire at a

higher rate and then progressively larger MUs are recruited, which is known as a normal
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Figure 2.3: Schematic representation of multiple MUs. Adapted from [40].

recruitment pattern [2], [5].

The summation of all the muscle fiber action potentials of one MU results in a MUAP

[5], which is distinguishable in shape and size for each MU [41], [42], as can be seen in

Figure 2.4.

MU 1 MU 2

MU 3 MU 4

Figure 2.4: Examples of different MUAP waveforms originated from different MUs.
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2.2 Amyotrophic Lateral Sclerosis (ALS)

2.2.1 Pathology

ALS is a neurodegenerative acquired disorder that leads to muscle atrophy and paralysis

due to dysfunction of the somatic muscles of the body. This disease is characterized by:

1) a progressive loss of UMNs; 2) a progressive loss of LMNs [4], [7], [43]; 3) hypertrophy

of glial cells in the areas of degeneration of neurons, particularly in the motor cortex and

spinal cord [3].

Since the motor neuron undergoes apoptosis, its axon degenerates. This provokes

the destruction of the neuromuscular junction, leading to denervation and subsequent

atrophy of the muscle fibers supplied by that axon or motor fiber.

ALS is the most common form of a broader spectrum of disorders, called Motor Neu-

rone Diseases (MNDs), all of them characterized by the progressive degeneration of motor

neurons [3], [43].

The molecular pathway that leads to the destruction of these neurons is unknown;

however, it is likely similar to that of other neurodegenerative illnesses [4], [44].

2.2.2 Causes and Risk Factors

It has not yet been found a cause for ALS [2]. Most cases are considered "sporadic," with

no underlying genetic or external cause, and 5 to 10% hereditary, related to Familial

Amyotrophic Lateral Sclerosis (fALS), an autosomal dominant disease caused by muta-

tions in specific genes [4]. However, sporadic ALS and fALS are indistinguishable both

phenotypically and pathologically [3], [43].

The disorder can manifest itself at any period during adulthood; however, it is more

common to be diagnosed between 54 and 69 years, with a peak age of ALS onset between

51 and 66 years, as shown in a recent epidemiological analysis of ALS [6].

Even though the etiology of the disease remains unknown, a few risk factors have been

identified. These include male, older age, family history of ALS, exposure to insecticides,

and smoking [6], [43].

2.2.3 Symptoms

Symptoms such as atrophy, weakness, and fasciculations usually begin in one limb and

tend to spread to the others, leading to the primary form of the disease or spinal onset

[3], [5]. These signs can manifest either distally or proximally and asymmetrically in the

upper and lower limbs. Bulbar onset tends to result in speaking and swallowing difficul-

ties [6] and limitations in the movements of the tongue and face, leading to dysarthria

(speech dysfunction) [4], [43]. Approximately two-thirds of patients present the spinal

form of the disease [4], [6], however the presentation of the disease can be very distinctive

for each patient [7]. Most patients with spinal onset go on to develop bulbar symptoms
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and eventually respiratory symptoms within 1–2 years. About 5% of patients present

respiratory issues without significant limb or bulbar signs [4], [43].

The loss of the UMNs results in specific signs on neurological examination, such as:

Babinski’s sign, which is the extension of the great toe on plantar stimulation; pathological

hyperreflexia that leads to loss of dexterity; muscle weakness, which is proven through

Hoffman’s sign (flexion and adduction of the thumb after flicking the fingernail); stiffness

detected with the jaw jerk reflex; and clonus (involuntary muscular contractions and

relaxations) [4], [43].

The disappearance of LMNs leads to muscle atrophy and weakness, FPs (involuntary

muscle twitching), and cramps detected on muscle biopsy [4], [7], [43].

Approximately half of the patients show a component of frontotemporal dementia

characterized by symptoms such as personality changes, abnormal eating and hygiene

habits, and language dysfunction.

Other less frequent symptoms may be reported, such as ocular motility disturbance

in the late stages of the disease [43].

2.2.4 Pathophysiology

The molecular pathway that leads to motor neurons degeneration is unknown; how-

ever, this pathway is likely similar to that of other neurodegenerative illnesses. Usually,

multiple pathogenic cellular mechanisms are intertwined, and these may be genetic fac-

tors, excitotoxicity (neuronal injury due to excessive glutamate), oxidative stress, mito-

chondrial dysfunction, impaired axonal transport, neurofilament aggregation, protein

aggregation, inflammatory dysfunction and contribution of non-neuronal cells, deficits

in neurotrophic factors and dysfunction of signaling pathways [4], [44]. In addition, the

cell death process in ALS is thought to be apoptosis.

2.2.5 Diagnosis

ALS is diagnosed through clinical history and medical exams capable of detecting ALS

signs, including EMG, muscle biopsy, and neurological examination since a valid diagnos-

tic biomarker has not been established so far. However, a recent study indicated cortical

hyperexcitability as a possible diagnostic biomarker for ALS [44].

However, these results alone are not enough for a concrete diagnosis. According to the

Revised El Escorial criteria [45], diagnosis is only achieved after: 1) evidence of both LMN

and UMN degeneration by clinical, electrophysiological or neuropathologic examination;

2) progressive appearance of symptoms within a region or to other regions; 3) absence

of electrophysiological or pathological, and neuroimaging evidence of other disease pro-

cesses. Definite ALS diagnosis is achieved when a patient manifests UMN and LMN signs

in three regions of the neuraxis (cervical, thoracic, lumbosacral, and bulbar). Probable
ALS is diagnosed when two of these regions are implicated. The diagnosis is Probable
ALS - Laboratory supported when there are clinical signs of UMN and LMN dysfunction
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in only one region, or only UMN signs in one region and LMN signs in two regions by

EMG criteria, complemented with neuroimaging and clinical laboratory studies to ex-

clude other causes. When patients present signs of UMN and LMN degeneration in one

region or UMN signs in at least two regions or LMN signs rostral to UMN signs, the diag-

nosis is Possible ALS. The variability of possible diagnoses demonstrates the difficulty in

achieving a final certain diagnosis for the disease [5], [45].

Diagnostic tests are performed to exclude other possibilities in the differential di-

agnosis, like blood tests, genetic tests when family history suggests a familial disorder,

neuroimaging tests are usually performed to exclude other conditions that might superfi-

cially mimic ALS, pulmonary function tests, etc. [4]

The various clinical phenotypes of MNDs can be grossly classified depending on the

area of degeneration of motor neurons, the degeneration intensity level, and the pattern

of onset [3]. Typical ALS involves simultaneous UMN and LMN signs and progressive

spread of symptoms over time and space [3], [4]. Other syndromes included in MNDs are

Primary Lateral Sclerosis (PLS), Progressive Muscular Atrophy (PMA), Bulbar onset ALS,

or Progressive Bulbar Palsy (PBP), and Pseudobulbar Palsy [3], [4], [7].

Unfortunately, initial misdiagnoses are common, which further delay the correct di-

agnosis of ALS, mainly because the initial symptoms are not specific to the disease [4].

2.2.6 Prognosis and Treatment

Respiratory complications, such as respiratory muscle failure and aspiration pneumonia,

are the usual cause of death in ALS. Mean survival from onset of symptoms is approxi-

mately two to five years; however, 10% of patients present a slow form of the disease and

can survive beyond ten years [4], [6], [43].

Treatment for ALS is palliative, multidisciplinary, and based on symptom manage-

ment, intended to prolong survival and optimize healthcare delivery [4], [43].

The only medicine that has shown the potential to prolong survival by 2 to 3 months

for ALS itself is riluzole [7], [43], [46]. Nevertheless, other pharmacologic interventions

may be applied, targeting specific symptoms.

Other therapies applied include nutritional management, non-invasive ventilation,

and invasive mechanical ventilation (tracheostomy) [43], [46].

Additionally, assistive equipment is of great importance for patient rehabilitation.

Some devices that may be useful are cough-assist devices, percutaneous gastrostomy

(PEG) tube, augmentative speech systems, and cervical and foot orthosis [46].

2.2.7 Disease Progression Quantification

The ALS functional rating scales are instruments for evaluating the functional status of

patients with ALS. The scales track the functional change in a patient over time. The

Revised ALS Functional Rating Scale (ALSFRS-R) [47] is the most widely used score in

both clinical and research settings. It is achieved through a questionnaire that measures
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physical function in carrying out activities of daily living (ADL) and global function of

patients with ALS. Forced Vital Capacity (FVC) measurement complements the ALSFRS-

R in both prediction of survival and representation of disease progression [48]. The scale

group contains four domains encompassing gross motor tasks, fine motor tasks, bulbar

functions, and respiratory functions [47], [49], [50].

The deterioration of ALSFRS-R over time is a marker of disease progression and can

be used to predict survival. Despite the current knowledge of ALS, there is still a need

to improve quantitative measures of disease progression, as they are vital for the shared

medical decision-making process and for designing clinical trials.

Using a functional rating scale instead of other primary outcome measures is advan-

tageous because it evaluates results that cannot be directly measured [51] and it is easy

to administrate.

2.3 Electromyography (EMG)

2.3.1 Introduction

EMG is the recording process of the electrical activity produced by skeletal muscles.

It employs electrodes on the skin’s surface, also known as SEMG, or inserted into the

muscle, called NEMG. A standard EMG machine is equipped with amplifiers, a control

panel, and a digital computer for data sampling, storing, and processing. The EMG unit

hardware might optionally offer stimulation devices to trigger responses from the nerves

or muscles being studied. The amplifier is responsible for intensifying the difference

between the inputs of two electrodes. One of them is the reference electrode, which is

positioned in a part of the body where minimal muscle activation will happen. This

differential amplification eliminates background noise, and Electrocardiogram (ECG)

potential interference since these potentials are recorded by both electrodes equally, and

therefore the difference between signals is zero [52].

Acquisition protocols may involve different degrees of contraction. The resulting sig-

nal is usually contaminated with noise from AC power line interference or movement

artifacts, making signal processing indispensable to improve spectral resolution. Con-

ventional filters are able to reduce noise without compromising the usable EMG signal

[53].

Nowadays, the use of NEMG is standard practice for electrodiagnosis. NEMG is an

invasive technique that uses a needle recording electrode inserted directly into the muscle.

NEMG provides accurate potential measurements with a higher selectivity and signal-to-

noise ratio, i.e., amplified signal voltage with attenuated noise, and it depicts individual

MUAPs. Figure 2.5(B) depicts a normal recruitment pattern, measured with NEMG,

with increasing force as displayed in Figure 2.5(A), leading to the firing of increasingly

larger MUs, as explained in Section 2.1. The signal is usually expressed in millivolts.

However, this invasive technique has the disadvantage of being particularly painful for
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Figure 2.5: Amplified SEMG and NEMG signals from the biceps brachii of the same
subject. A) Force according to the percentage of maximal voluntary contraction (MVC).
B) NEMG signal. C) SEMG signal. D) Zoomed SEMG signal, where individual MUAPs
are identifiable at low levels of force (approximately 0–15% MVC). Adapted from [55].

patients, which hinders its adoption from tracking disease progression in routine medical

appointments, and it is a technically demanding exam. Furthermore, it can only provide

a limited amount of information since NEMG electrodes imply a small detection site,

so recordings are obtained from a relatively small number of motor units. Additionally,

these recordings often present variability due to small movements of the electrodes with

higher muscular force [41].

SEMG is a non-invasive technique that uses surface electrodes attached to the skin.

This signal has the advantage of recording multiple MUs activity patterns, which are

the summation of the MUAPs generated by these MUs [18]. As shown in Figure 2.5(C),

the sum of smaller and slower firing MUAPs results in a smaller amplitude interference

pattern in SEMG, that increases with higher contraction levels. Despite their versatility,

surface electrodes usually record with a lower signal-to-noise ratio compared to NEMG.

The tissues underlying the electrodes act as a low-pass filter, causing similar shapes in

potentials from different motor units [36]. The signal is usually expressed in microvolts.

Since surface electrodes are farther away from the muscle fibers, the recorded MUAPs are

lower in amplitude and with higher probability superposition of multiple MUAPs. For

this reason, SEMG does not allow for the identification of individual MUAPs, like NEMG

does. These drawbacks have resulted in the long medical community’s discrediting of

SEMG potential in clinical practice [54]. Nevertheless, changes in the shape of surface

representations of MUAPs of the interference pattern are helpful to identify possible

pathological changes in MU activity patterns [55]. Exceptionally, when the level of muscle

contraction is low, individual MUAPs are visible, as displayed in Figure 2.5(D).
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Figure 2.6: Abnormalities in muscle activity. A) Fibrillation potentials (*) and positive
sharp waves (**). B) Fasciculations. Adapted from [56].

2.3.2 Electromyography in Amyotrophic Lateral Sclerosis

The ALS diagnostic guidelines defined in 2008 during the Awaji consensus meeting [8]

support the utility of NEMG as an attempt to improve the diagnostic accuracy of the

Revised El Escorial criteria [45]. As explained in Section 2.2.1, muscle fiber denervation

occurs because of the degeneration of motor neurons. NEMG is able to provide electro-

physiological evidence of such acute or ongoing denervation, namely FPs, fibrillation

potentials, and/or positive sharp waves. Figure 2.6 shows these irregularities, which are

forms of abnormal electrical activity while the muscle is at rest. Fibrillation potentials are

spontaneous discharges originated from hypersensitive acutely denervated muscle fibers.

Positive sharp waves usually are found in association with fibrillation potentials. Both

arise from the needle insertion into the muscle fiber during NEMG, persisting for approx-

imately 3 seconds after the needle movement has stopped. Involuntary discharges of part

or the whole motor unit result in FPs. These present a variable waveform morphology,

and have a irregular firing rate, much slower than that of voluntary MUAPs [56].

Another manifestation of denervation is reduced MU recruitment, defined by a higher

firing rate of a lower number of MUs, which can be verified in Figure 2.7. When a patient

contracts the analyzed muscle with increasing force, a regular recruitment pattern would

result in a higher MU firing rate and then recruitment of more MUs, as mentioned in

Section 2.1. As ALS patients have fewer MUs, the remaining ones fire more rapidly to be

able to produce enough force for the contraction, which is known as a reduced recruitment

pattern. Muscle reinnervation usually follows, and it leads to pathological MUs, with

more muscle fibers than usual, resulting in abnormal characteristics that can be detected

through NEMG, such as polyphasic, high amplitude, and long duration MUAPs [5], [8],

as shown in Figure 2.8.

The latest technological advances in sensing hardware, computing capacity, and sig-

nal processing for SEMG have contributed to an increasing better acceptance of this

technique in clinical practice. According to a recent systematic review by [12], SEMG of-

fers significant practical and analytical flexibility compared to NEMG and there is a need
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Figure 2.7: Interference NEMG patterns. A) Normal subject’s signal. B) ALS subject’s
signal. Adapted from [57].
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Figure 2.8: Normal versus Neuropathic MUAP. Adapted from [58].

for multi-disciplinary research collaboration on the topic. The technological advances

have leverage SEMG techniques with significant advantages in the diagnosis, prognosis,

monitoring and pathoetiological resolution of ALS.

2.4 Machine Learning

2.4.1 Introduction

One of the sub-fields of AI is ML, a type of computer program based on mathematical

models that can learn autonomously and automatically from previous experience [59].

Experience in this context is understood as the past information that was presented to

the algorithm [60]. While the performing operation needs to be specified in a traditional

algorithm, ML algorithms make predictions without being explicitly programmed to

perform a specific task [61]. These algorithms are given example samples associated with
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the respective outcomes and find in which way the samples are mapped to the outcomes,

therefore having the ability to extract information from input data by themselves and,

consequently, generate accurate predictions when unseen data is presented as input [62].

Usually, the quality of an algorithm is measured through its performance, and time and

space complexity. With ML algorithms, sample complexity must also be accounted for so

that we know the sample size required for the algorithm to learn [60].

A table can store a dataset, and it contains all the features, X, and the targets to

predict, y. Each row in the dataset is an instance or entry i composed of the feature’s

values, xi , and the respective target, yi . The feature j has a value for each instance i,

xij , and the vector with that features’ values for all instances is a column in the dataset,

xj . The trained model is f̂ , which is a hypothesis of the real function f , and therefore a

prediction for the instance i is described by [62], [63]:

ŷi = f̂ (xi) (2.1)

When the targets are discrete, they can be named classes or labels.

These algorithms can be developed in two different types of scenarios. Supervised
learning learns a rule to map inputs to outputs, and therefore the training data is a set

of labeled examples. The predictor learns using a known training dataset, consequently

being able to infer future outcomes. The most common supervised ML algorithms include

Decision Tree, Naive Bayes, and Support Vector Machine. Unsupervised learning finds

patterns or structures on its own, using unlabeled data. The most famous unsupervised

ML algorithms include K-Means Clustering and Principal Component Analysis [64]. A

combination of the supervised and unsupervised scenarios may happen, resulting in Semi-
supervised learning [60], [61], [65], [66].

The main ML tasks, i.e., types of inferences being made, include: classification, where

class labels are assigned to each item; regression, where continuous values are predicted

for each item; ranking, where items are ordered according to some condition; clustering,

used to group instances of data into clusters with similar characteristics; and dimen-

sionality reduction, used to reduce the dimension of the items while preserving specific

properties [60].

One of the most critical characteristics these systems have to integrate is the ability to

generalize, which is affected by sample size and complexity. If a more complex system

is chosen and the sample size is relatively small, poor generalization is obtained, also

known as overfitting. Over-fitted models tend to memorize the training data, including

unavoidable noise, instead of learning the hidden patterns behind it [67]. The opposite

can also happen, leading to an algorithm with decreased accuracy [60].

The traditional ML algorithm development process is represented in Figure 2.9. Data

preprocessing may include tasks such as data cleaning or dealing with missing data points.

After data preprocessing, data are split in order to obtain train and test datasets. The clas-

sifier then receives the extracted features from the training dataset and is consequently

evaluated with the test dataset. This process is redone, with the classifier’s parameters
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Figure 2.9: Conventional pipeline of a Machine Learning task.

being repeatedly tuned until a satisfying model is obtained, with adequate predictive

accuracy. Thus this iterative process is model "learning," where the model is the learned

program that links inputs to predictions. ML uses the training set to establish a regressor

or classifier and assesses its performance through the test set [63].

Even if we understand the underlying mathematical principles of most AI models,

some of them are applied in a black-box manner, i.e., no information is given about what

in the input data made them actually reach a particular predictive outcome [68]. Deep

Neural Networks are examples of black box models [9], as they may have impressive

results but are always limited by their inefficiency in understandably explaining its rea-

soning. By not revealing their internal mechanisms, these systems prevent the user from

verifying the conclusions obtained by the model [63].

2.4.2 Feature Extraction and Selection

Features can be extracted from multiple data types. The one used in this work is time

series, which can be defined as a chronologically ordered sequence of data points taken

at equally spaced time intervals [65].

Feature extraction is the process of gathering the most informative set of measurable

properties of a signal. A feature vector is the most common form of data input for ML

models, as these can be quantitative (discrete or continuous) or qualitative (binary or cat-

egorical) measurements [62], [66]. Feature construction is the first step of this operation,

and it requires the conversion of raw data into a usable set of variables or attributes. For

example, time series features often include outcomes resulting from the time-domain,

frequency-domain, and time-frequency processing [65]. Of course, it is essential to be

cautious not to lose any relevant information regarding the signal, but withholding an
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exceedingly large number of features implies a dimensionality problem.

Feature selection can help solve this problem by finding the most compact and perti-

nent subset of features that contains maximum knowledge regarding the discrimination

of classes or labels of the input data. This subset can still efficiently describe the data

while reducing the number of redundant variables and features with no correlation to the

classes, both acting as noise for the predictor. This process can help reduce data storage

and computation time, improve the model’s performance, and better understand input

data [62].

Any feature selection strategy should account for three aspects: 1) the evaluation

criterion, that measures the relevance level of each feature with regard to the classes;

2) the feature subset generation, which is the process of choosing the most effective

features; 3) the assessment method of the outcome. Supervised feature selection can be

achieved using filters, wrappers, or embedded methods briefly explained in the following

paragraphs [62], [69].

The main parameter that distinguishes filters from the remaining techniques is the

evaluation criterion. Filters generally use a relevance index based on correlation or statis-

tical analysis, therefore relying on the characteristics of the input data without depending

on the used learning algorithm [70], [71]. This index orders the features by relevance and

filters out the variables whose ranking is below a previously defined threshold [69]. As

a result of the simplicity of the ranking calculation, filter methods tend to require fewer

computational costs, and their independence from the predictor allows for better gener-

alization and limited overfitting to the data [70]. However, it does not account for the fact

that features are not independent of each other. Therefore features can be individually

irrelevant but more informative when applied with others; or relevant on their own but

redundant when combined with the rest [62]. Calculating the rejection threshold and

consequently choosing the number of selected features can also be an issue [69]. Some

examples of filter methods include Pearson correlation coefficient and Relief.

Whereas filters do not involve any learning by the model, wrappers use a learning

model trained with a candidate feature subset to evaluate the performance of the given

subset [62], [72]. Wrappers are based on search strategy when they select the group of fea-

tures that maximizes the model’s classification performance [69], [72]. According to [62],

the search strategy can be optimal, stochastic or sequential. The first one is an exhaus-

tive search evaluating all possible subsets, therefore having a high computational cost.

Stochastic methods iteratively update the candidate subsets through a certain mechanism

according to a given optimization function. Lastly, sequential selection is an iterative

method that can be applied in two manners. Sequential Feature Selection (SFS) is when

initially there is an empty set and the first added feature is the one that maximizes the

value of the optimization function. The process is repeated until the performance of the

predictor can no longer be improved by the addition of any feature or until the desired

feature subset size is reached. The same process performed backwards is Sequential Back-

ward Selection (SBS), in fact, it starts with all available features and removes the feature
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that leads to the best results [62], [69], [72]. Wrapper methods usually perform better

than filters since the selection process is optimized for a specific predictor [73], [74].

Hybrid methods apply a wrapper approach to a subset of features generated from the

filter’s ranking, which is particularly indispensable when the number of features is very

high [70], [71].

We have seen that filters do not incorporate model learning. Wrappers require the

re-computation of a model for each subset of features but do not assimilate information

about the classification’s specific structure. On the other side, embedded methods do not

segregate the learning from the feature selection part by incorporating the search for an

optimal group of features as part of the model’s training process [62], [75].

2.4.3 Classification

The classification process happens after the algorithm is trained with the extracted fea-

tures, enabling the model to classify new data into one of the possible classes. Before

doing so, one must choose the appropriate algorithm depending on the used type of

data and the research goals. Many approaches have been developed in a supervised ML

context based on logic, perceptrons, instances, or bayesian network [66]. This section

will focus solely on supervised ML approaches used during our work, including Random

Forest Classifier and AdaBoost with Random Forest base. A brief explanation for each

classifier follows:

• Decision Tree describes possible decisions to be made, the options for those deci-

sions, and the outcomes of different combinations of decisions and options. Each

node in a tree represents a decision point related to a feature, and each branch is a

possible value for that feature. The root node should be associated with the feature

that best discriminates training data. From there, multiple splits or partitions are

created at each node according to a range of criteria, like minimizing classification

error or gain in impurity [76], [77]. Subsequently, instances are sorted based on

their features values until they reach the terminal node that attributes them to a

class [65], [66]. Its highly interpretable graphics, easy comprehension, and straight-

forward implementation make it one of the most frequently used algorithms [76],

[78].

• Random Forest creates multiple Decision Trees by training each of them with a

different subset of the training data. It uses bootstrapping resampling by repeatedly

drawing a smaller set of samples from the training data. The set is restored in the

original training data after the creation of each tree. It is considered an ensemble

method since multiple models, in this case, individual Decision Trees, are combined

into one single Random Forest during the learning procedure. Tree construction

is slightly different when compared to what happens in a Decision Tree since the

Decision Tree chooses the best split considering all features, and Random Forest
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selects the best partition among a random subset of features. In the end, the several

trees are averaged together, which is extremely advantageous since Decision Trees

are more prone to overfitting. This way, it is possible to obtain more accurate

predictions [65], [76]. Furthermore, Random Forest takes into account parameters

related to the trees themselves, like the number of random features used for each

tree, and the tree depth, which is the longest path between the root node and the

terminal node; and it also considers the number of samples for the bootstrapping

process and the number of trees in the forest [77], [79].

• AdaBoost is also an ensemble method but based on the boosting technique, which

is the concept of creating a strong classifier by combining many relatively weak

classifiers [80], as it can be verified in Figure 2.10. This algorithm originates from

an iterative operation that is initially trained with the unweighted training set. Then

AdaBoost builds a classifier, for example, a Decision Tree, that predicts class labels.

These results are weighted in the following manner: if a training instance is wrongly

classified, the weight of that point is boosted or increased; if is correctly predicted,

its weight is decreased. A second classifier is subsequently built, using the same

samples but with the new weights, and the procedure is repeated with sample

weights being adjusted in each iteration. The aim of this is to oblige the weak

classifier to focus on the more complex cases that were missed by the preceding

weak classifier. The final step is to compute the classifier as a weighted majority

vote of the weak classifiers since a score is assigned to each of them [81], [82].

A ML pipeline may integrate optimization techniques in an effort to enhance the

classifier’s performance. Grid Search Cross-Validation is an example of such, as it can

be applied to determine the best parameters for the estimator before it performs any

classification tasks. This is achieved through an exhaustive search over the list of possible

parameter values of that particular classifier. The performance of every combination of

parameters is evaluated using a performance score, and the parameters that maximize

that score are selected [83]. In this case, the performance metrics are the results of Cross-

Validation, which will be explained further in Section 2.4.4. Parameter adjustment can be

time-consuming, especially when the learning algorithm has numerous parameters [84],

[85].

2.4.4 Validation and Performance Metrics

A model should be trained with a different set of samples than the ones used for its

testing. Otherwise, it would obtain a perfect score because it would have seen all testing

samples during the train. The model needs to be able to generalize well to new data,

so it is important to implement techniques that prevent overfitting. At the same time,

the results we obtain can vary a lot depending on the sample division that is made, and

simpler models can fall into the tendency of underfitting by not capturing well the linkage
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Figure 2.10: AdaBoost scheme. xi is a sample of the feature dataset, yi is the real class
of the sample, ŷi is the predicted class of the sample, w represents the weights assigned
to each sample, h represents the trained weak classifier, and α represents the weight
assigned to each weak classifier.

between variables (Figure 2.11). That is why standard validation techniques include

data resampling like Cross-Validation, whose variations depend on how the division of

training and test sets is accomplished. A brief explanation for a few of these variations

follows:

• K-Fold Cross-Validation divides the dataset into k disjoint subsets or folds of ap-

proximately equal size. The model is then trained with k - 1 subsets, which together

originate the training set and is tested with the remaining subset. This process

is repeated k times until all subsets have been used as test sets. If the dataset is

imbalanced, Cross-Validation can include stratified random sampling, guaranteeing

that the class proportions in the individual subsets reflect the actual proportions

present in the dataset [87], [88].

• Leave-One-Out Cross-Validation is an exceptional situation of K-Fold Cross-Validation

when k equals the total number of samples in the dataset. In this case, each sample

is an individual subset, so what happens is that the model trains with all available

samples except one and is tested with the remaining sample [88]. Typically, this

type of validation is only used when the dataset is small.
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Figure 2.11: Examples of model fits. The squares represent data points, with each color
representing a different class. The model is presented as the data separation curve. A)
Adequate model fit. B) Overfitted model. C) Underfitted model. Source: [86].

• Shuffle-Group(s)-Out Cross-Validation splits the dataset according to an external

group, which contains information regarding specific stratifications of the samples.

For example, when a study involves multiple acquisitions by the same subjects, it

can be significant to allocate all samples of one subject either on the training set or

on the test set [85], [89].

• For Leave-One-Group-Out Cross-Validation, each subset separated by the iterator

is composed of all samples associated with one group. Thus, for the given example,

the model trains using all instances of all subjects except one and tests on the

samples of the remaining subject.

When feature selection is part of the ML pipeline, the selected features must be de-

termined using only the training set and not the entire dataset so that the produced

performance estimate is not biased. Another application for Cross-Validation is model

parameter optimization, by performing Cross-Validation for different values of the tuning

parameter, and choosing the one that minimizes the cross-validated error.

Finally, the performance of the final model is estimated using the average performance

of the models on each subset. The model’s overall performance can be visually interpreted

using a confusion matrix, which indicates the true labels in the rows against the predicted

ones in the columns, as represented in Figure 2.12. This square matrix depicts the raw

results about the classifiers’ predictions as it reports the number of True Positives (TP ),

True Negatives (TN ), False Positives (FP ) and False Negatives (FN ) [90]. These values can

quantify different metrics, the most common being:

• Accuracy is the fraction of correct predictions to the total of test samples.

Accuracy =
TP + TN

TP + TN +FP +FN
(2.2)
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• Precision assesses the overall positive predictions, comparing the true positive

cases to all the predicted positives, both correctly and not.

P recision =
TP

TP +FP
(2.3)

• Recall relates the positive predictions to the total of true positive cases.

Recall =
TP

TP +FN
(2.4)

• F1 score is the harmonic mean of the model’s precision and recall.

F1 = 2× P recision×Recall
P recision+Recall

(2.5)

The F1, precision and recall scores measure how effective the model is when classi-

fying the positive class. When we intend to take into account the performance of the

model when classifying both classes in a binary classification problem, we can apply

a macro-average. This average computes the metric independently for each class and

then calculates their arithmetic mean. Macro-averaging ensures that all classes get equal

weight when contributing to the metric scores. This might not be an appropriate calcula-

tion when dealing with class imbalance.

The choice of the proper evaluation metric depends on the provided dataset and the

goals of the classification task. A poorly selected metric may lead to fallacious conclusions.

This can have even more significant repercussions in a medical scenario since we have to

consider that it is probably better for a model to incorrectly identify a disease as being

present when it is not (False Positive) than the opposite (False Negative) [86]. For this

purpose, recall would be an adequate measure since it informs about the chance the model

has of correctly identifying the disease. Another example is regarding accuracy, which

is not an appropriate measure when dealing with class imbalance since it is possible to

achieve a high score even if the model performs poorly in the less probable class [91]. For

the purpose of analyzing imbalanced datasets, F1 score may be a more appropriate metric

since it encompasses both precision and recall.
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Figure 2.12: Confusion Matrix for a binary classification task (two classes). The counts
from predicted values for each class are on the columns, and the counts from actual values
on the rows.
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3

Novel Morphological Features for

Surface Electromyography

Characterization

The right features can make a huge difference in a model’s predictive power. As stated

by Professor Pedro Domingos, “At the end of the day, some machine learning projects

succeed and some fail. What makes the difference? Easily the most important factor is

the features used” [92]. In the present work, a set of state-of-the-art EMG features was

combined with a proposed novel set of features designed to take into consideration the

quantitative measurements taken by clinicians to diagnose neuropathies.

This chapter encompasses the description of all considered features, along with a more

thorough explanation of the implemented methods to extract the proposed features.

3.1 State-of-the-art SEMG features

An extensive group of features has been previously used in EMG studies for different

purposes, including muscle fatigue analysis, movement classification, and disease clas-

sification. In this work, these features were explored to understand their discriminating

value in SEMG for ALS diagnosis and how the novel features could improve that. Among

the state-of-the-art features, some have reported high computational efficiency and excel-

lent classification performance for diagnosis tasks.

3.1.1 Time-Domain Features

The Table 3.1 presents the time-domain features that were extracted from the SEMG

signal. Most of these features are objective signal parameters that several research projects

have explored [93]–[103]. Most time-domain features are computed using the raw EMG

time series, so their implementation is typically straightforward and does not require any

significant transformation. Compared to other features in the frequency domain, this

group of features has the potential to provide better classification performance in low
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noise environments and computational simplicity. However, the raw recording usually

contains much interference that can be a disadvantage for these calculations, especially

for features related to energy properties [94], [95].

Features that integrate full-wave rectification help retain the energy content of the

signal, such as the absolute value of the summation of square root and the integrated

EMG [93]. The latter is commonly used for onset detection since it closely relates to the

signal’s sequence firing point [94]. The absolute value of the summation of the exponen-

tial root provides an approximate measure of the power of the SEMG, giving a better

perception of the amplitude of the signal [93]. An estimate of the total amount of activity

in one time window can be obtained with the mean value of the square root.

The V-Order and log detector implicitly estimate muscle contraction force, and Willi-

son amplitude gives an approximate estimate of the number of active MUs, which is also

related to the muscle contraction levels [101].

Waveform length is a measure of the waveform complexity when the muscle is ac-

tive [103]. The average amplitude change and difference absolute standard deviation

values are the waveform length’s average and standard deviation, respectively [94]. Thus,

these features contribute with information regarding the frequency, duration, and wave-

form amplitude. An enhanced version of this feature has been introduced by [99], which

attributes higher weights to values in the center of the signal, where more valuable infor-

mation can be found.

Zero crossing rate, myopulse percentage rate, Willison amplitude, and slope sign

change provide frequency content about the signal defined in the time-domain since

these features quantify or average how many times a particular parameter exceeds a

predefined threshold. The computation associated with a threshold value intends to

attenuate the effect of background noise. Cardinality also uses a threshold after data

sorting, and the consecutive values are only considered distinct if their difference is above

that threshold [94].

Auto-regressive coefficients are obtained through a prediction model that expresses

the signal as a combination of past samples and a white noise term. The coefficients were

computed until the fourth order as suggested in [94], resulting in four variables so four

features. This model gives information regarding the frequency distribution of the signal.

By applying the logarithmic transform to the summation of the Teager–Kaiser En-

ergy Operator (TKEO) in all signal windows, the TKEO information was included in the

feature set, which is an energy operator that measures instantaneous frequencies of the

signal and estimates the time-varying amplitude envelope [100].

The mean absolute value slope is the difference between the average value of adjacent

segments covering the signal. The number of segments considered in this study was five,

leading to five features [103].

A total of 48 time-domain features was considered.
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Table 3.1: Time-domain features extracted from SEMG signal.

Feature Description

Absolute energy Sum over the squared values of the signal

Absolute value of the

summation of exponential root
An approximate measure of the power of the signal

Absolute value of the

summation of square root

Absolute value of the sum of the square root of all

values of the signal

Area under

the curve

Magnitude of the product of the intensity of the

signal and time

Autocorrelation
Correlation of the signal with a delayed version of

itself

Autoregressive

coefficients

Coefficients in the regression equation, that models

the signal a linear autoregressive time series

Average amplitude

change
Average of the waveform length

Cardinality Total number of distinct values

Centroid
Arithmetic average position of all values along the

time axis

Difference absolute

mean value

Average of the absolute difference between

consecutive values of the signal

Difference absolute

standard deviation value

Standard deviation absolute value of the difference

between consecutive values of the signal

Difference variance

value

Variance value of the difference between consecutive

values of the signal

Enhanced

wavelength

Waveform length with an additional parameter

weighting each value

Entropy Entropy of the signal using the Shannon Entropy

Integrated EMG Summation of the absolute values of the signal

Log detector
A logarithmic estimate of muscle contraction force

defined from a mathematical model of the signal

generation

Log difference absolute

standard deviation

Logarithmic transformation of the difference

absolute standard deviation value

Log difference absolute

mean value

Logarithmic transformation of the difference

absolute mean value

Log Teager-Kaiser

energy operator
Logarithmic transformation of the TKEO
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Table 3.1: Time-domain features extracted from SEMG signal (continued).

Feature Description

Mean absolute difference
Average absolute difference of two random and

independent values from the same probability

distribution

Mean

difference

Average difference between consecutive values of

the signal

Mean absolute

value slope

Differences between the mean absolute values of

consecutive segments

Mean value of square root
A measure that gives an estimate of the total amount

of activity in the signal, given by the average of the

square root of all the values of the signal

Median absolute

difference

Median of the absolute differences between

consecutive values of the signal

Median

difference

Median of the differences between consecutive values

of the signal

Myopulse percentage rate
Average of the myopulse output, which is considered

one when the absolute value of the signal exceeds a

threshold and zero otherwise

Negative turning

points

Number of minimum points, where the slope changes

sign from negative to positive

New zero

crossing

Total number of times the signal crosses a

predefined amplitude level

Neighbourhood peaks
Number of peaks from a limited neighbourhood of

the signal

Peak-to-peak distance Distance between maximum and minimum peaks

Positive turning

points

Number of maximum points, where the slope changes

sign from positive to negative

Signal distance Total distance traveled by the signal

Slope Slope by fitting a linear equation to the signal

Slope sign

change

Total number of times the slope of the signal changes

sign associated with a threshold function

Sum absolute

difference

Summation of the absolute differences between

consecutive values of the signal

Temporal moment
The absolute value of the higher-order temporal

moments, which are characteristic of the

time-dependent response curve

Total energy Area under the squared magnitude of the signal
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Table 3.1: Time-domain features extracted from SEMG signal (continued).

Feature Description

V-Order
An estimate of muscle contraction force defined

from a mathematical model of the signal generation

Waveform

length

A measure of the fluctuations of the signal described

as the cumulative length of the signal’s waveform

Willison amplitude
Total number of times the amplitude difference

between two consecutive segments of the signal

exceeds a threshold

Zero crossing rate
Total number of times the signal crosses the zero

amplitude level and the difference between

consecutive points exceeds a threshold

3.1.2 Spectral-Domain Features

Frequency or spectral-domain features are commonly used to study the fatigue of the

muscle and MU recruitment. The complete list of used spectral features can be found in

Table 3.2.

The Power Spectral Density (PSD) refers to the spectral energy distribution as a func-

tion of frequency, giving an idea about the frequencies that compose the signal. It is

obtained through the FFT of the autocorrelation function of the signal [104]. PSD is an

essential tool for signal analysis in the frequency-domain, and a few explicit properties

from this spectrum can be extracted, such as its maximum, bandwidth, centroid, roll-

off, and roll-on points. Others are obtained indirectly, such as the amount of decrease,

entropy, kurtosis, skewness, slope, spread, and variation [105].

Cepstrum coefficients inform about the rate changes and periodic structures in dif-

ferent frequency spectrum bands of the signal. Even though they are more commonly

used for speech-related tasks, several studies have shown their relevance in the EMG

domain [101], [106]. The first 12 coefficients were extracted, since these contain most of

the information.

A number of features can be obtained after applying the CWT, which performs the

convolution of the signal with a set of wavelets at different scales, in this case nine scales,

allowing for variable time-frequency resolution. Wavelets are mathematical functions

that describe a wave-like oscillation [29]. Each of these parameters resulted in nine

features.

This resulted in a total of 79 spectral-domain features.

31



CHAPTER 3. NOVEL MORPHOLOGICAL FEATURES FOR SURFACE

ELECTROMYOGRAPHY CHARACTERIZATION

Table 3.2: Spectral-domain features extracted from SEMG signal.

Feature Description

Fundamental frequency
Representation of the content of the signal

spectrum

0.6-2.5 Hz range energy ratio
Ratio between the energy in the frequency

band 0.6-2.5 Hz and the whole energy band

Linear prediction

cepstral coefficients

Cepstral coefficients derived from the linear

prediction

Mel-frequency cepstral coefficients
Cepstral coefficients based on a cosine

transform of the logarithmic power spectrum

expressed on a mel-frequency scale

Maximum power spectrum Maximum value of the PSD

Maximum frequency Maximum frequency of the signal

Median frequency Median frequency of the signal

Power bandwidth
PSD bandwidth, which is the width of the

frequency band that contains 95% of its

power

Spectral centroid Location of the barycenter of the PSD

Spectral decrease
Amount of decrease of the PSD amplitude

with an emphasis on the slopes of the

lower frequencies

Spectral distance
Distance of the signal’s cumulative sum of

the FFT elements to the respective linear

regression

Spectral entropy Entropy measure of the PSD of the signal

Spectral kurtosis Flatness of a distribution around its mean

Spectral positive

turning points

Number of positive turning points of the

FFT magnitude signal

Spectral roll-off
Frequency value which contains 95% of the

signal magnitude

Spectral roll-on
Frequency value which contains 5% of the

signal magnitude

Spectral skewness
Measure of asymmetry of a distribution

around its mean value

Spectral slope Amount of decrease of the PSD

Spectral spread
Standard deviation around the spectral

centroid
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Table 3.2: Spectral-domain features extracted from SEMG signal (continued).

Feature Description

Spectral variation
Amount of variation of the PSD, which

comes from the normalized cross-correlation

between two consecutive amplitude spectra

Wavelet absolute mean
CWT absolute mean value of the wavelet

scales

Wavelet energy CWT energy of the wavelet scales

Wavelet entropy CWT entropy of each wavelet scale

Wavelet standard deviation CWT standard deviation of each wavelet scale

Wavelet variance CWT variance of each wavelet scale

3.1.3 Statistical-Domain Features

The statistical features extracted from the signal can be found in Table 3.3. One of the

most commonly used features is the mean absolute value, which is used as a measure of

the signal’s amplitude and, therefore, an indicator of muscle contraction levels. A few

variations of this result have been introduced to improve the robustness of the feature [99]

by assigning higher weights to more central values. In particular, modified mean absolute

value type 2 uses a continuous function to improve the smoothness of the weights.

Features such as average energy, root mean square, and variance are power indexes of

the signal. Root mean square is a widely used feature for multiple purposes, and in the

EMG context, is an indicator of muscle fatigue [107].

Kurtosis analysis has shown to be correlated with muscle contraction force [108].

The interquartile range, standard deviation, variance, coefficient of variation, and its

logarithmic transform are estimates of the degree of dispersion of the signal, so these

features gain relevance due to the importance of EMG variability in pathology recogni-

tion [18].

The histogram values inform about the frequency with which the signal reaches dif-

ferent amplitudes, considering ten equal-width bins, consequently leading to ten fea-

tures [105].

Ten values of the empirical cumulative distribution function along the time axis were

analyzed, a function which provides information about the empirical measure of a sample.

The percentile values and percentile counts of the function were also obtained, adding

four more features to this subset [105].

The total of statistical-domain features comes down to 44.

Table 3.3: Statistical-domain features extracted from SEMG signal.

Feature Description

Average energy Mean of the squared values of the signal
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Table 3.3: Statistical-domain features extracted from SEMG signal (continued).

Feature Description

Values of the empirical

cumulative distribution

function (ECDF)

Values of ECDF, which is an estimate of the

cumulative distribution function that

generated the points in the sample

ECDF percentile Percentile values of the ECDF

Coefficient

of variation

Ratio of standard deviation to mean of the

signal

ECDF percentile

count

Cumulative sum of samples lower than the

percentile

ECDF slope Slope of the ECDF

Enhanced mean

absolute value

Mean absolute value with an additional discrete

parameter weighting each value

Histogram
Values of the histogram, which represents a

frequency distribution of the signal

Interquartile

range

Difference between the upper and lower

percentiles of the signal

Kurtosis
Measure of how the tails of the signal’s distribution

differ from the tails of a normal distribution

Log coefficient

of variation

Logarithmic transformation of the coefficient of

variation

Maximum Maximum value of the signal

Mean Mean value of the signal

Mean absolute

deviation

Average distance between each value of the signal

and its mean

Mean absolute value Average of the absolute values of the signal

Median Median value of the signal

Median absolute

deviation

Median of the absolute deviations from the signal’s

median

Minimum Minimum value of the signal

Modified mean absolute

value type 1

Mean absolute value with an additional discrete

parameter weighting each value

Modified mean

absolute value type 2

Mean absolute value with an additional continuous

parameter weighting each value

Root mean

square

Square root of the arithmetic mean of the squares

of the signal’s values

Skewness
Measure of asymmetry that deviates from the

normal distribution
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Table 3.3: Statistical-domain features extracted from SEMG signal (continued).

Feature Description

Standard

deviation

Measure of the dispersion of the signal relative

to its mean

Variance Square of the standard deviation

3.1.4 Fractal-Domain Features

Lastly, the fractal-domain features used in this work are listed in Table 3.4. The FD

correlates self-similar signal patterns or figures and the used scale for their measurement.

It can be obtained from the logarithmic relationship between the changes in the length

of the curve and the measurement scale. Thus it evaluates the complexity of a figure by

understanding how the used scale affects the detail in the pattern. Biosignals’ patterns,

which are small-scale structures, present self-similarity with larger-scale structures, and

therefore this relationship can be studied with fractal analysis. The FD is useful in EMG

tasks since it evaluates non-linear dynamics, and the EMG signals are not linear nor

stationary. Additionally, it has been established that FD is related to the muscle size

and complexity of the muscle properties and not to the contraction strength [22], [109],

[110]. Higuchi’s Fractal Dimension (HFD) is one of the most popular fractal time series

algorithms, and it has been demonstrated that it leads to a better estimation of the FD for

physiological signals. Thus, in our work, HFD was used to compute the FD.

MFL can be useful when measuring low-level muscle activation since FD is only an

interesting measure for high contraction levels. Muscle force is obtained through the

recruitment of MUAPs, each MUAP causing a singularity in the signal. The height and

density of singularities significantly influence the length of the signal, and thus MFL is a

solid indicator of muscle contraction force [110], [111].

The self-similarity of a physiological time series can be estimated using DFA, a fractal

time series algorithm. It provides a scaling exponent related to spectral techniques, but it

does not rely on the selection of wavelets, thus achieving lower computational complexity

[112].

Lempel-Ziv (LZ) complexity implementation begins with converting the signal to a

binary sequence by comparing each value with a threshold of 0, followed by the identi-

fication of the normalized number of distinct patterns contained in the sequence. This

measure has been applied successfully for measuring the deterministic complexity of

EMG signals. In particular, it reflects the duration and firing rate of MUAPs after the

computation of the number of different patterns present in the signal within a sliding

window [113], [114]. The LZ complexity was also computed for the absolute signal, using

a threshold of 0.4, resulting in two features related to this measure.

The signal’s entropy is affected by the density of the SEMG interference pattern and
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its amplitude distribution, both relevant in pathology discrimination. When using Mul-

tiscale entropy (MSE), the entropy analysis is performed over multiple time scales. Ab-

normal physiology is usually associated with more regularity, and therefore this measure

is beneficial due to its capacity to provide better insight into the non-linear dynamic

properties of the signal [34], [115]. Two features were obtained from this measure, its

average and standard deviation.

A more detailed description of how these methods were applied can be found in [116].

A total of seven fractal-domain features was explored in our work.

Table 3.4: Fractal-domain features extracted from SEMG signal.

Feature Description

Detrended Fluctuation

Analysis

Modified root mean square analysis of the

integrated signal

Fractal

Dimension

Measure of non-linear properties that reflects how

the detail in the fractal changes with the used scale

Lempel-Ziv Complexity Measure of finite sequences randomness

Maximum

Fractal Length

Length obtained from the y-axis interception of the

logarithmic plot of length versus scale

Multiscale

entropy

Sum of sample entropy values computed from

multiple downsampled versions of the signal

3.2 Novel Features

The clinical interpretation of an EMG exam relies on the analysis of MUAPs waveforms.

Quantitative measurements are conducted by the clinician, such as MUAPs amplitude,

duration, number of phases, firing rate, among others [117], as found in Figure 3.1. As

identified in Section 1.3, these measurements are seldom used as features for learning

algorithms.

For this reason, we developed features focused on extracting information regarding

the morphology of the signal. These features were designed on the assumption that they

can be more interpretable, as they measure morphological characteristics that represent

physiological processes that are taken into account in clinical interpretation. Two groups

of features are proposed: peak-related features and MUAP morphology features. A

brief description for each feature of the peak-related and MUAP morphology groups

can be found in Tables 3.5 and 3.6, respectively. The first group quantifies statistical

characteristics related to all the detected maxima of the signal. The second one provides

MUAP morphology measures, which can be visually interpreted in Figure 3.1.

Peaks difference and all MUAP morphology features generate two variables, the av-

erage of the mentioned measure and the respective standard deviation. The extraction

of the standard deviation alongside the average was due to the standard deviation being
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Figure 3.1: Quantitative characteristics of MUAP waveforms. "PP" corresponds to peak-
to-peak.

related to the variation within each measure, which could present differences between

pathological and healthy signals. The remaining features originate one variable, the direct

measure. This results in a total of 18 new features.

The applied methodology to obtain the novel features is based on detecting the sig-

nal’s peaks, and decomposing the SEMG signal to identify the surface representations

of individual MUAPs. The MUs activated during muscle contraction generate MUAPs

and their summation yields the SEMG signal. The SEMG decomposition consists of seg-

menting and identifying the constituent MUAPs and, therefore, the superimpositions

of SEMG signals can be avoided to some extent. Over the last years, there have been

several proposed approaches for EMG decomposition [118], [119]. These approaches are

complex and still have some shortcomings, particularly for SEMG, which is more chal-

lenging due to its signal complexity. We opted to conduct the SEMG decomposition using

a simpler method. Although our proposed method might come short compared to more

sophisticated alternative methods, we argue that it can still be applied for a preliminary

assessment between control and ALS groups using our proposed set of features.

Our naive approach for SEMG decomposition consists of (1) identifying all the signif-

icant local maxima during muscle activation periods; and (2) post-process the detected

peaks to isolate the MUAP window around them.

For the first task, Algorithm 1 was implemented. As shown in this algorithm, a local

maxima is considered significant if its amplitude is higher than 98-th percentile of the
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Table 3.5: Description of peak-related features

Feature Description
Number of peaks Total number of detected peaks
Peaks difference Time interval between consecutive peaks
Peaks rate Number of peaks per second

Table 3.6: Description of MUAP morphology features

Feature Description

Peak-to-peak amplitude
Amplitude from the maximum negative peak
to the maximum positive peak of the MUAP

Peak-to-peak difference
Time interval between the maximum negative
peak to the maximum positive peak of the MUAP

MUAP duration Time interval during which the MUAP occurs
MUAP integrated area Absolute area of the MUAP

MUAP rise time
Time interval between maximum negative peak
and the following minimum positive peak within
the duration of the MUAP

MUAP phases
Number of baseline crossings within the duration
where amplitude exceeds the mean of the signal

MUAP turns
Number of positive and negative peaks where the
differences from the preceding and following turn
exceed 25 µV

onset moment and the distance between consecutive maxima has a minimum value of 20

Milliseconds (ms), to prevent the detection of peaks related to noise. Using the obtained

peaks in this phase, the peak-related features were extracted for each contraction window

of the signal. The features number of peaks and peaks rate were directly quantified. The

peaks difference was determined for each pair of consecutive peaks and then averaged,

resulting in two features which were the average and standard deviation of this measure.

Algorithm 1 Peaks detection

Input:
window w ▷ Signal corresponding to a contrac-

tion window.
min_height ▷ Minimum peak height.
min_dist ▷ Minimum distance between con-

secutive peaks.
Output:

peaks ▷ Detected peaks’ indexes.
1: min_height← percentile(w,98)
2: min_dist← 20
3: peaks← f ind_peaks(w,min_height,min_dist) ▷ Compute the peaks’ indexes.

The second part involved delimiting the MUAP windows around the peaks detected

by Algorithm 1. This is represented by Algorithm 2. The MUAP is considered the window

of 20 ms centered in each detected peak, since the average MUAP duration goes from 10
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Algorithm 2 MUAP detection

Input:
window w ▷ Signal corresponding to a contrac-

tion window.
peaks ▷ Detected peaks’ indexes.
win_len ▷ Length of the MUAP window.

Output:
MUAPS ▷ All MUAP values.

Require:
win_len ∈ [10, 30] ms

1: for peak in peaks do

2: MUAP← w[peak − win_len
2

: peak +
win_len

2
] ▷ Save the signal’s values within

the window.
3: MUAPS← append(MUAP ) ▷ Add the obtained MUAP to a list.
4: end for

ms to approximately 30 ms [120].

Due to the variety of the designed features, the MUAP was consequently delimited

between its maximum negative and positive peaks, in order to be able to obtain peak-to-

peak measures within the MUAP waveform, as shown in Algorithm 3. This algorithm

incorporated the detection of negative local minima within the MUAP window, whose

absolute height had to be at least the mean of all the negative values in the window. The

detected positive and negative peaks of a part of the samples were visually inspected, and

most of them were correctly identified. However, as expected, some surface MUAPs may

be closer together than what happens in NEMG, or even superimposed, which resulted

in the detection of a few abnormal peaks that did not appear representative of a MUAP.

Four features were obtained from this algorithm, related to the peak-to-peak amplitude

and time difference. These peak-to-peak measures were determined for each MUAP

within a contraction window, and then their mean and respective standard deviation

were calculated.

Lastly, the waveform of the MUAP was isolated through the detection of stable zones

around the main peak, which allowed the calculation of the remaining MUAP morphology

features, as shown by Algorithm 4. This stage is of particular importance since within the

duration of the MUAP, we find intrinsic physiologic information about the MU, namely

regarding the number of muscle fibers in it and the temporal dispersion of their firing

[121]. First we inspect the order in which the peaks detected by Algorithm 3 appear in the

MUAP window, and then we subtract one ms to the one that comes first and add one ms to

the one that comes second, referring to them as first and second points. Then the values to

the left and right of the first and second points, respectively, are assessed and compared

to a threshold. This threshold is defined as 1
15 of the peak-to-peak amplitude of the

MUAP, previously determined by the same Algorithm 3. The first left and right values

greater than the threshold are the considered starting and ending points, respectively.

This process allows the identification of the waveform region that approximates to what
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Algorithm 3 MUAP peak-to-peak limitation

Input:
MUAPS ▷ All MUAP values.
peaks ▷ Detected peaks’ indexes.

Output:
pos_peaks ▷ Positive peaks’ indexes.
neg_peaks ▷ Negative peaks’ indexes.

1: for MUAP in MUAPS and peak in peaks do
2: thresh_inv←mean(−muap[−muap > 0]) ▷ Calculate the threshold for the de-

tection of negative peaks.
3: inv_peaks← f ind_peaks(−muap,thresh_inv) ▷ Compute the negative peaks’ in-

dexes.
4: pos_peak← peak ▷ Compute the maximum positive

peak index.
5: neg_peak← where(min(muap[inv_peaks])) ▷ Compute the minimum negative

peak index.
6: pos_peaks← append(pos_peak) ▷ Add the obtained positive peak to

a list.
7: neg_peaks← append(neg_peak) ▷ Add the obtained negative peak to

a list.
8: end for

the MUAP waveform is expected to be like. This algorithm allowed the extraction of

the remaining 10 features, which are related to measures within the waveform of the

MUAP, namely the MUAP duration, integrated area, rise time, phases and turns. In a

similar way to what happened with the peak-to-peak measures, first the MUAP measures

were determined for each MUAP within a contraction window, and then the values were

averaged. The average and respective standard deviation are the considered features.

We acknowledge that this method has limitations. It does not ensure that all detected

peaks are actually representative of a MUAP, and it does not take into account that MUAP

duration presents a high degree of variability [121]. Additionally, some MUAPs may not

be noticed through this method and superimposed MUAPs can not be distinguished. Nev-

ertheless, MUAP detection is rarely flawless due to the fact that SEMG signals have a

lower precision, and for that reason, MUAPs are not as distinctive as in NEMG. Also,

it must be noted that this work investigates the interpretation of the surface represen-

tations of MUAPs, not their intramuscular representation. Given these circumstances,

our approach allows a significant amount of surface MUAPs to be considered that are

representative of the overall pattern present in the surface signal.
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Algorithm 4 MUAP waveform limitation

Input:
MUAPS ▷ All MUAP values.
peak_to_peak_amp ▷ Peak-to-peak amplitude for each

MUAP.
amp_frac ▷ Fraction of the peak-to-peak am-

plitude to consider.
pos_peaks ▷ Positive peaks’ indexes.
neg_peaks ▷ Negative peaks’ indexes.

Output:
start_points ▷ Starting points of the MUAP wave-

forms.
end_points ▷ Ending points of the MUAP wave-

forms.
1: amp_f rac← 1

15
2: for i in len(MUAPS) do
3: MUAP ←MUAPS[i]
4: pos_peak← pos_peaks[i]
5: neg_peak← neg_peaks[i]
6: if pos_peak < neg_peak then ▷ If the positive peak appears first,

it is associated with the first point.
7: f irst_point← pos_peak − 1
8: second_point← neg_peak + 1
9: else if neg_peak < pos_peak then ▷ If the negative peak appears first,

it is associated with the first point.
10: f irst_point← neg_peak − 1
11: second_point← pos_peak + 1
12: end if
13: amp← peak_to_peak_amp[i]
14: thres← amp_f rac × amp ▷ Calculate the threshold.
15: for left_value in MUAP[first_point : 0] do
16: start_point← when(lef t_value > thres) ▷ Starting from the first point, the

first value to the left that sur-
passes the threshold is found.

17: end for
18: for right_value in MUAP[second_point : -1] do
19: end_point← when(right_value > thres) ▷ Starting from the second point,

the first value to the right that sur-
passes the threshold is found.

20: end for
21: start_points← append(start_point) ▷ Add the obtained starting point to

a list.
22: end_points← append(end_point) ▷ Add the obtained ending point to

a list.
23: end for
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4

A Framework for Amyotrophic

Lateral Sclerosis Diagnosis based on

SEMG

A framework was developed to distinguish between pathological and healthy SEMG sig-

nals. An overview of such framework is represented in Figure 4.1. The first stage of

the framework begins with the study and preprocessing of the produced SEMG signals.

Then, the signals are divided into windows, according to the activation moments of each

subject. The features are then extracted and all the information is combined into one

vector of features for each window. The parameters of the classifier to be used and the

threshold for sample rejection are determined through tuning processes. Consequently,

some features are removed and feature selection is performed, as well as a 10-fold cross
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Figure 4.1: Schematic representing the framework’s pipeline.
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validation strategy, guaranteeing that samples from the same subject are only on the train

or test set. At last, a supervised learning algorithm employs the features as input and

after the learning process it is able to associate each window with one of the possible

classes: healthy or pathological (ALS). Sample rejection makes use of the class probabili-

ties, leading to a new set of onset predictions, with the rejected windows excluded from

these results. Finally a voting system decides the final diagnosis of an entire signal.

4.1 Preprocessing

The SEMG signal was measured using multiple channels. The acquired data from all

channels was then converted to Millivolts (mV), centered by removing the baseline, and

then digitally filtered using a 3rd order Butterworth bandpass filter, between the frequen-

cies of 10 and 300 Hz. Subsequently, each SEMG signal was split into windows according

to its muscle contraction moments or bursts, which were unique for each subject and

isolated with a semi-automatic method.

The sequential outcomes of the muscle onset detection method are shown in Figure

4.2. This method starts with the application of the TKEO to the signal, which measures

instantaneous energy changes and has proven its utility in minimizing error when detect-

ing onsets of SEMG signals [122]. This was followed by rectification, application of the

first moving average filter, and smoothing of the signal. Lastly, according to a method

proposed by [122], a threshold value was defined as:

threshold = µEMG + hσEMG (4.1)

where µEMG is the average of the signal, σEMG its standard deviation, and h a defining

level of the threshold. The variable h is defined in percentage relatively to the average

value of the smoothed signal and it could vary for each subject.

To ensure that the threshold level was within the maximum and minimum of the

smoothed signal, a normalisation regression function was applied to the threshold. For

visualization purposes, a square wave reflecting the activation and inactivation periods

was generated. The detected potential onsets (beginning of an activation), and idle mo-

ments (ending of an activation) were visually inspected to guarantee that all contractions

were being correctly isolated. Signals from different channels were synchronized in time,

so this segmentation was done for one channel and the onset and idle times were saved

and used for all channels of that subject. This resulted in a group of samples for each

subject that were considered either a muscular contraction or a rest moment.

44



4.2. FEATURE EXTRACTION

Figure 4.2: Signal processing for onset detection. The upper graph shows the signal after
the application of TKEO, and after the application of the first moving average filter. The
middle graph represents the filtered signal before and after its smoothing. The bottom
graph shows the original signal and its detected onsets.

4.2 Feature Extraction

The complete set of features was extracted for each onset window separately. This process

was repeated for all subjects, originating a feature matrix. Each row in this matrix repre-

sents a sample and each column refers to the features’ values that describe each sample

quantitatively. It is worth clarifying that sample refers to a signal window associated with

a muscular contraction. Therefore each subject has one signal with multiple samples, or

contraction windows. Two additional columns were added providing information about

the subject’s ID and the class of that subject (ALS or HC). There were as many rows for

the same subject as activation moments detected in that subject’s signal.

Since each subject had at least three channels of data acquired simultaneously, three

files containing this table of features were extracted. In order to distinguish the informa-

tion coming from different channels, a suffix was added to the feature’s name indicating

the channel from which that feature had been extracted.

Features were extracted exclusively for contraction moments, so the subject’s rest

instants were not considered.

4.3 Feature Selection

The feature selection process identifies the subset of features most effective in discrim-

inating the two classes. A theoretical outline of the prevailing approaches for feature

selection was described in Section 2.4.2. In this section, we will further describe the
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Figure 4.3: Schematic representation of SFS. BF represents the vector of selected features
that is being iteratively updated, Xj represents the feature being analyzed in the current
iteration j, and n is the length of the selected features vector.

feature selection methods adopted in the context of the proposed framework.

Firstly, the pairwise correlation of features was computed using the Pearson correla-

tion method. This method measures the linear correlation between data, and provides

a coefficient value between -1 and +1, with 0 indicating no relationship present, and -1

and +1 meaning a negative and positive, respectively, perfect correlation. Highly corre-

lated features, with a coefficient over 0.95, do not provide discriminating information

simultaneously, and therefore one of them can be removed.

Figure 4.3 displays the SFS algorithm that was implemented, which searches the space

of all feature subsets for the best predictive performance, evaluated through the F1 score.

It starts from an empty set, where the feature resulting in the highest F1 score is added.

Then the additional feature that provides the best F1 score when combined with the

previously selected subset is added into this feature subset. These process is repeated

sequentially until a total of 30 features is obtained. The subset size was limited due to

the large amount of evaluated features. A high computational cost prevented all features

to be considered in feature selection until the model’s predictive performance plateaued.

Since a 10-fold Shuffle-Group-Out Cross-Validation was implemented, detailed in

Section 2.4.4, each fold will provide a different subset of features. The most frequent

throughout all folds are considered the final selected features.

4.4 Supervised Learning

Supervised techniques were applied to discriminate between subjects with ALS and HCs,

using multiple samples from each subject. The first step of this process was to optimize

the classifier’s parameters. Then, an AdaBoost classifier was trained with multiple train

samples, guaranteeing that all samples from each subject were either on the training set
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or the test set. After this, the classifier was able to attribute a class for each sample of the

test set. To improve the robustness of the proposed method, class probabilities were used

for sample rejection, which eliminated signal windows whose attributed class had a low

probability value. The rejected windows were not considered for classification.

However, there was still missing a final decision that took into account all samples

from one signal, acquired from one subject. Therefore, a voting system was implemented

to provide a diagnosis for the subject.

These steps were performed in a 10-fold Shuffle-Group-Out Cross-Validation context,

leading to 10 groups of results, each associated with a different fold. The average of these

results led to the final considered metrics for the classification task.

The reason why the Leave-One-Group-Out Cross-Validation strategy was not imple-

mented was due to the fact that it had a higher computational cost and it tended to overfit
the model especially during the parameter optimization.

4.4.1 Classifier’s Parameters Optimization

A Grid Search Cross-Validation technique obtained the best parameters for the chosen

classifier before performing the actual classification of samples. This strategy iteratively

experimented different groups of parameters for the model in the classification task when

all available features were being used as input, throughout 10 folds of Cross-Validation

using only the train data. The group of parameters that maximized the F1 score metric

was chosen as the ideal set of parameters for that fold. To avoid overfitting, the parameters

were not updated for each fold, but instead the most common ones throughout experi-

menting folds were selected and used during the 10 folds of the actual classification

task.

As explained in Section 2.4.3, AdaBoost needs a base estimator from which the boosted

ensemble is built. The other parameters include: the number of estimators at which the

ensemble is terminated; the weight applied to each classifier; and the boosting algorithm.

Grid Search went through multiple possibilities of groups of parameters, obtaining an

ideal fit for 50 estimators, with a learning rate of one, and the Stagewise Additive Modeling
using a Multi-class Exponential Loss Function (SAMME) boosting algorithm, using Random

Forest as the base estimator. SAMME is an adapted implementation of AdaBoost, with a

difference in the estimator weight computation. Since our task is a binary classification

problem, the SAMME algorithm is equal to the traditional AdaBoost implementation,

firstly described in [123].

In this context, as Random Forest is applied as a weak classifier, its optimized max-

imum depth has a value of only one. The other enhanced parameter in Random Forest

is the criterion for the creation of partitions in the trees of the forest, that are usually

measures of impurity of a node. The information gain principle led to the best results. In

this case, entropy is used as a measure of information indicating the disorder or impurity

of the features with the possible classes. If the entropy of a feature is zero, all samples of
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a node belong to the same class, and if it is maximal, the samples have a uniform class

distribution. Therefore, the chosen feature for the split is the one that minimizes entropy

and impurity, maximizing information gain.

4.4.2 Sample Rejection

The main objective of designing a rejection class was to consider only the predicted class

results based on high probability values. If the probability for that prediction was less

that an optimal threshold, then the respective sample was rejected and excluded from the

overall classification performance. For this purpose, after classification, the probability

results were obtained. The difference between these results and the normal classification

is that instead of giving us a final class, it provides us with the probability value for each

class. That is to say, if the labels are 0 and 1, a normal classification would output 0 or 1,

whereas probability results provide the probability value of the sample being 0 and 1.

The optimal threshold was obtained by plotting the curves threshold (x-axis) versus

accuracy (y-axis) and threshold (x-axis) versus rejection rate (y-axis) during the supervised

learning process, considering only the training set. The goal was to maximize accuracy

while minimizing the threshold, so that the percentage of rejected samples was also

minimal. Therefore, the slope of non-equal consecutive points was calculated until the

rejection rate was 35%. Then, the threshold corresponding to the maximum slope was

chosen as optimal threshold. This process was done in all 10 folds of the learning task

when using all available features. The average of the selected optimal thresholds for all

folds was considered as the final optimal threshold, and the classification process was

repeated taking into consideration only this average to reject samples. This was done to

prevent overfitting.

4.4.3 Voting System or Diagnosis Criteria

As previously mentioned, each subject is associated with one signal which contains mul-

tiple samples, and each of these samples is classified individually. A voting system was

implemented in order to reach an agreement on a final diagnosis for the subject, consid-

ering all attributed classes within the same signal as shown in Figure 4.4. This system

was based on what is done in voting ensembles, which are algorithms that make a predic-

tion by majority vote of multiple contributing models. This can be done either through

hard voting, that predicts the class with the most votes from the other models, or soft

voting, that predicts the class with the largest summed probability from the models. We

performed the first approach but in the context of combining contraction windows infor-

mation. This criteria counted the number of healthy classified samples as the number of

votes for the HC class, and the same for the ALS class. The class with the most votes was

considered the final decision of the classifier. Therefore, two different types of classifi-

cation tasks were performed: onset classification and subject classification. The latter
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Figure 4.4: Voting system schematic, showing the contribution of each onset for the final
subject’s class.

consists of the implementation of this voting system, that takes into consideration the

information given by the first task.
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5

Performance Evaluation

A case study was conducted aiming to validate the new SEMG features in a binary classifi-

cation process by analyzing their performance. Following the steps delineated in Chapter

4, healthy and ALS signals were discriminated. A combination of the different groups of

features described in Chapter 3 was explored to improve the classification performance.

This chapter encompasses the description of the experimental conditions in which data

was collected, the outcomes of the classification experiments, the discussion of these re-

sults, and the importance ranking and statistical analysis of the implemented features.

These tasks were performed resorting to the computational tools described in Appendix

A.

5.1 Dataset

The present study used a dataset that had been previously explored in [116], where a

more detailed description of the experimental protocol can be found. Data was acquired

from two different subsets of subjects: HC and patients diagnosed with ALS within the

preceding 36 months, with a muscle strength greater than three according to the Medical

Research Council scale (MRC scale), in the tested muscles. Patients could not present any

other neurological disorders. All patients were medicated with Riluzole.

The ALS population was initially comprised of 24 subjects; however, three of these

subjects’ signals were imperceptible since moments of contraction could not be isolated,

leading to a group of 21 subjects, eight men and 13 women, mean age 59.4 ± 9.4. One

subject was also excluded from the HC subset for the same reason, resulting in a group

of 24 healthy subjects, nine men and 15 women. The patients were segmented into

two categories depending on their disease phenotype. Since the SEMG signal is not as

pathologically expressive in bulbar subjects, spinal patients were the only ones considered

for further analysis. Therefore we had a total of 41 subjects, 17 diagnosed with ALS and

24 HCs.

Subjects were seated with both hands and forearms on a desk in a parallel position, 10

cm away from each other with hand palms facing one another in 90 degrees flexion with
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Figure 5.1: Experimental setup showing the position of both limbs, and the Bioplux
device with the four SEMG sensors and ground electrode. Acquisition protocol consisting
of (a) rest period and (b) contraction period. Source: [116].

the elbow. Then, they were asked to perform the same movement on both left and right

hands while listening to a programmed sound, which guided the task. This task was a

coordinated abduction of both index fingers in the opposing direction of the remaining

fingers, with maximum articular amplitude, hold that position with a certain degree

of force for three seconds, return to the original position and remain in that position

for three seconds while trying to relax as much as possible. Each having two surface

electrodes connected, the sensors were fixed on the first dorsal interosseus muscle for

both hands and the extensor digitorum communis muscle for both forearms. The ground

was placed on ulna bone inferior extremity since no muscle activity is present in that

region. This resulted in the recording of four time-synchronized signals for each subject

[116].

The performed task, visible in Figure 5.1, was repeated for six minutes or less depend-

ing on the maximum time tolerated by the patients.

All acquisitions were performed with a BioPlux device with eight analog input chan-

nels converted to 12-bit signals and an external channel used as reference ground. The

SEMG sensors include 2nd order bandpass analog filters with 25 and 450 Hz cut-off fre-

quencies adjacent to the electrodes. The SEMG signals were acquired with a gain of 1000

and a sampling frequency of 1000 Hz.

After inspecting the raw data, it was verified that not all subjects had information from

four channels. Therefore the first three channels, which were present in all recordings,

were selected for analysis. The first channel refers to the left hand, the second channel

refers to the left forearm and the third channel refers to the right hand.

After the processing methods explained in Section 4.1 were applied to all signals, an

average of 87.61 contractions was detected per subject, resulting in a total of 3592 onset

moments for the 41 subjects. Of this total, 1923 were from healthy subjects, and 1669

were from ALS patients, resulting in a proportion of approximately 53.5% of healthy

52



5.2. CLASSIFICATION

samples and 46.5% of pathological samples. However, it is important to mention that

some subjects had as little as four onset intervals, and a few presented an amount far

higher than average.

5.2 Classification

For each muscular activation interval, a total of 196 features, previously described in

Chapter 3, were extracted. These features were extracted for the three channels, resulting

in 588 features. During the feature preprocessing step, six features were eliminated due

to missing values, and 265 were also removed for being correlated. A total of 320 features

per muscular activation interval was considered.

This chapter summarizes the average results of a 10-fold Shuffle-Group-Out Cross-

Validation that split the number of subjects in half for train and test in each fold. The

group of chosen subjects for train and test in a fold was the same throughout all exper-

iments in that specific fold so that outcomes from different experiments could be com-

pared. The calculated metrics, except accuracy, were macro-averaged since the dataset

was approximately balanced, giving a more generalized performance measure irrespec-

tive of the class.

Additionally, as previously mentioned in Section 4.4.3, two classification strategies

were considered: onset and subject classification. The voting criterion assumes that the

model attributed the same class to all the samples of that subject, which is not always

true. Therefore, the onset and subject classification results which will be presented below

are not comparable, considering they represent distinct outcomes of the same signal.

Table 5.1 summarizes the metric scores for the onset classification task using each

group of features individually. The group of spectral features produced the overall best

results, followed by the group of proposed features. On the other hand, the temporal and

statistical groups performed relatively poorly, with overall lower scores.

Table 5.2 summarizes the metric scores for the subject classification task using each

group of features individually. The results are in agreement with the outcome for the

onset classification task, with the group of features with the best overall scores being the

spectral, followed by the proposed feature group.

Table 5.3 compares the onset classification performance when using the temporal,

spectral, statistical, and fractal features and when using all features. We hypothesized

that introducing the proposed features to the remaining feature group would increase the

overall classification results. Table 5.3 shows evidence that the proposed features slightly

improved all metrics when combined with the remaining feature groups. The hypothesis

was further confirmed in the subject classification, whose results are presented in Table

5.4.

53



CHAPTER 5. PERFORMANCE EVALUATION

Table 5.1: Onset classification results obtained by using each feature group separately
measured through F1 score, precision, recall, and accuracy. The scores are presented in
percentage (%) and were calculated as the average of 10 folds with the respective standard
deviation. The best scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
Temporal 68.87 ± 7.84 77.03 ± 4.52 69.30 ± 5.71 73.37 ± 6.12
Spectral 81.18 ± 4.68 85.31 ± 3.71 80.65 ± 4.21 82.76 ± 4.61
Statistical 69.24 ± 8.55 74.60 ± 6.41 69.99 ± 6.85 73.04 ± 7.85
Fractal 71.52 ± 9.86 78.65 ± 4.14 72.27 ± 7.33 75.46 ± 6.91
Proposed 77.12 ± 3.19 80.67 ± 4.04 76.66 ± 2.74 78.90 ± 3.41

Table 5.2: Subject classification results obtained by using each feature group separately
measured through F1 score, precision, recall, and accuracy. The scores are presented in
percentage (%) and were calculated as the average of 10 folds with the respective standard
deviation. The best scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
Temporal 67.25 ± 10.05 74.12 ± 9.97 68.66 ± 7.34 70.00 ± 9.54
Spectral 75.37 ± 7.84 79.45 ± 7.57 76.14 ± 7.31 76.67 ± 7.51
Statistical 69.57 ± 8.35 74.62 ± 7.93 70.68 ± 7.48 71.43 ± 8.25
Fractal 69.65 ± 10.62 77.20 ± 5.88 71.53 ± 7.92 72.38 ± 8.98
Proposed 70.84 ± 4.68 75.53 ± 6.06 71.86 ± 4.12 72.38 ± 4.67

Table 5.3: Onset classification results obtained by using all feature groups and all features
except the proposed ones, measured through F1 score, precision, recall, and accuracy. The
scores are presented in percentage (%) and were calculated as the average of 10 folds with
the respective standard deviation. The best scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
Temporal, Spectral,
Statistical, Fractal

79.98 ± 3.00 85.17 ± 1.90 79.00 ± 2.95 82.56 ± 3.27

All features 83.11 ± 4.22 86.87 ± 2.83 82.11 ± 4.19 84.75 ± 3.65

Table 5.4: Subject classification results obtained by using all feature groups and all fea-
tures except the proposed ones measured through F1 score, precision, recall, and accuracy.
The scores are presented in percentage (%) and were calculated as the average of 10 folds
with the respective standard deviation. The best scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
Temporal, Spectral,
Statistical, Fractal

76.64 ± 5.79 81.15 ± 6.01 76.93 ± 5.37 78.10 ± 5.71

All features 78.85 ± 5.96 82.27 ± 5.97 78.84 ± 5.29 80.00 ± 5.95
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Figure 5.2: Confusion Matrix for the subjects classification task, when using all features.
The values are the summation of the results of 10 folds. The predicted values for each
class are on the columns and the actual values on the rows.

The confusion matrix displayed in Figure 5.2 showcases the experiment correspon-

dent to Table 5.4 in a different view. This matrix is the end product of 10 folds of Cross-

Validation when performing the subject classification with all available features. Consid-

ering ALS as the positive class, TP represents the number of patients who were properly

classified as having ALS, and TN the number of correctly classified subjects who were

healthy. We see that the number of TN is superior to the number of TP , allowing us to

understand that the model performs better when classifying healthy subjects. Further-

more, we verify that the number of FN is higher than the number of FP , meaning that the

classifier more often did not identify ALS as being present when it was than the opposite.

Since the purpose of this task is to diagnose the disease, falsely classifying a subject as

healthy is an error that should be prevented.

The importance of rejecting samples with lower predicted probability values is il-

lustrated in Table 5.5, where it can be confirmed that all metric values improve after

introducing sample rejection for onset classification. The calculated optimal threshold

for rejecting a sample was approximately 0.5465, which meant that if the classifier had

conferred a probability value lower than this for a particular onset, that onset would be ex-

cluded. The average probability value attributed by the classifier to the onsets throughout

all folds was 0.5846. These values led to a mean rejection rate of 27.17% when using all

feature groups, i.e., approximately 450 out of 1658 samples were rejected each fold. These

results fluctuated in the additional experiments employing alternating feature groups

since the probability value is calculated using the training set, which varied according to

the adopted set of features.

To evaluate the relevance of acquiring SEMG data with multiple channels, Table 5.6

summarizes the results in classifying the onsets using a single channel of data at a time
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Table 5.5: Onset classification results obtained by using all feature groups before and
after sample rejection, measured through F1 score, precision, recall, and accuracy. The
scores are presented in percentage (%) and were calculated as the average of 10 folds with
the respective standard deviation. The best scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
No sample rejection 75.91 ± 2.74 79.66 ± 2.79 76.09 ± 2.69 77.39 ± 2.67
Sample rejection 83.11 ± 4.22 86.87 ± 2.83 82.11 ± 4.19 84.75 ± 3.65

Table 5.6: Onset classification results obtained by using all features from each channel
and from all channels simultaneously, measured through F1 score, precision, recall, and
accuracy. The scores are presented in percentage (%) and were calculated as the average of
10 folds with the respective standard deviation. The best scores per metric are highlighted
in bold.

F1 Score Precision Recall Accuracy
Channel 1 68.93 ± 5.73 75.96 ± 3.69 70.39 ± 5.61 71.90 ± 4.44
Channel 2 72.33 ± 7.86 79.72 ± 8.98 71.69 ± 6.88 76.12 ± 8.24
Channel 3 81.88 ± 5.09 84.90 ± 5.45 81.32 ± 4.87 82.99 ± 5.26
All channels 83.11 ± 4.22 86.87 ± 2.83 82.11 ± 4.19 84.75 ± 3.65

and using the three channels simultaneously. The results show that considering the

three channels leads to improved results. Another pertinent finding is that channel 3

alone produces results that approximate what is achieved when using all three channels.

Channel 3 refers to the first dorsal interosseus muscle of the right hand. On the one hand,

using the complete set of information is more complete and less prone to overfit the model.

On the other hand, using only one channel reduces the number of used features by two-

thirds, which increases the computational processing speed, namely when performing

feature selection, and facilitates the acquisition process.

For this reason, the information gathered from the right hand was explored further

and applied in additional classification attempts. Table 5.7 compares the model’s per-

formance anew when using all features except the proposed ones and when using all

feature groups, in this case, extracted exclusively from channel 3. It reveals that the

results are similar to those obtained with features from the three channels. Additionally,

the proposed features reach the highest metric values when individual feature groups are

extracted from the right hand only, as Table 5.8 conveys. This outcome implies that with

a smaller set of features as input, extracted from one channel only, the proposed features

originate the best results, producing an efficient performance with fewer resources.

From the results presented above, we conclude that the classification task with the

best outcome included the use of all feature groups extracted from the three channels

after performing sample rejection, without applying feature selection. This experiment

produced an F1 score of 83.11 ± 4.22%. However, this result approximates to what was

obtained for the proposed set of features extracted from the right hand, in the same

experimental conditions, which resulted in an F1 score of 81.94 ± 5.67%.
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Table 5.7: Onset classification results obtained by using all feature groups and all features
except the proposed ones extracted from channel 3 only, measured through F1 score,
precision, recall, and accuracy. The scores are presented in percentage (%) and were
calculated as the average of 10 folds with the respective standard deviation. The best
scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
Temporal, Spectral,
Statistical, Fractal

79.49 ± 4.45 82.48 ± 5.39 79.24 ± 3.91 80.58 ± 4.86

All features 81.88 ± 5.09 84.90 ± 5.45 81.32 ± 4.87 82.99 ± 5.26

Table 5.8: Onset classification results obtained by using each feature group separately
extracted from channel 3 only measured through F1 score, precision, recall, and accuracy.
The scores are presented in percentage (%) and were calculated as the average of 10 folds
with the respective standard deviation. The best scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
Temporal 73.16 ± 6.28 79.34 ± 5.62 73.09 ± 6.04 76.92 ± 4.65
Spectral 78.58 ± 4.82 81.47 ± 5.18 78.41 ± 4.83 79.66 ± 4.83
Statistical 76.50 ± 4.10 79.99 ± 3.66 76.69 ± 3.71 77.85 ± 3.93
Fractal 77.42 ± 7.14 80.86 ± 6.30 77.13 ± 7.18 79.58 ± 6.23
Proposed 81.94 ± 5.67 84.01 ± 4.92 81.90 ± 5.45 82.56 ± 5.59

The achieved classification accuracy is in agreement with other published works based

on SEMG [34]. Quintão et al. [33] used the same dataset as this dissertation, and achieved

an average accuracy of 77%. However, one should mention that the authors of [33]

employed different classification strategies, considered one more channel of data, and

implemented a different subset of features, including two time-domain features, seven

frequency-domain features, two synchrony measures, and five fractal-domain features.

When using all features extracted from all channels, we obtained an average accuracy of

85%, which is a slightly higher value.

Several additional experiments on onset and subject classification were conducted,

varying the number of tested feature groups as the employed channels. For the results of

the thorough analysis, please refer to Appendix B.

5.3 Feature Selection

As previously detailed in Section 4.3, 30 features were chosen for feature selection. This

led to a worsened onset classification performance when compared to the onset classifi-

cation results using all features, as Table 5.9 discloses. Nevertheless, the most common

features throughout the 10 folds were identified, as illustrated in Figure 5.3. It displays a

bar chart with the number of times each feature, extracted from any of the three channels,

was selected during the 10 folds of the Cross-Validation scheme. Features from all feature

groups, except the fractal, were chosen as part of the optimal subset of features, demon-

strating the importance of extracting diversified information from the signal instead of
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Table 5.9: Onset classification results obtained by using all feature groups and 30 features
selected with SFS, measured through F1 score, precision, recall, and accuracy. The scores
are presented in percentage (%) and were calculated as the average of 10 folds with the
respective standard deviation. The best scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
No Feature Selection 83.11 ± 4.22 86.87 ± 2.83 82.11 ± 4.19 84.75 ± 3.65
Feature Selection 75.83 ± 5.78 82.80 ± 10.95 75.86 ± 4.80 77.57 ± 5.33
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Figure 5.3: Most commonly selected features, when selecting the 30 best from all features
extracted from the three channels. The variable counts represents the number of times
each feature was selected. Each color represents a feature group.

using parameters from one domain exclusively. The average peak-to-peak difference was

the only feature present in Figure 5.3 from the proposed group.

Feature selection was further explored for the features extracted from the right hand.

A lesser amount of features needed to be evaluated during the SFS process by accounting

for only one channel. Therefore, it was possible to conduct additional experiments in use-

ful time. A specific assessment was performed for this channel’s correspondent features,

by changing the number of features to select since this parameter had an established value

of 30 to reduce processing time when using all channels. The other tested parameter was

’best’, which causes the feature selector to return the feature subset that leads to the best

predictive performance of the model. When using this channel exclusively, both possibili-

ties were tested: selecting 30 features or selecting the number of features that maximized

accuracy. The latter led to an average number of selected features of 25.5 throughout
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Table 5.10: Onset classification results obtained by using all feature groups but varying
parameters for the number of features and the number of channels, measured through
F1 score, precision, recall, and accuracy. The scores are presented in percentage (%) and
were calculated as the average of 10 folds with the respective standard deviation. The
best scores per metric are highlighted in bold.

Features
to select

Channels F1 Score Precision Recall Accuracy

30 All channels 75.83 ± 5.78 82.80 ± 10.95 75.86 ± 4.80 77.57 ± 5.33
30 Channel 3 79.24 ± 5.72 85.29 ± 10.23 79.15 ± 5.18 80.10 ± 5.89
’best’ Channel 3 78.75 ± 3.12 81.28 ± 3.18 78.63 ± 2.95 79.78 ± 3.38

the 10 folds. The outcomes of these tests are represented in Table 5.10, which evidences

more efficient results for channel 3. A remark should be made regarding the increased

accuracy for 30 features, as one would expect that the accuracy would be maximal for

the ’best’ parameter. This is probably due to the fact that these results are the average of

multiple folds, so each fold is not directly compared. The increased standard deviation

for the 30 features parameter indicates a higher variation within these results as well.

Subsequently, the most commonly selected features were studied for both parameters,

as disposed in Figures 5.4 and 5.5. When performing feature selection for channel 3 in-

dividually, the number of times the proposed features are selected increases, which may

be an indication that the right first dorsal interosseus muscle had more morphological-

related information. Average MUAP rise time, standard deviation of MUAP turns, and

peaks rate appear in both experiments, suggesting their importance in the classification

task. Figure 5.4 indicates two additional features of the proposed group commonly cho-

sen by the selector: average MUAP duration and standard deviation of peak-to-peak

difference.

5.4 Feature Importance

For a deeper understanding of the significance of the proposed features, different scoring

methods ranked the most important features when the classification task employed all

features. These methods do not depend on the relationship between the feature and the

respective class but instead try to understand how features influence the model’s learning

process and performance.

The first scoring method presented in this section is based on the mean decrease in

the impurity of the split when the Random Forest trees are being generated. In this case,

the features for internal nodes are selected according to the information gain criterion,

i.e., the entropy of a feature is used as a measure of impurity of a node, as explained in

Section 4.4.1. The feature with the highest decrease in impurity, calculated through the

information gain, is selected for the internal node, so the higher the reduction in impurity

that feature causes in a node, the more important it is. Thus, the average impurity

decrease of a certain feature over all the forest’s trees is the measure of importance of
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Figure 5.4: Most commonly selected features, when selecting the 30 best from all features
extracted from channel 3 only. The variable counts represents the number of times each
feature was selected. Each color represents a feature group.
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Figure 5.5: Most commonly selected features, when selecting the best feature subset from
all features extracted from channel 3 only. The variable counts represents the number of
times each feature was selected. Each color represents a feature group.
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Figure 5.6: Average impurity decrease of the most important features, when using all
features. The values are the average of the results of 10 folds, with the respective standard
deviation.

that feature. Figure 5.6 comprehends the features that led to overall lower impurities

in the nodes of the trees, showing three of the proposed features, peaks rate, average

peak-to-peak difference and average MUAP duration, all of which chosen during feature

selection experiments as well.

Permutation-based feature importance is a more effective method to evaluate the

relevance of each feature, since it is computed on unseen data, whereas entropy-based

methods depend on the training set. This method randomly shuffles each feature value

and computes the change in the model’s accuracy. The features which lead to a higher

decrease in the model’s performance are considered the most important ones. Thus signif-

icant changes in the classifier’s score with a certain feature indicate how much the model

depends on that feature. Peaks rate and the average MUAP duration appear once again as

relevant features in the classifier’s predictive power, as Figure 5.7 illustrates. Once again,

average MUAP duration and peaks rate rank high amongst all features. Additionally,

average peaks difference appears, which is understandable as it is a measure related to

the increased MU firing rate, often present in the ALS condition and visible in NEMG.
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Figure 5.7: Average accuracy decrease of the most important features, when using all
features. The values are the average of the results of 10 folds, with the respective standard
deviation.

Lastly, features were descriptively analyzed through their boxplot representations for

each class. The features peaks rate, average peak-to-peak difference, and average MUAP

duration, whose boxplots are represented in Figures 5.8, 5.9 and 5.10 respectively, show

promising results with relatively distinctive values for each class. Therefore, it is plausible

that these parameters have the ability to distinguish the two types of subjects effectively.

The mean value of peaks rate was 6.61 ± 0.91 peaks/s for the healthy class, and 7.51 ± 1.00

peaks/s for the ALS class. This goes in line with what is established for NEMG, which is a

higher number of peaks in pathological samples due to the reduced recruitment pattern

manifested in ALS patients. So it is expected that peaks rate shows promising results as

differentiating measure. Regarding the average peak-to-peak difference, a mean value

of 0.0044 ± 0.0005 ms was obtained for the healthy class, whereas 0.0040 ± 0.0007 ms

was obtained for the ALS class, which are not particularly distinctive measures. However,

we can visualize a high number of data outliers in this feature’s boxplot, which could be

influencing the results. Additionally, for the average MUAP duration, a mean value of

4.74 ± 0.68 ms was obtained for the healthy class, and 5.58 ± 0.83 ms was obtained for

62



5.4. FEATURE IMPORTANCE

ALS Healthy
Label

0

20

40

60

80

N
um

be
r 

of
 p

ea
ks

ALS Healthy
Label

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e 

pe
ak

s 
di

ff
er

en
ce

 (m
s)

ALS Healthy
Label

4

6

8

10

12

Pe
ak

s 
ra

te

ALS Healthy
Label

0.0

0.1

0.2

0.3

0.4
St

an
da

rd
 d

ev
. o

f p
ea

ks
 d

iff
er

en
ce

 (m
s)

Figure 5.8: Boxplots for the peaks features, displaying the distribution of data based on
the minimum, first quartile, median, third quartile, and maximum. The points lying
beyond the minimum and maximum values represent outliers.

the ALS class. These results are in agreement with what was expected, since the MUAP

duration tends to be higher for pathological NEMG signals, as mentioned in Section 2.3.2,

and show, once again, the potential of this feature. These conclusions are consistent with

what was observed during feature selection and when calculating feature importance

through entropy and permutation, which is a preference of the model for specific features

from the proposed set, including the features peaks rate, average peak-to-peak difference,

and average MUAP duration.

On the contrary, from the observation of Figure 5.11, we reached the conclusion that

some of the novel features present identical values for both groups, such as the measures

related to the MUAP integrated area, MUAP phases, and MUAP turns. Most of the features

related with the standard deviation did not present relevant results as well. Therefore,

these parameters do not represent suitable measures of distinction between ALS patients

and HC subjects.
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Figure 5.9: Boxplots for the peak-to-peak features, displaying the distribution of data
based on the minimum, first quartile, median, third quartile, and maximum. The points
lying beyond the minimum and maximum values represent outliers.
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Figure 5.10: Boxplots for the rise time and MUAP duration features, displaying the dis-
tribution of data based on the minimum, first quartile, median, third quartile, and maxi-
mum. The points lying beyond the minimum and maximum values represent outliers.
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maximum. The points lying beyond the minimum and maximum values represent out-
liers.
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6

Conclusions

6.1 Overall Conclusions

Nowadays, most patients with ALS die without reaching a concrete diagnosis. ALS is

a fast-progressing disease and, therefore, new approaches must be created to provide

an early and specific disease assessment. The sooner adequate healthcare is delivered,

the better the chances of increasing survival, and patients can be promptly included in

clinical trials when neurological defensive therapies are often most effective.

The presented research showed promising results, uncovering the benefits of intro-

ducing morphological information into machine learning algorithms classifying SEMG

signals. The primary contribution of this study is its convenience and trustworthiness in

differentiating ALS subjects from neurologically intact control subjects, using innovative

SEMG features related to the signal’s peaks and MUAPs’ morphology.

The implemented approach for MUAP detection allowed a significant amount of sur-

face MUAPs to be considered. Its low computational complexity make it an interesting

approach to be applied in clinical settings.

The results demonstrated the efficiency of the proposed features in a diagnosis classi-

fication task, either by themselves or associated with other groups of features commonly

used in a SEMG context. When all features were extracted from all the available channels,

a mean F1 score of 83.11% was obtained, evidencing the relevance of exploring features

from different signal domains.

Another conclusion was drawn out of the results when it was noted that one single

acquisition channel led to a similar overall performance when all channels were being

used. The proposed features extracted from the right hand led to a mean F1 score of

81.94%. This outcome suggests that it may be possible to obtain a reliable diagnosis

using fewer resources during acquisition. This allows for faster computational speed

when processing data. Additionally, from an applicable point of view, the use of one

channel extracting information from a single muscle is a more convenient data collection

setup, which makes the implementation of this solution more practical in an outpatient

regime or in a medical appointment.
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The features were additionally validated through feature selection, feature importance

measures, and descriptive analysis. A few of the proposed features proved their discrimi-

native power potential, reflecting the presence of ALS in the SEMG signal, namely peaks

rate, and average MUAP duration. These feature’s values are closely related to the physi-

ology of the disease, which might contribute to increase the classification interpretability

and foster the adoption in a medical context. The importance of implementing person-

alized features related to the disease’s pathophysiology, lies in their utility for a better

understanding of the model and its performance. As part of the medical community still

avoids the use of AI techniques due to their lack of transparency, comprehensible features

arise as an alternative to mitigate that concern.

In addition, feature selection on features extracted from the right hand demonstrated

that the proposed morphological features are more regularly selected when only this one

channel is used. Therefore, morphological features may be even more relevant when less

information is acquired, or when information from a specific muscle is measured.

Our investigation aims to spark future research on automated analysis methods that

are able to exploit the advantages of SEMG. The non-invasive identification of abnormal-

ities in the functional structures of the muscle is of particular relevance for patients that

do not tolerate needles or for repetitive monitoring of the muscle activity. The SEMG

holds as a promising versatile technique for ALS diagnosis and prognosis and could

be applied in a remote setting, increasing the clinician’s available data towards better

decision-making and understanding of ALS natural history.

6.2 Future Work

Firstly, we believe that the designed algorithms for peak and MUAP detection can be fur-

ther improved, either by applying different acquisition methods or implementing more

complex processing tools. The authors of [13], [14] stated that the number of identifiable

MUAPs increases with the number of acquisition channels. Nevertheless, our work in-

dicated that the information from one channel might be sufficient to provide a truthful

diagnosis, which deepens the relevance of gaining a better understanding regarding the

appropriate acquisition tools. The enhancement of these algorithms could further im-

prove the obtained results and shed a light on why some of the designed features were

not considered relevant for the classification task.

Additional data from a higher number of subjects could also enable the study of the

features’ performance in a larger population. Applying the detailed framework in other

datasets, even outside the scope of ALS, is paramount to support the hypothesis that the

morphological features obtain good results in detecting neuropathic abnormalities.

The progression level of a neuropathic condition can influence the results, as the more

advanced the stage of the condition, the more noticeable it tends to be in the collected

muscle signals. Combining this contextual information with the remaining data could

provide better results.
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6.2. FUTURE WORK

In the context of disease identification, it is essential to avoid incorrectly identifying a

subject as healthy. Therefore the results should be optimized as to minimize the number

of falsely healthy misclassifications.
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A

Computational Tools

This section provides a list of the computational tools used throughout the course of this

work. We selected Python as the primary programming language, which is a widely used

language within the data science community. The tasks described in chapters 3, 4 and 5

were carried out in Python 3.8.3, using the Integrated Development Environment (IDE)

of PyCharm 2020.2.2 (Community Edition), with the Anaconda 4.9.2 distribution.

A.1 Python Packages

Next, the used python packages are listed.

Data Structure

glob2==0.7

numpy==1.20.1

pandas==1.0.5

Feature Design and Extraction

hfda==0.1.1

lempel-ziv-complexity==0.2.2

novainstrumentation==0.4

pyentrp==0.6.0

scipy==1.6.1

statsmodels==0.11.1

tsfel==0.1.4

tsfresh==0.18.0

Data Visualization

matplotlib==3.1.2

seaborn==0.10.1
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APPENDIX A. COMPUTATIONAL TOOLS

Signal Processing

biosignalsnotebooks==0.6.5

neurokit2==0.1.1

Machine Learning

mlxtend==0.18.0

scikit-learn==0.23.2
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B

Additional Results

This section presents additional results obtained from experiments that were performed

when testing the different groups of features and the available data channels. These

include both onset and subject classification metrics.
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APPENDIX B. ADDITIONAL RESULTS

Table B.11: Subject classification results obtained by using all feature groups before and
after sample rejection, measured through F1 score, precision, recall, and accuracy. The
scores are presented in percentage (%) and were calculated as the average of 10 folds with
the respective standard deviation. The best scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
No sample rejection 77.75 ± 6.71 83.47 ± 5.00 77.98 ± 6.07 79.52 ± 6.04
Sample rejection 78.85 ± 5.96 82.27 ± 5.97 78.84 ± 5.29 80.00 ± 5.95

Table B.12: Subject classification results obtained by using all features from each channel
and from all channels simultaneously, measured through F1 score, precision, recall, and
accuracy. The scores are presented in percentage (%) and were calculated as the average of
10 folds with the respective standard deviation. The best scores per metric are highlighted
in bold

F1 Score Precision Recall Accuracy
Channel 1 65.52 ± 10.45 71.92 ± 9.66 67.81 ± 9.44 68.10 ± 9.29
Channel 2 66.75 ± 10.80 76.11 ± 11.98 68.51 ± 9.88 69.52 ± 10.48
Channel 3 79.35 ± 8.42 83.72 ± 7.91 79.39 ± 7.80 80.88 ± 7.93
All channels 78.85 ± 5.96 82.27 ± 5.97 78.84 ± 5.29 80.00 ± 5.95

Table B.13: Subject classification results obtained by using all feature groups and all
features except the proposed ones extracted from channel 3 only, measured through F1
score, precision, recall, and accuracy. The scores are presented in percentage (%) and
were calculated as the average of 10 folds with the respective standard deviation. The
best scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
Temporal, Spectral,
Statistical, Fractal

77.31 ± 7.98 79.85 ± 8.50 77.53 ± 7.31 78.10 ± 8.02

All features 79.35 ± 8.42 83.72 ± 7.91 79.39 ± 7.80 80.88 ± 7.93

Table B.14: Subject classification results obtained by using each feature group separately
extracted from channel 3 only measured through F1 score, precision, recall, and accuracy.
The scores are presented in percentage (%) and were calculated as the average of 10 folds
with the respective standard deviation. The best scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
Temporal 74.27 ± 6.48 81.54 ± 5.27 75.21 ± 4.66 76.19 ± 6.39
Spectral 76.00 ± 5.87 81.14 ± 6.70 76.26 ± 5.39 77.62 ± 5.65
Statistical 77.56 ± 4.87 80.18 ± 5.39 77.90 ± 5.23 78.57 ± 4.88
Fractal 78.80 ± 9.44 83.05 ± 8.61 79.32 ± 8.62 80.00 ± 8.98
Proposed 83.61 ± 6.90 86.64 ± 6.45 83.67 ± 6.31 84.29 ± 6.75

Table B.15: Subject classification results obtained by using all feature groups and 30
features selected with SFS, measured through F1 score, precision, recall, and accuracy.
The scores are presented in percentage (%) and were calculated as the average of 10 folds
with the respective standard deviation. The best scores per metric are highlighted in bold.

F1 Score Precision Recall Accuracy
No Feature Selection 78.85 ± 5.96 82.27 ± 5.97 78.84 ± 5.29 80.00 ± 5.95
Feature Selection 75.71 ± 5.59 86.53 ± 13.77 76.25 ± 4.80 77.14 ± 5.13
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Table B.16: Subject classification results obtained by using all feature groups but varying
parameters for the number of features and the number of channels, measured through
F1 score, precision, recall, and accuracy. The scores are presented in percentage (%) and
were calculated as the average of 10 folds with the respective standard deviation. The
best scores per metric are highlighted in bold.

Features
to select

Channels F1 Score Precision Recall Accuracy

30 All channels 75.71 ± 5.59 86.53 ± 13.77 76.25 ± 4.80 77.14 ± 5.13
30 Channel 3 76.91 ± 6.10 82.41 ± 12.76 77.42 ± 5.03 77.62 ± 6.41
’best’ Channel 3 77.03 ± 4.95 79.77 ± 5.65 77.29 ± 4.99 78.10 ± 4.86
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