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VIA SECOND METHOD OF LIAPUNOV

Yasuhtiko Dote and Richard G. Hoft**

Abstract

A stability analysis of an ideal three phase squirrel cage induction motor is performed by applying the
second method of Liapunov to the nonlinear equations which describe the dynamic behavior of the ideal
induction motor.

In general, previous stability analyses of the induction motor have been accomplished by linearizing about
a steady state operating point. This has been the most feasible approach because of the complexity of the
nonlinear equations. If the methods of Liapunov are applied to the nonlinear equations usually there is great
computational difficulty. This paper describes a unique transformation resulting in a simplified system of
equations to which the second method of Liapunov is applicable. In the determination of the stability region,
a simple method is presented using the specific nature of the nonlinearities; i.e. terms involving the product
of the two state variables. The asymptotic stability region which is obtained here is a region of stability in
the large. This region is much larger than the local region of stability resulting from linearization about the
steady state operating point.

Introduction

The squirrel cage induction motor is of great practical interest because of its low cost
and high reliability. But in the past it had the disadvantage that its speed was not easily
adjustable. With the advent of the silion controlled rectifier, triac and related members of
the thyristor family, it has become feasible to design variable frequency inverter fed induc-
tion motor drive systems. It is well known that the variable frequency induction motor itself
becomes unstable at certain operating conditions even when supplied from an ideal three
phase ac power source 2,3. Since the torque produced by the motor is proportional to the
product of the winding current and air gap flux, the motor is represented by nonlinear
differential equations. Previous stability analyses of the induction motor have been accomp-
lished by linearizing about a steady state operating point, but no attempt has been made to
analyze directly the nonlinear system equations. In this paper Liapunov functions are used
to find a simple method to predict the stability region for an ideal three phase squirrel cage
type induction motor. First a new state representation for an ideal three phase induction
motor is devised, for which the second method of Liapunov is applicable. Then in the
determination of asymptotic stability, with the aid of the theory of matrices and vectors and
polar coordinates, a simple method is presented using the specific nature of the nonlinearities;
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i.e., terms involving the product of two state variables. ‘The asymptotic stability region
which is derived here yields conditions for stability in the large, not in the small. Thus, it
provides us with much information on the transient stability of such machines subject to

disturbances which can often occur during transient operation of thyristor controlled variable
frequency induction motor drives.

System Equations

In order to devise analytical methods for studying the stability of an induction motor, a
suitable mathematical model of this machine was developed. The general procedure was as
follows : first, certan assumptions were made which were very nearly correct for practical
machines ; then, with the help of the d-q transformation of variables, the basic equations

were developed!.

This yields,

(Vm-‘ 71+ p Xll‘—Xllelz _@1—2 ’VZ.Id
We We
0 - X117’1‘|‘ 2)& —w‘Xlz ﬁXlz i1q
_ We Wy Wp We ( 1 )
X1 _Sw Xz _ Xaz ;
0 Z)“—wb wam 72 + Z)_wb w We (2]
Wy Xip sw 2. €7 -
_0 | _waXm[)_w‘:wb Xozra + Wy _quq
and
2H w .. ..
wa B;Ui+ Tr= X1o(t1gt2a— t1at2q) (2)
wherer
Vo & stator applied voltage transformed to d-q coordinates

r; & stator resistance
r; & rotor resistance

X,1 A stator leakage reactance plus magnetizing reactance at wy
X,» 4 rotor leakage reactance plus magnetizing reactance at w,
Xy, & magnetizing reactance at w
post
s & slip
w A electrical angular velocity of applied stator voltage
» & the rated maximum stator frequency
w, A rotor angular velocity
H A inertia constant
B A viscous friction coefficient
T, A fixed load torque
1,4 & instantaneous stator direct-axis current
i,, & instantaneous stator quadrature-axis current
1.4 & instantaneous rotor direct-axis current
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For simplicity a special set of state variables is defined using the following linear transfor-

mation.

Ya

L ¥s

(X 0 X2 0 0[]
0 Xu 0 Xiz 0|]ig
Xi:0 X220 0]]éza
0 X120 X2 0]]i2g

w2
[0 0 0 0 1l

(>3

(3)

Next the steady state operating point (vie, Y20, V3o, Va0, ¥so ) 1S transferred to the origin by

defining new state variables. '
Zr A V1 — V1o
Zy & Y2 — V2o
23 & Y3 — Va0
Z4 D Vs — Vao
Zs & Ys — Vso

Then, (1) and

(2) become

Z=A7 +8(2)

where
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The resulting system equation (4) is a nonlinear fifth order autonomous differential equation.
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Stability Analysis

On the basis of Liapunov’s second method, the stability of systems with nonlinear terms

involving the product of two state variables is investigated.
Consider {4)

Z=A7 +5(Z)
z2=A0+g(0)=0

Next choose a positive definite diagonal matrix Q where

VZ)=-2""Q7 (9)
and then solve the matrix equation

A"TR+RA=—@Q (10)
for the matrix R , where also

Wz )=Z"RZ (11)

If R 1s positive definite then the linearized system is asymptotically stable. This V-function
also may be used to determine the instability of the system. If R is not a positive definite
matrix nor a positive semi-definite matrix, the origin of the system is unstable. When the
system is unstable near the origin, it is of no practical value and thus it is not necessary to
investigate stability elsewhere.

Using the V-funcution of (11) we can now determine V(Z) for the nonlinear systems as -
follows :

WZ)=—2"7Q7 +22 "Rg" () (12)
Consider the last terms of (12)
22 TRZ(Z)=2wz "R 0
0
— Z4Z5

44

MBn(z124— 2223) |

=—2X12:25+2X22325+2X3212.— 2 X 32223 (13)
where
X1 /Wy D T13Z; + T23Z2 + 3323 + I4324 + Us3Zs
Xo/Wo D T14Z) + T24Z2 + Y3475 T Y4424 + U'saZs
X3/Wp & MBu{ri521 + Y2522 + TasZ3 + TasZa + T'ssZs) (14)

and r,; are the elements of the symmetric matrix R.
Therefore the total derivative of the Liapunov function (12) may be expressed in the follo-
wing general form :
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V(E’):~2’TQZ +2§k:1Cz‘ijiZjZk (15)

where the C;;.'s are constants.

LetAy,As++ Asbe the positive diagonal elements of the matrix Q.
Then a simple V(Z) can be derived due to the nature of the nonlinearities (terms involving the
product of two state variables).

[ A, 0 0 —X; 0 }
0 Ay, Xs 0 0
VzZ)=—2z" 0 Xs A, 0 — X |2 =-ZTQZ (16)

—Xs: 0 0 Ay X,
G 0 X, Xi A )

For asymptotic stability, @ must be positive or positive semi-definite. From Sylvester’s

Theorem the conditions for positive definiteness of the matrices Q' are

V(Z_))éAlXIZ'FAzXzZ‘FAsst:ZTLz SASAING (17)

where A;A js the smaller one of Ay AandA.As. To determine the region of asymptotic
stability, a constant K can be found such that the surface
V(z ) =K lies entirely within the region where
V(Z) is negative or negative semi-definite; 1. e.
VAZ )<AsAn;. Both V(Z) and V(2 ) have quadratic forms. R is a positive definite
matrix, L is a positive semi-definite matrix for a stable system. Both are real symm-
etric matrices. V(Z) = K is a closed hypersurface and V. Z) = AsA:A; space is an open
hypersurface in five dimensions. Since

AminllZ IP< V(2) = K < AmaxllZ’|?

where

1Z12vz 72

Amax & maximum eigenvalue of R

Ammn & minimum eigenvalue of R
therefore

\/Eakliz*ila/?j; (18)
Also since

Vr(Z-) ):ASA [VAY Ar,naxuz ”2
where A" nax&maximum eigenvalue of L
Therefore

YN (19)

From (18) and (19) a sufficient condition for the V(Z) = K surface to be entirely within the
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VAZ )=nAsn:n; surface is

AsDiA; — K,
A Aomin (20)
or
__AsA iAjAmin
K === (21)
/l max
Therefore the system is asymptotically stable inside the hypersurface defined by
V(Z)=Z "Rz =K (22)

The region defined by (22) may be much smaller than the largest possible region. Thus,
more investigation is necessary to find a larger K. Consider polar coordinates
Z14== SING; sing, sinfs cosl,
Zau= SING SInG, sinbs sinfd,
Za = SIN@, sinf, cosfs
Zsu= SING, COSH,
Zsu= COSH
where
z:w component of the vector z, on the ith axis form the
origin
6;2 angle between ith axis and (i-1)th space where

O<Q:s<rm

2=/ S 2t =1 (23)

Thus a unit vector in any direction can be generated by changing 4.
Let r be the length of the vector to the V, = AsA;A; surface from the origin ; then the
component of this vector along each axis is *)(z;). From (17), for a point on the V, surface

YZul ¥Zu=AsAin;

_ AN A
r= =
\/; (24)

when the V surface and \7, surface are tangent at a point, then the distances to the two
surfaces at this point must be equal. From (11) and (24), K is then

K:7’2(ZuTRZu) (25)
Next K is calulated for each generated unit vector using (25). The minimum K, designed

Kominimum, among all calculated K’s defines the region of asymptotic stability in the large.
This region is the interior of the hypersurface defined by

V(z):Z_)TRZ:Kmimmum (26)
The approximate tangent points of two surfacesV(Z) and V-(Z) are obtained by equating
the distances to the surfaces. Exact tangent points in the vicinity of these approximate

Therefore
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points may be determined in the following way. If the two surfaces V(Z), and VAZ)are
tangent, then they have the same tangent plane and the same vector normal to this plane.
A vector normal to this plane at a point zp is the gradient of V(Z)and V,(Z). Therefore

Zp Z»
where q is a scalar, and
Vr(z) ! =As5AiN;
g’p (28)

The solution of (27)and (28) gives the exact tangent point z}.

Examples

The theoretical results are verified numerically using the digital computer.
Two different machines are taken as examples. One is stable and the other 1s unstable.
The per unit machine parameters are as follows:

Machine I (stable) Machine II (unstable)
I 0.036 0.025

Iy 0.0425 0.008
X, 2853 4.1

X2 2784 4.1

X 274 4.

Va 1025 120/377
w, 377 377.

w 377. 120.

H 05 0.1

B 0.02 0.

T, 1.0 0.

Computational results are given in the following sections.

Machine I
Steady State Operating Point:

[y10] [ 1.8737E—02]
vo| | —9.8525E—01
yso| = | — 1. 4893E—01
Yeo| | —9.2096E—01
lys0) | 9.4978E—01)
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Linearized System:

A=(377)
[ —0.2303E+0 0.1000E+01  0.2267E+00 0.0 0.0 ]
—0.1000E+01 —0.2303E+00 0.0 0.2267E+00 0.0
0.2676E+00 0.0 —0.2786E+00  0.5022E—01  0.9210E-+00
0.0 0.2676E+00 —0.5022E—01 —0.2786E400 —0.1489E+00

{ 0.1597E—01 —0.2365E—02 —0.1704E—01 —0.3073E+403 —0.5305E— 04|
Matrix R for Q@ = w, [ in (10) :

[ 0.2794E401 0.1055E—01 0.5821E+00 —0.1008E+01 —0. 1056E+00]
0.1055E—01  0.2329E+01 0.9978E+00  0.5502E+00  0.2640E+01
R= 0.5821E+00  0.9978E+00  0.2298E+401 —0.1906E—01 —0.4271E+00
—0.1008E+01  0.5502E+00 —0.1906E—01 0.2238E-+01 0.6703E+00
| —0.1056E+00  0.2640E+01 —0.4271E+00 - 0.6703E+00 0. 1280E + 03]

Determinants of Principal Minors of R :
0.2794E + 01 0.7905E + 01  0.1444E + 02 0.2550E + 02  0.3175E + 04
This shows R is positive definite.
Eigenvalue of R :
0.3061E + 01, 0.3749E + 01, 0.1355E + 01, 0.333E + 01, 0.1281E + 01
Therefore Amax = 0.1281F + 03
Amin = 0.1333E + 01
Eigenvalues of I./w,3 :
0.0, 0.0, 0.8027E + 01, 0.6413E + 01, 0.3688E + 01
Therefore Amax = (0.8027E + 01) (377)®
Minimum K in (25) :
Kinimum = 0.4341
Therefore, the region of asymptotic stability is the interior of the hypersurface defined by
(26)

V(Z)=2"TRZ =0.4341
From (18)

0. 4341<||zn<\ 0.4341_ 57

128 1. 333
The size of this region of asymptotic stability is much larger than the region calculated

from (21) and (22)

0.0582=

(377)(377)(377)(1. 333)
(8.027)(377)°

The solution of (27) and (28) is substituted into (11) yielding

V(Z)=Z "RZ =K.\=

=0.167
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K=Z,RZz»
=0. 4358
This K is very close to Kminimum
Machine II
Steady State Operating Point :
[ 410] 0.1915E—01]
Y20 —0.9996E + 00
ysol =| 0.1868E—01
Yao —0.9753E+00
l sl | 0.3180E+00]
Linearized System :
A =(377)
| —0.1265E4+00 0.3183E+00 0.1234E+00 0.0 0.0
—0.3183E+00 —0.1265E+00 0.0 0.1235E+00 0.0
0.3851E+01 0.0 —0.4049E—-01 0.0 0.9753E+00
0.0 0.3951E—-01 0.0 —0.4049E—-01 0. 1868E—01
| 0.6388E—01 0.1223E—02 —0.6547E—01 —0.1254E—02 0.0 )
Matrix R for Q = w,l in (10) :
[—0.2173E+02 —0.1457E+02 —0.1518E+02 0.1108E+02 —0. 1141E+ 03]
—0.1457E+02 —0.3464E+02 0.1879E+02 —0.1935E+01 —0.1384E+03
R= | —0.1518E+02 0.1819E+02 —0.3203E+02 0.1975E+02 —0.1167E401
0.1108E+02 —0.1934E+02 0.1934E+02 0.1795E+02 0.5391E+01
| —0.1141E+03 —0.1384E+03 —0.1167E+01 0.3414E+02 —0.6865E+03]
Determinant of Principal Minors of R :
— 0.2173E + 02 0.5403E + 03 0.6656E + 04 0.96682 + 05
0.6113E + 07

This shows R is indefinite, therefore the operating point is unstable.

Conclusion

The stability analysis described in this paper usesthe nonlinear differential equations for
the induction motor. These equations are simplified by a unique transformation of variables.
An approach using Liapunov functions for systems with nonlinearities involving the products
of pairs of state variables is then developed to determine regions of asymptotic stability. This
provides information on the stability of such machines subject to disturbances from the
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normal steady state operating point. Such disturbances often occur during transient operation
of thyristor controlled variable frequency induction motor drives. It should be noted that if R
is found to be indefinite or negative definite for a positive definite @, then the reduced
linearized system is unstable. Thus, the nonlinear system is not asymptotically stable. In the
determination of the stability region, the simple method developed here is also applicable to
these classes of nonlinear systems with nonlinear terms involving the product of the two
state variables such as fed back bilinear systems.

The author has recently proved that the solution of this induction motor system is
bounded applying Yoshizawa’s boundedness theorem® and practical stability concept which
results from LaSalle and Lefschetzs’ work!®. Therefore the solution does not diverge:
asymptotically stable or oscillatory. A global behavior of the solution will be found according
to the definiteness of matrix R. This will be presented later.

(Received May 13, 1975)
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