
Daniel Filipe Vicente Batista

Licenciado em Ciências da
Engenharia Eletrotécnica e de Computadores

Development of a Smart Lighting Android-based
Application using Bluetooth Low Energy

Dissertação para obtenção do Grau de Mestre em

Engenharia Eletrotécnica e de Computadores

Orientador: Rui Manuel Leitão Santos Tavares, Professor Doutor,
FCT-UNL

Júri

Presidente: Prof. Doutor Luís Filipe Figueira de Brito Palma, FCT-UNL
Arguente: Prof. Doutor João Pedro Abreu de Oliveira, FCT-UNL

Vogal: Prof. Doutor Rui Manuel Leitão Santos Tavares, FCT-UNL

Março, 2016

Development of a Smart Lighting Android-based Application us-
ing Bluetooth Low Energy

Copyright © Daniel Filipe Vicente Batista, Faculdade de Ciências e Tecnologia,

Universidade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o

direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação

através de exemplares impressos reproduzidos em papel ou de forma digital, ou

por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar

através de repositórios científicos e de admitir a sua cópia e distribuição com

objetivos educacionais ou de investigação, não comerciais, desde que seja dado

crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep. Informática da FCT-NOVA [2].
[1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

Ti Filipe, Pai e Mãe

Acknowledgements

First, I would like to leave a word of gratitude to Professor Rui Santos Tavares,

for his help, support, encouragement and patience during the development of

this thesis. Specially through harsh times that would not be overcome without

his support. I also want to thank all people, from teachers to classmates and

university staff that shared this great time of my life at Faculdade de Ciências e

Tecnologia.

To my colleagues and now friends André Bispo, André Fidalgo, Filipe Quen-

dera, Miguel Curvelo, Pedro Morgado and Ricardo Madeira, especially this last

one for keeping me focus during the stressful moments and for all the help, and

the remaining from Inimigos do Velho do Restelo, I hope this friendship that

started here stays with us for many and good years.

I would like to thank my oldest friends Luis Ramos, João Rufino, Duarte Alves,

Pedro Serras, Pedro Joaquim, Henrique "Eric" Costa, Rui "Escolinha" Pires for the

support, encouragement and all the good moments spent together during this

stage.

vii

Um grande obrigado aos meus pais, sem eles nada disto seria possível, que

apesar de estarem fora, sempre me deram força para fazer mais e melhor, e ás

minhas irmãs que foram e são o meu principal apoio na ausência deles, e serão

sempre o meu maior orgulho. Queria também deixar um agradecimento especial

para a minha tia Preciosa e para a minha prima Marta por toda a ajuda que

me deram durante este último ano. Por fim resta-me agradecer as minha avós,

Belmira e Joaquina, as minhas tias Emília e Irène, ao meu tio Joaquim, e a todos

os meus primos pela preocupação que foram demonstrando durante todo o meu

percurso académico e por terem, cada um á sua maneira, contribuído para me

tornar na pessoa que sou hoje.

Para a minha namorada Filipa, muito obrigado pela paciência, pelo apoio, pelo

carinho, por ter acreditado em mim sempre e tudo o que ela fez por mim durante

esta etapa.

Por último, uma dedicatória ao Igor, que infelizmente a vida não o deixou

partilhar este momento comigo, e a ti, Ti Filipe que onde quer que estejas espero

que estejas orgulhoso de mim, tal como sempre tive em orgulho em ti...

viii

Abstract

The emergence of the Internet of Things (IoT) allowed new developments on

home and building automation with devices that provide more power efficiency

and adaptation to our needs. Therefore, this thesis presents a study about Blue-

tooth Low-Energy and its application on a IoT context, through smart devices

designed for home applications and to be integrated in smart home system. It

is also investigated the advantages and disadvantages of Bluetooth Low Energy

(BLE) over other communication protocols for IoT end-devices.

State-of-art Smart Lighting Android-based Application using Bluetooth Low

Energy (SLABLE) is implemented with BLE and covers three application layers:

first a interactive mobile application for Android OS. Then the middleware to

manage communication and the data gathered, implemented in a BLE built-in

System-on-Chip (SoC) with the respective programming for tasks as sending and

receiving informations or commands and an illumination automatic control, de-

veloped in Arduino IDE. Lastly, an hardware layer that consists in sensors and

a lamp dimming driver, to be integrated on a circuit board small enough to fit

in already installed equipment boxes. The implemented system purpose is a

transversal integration between all layers .

Moreover, based on energy consumption study, it is shown that BLE modules

are proven to be a good solution for IoT development due to their low-power

consumption, also, for data exchange reliability and processing capacity to control

and perform several actions at the same time.

Keywords: Bluetooth Low-Energy, Internet-of-Things, Android, Automation Sys-

tem, Light Dimming, Sensing Node, SoC

ix

Resumo

O aparecimento da Internet-das-Coisas(IoT) permitiu novos desenvolvimen-

tos na área da automação para casas e edifícios com recurso a dispositivos que

nos oferecem uma melhor eficiência energética e uma melhor adaptação às nossas

necessidades. Desta forma, esta dissertação apresenta um estudo sobre Bluetooth

Low-Energy e a sua aplicação no contexto da IoT, através de dispositivos inteli-

gentes para aplicações domésticas e para integração em sistemas inteligentes. É

também investigado as vantagens e desvantagens do mesmo face a outros proto-

colos de comunicação para dispositivos IoT.

O sistema doméstico inteligente e interactivo (SLABLE) apresentado no Estado-

da-Arte abrange três camadas da implementação: primeiro uma aplicação móvel

interativa para Android OS. A camada intermédia para gerir comunicações e reco-

lha de dados, implementada num módulo SoC com BLE embutido, programado

para desenvolver tarefas como enviar e receber dados ou instruções e o controlo

automático da iluminação, desenvolvido em Arduino IDE. Por fim a última ca-

mada consiste em sensores e um circuito de dimming para lâmpadas, para serem

integrados numa PCB suficientemente pequena para caber em caixas de apare-

lhagem. O objectivo do sistema implementado é a comunicação transversal entre

todas as camadas.

Além disso, com base no consumo de potência, mostra-se que os módulos BLE

são uma boa solução para desenvolvimento de aplicações IoT devido ao seu baixo

consumo energético, e também, fiabilidade da troca de dados e capacidade de

processamento para controlar e realizar várias acções ao mesmo tempo.

Palavras-chave: Bluetooth Low-Energy, Internet-das-Coisas, Android, Sistema de

Automação, Controlo de Luminosidade, Nó-sensor, SoC

xi

Contents

List of Figures xv

List of Tables xvii

Acronyms xix

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Thesis Organization . 2

1.3 Contributions . 3

2 Bluetooth Low-Energy for Internet-of-Things 5

2.1 BLE Overview . 5

2.1.1 Core Architecture . 5

2.1.2 Application Architecture . 11

2.2 Internet-of-Things Overview . 17

2.2.1 IoT Applications Domains 18

2.2.2 Bluetooth Low Energy vs. Other Communication Protocols 19

2.3 Hardware Available for IoT BLE-Based and Non-BLE Development 22

3 Proposed Smart Interactive System (BlueIoT) 25

3.1 Mobile Application . 27

3.1.1 GATT Elements . 29

3.1.2 Elements Initialization . 30

3.1.3 Creation of the Service . 33

3.1.4 Auxiliary Files . 38

3.1.5 Sequence Diagrams . 39

3.2 BlueIoT Embedded . 42

3.2.1 BLE Module . 42

3.2.2 Module Programming . 43

3.3 BlueIoT Hardware . 52

xiii

CONTENTS

3.3.1 Sensor Module Development 52

3.3.2 Actuators . 56

3.4 Printed Board Circuit Design . 61

4 BLE Energy Budget Analysis 65
4.1 Power Consumption . 65

4.1.1 Deep Sleep . 66

4.1.2 Idle . 66

4.1.3 Advertising . 66

4.1.4 Connexion . 69

4.1.5 Sending and Receiving Data 70

4.2 Received Strength Signal Information 71

4.3 Implementation Costs . 73

5 Conclusions and Future Work 75
5.1 Conclusions . 75

5.2 Future Work . 75

Bibliography 77

A Appendix A 81

B Appendix B 83
B.1 RFD22301 Code . 83

B.2 Arduino Mega Code . 89

xiv

List of Figures

2.1 The protocol stack in BLE . 6

2.2 PHY Channels [9] . 7

2.3 The BLE Packet Structure . 8

2.4 Data Hierarchy in a GATT Server . 10

2.5 Passive Scanning . 13

2.6 Active Scanning . 14

2.7 Connection Setup Time Line . 15

2.8 Service Discovery Client-Server . 16

2.9 The Internet-of-Things . 18

2.10 Wireless Network Topologies . 20

3.1 Generic Smart Lighting System . 27

3.2 Chart with Android Distributions Percentages 28

3.3 Life Cycle of the App . 31

3.4 Enabling Bluetooth . 40

3.5 Scanning Devices . 41

3.6 Connection Process . 41

3.7 Automatic Control Setup . 42

3.8 Manual Control Setup . 42

3.9 Mobile Application Layout . 43

3.10 The RFD2301 Module . 44

3.11 States of the BLE Application . 46

3.12 Data Flow Between Sensors and RFD22301 47

3.13 Complete Decision Diagram . 51

3.14 An example of a LDR and the Circuit Symbol 52

3.15 An example of a Phototransistor and the Circuit Symbol 53

3.16 Common-Collector Topology Using Phototransistor 54

3.17 Relation between Lux and Voltage Output of the Phototransistor Circuit 54

3.18 Symbol and Configurations of LM35-DZ [33] 55

3.19 Example of Commercial AC Dimmers 56

xv

List of Figures

3.20 PWM Signals at Different Dimming Rates 57

3.21 230VAC 50Hz Waveform . 57

3.22 Rectified 230VAC 50Hz Waveform . 58

3.23 Conduction on the Optocoupler 4N25 59

3.24 Output of 4N25 Optocoupler . 59

3.25 Triac Opening According to tdimming . 60

3.26 AC Led Dimmer Driver Circuit . 61

3.27 Complete Circuit . 62

3.28 Prototype Block Diagram . 62

3.29 Proposed Prototype . 63

3.30 Example of an Equipment Box . 64

3.31 PCB Designed . 64

4.1 Voltage Drop in Advertising State with +4 dBm Output Power 67

4.2 Voltage Drop in Advertising State with 0 dBm Output Power 67

4.3 Voltage Drop in Advertising State with -4 dBm Output Power 68

4.4 Voltage Drop in Advertising State with -8 dBm Output Power 68

4.5 Voltage Drop in Advertising State with -12 dBm Output Power 69

4.6 Voltage Drop in Advertising State with -16 dBm Output Power 69

4.7 Voltage Drop in Advertising State with -20 dBm Output Power 70

4.8 RSSI Values at 1 Meter Distance . 72

4.9 RSSI Values at 2 Meters Distance . 72

4.10 RSSI Values at 4 Meters Distance . 73

A.1 RFD22301 Pinout . 81

xvi

List of Tables

2.1 Correspondence Between Roles Defined in Different Protocols 12

2.2 MD Bit Usage in Connection Events 16

2.3 Comparison Between Communication Protocols 21

2.4 Examples of Low-Power Communication Modules 23

3.1 Comparison Between Lighting Design Strategies 26

3.2 Distribution of Android by Versions . 28

3.3 Electrical Specifications of RFD22301 Module 44

3.4 Indoor Light Values . 49

4.1 Average Current Consumption for Different Output Power in Adver-

tising . 70

4.2 Average Current Consumption for Different Output Power during a

Connection Event . 71

4.3 Average Current Consumption for Different Output Power Sending a

4 bytes Packet . 71

4.4 Average RSSI Values for Different Distance and Output Power 73

4.5 Billing List of the Prototype Components 74

xvii

Acronyms

ATT Attribute Protocol.

BLE Bluetooth Low Energy.

CICS Constant Illuminance Control Strategy.

DHCS Daylight Harvesting Control Strategy.

FDMA Frequency Division Multiple Access.

FHSS Frequency-Hopping Spread Spectrum.

GAP Generic Access Profile.

GATT Generic Attribute Profile.

HCI Host Controller Interface.

I2C Inter-Integrated Circuit.

IoT Internet of Things.

L2CAP Logical Link Control and Adaptation Protocol.

LDR Light Dependent Resistor.

LED Light Emitting Diode.

LL Link Layer.

MCU Microcontroller Unit.

NFC Near Field Communication.

P2P Peer-to-Peer.

xix

ACRONYMS

PCB Printed Circuit Board.

PIR Passive Infrared Sensor.

POCS Predicted Occupancy Control Strategy.

PWM Pulse Width Modulation.

RFID Radio-Frequency Identification.

ROCS Real Occupancy Control Strategy.

RSSI Received Signal Strength Information.

SDP Service Discovery Protocol.

SLABLE Smart Lighting Android-based Application using Bluetooth Low En-

ergy.

SMP Security Manager Protocol.

SoC System-on-Chip.

SPI Serial Peripheral Interface.

TDMA Time Division Multiple Access.

UART Universal Asynchronous Receiver/Transmitter.

UUID Universally Unique Identifier.

xx

C
h
a
p
t
e
r

1
Introduction

1.1 Background and Motivation

Nowadays the IoT is a trend topic in technology and it is expected to grow more

and more in the future. The first reference to IoT was in 1999 by Kevin Ashton [1]

and at the time World Wide Web was revolutionizing the Internet, so it was hard

to imagine what would be the Internet-of-Things. Ten years later, the Internet had

a tremendous growth, everybody have smartphones and it is possible to be online

either by WiFi or 3/4G. The evolution of low-range communication protocols,

like Bluetooth, ZigBee, RF-ID or IEEE 802.15.4 enabled the arising of all sorts of

wireless accessories like headphones, controllers and wearables.

IoT is also growing in house and buildings automation. Household appliances

manufacturers are investing in smart equipments, alongside with researchers to

integrate home control systems with their equipments, using low-power com-

munication protocols, to achieve a reduction in power consumption and add

more functionalities for users. Those smart systems aims to control remotely air

conditioning, heating, illumination or interact with appliances like a fridge or

television [2, 3]. Further, the inclusion of sensors allows smart systems to operate

based on environment variables, resulting in a more effective automation, and

also allows people to have access to information about their home or office. This

progress produces not only an higher efficiency in power consumption but also

an significant increase in comfort and utility.

Hence the research and development of new architecture and end-devices to

be integrated in IoT has a large room for growth. As every new technology trend,

1

CHAPTER 1. INTRODUCTION

IoT is passing by a maturation process and its evolution follows hardware evolu-

tion and new low-power communication protocols, as Bluetooth Low-Energy.

BLE is one of the most used communication technology for smart development.

Earlier version of Bluetooth were already widely used, so using BLE in IoT is a

natural choice, because unlike other communication protocol, Bluetooth does

not necessarily need the implementation of specific controllers for application, it

already exists in smartphones, tablets and computers. For this reason, Android

and iOS are powerful tools for integration in IoT applications based on BLE.

Mobile operating systems also had to adapt to the new reality of IoT. There is

already a wide network formed by smartphones built upon the Internet, wherein

IoT can be integrated. More precisely, sensor module with communication ca-

pacities interacting with smartphones enables their own integration in a wide

network using smartphones as gateways.

The motivation for this thesis was to implement a Smart Lighting Android-

based Application using Bluetooth Low Energy (SLABLE) based on BLE. The first

part was to add a SoC and sensors on the same board to reduce the size, to fit in

equipment boxes, and cost comparing to commercial sensor boards [4, 5]. The

second part was to study and develop a decision algorithm to run in the SoC to

retrieve data from sensors, actuate on the illumination following a power saving

profile and communicate with a mobile application. Lastly the integration of a

mobile application developed to interact with this specific smart system that allow

functionalities as consult temperature and light values, and choosing between an

automatic or manual control of the illumination as well.

1.2 Thesis Organization

The present thesis is organized in five chapters, with this one being the introduc-

tory chapter. Chapter 2 introduces BLE specification and the engaging concepts,

followed by an overview of IoT and the integration of BLE in it. Lastly, it is pre-

sented the hardware available with BLE embedded and other non-BLE options.

In Chapter 3 it is presented a concept for smart interaction in a house automation

and sensing system. The system development is divided in three parts: the con-

troller software, system hardware and the mobile application. Energy and other

relevant considerations as Received Signal Strength Information (RSSI) measure-

ments, system performance and implementations costs are discussed in Chapter

4. The conclusions and discussion about this project and how to improve it in the

future are analyzed in Chapter 5.

2

1.3. CONTRIBUTIONS

1.3 Contributions

The main contribution of this thesis was a functional prototype that implements

software for automation, control and communication upon different hardware

components all linked together, forming a SLABLE end-device small enough to

be installed in equipment boxes. The development of this thesis allowed under-

standing the main constraints of designing IoT systems based on BLE communi-

cation. Furthermore, the system prototyping process allowed the author of this

thesis to learn more about choosing components, PCB design, soldering and the

test bench necessary to validate a model. Also, it was possible to develop in differ-

ent platforms, from Android OS to Arduino IDE, due to the integration required

between all parts of the system.

3

C
h
a
p
t
e
r

2
Bluetooth Low-Energy for

Internet-of-Things

2.1 BLE Overview

BLE or Bluetooth 4.0 protocol [6] descends from Wibree, a short-ranged tech-

nology developed by Nokia, with the help of Cambridge Silicon Radio (CSR),

Broadcom and other companies, with the purpose to consume less power. The

Wibree protocol was presented on October of 2006 and the main goal to its devel-

opment was to complement the versions 1.0 and 2.0 of traditional Bluetooth. The

major improvement of the Wibree compared to the traditional Bluetooth is its

reduced consumption of the battery. In 2010, the Wibree technology was merged

into the Bluetooth standard, by the Bluetooth Special Interest Group, resulting

the Bluetooth 4.0 Core Specification or BLE.

2.1.1 Core Architecture

The demand for low-power communications has raised some challenges to tradi-

tional Bluetooth, so modifications had to be made to enable low-power communi-

cation between devices [7]. The major changes in BLE comparatively to traditional

Bluetooth are in radio and protocol stack. The radio has suffer several changes in

the number and bandwidth of channels and some blocks from the protocol stack

were upgraded to be more power efficient [8].

BLE protocol stack can be divided into three levels, as shown in fig. 2.1:

5

CHAPTER 2. BLUETOOTH LOW-ENERGY FOR INTERNET-OF-THINGS

• Application
The Application that will be built on top of the BLE stack to realize a specific

task through Bluetooth.

• Host
The Host layer comprises the upper level protocols Attribute Protocol (ATT),

Generic Attribute Profile (GATT), Generic Access Profile (GAP), Security

Manager Protocol (SMP) and Logical Link Control and Adaptation Protocol

(L2CAP).

• Controller
The Controller layer comprises the low-level protocols Link Layer (LL) and

the PHY layer.

Host Controller
Interface

Link Layer

PHY Layer

L2CAP

ATT SMP

GATT GAP

H
O
S
T

C
O
N
T
R
O
L
L
E
R

APPLICATION

Figure 2.1: The protocol stack in BLE

6

2.1. BLE OVERVIEW

2.1.1.1 PHY Layer

The PHY (physical) layer is where all the circuitry responsible for the transmis-

sion/reception of signals and modulation/demodulation of the data can be found.

The BLE protocol defines that the radio operates in 2.4 GHz ISM (Industrial, Sci-

entific and Medical) band. Two access schemes are employed: Frequency Division

Multiple Access (FDMA), where different frequency bands are allocated for mul-

tiple users, and Time Division Multiple Access (TDMA), where a frequency band

or channel is divided into time slots for multiple access of multiple users. The

band is divided in 40 channels, 37 for connection or data channels and 3 for ad-

vertising to apply FDMA. All channels are separated by 2MHz, resulting in a

total band that goes from 2.4000 GHz to 2.4835 GHz (fig.2.2). The modulation

employed in BLE is the GFSK - Gaussian Frequency Shift Keying, just as classic

Bluetooth. To reduce noise, channel interference and fading, Frequency-Hopping

Spread Spectrum (FHSS) is used.

Figure 2-2. Frequency channels

The standard uses a technique called frequency hopping spread spectrum, in which the
radio hops between channels on each connection event using the following formula:

channel = (curr_channel + hop) mod 37

The value of the hop is communicated when the connection is established and is there‐
fore different for every new established connection. This technique minimizes the effect
of any radio interference potentially present in the 2.4 GHz band across any single
channel, especially since WiFi and classic Bluetooth are prevalent in this band and
devices might experience heavy interference near devices with a strong transmission
power.

The modulation chosen to encode the bitstream over the air is Gaussian Frequency Shift
Keying (GFSK), the same modulation used by classic Bluetooth and several other pro‐
prietary low-power wireless protocols. The modulation rate for Bluetooth Low Energy
is fixed at 1 Mbit/s, which is therefore the upper physical throughput limit for the tech‐
nology.

In practice, however, as with any other protocol stack, this upper limit
is never actually reached when it comes to application throughput,
due mainly to protocol overheads in each of the different layers.

Link Layer
The Link Layer is the part that directly interfaces with the PHY, and it is usually imple‐
mented as a combination of custom hardware and software. It is also the only hard real-
time constrained layer of the whole protocol stack, since it is responsible for complying
with all of the timing requirements defined by the specification. It is therefore usually
kept isolated from the higher layers of the protocol stack by means of a standard interface

Link Layer | 17

www.it-ebooks.info

Figure 2.2: PHY Channels [9]

2.1.1.2 Link Layer

The Link Layer defines two roles:

• Master

• Slave

Devices that have the capability to start connections are assigned with the

Master role. The Master can send Connection Request and defines the connection

7

CHAPTER 2. BLUETOOTH LOW-ENERGY FOR INTERNET-OF-THINGS

timings. On the other hand, devices that are waiting for connections are desig-

nated with the Slave role and after a connection is established, have to respect the

timings imposed by the Master.

Other two roles are associated with the ones presented above: Advertiser and

Scanner, that will be explained in SubSec.2.1.2.1.

The specification of Bluetooth 4.0 defines a packet structure, shown in figure

2.3.

4 Bytes 2 Bytes 0..37 Bytes 3 Bytes

Preamble Access Address PDU Payload
PDU

Header
CRC

1 Byte

Figure 2.3: The BLE Packet Structure

Preamble The Preamble is 1 byte in length and is used for internal protocol man-

agement.

Access Address The Access Address field has 4 byte and is used to identify com-

munications on a physical link and separate them from communications in

proximity using the same PHY links but on different physical links. If it is

a advertising packet, the address is always 0x8E89BED6, which differenti-

ate them from data packet in which the Access Address is 32-bit number

generated randomly.

PDU Header The PDU Header differs depending on the type of channel, adver-

tising or data channel. For advertising channels, header contains the ad-

vertisement payload type, the address type of the device and PDU Payload
length.

PDU Payload As in the PDU header, payload content depends whether it is an

advertising or data channel. For advertising channels, payload contain the

advertiser address and advertising data. On a data channel, payload contain

control commands or L2CAP data.

CRC The Cyclic Redundancy Check field to detect error in the transmission.

2.1.1.3 HCI - Host Controller Interface

Host Controller Interface (HCI) is the interface that allows communication be-

tween the Host and Controller levels. It is only required when both runs separately

8

2.1. BLE OVERVIEW

on different chips. HCI provides a high level of abstraction to the Host layer, that

implement more complex protocols, and release it from the hard real-time re-

quirements of the Controller. If the Host and Controller runs on the same chip (ex:

SoC), there is no need to have HCI since all three layers (Application, Host and

Controller) are implemented in the same Microcontroller Unit (MCU).

2.1.1.4 GAP - Generic Access Profile

In Bluetooth 4.0 the data organization and communication processes differs from

traditional Bluetooth. In BLE communication is based on GAP, which defines the

low-level interactions between devices [9]. The GAP specifies two roles for the

communication:

Central The Central stands for devices that are able to search other devices in

order to connect with them and are usually smartphones or tablets, due to

their increased battery,processing power and memory. Another denomina-

tion for this role is Observer.

Peripheral The Peripheral stands for devices that broadcast advertisement pack-

ets and wait for another device with the ability to connect with them to send

a connection request. Another denomination for this role is Broadcaster.

Just as in LL, the roles Advertiser and Scanner are also associated with the ones

presented above and the connection will be explained in 2.1.2.1.

2.1.1.5 GATT - Generic Attribute Protocol and ATT - Attribute Protocol

Relatively to communication specifically, it is based on two protocols: GATT and

ATT. ATT is a low-level protocol that defines how the data is transfered between

devices. GATT defines services, through ATT, and all the structure inherent to

those services. A service is formed by ATT attributes grouped so they can perform

some specific task. GATT defines two roles: server and client. Usually the server

is a sensing node that will send information to a client, that can be a smartphone

or tablet.

A service is defined by a chunk of data and the way it will be handled so the

device can perform a specific function or feature. The data present in services

are called characteristics. A characteristic is the lowest level concept in the GATT

hierarchy and defines a value used in a service. The characteristic can have a

descriptor, that can store some information about the access, representation and

display of the data.

9

CHAPTER 2. BLUETOOTH LOW-ENERGY FOR INTERNET-OF-THINGS

Profile

Service

Value

Descriptor

Characteristic

Service

Value

Characteristic

...

Value

Descriptor

Characteristic

Descriptor

...

Figure 2.4: Data Hierarchy in a GATT Server

Another important concept in ATT protocol is the Universally Unique Identi-

fier (UUID). An UUID is an identifier, a 128-bit number with the purpose to be

unique. BLE is not the only protocol to use them, other communication protocols

and applications use UUID too. The usage of UUID is specified in ISO/IEC 9834-
8:2005 [10]. Each Attribute has their own UUID, that means that every Profile,

Service or Characteristic has their own identifier so it is possible to access them.

2.1.1.6 SMP - Security Manager Protocol

The SMP is both a block and a protocol. The block is responsible for generating

and managing encryption keys and identity keys. The protocol defines two roles:

initiator and responder. The roles are similar to the central and peripheral roles of

GAP (SubSubSec. 2.1.1.4) respectively. The protocol also defines three procedures

that are quite important in the association of devices. Those three processes are:

Pairing Generation of temporary security encryption keys for encrypted links.

Temporary keys are not stored and therefore cannot be re-used in the next

10

2.1. BLE OVERVIEW

connections.

Bonding When the objective is to create a permanent connection, after the pair-

ing process security keys are stored and therefore enabling to quickly set up

a connection without the need of a bonding process again.

Encryption Re-establishment This process defines how the security keys that

were stored are used to (re-)establish the ensuing connections without going

through pairing or bonding.

2.1.1.7 L2CAP - Link Layer Control and Adaptation Protocol

The L2CAP main function is to provide data services to the upper layer protocols

[11]. As seen in fig.2.3, there is a standard packet format and L2CAP is responsible

to perform the multiplexing into it and fragmentation of packets that come from

the upper layer that are larger than the maximum payload length and therefore

do not fit into a BLE packet. On the opposite side, it receive multiple packets that

have been fragmented, recombine and perform a de-multiplexing into one packet

so it can be forwarded to the respective block.

2.1.2 Application Architecture

Application is the top layer of BLE protocol, as seen in fig.2.1. It is in this layer

that advertising and connection events are processed and also where services are

defined and how the data will be organized into characteristics.

2.1.2.1 Advertising

In the advertising process there is two roles defined:

• Advertiser

• Scanner

Typically the Advertiser role is assumed by a LL Slave and GAP Peripheral. The

Scanner role is assumed by a LL Master and GAP Central.
Advertising is done with advertising packets that are broadcast by advertisers

through advertising channels(fig.2.2). Advertising packets are transmitted with

two purposes:

• Broadcast data to devices that don’t need a connection to receive data;

• To seek for devices (Slaves) to start a connection.

11

CHAPTER 2. BLUETOOTH LOW-ENERGY FOR INTERNET-OF-THINGS

Table 2.1: Correspondence Between Roles Defined in Different Protocols

Advertiser Scanner

LL Slave Master

GAP Peripheral or Broadcaster Central or Observer

In some applications, devices simply broadcast information in the payload of

a BLE packet and others devices, in this case scanners, can access data when they

cross the same physical channel. An example of such application is a sensing

node that broadcast the battery status or a temperature value, simple data that

don’t necessarily need a connection to transmit that information.

Two types of scanning are defined for an Observer: active and passive. A device

that proceed to scan passively just receive that the advertising packets (fig. 2.5).

By other hand, if the device is actively scanning, he can send a Scan Request to

the broadcast, expecting to receive another advertising packet in response. The

Scan Request sent by the active scanner contain no data information (fig. 2.6).

2.1.2.2 Connection

A connection can only be started by a device designated with the role of Master
(see SubSec.2.1.1.2). The Master manifest the intention of starting a connection

with a Slave device by, after receiving a Advertising packet, responding with a

connection request packet - CONNECTION_REQ.

The CONNECTION_REQ packet contains three parameters defined by the

Master about the connection timings, as when the first packet is sent by the Master
and when the Slave must listen. The parameters are:

• transmitWindowOffset

• transmitWindowSize

• connInterval

The transmitWindowOffset defines the interval between the end of the Advertis-
ing Event and the start of the Transmit Window. It is always a multiple of 1.25 µs

comprised between 0 and connInterval. The transmitWindowSize defines Transmit
Window size which starts 1.25 µs + transmitWindowOffset after the Advertisement
Event ending. In the Transmit Window, the Master can send the first packet in

the Connection State. This first packet is called Anchor Point and will defines the

timings of followings Connection Events and the frequency hopping sequence.

12

2.1. BLE OVERVIEW

Advertiser Scanner

A
d
v
e
rtis

e
m

e
n
t

In
te

rv
a
l

Ch(k)

Ch(k+1)

Ch(k+2)

Advertisement
Data

Advertisement
Data

Advertisement
Data

A
d
v
e
rtis

e
m

e
n
t

In
te

rv
a
l

A
d
v
e
rtis

e
m

e
n
t

In
te

rv
a
l

A
d
v
e
rtis

e
m

e
n
t E

v
e
n
t

Figure 2.5: Passive Scanning

The parameter connInterval will define the Connection Events time. The defini-

tion of those timings are one of the reason for low-power consumption in BLE

since both Master and Slave can go into deep sleep mode to save energy between

transactions [12].

2.1.2.3 Disconnection

The process of Disconnection in BLE or, more accurately, the end of a Connection
Event occur when the Master has no more packet to send (and inform the Slave) or

13

CHAPTER 2. BLUETOOTH LOW-ENERGY FOR INTERNET-OF-THINGS

Advertiser Scanner

Ch(k)

A
d
v
e
rtis

e
m

e
n
t

In
te

rv
a
l

Ch(k+1)

A
d
v
e
rtis

e
m

e
n
t

In
te

rv
a
l

Advertisement
Data (Scan
Response)

Advertisement
Data

Advertisement
Data (Scan
Response)

Advertisement
Data

Scan
Request

Scan
Request

Figure 2.6: Active Scanning

when the reception of a packet fails. If a packet sent by the Master is not received

(or acknowledged) by the Slave, then the Master closes the Connection Event. If

a packet send by the Slave is not received (or acknowledged) by the Master, then

the Slave closes the Connection Event. When the packets are sent and received

by either, the process is handled through the MD bit of the Header of the Data
Channel PDU.

14

2.1. BLE OVERVIEW

Connection
Interval

Advertisement
Interval

AdvertiserScanner

Advertisement
Data

adv.
Ch(k)

Connection
Request

1.25ms

S
data
Ch(k)

transmitWindow
Offset

transmitWindow
Size

data
Ch(j) Connection

Event

Connection
Event

Anchor
Point

Anchor
Point

Connection
Interval

S

S

Advertisement
Event

Figure 2.7: Connection Setup Time Line

2.1.2.4 Service Discovery

The Service Discovery process occurs between a Client and a Server (see SubSubSec.

2.1.1.5). After the first connection, the Client exchange some packets with the

Server in order to obtain the Services available and how to access them (Attributes

15

CHAPTER 2. BLUETOOTH LOW-ENERGY FOR INTERNET-OF-THINGS

Table 2.2: MD Bit Usage in Connection Events

Master
MD bit = 0 MD bit = 1

Slave

MD = 0

Master shall not send
another packet, closing

the connectionevent.

Slave does not need to
listen after sending its packet.

Master may continue
the connection event.

Slave should listen
after sending its packet.

MD = 1

Master may continue
the connectionevent.

Slave should listen
after sending its packet.

Master may continue
the connection event.

Slave should listen
after sending its packet.

and their location). Services are accessed through handles, which are 16-bit iden-

tifier that every attribute have, and is what make them addressable since it is

guaranteed that they do not change. Handle have a range from 0x0001 to 0xFFFF.

On the Server side, the entity responsible for giving information about Services to

Clients is the Service Discovery Protocol (SDP).

Client Server

1. Request

2. SDP Response

Figure 2.8: Service Discovery Client-Server

The Client has two options for discovering Services:

Discover all Primary Services The Client requests for the complete set of Ser-
vices supported by the Server, covering the entire range of handles (0x0001

to 0xFFFF).

Discover a Primary Service by UUID The Client knows which Service it is seek-

ing and want to know all Service instances itself by.

16

2.2. INTERNET-OF-THINGS OVERVIEW

In both cases, the information that SDP returns will be the handle range for

the service characteristics.

2.1.2.5 Characteristics Discovery, Reading and Writing

The discovery process for characteristics is similar to service discovery. After know-

ing the handle range of the service characteristics, the client has two options:

Discover all Characteristics The Client requests for the complete set of charac-
teristics by sending the handle range previously received in the service dis-

covery process.

Discover a Specific Characteristic by UUID The Client knows which character-
istic wants to access. After that, it is possible to access the characteristics
descriptors

After receiving the characteristic handle, the Client uses it to access the charac-
teristic content, by sending a request, that will be received in a response packet.

To write a characteristic, the Client will send a packet with an handle and a value

for the characteristic, which will be acknowledge after by the server.

2.2 Internet-of-Things Overview

IoT is a abstract concept, wide in application fields and hard to characterize.

Before understanding what is IoT, it matters try to understand the factors that

allowed its development. First, the objective of IoT is to gather data from the en-

vironment and to make possible the communication of that data between devices,

forming networks or by connecting them, resulting in wider networks. The data

has been here since ever, sensors and computers are here since many years now

and Internet too. So what had change? According the IoT Council [13], Cloud

computing is the game changer.

Nowadays society is becoming increasingly more interconnected, due to the

technological advances over the years as improvement of broadband connectivity

and powerful devices, which leads to a "always connected" paradigm [14]. Those

technological advances allowed several objects and devices to be included in the

Internet, directly or through gateways, leading to the creation of new smart ser-

vices accessible from anywhere.

Since IoT is still relatively new, there is not yet a standardization for it. The

development of new applications produces a big impact not only in a industrial

17

CHAPTER 2. BLUETOOTH LOW-ENERGY FOR INTERNET-OF-THINGS

Figure 2.9: The Internet-of-Things

concept, but also socially and economically. Some important issues arises as

security and privacy, with a world increasingly more connected, it is crucial to

define the boundaries to protect individual privacy [14]. Accordingly to Gartner,
Inc, in this year it is expected to be 6.4 Billion devices through IoT. The forecast

for 2020 is this number to triplicate [15].

2.2.1 IoT Applications Domains

IoT has created the opportunity to fill gaps presents in several domains. The main

application domains who benefited the emergence of IoT are:

• Healthcare

• Building Automation

• Smart Cities

• Environment

• Security and Safety

• Industrial Control

• Agriculture

• Logistics

18

2.2. INTERNET-OF-THINGS OVERVIEW

New wearables can incorporate now devices that can monitor health related in-

dicators, replacing the traditional monitoring devices. Cities are investing in

ways of reduction illumination costs, using an extended connectivity, to control

street lamps and using sensors to improve illumination based on environment

variables reducing electricity costs. The extended connectivity is also used in agri-

culture, where it is possible to monitor a vast area in plantations, introducing the

paradigm of smart agriculture which will be reflected in the harvest. In logistics

and factories, traditional tracking of objects or components in assembly lines is

now being replaced by new tracking devices using Radio-Frequency Identifica-

tion (RFID). In the retail domain, the data gathered by sensors can be used to

study patterns, for example to trace a map of high-traffic zones in the store.

2.2.2 Bluetooth Low Energy vs. Other Communication

Protocols

The comparison between communications protocols is not linear and needs to be

contextualized with an application and its requirements. There is five factors that

help choosing the best protocol for an application:

• Range

• Data Rate

• Power

• Frequency

• Security

Also, depending on the application, it is important to figure what network

topology fits better (fig.2.10).

ANT+ ANT+ derives from the proprietary protocol ANT, developed by Dynas-
tream Innovations Inc. (subsidiary of Garmin). ANT+ is more indicated for

health and performance application like heart rate monitors, speed mon-

itors, pedometers, but can also be used in indoor lighting systems or be

integrated in television or cell-phones control systems. The differences be-

tween ANT+ and BLE are in the protocol, whose simpler in ANT+ which

means that it is easier to develop applications, ANT+ also differs in the

network topology since it allows any topology unlike BLE that only allow

Peer-to-Peer (P2P) and Star topologies.

19

CHAPTER 2. BLUETOOTH LOW-ENERGY FOR INTERNET-OF-THINGS

Master

Slave

(a) P2P Topology

Master

Slave

(b) Star Topology

Master

Slave

(c) Tree Topology

Master

Slave

(d) Mesh Topology

Figure 2.10: Wireless Network Topologies

NFC Near Field Communication (NFC) is a communication protocol that allows

two devices to transfer data between them when in close proximity, without

establishing a connection. It is based on the RFID protocol.

RFID RFID is a protocol based on the electrostatic or capacitive coupling resul-

tant from the proximity between two devices. It is mainly used to detect and

identify tags present in objects or animals. The information is stored in the

tags that can be passive (power supplied by the RFID readers through radio

waves) or active (supplied by a battery). Passive tags needs to be nearby a

reader to be possible to collect information whereas active tags signal can

reach some hundreds of meters. This protocol is used in several industries,

since factories to track components in assembly lines or in warehouse to

locate objects.

WiFi Low Power WiFi is widely use to connect several devices like cellphones or

computers to Internet, but also can be used in IoT thanks to the adaption

20

2.2. INTERNET-OF-THINGS OVERVIEW

Table 2.3: Comparison Between Communication Protocols

ANT+ BLE RFID
WiFi Low

Power
ZigBee

Frequency
Band

2.4 GHz
ISM

2.4 GHz
ISM

LF,MF,
HF,UHF,

SHF

2.4 GHz
ISM and
5 GHz

2.4 GHz
ISM

Network
Topology

P2P,
Mesh, Star,

Tree
P2P, Star

P2P,
Mesh, Star,

Tree
N/A P2P, Mesh

Data Rate < 1 Mbps < 1 Mbps N/A
< 346.66

Mbps
< 250
kbps

Security 64 bits 128 bits

ISO/IEC
18000

ISO/IEC
20248

ISO/IEC
29167

WEP,
TKIP,
AES,
WAPI

128 bits

Range 100m 100m

1m
(passive)

200m
(active)

1km 100m

WiFi Low Power, also known as IEEE P802.11ah.

ZigBee ZigBee is a wireless protocol based on the IEEE 802.15.4 specification.

The protocol defines three possible roles: Coordinator, Router and End De-
vice. The first one is the network coordinator, it is responsible for establish

it, storing and managing crucial information as security keys or packets des-

tined for end devices and is capable of communicating with other networks.

The Router is a intermediate node, that can carry packet to other devices.

Since they can connect to coordinators and end devices, routers are often used

as network extenders. End Devices have less functionalities than the other

mentioned roles, they can only communicate with a parent device. The re-

duced capabilities results in low power consumption, turning it ideal for

sensing nodes.

21

CHAPTER 2. BLUETOOTH LOW-ENERGY FOR INTERNET-OF-THINGS

2.3 Hardware Available for IoT BLE-Based and

Non-BLE Development

There is a variety of hardware available in the market for IoT development based

on BLE, since development kits that offers a platform for developers to create

and test an application to SoC modules for integration in circuit boards. Main

hardware for developing and test an application is:

• Manufacturers Development Kits;

• USB Dongles;

• BLE Shields (for Arduino and other platforms);

• BLE SoC modules;

• BLE built-in platforms (example: Bleduino);

Starting with the development kits, they are more suited for developers to

start their learning process and get familiarize with functionalities of a module.

Another good choice is the BLE shields for other platforms, since if a developer

has already experience working on platforms as Arduino or Raspberry Pi, those

shields allow to understand the principles of BLE communication in a familiar

environment. BLE built-in platforms work the same way. USB dongles are great

for testing applications directly from a computer. For prototyping circuit boards,

as sensor modules or to connect actuators via BLE, SoC can be integrated easily

due to their reduced size.

Several companies have invest in the development of MCU with Bluetooth

built-in to allow processing and communication. There is two companies that

stood out: Nordic Semiconductors and Texas Instruments, with their nRF51822

and CC2540 SoC modules, respectively.

After the release of those modules, some companies simply used them and

created third-party BLE enabled modules [16], adding some functionalities and

libraries to facilitate the development of IoT applications.

22

2.3. HARDWARE AVAILABLE FOR IOT BLE-BASED AND NON-BLE

DEVELOPMENT

Table 2.4: Examples of Low-Power Communication Modules

Communication Name Type

BLE

RFDuino22301 SoC
NRF51822 SoC, Development Kit
Bleduino Platform
PSoC 4 SoC, Development Kit

RedBear Lab BLE Shield Shield

ZigBee
CC2530 SoC

XBee Shield
EM35x SoC

23

C
h
a
p
t
e
r

3
Proposed Smart Interactive System

(BlueIoT)

When designing new electronic systems or devices to use in building or home au-

tomation, there is several constraints to be taken into account: comfort for users,

improved operation, energy efficiency and reduction of costs. The traditional

illumination systems are basically composed by a lamp and a manual switch, the

light intensity varies according to the lamp (more or less light produced) or in

some case it can be adjusted manually by a dimmer switch. Along the year there

is four seasons, with more shiny days in summer and darker days at winter. To

obtain the maximum comfort for our eyes, the light level need to be adjusted in

function of the light present in the space occupied and according to the function

performed at the time. Also, the cost of such systems and their installation can-

not be too high so they can be economically viable. When analyzing the cost of

implementation, it is important to study the system efficiency as well the savings

return. An higher energy efficiency means more savings and products more de-

sirable. Some of the strategies studied and tested [17] to design those systems

are:

POCS - Predicted Occupancy Control Strategy
The Predicted Occupancy Control Strategy (POCS) uses a schedule where

it is defined when the lights are ON or OFF, based on occupancy patterns.

This strategy is more oriented for offices with fixed schedule and routines

that do not varies too much.

ROCS - Real Occupancy Control Strategy

25

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

The Real Occupancy Control Strategy (ROCS) is a real-time strategy, based

on the occupancy at the moment. Unlike POCS, ROCS uses sensors to

detect presence of someone in the room/office and then turn ON the light.

To overcome situations when someone leave and enter the room or when

the sensor does not recognize movement, a delay time for turning the lights

OFF can be programmed in order to prevent those situations.

CICS - Constant Illuminance Control Strategy
The Constant Illuminance Control Strategy (CICS) works with lighting level

within a space, and regulates the lumen output of the lighting system ac-

cording to the light level measured by the light sensor.

DHCS - Daylight Harvesting Control Strategy
The Daylight Harvesting Control Strategy (DHCS) works with the natural

light that enters into a space. It measures the outside light and compare to

the light present in a space and adjust the lighting in order to obtain the

right balance between natural light from the outside and artificial light from

the inside.

Table 3.1: Comparison Between Lighting Design Strategies

Strategy Main Advantage Main Disadvantage

POCS
Easy to install
and configure

Cannot be applied in
spaces with random schedules

ROCS High energy savings; High precision sensors needed;

CICS Constant light level; Relatively high cost;

DHCS
Possibility of integration

with other systems;
Hard to configure;

The next step is to decide the integration level of the system. There is four

levels possible:

• Lighting Service

• Lighting Plant

• Lighting Zone

• Lighting Device

26

3.1. MOBILE APPLICATION

In this thesis, the focus is to develop and study a smart interactive system that

can operate on a room or an office. This work is based on systems developed with

existing commercial parts [18, 19], and will include sensors for temperature, light

and presence, a BLE embedded MCU to process, receive and send data remotely

and a dimming Light Emitting Diode (LED) driver to control illumination.

First, a mobile application that allow users to check ambient variables as light

and temperature, and to choose an actuation on the illumination. Second, the

BLE module will assume all the processing of information retrieved from the

sensors, and establish a gateway to the mobile application present in a smart-

phone or tablet using BLE. Finally, a circuit for dimming a lamp, that will receive

instructions from the main MCU.

Dimming
Circuit

Smartphones and Tablets

Controller

Sensors

T
e
m
p
e
r
a
t
u
r
e

L
i
g
h
t
L
e
v
e
l

P
r
e
s
e
n
c
e

Figure 3.1: Generic Smart Lighting System

3.1 Mobile Application

Nowadays everybody use smartphones and tablets. App’s are widely used and in

this case it is the most suitable way to control a smart system. To ensure that the

system is adequate for a market application, simplicity and robustness are the

keys points to follow.

When Bluetooth 4.0 has arises, Android released the 4.3 or JellyBean(MR2) so

the functionalities of BLE could be used with the operative system. To do so, the

27

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

API’s in package android.bluetooth were upgraded to embed functionalities that

allows user’s devices to communicate with BLE peripherals. Since then, in every

Android version upgrade, the BLE package has been improved in order to provide

a stable development platform for developers to design better applications after

several issues stated in previous versions [20].

To figure the potential market for BLE based IoT applications in Android, com-

bining the number of devices running Android as OS, estimated to 1.4 billion [21],

with the chart in fig.3.2 and the table 3.2, it is possible to estimate the number

of devices suitable to run BLE based applications, which is around 1.06 billion

devices.

Figure 3.2: Chart with Android Distributions Percentages

Table 3.2: Distribution of Android by Versions

Version Codename API Distribution

2.2 Froyo 8 0.1%
2.3.3 - 2.3.7 Gingerbread 10 2.6%
4.0.3 - 4.0.4 Ice Cream Sandwich 15 2.3%

4.1.x 16 8.1%
4.2.x 17 11.0%
4.3

Jelly Bean
18 3.2%

4.4 KitKat 19 34.3%
5.0 21 16.9%
5.1

Lollipop
22 19.2%

6.0 Marshmallow 23 2.3%

28

3.1. MOBILE APPLICATION

As previously explained in Chapter 2, communication in BLE follows a defined

structure, so the Android OS will need to follow the same structure to be able to

communicate with BLE devices. The next subsections will overlap the concepts

approached in the previous chapter with the BLE concepts in Android OS.

3.1.1 GATT Elements

GATT is the protocol that defines the procedures and formats for data exchange

in Bluetooth LE. As seen in figure 2.4, the data hierarchy of a GATT server has

several levels, which are defined in package bluetooth of Android through the

following elements:

BluetoothGatt Responsible for implementing Bluetooth LE profiles.

BluetoothGattCallback Implements callback1 methods for GATT events like dis-

cover services, changes in connection and reading or writing characteristics.

The callback methods used from this class are:

• void onCharacteristicChanged(BluetoothGatt gatt, BluetoothGattChar-

acteristic characteristic);

• void onCharacteristicRead(BluetoothGatt gatt, BluetoothGattCharac-

teristic characteristic, int status);

• void onConnectionStateChanged(BluetoothGatt gatt, int status, int ne-

wState);

• void onServicesDiscovered(BluetoothGatt gatt, int status).

BluetoothGattCharacteristic Represents a GATT characteristic. The methods

used from this class are:

• BluetoothGattDescriptor getDescriptor(UUID uuid);

• UUII getUuid();

• byte[] getValue();

• boolean setValue(byte[] value);

• void setWriteType(int writeType).

From this class it is also used a constant:

• WRITE_TYPE_NO_RESPONSE.

1A callback is a subroutine that is automatically invoked after a specific event occurs.

29

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

BluetoothGattDescriptor Represents a GATT descriptor. The methods used

from this class are:

• boolean setValue(byte[] value);

From this class it is also used a constant:

• ENABLE_NOTIFICATION_VALUE.

BluetoothGattService Represents a GATT service. The methods used from this

class are:

• BluetoothGattCharacteristic getCharacteristic(UUID uuid);

3.1.2 Elements Initialization

In contrast to the simplicity of connecting devices to BLE modules and to ex-

change data between them, developing a mobile application capable of realizing

the tasks required and be robust to flaws requires some complexity. To overcome

the complexity it is essential to divide the code.

The division consists in the main activity that will be responsible for all the

initializations, user interface and the main algorithm. Next there is the support

files, responsible for all the auxiliary functions that the main activity will need

like the creation and definition of the service, data processing functions and all

the procedures defined in the Bluetooth 4.0 protocol. This separation makes the

developing and debugging process easier and clear.

The first step is to import the packages that will be used to develop the mo-

bile application. A special highlight go to the Bluetooth package, since the main

feature of the system is the Bluetooth communication. For the user interface but-

tons, text boxes and all the variables related with the layout will be declared. To

control the mobile application state, a state machine will be created with vari-

ables of Int type for the several states that the app will face, like the Bluetooth

Off, Disconnected, Connecting and Connected. When the app starts, the code sec-

tion responsible to handle the creation and initialization of the resources needed

is the function onCreate(Bundle savedInstanceState). In this function the Blue-
toothAdapter will be initialized. The BluetoothAdapter class allows us to perform

the fundamental Bluetooth tasks. Then the layout elements are assigned to theirs

respective functions and procedures so whenever a button is clicked, the respec-

tive actions are performed. In figure 3.3 is shown the life cycle of the mobile

application.

30

3.1. MOBILE APPLICATION

APP Lauched

Activity Shutdown

onCreate()

onStop()

onStart()

Activity Running

Figure 3.3: Life Cycle of the App

After the set up of the application elements, the method onStart() will start,

enabling the activity to be visible to the user. This method will handle the re-

ceivers register:

• scanModeReceiver

• bluetoothStateReceiver

• rfduinoReceiver

The register is done with the method registerReceiver(BroadcastReceiver receiver,
IntentFilter filter), where the parameter receiver will be a receiver to be registered

and the Intents intended for this will need to match the IntentFilter in the pa-

rameter filter. The scanModeReceiver is created to check the scan mode of the

BluetoothAdapter, using the getScanMode() method that can return three possible

modes:

31

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

SCAN_MODE_NONE

Indicates that the device is neither discoverable nor connectable.

SCAN_MODE_CONNECTABLE

The device is not discoverable, only connectable, so it can be connected only

to another device that had previously discover this device.

SCAN_MODE_CONNECTABLE_DISCOVERABLE

The device is discoverable and connectable.

The second receiver to be created is the bluetoothStateReceiver that will listen to

changes in the BluetoothAdapter status. In the BluetoothAdapter it is defined a con-

stant denominated ACTION_STATE_CHANGED, that as the name states, reveal a

change on the adapter state. This constant contains two fields: EXTRA_STAT E

and EXTRA_P REV IOUS_STAT E, whose represent, respectively, adapter’s new

and old state. In this case, only the actual state will be needed, and will be re-

trieved by the method getIntExtra(BluetoothAdapter.EXTRA_STAT E,0). There

are four possibilities for the data returned:

SCAN_OFF

The local adapter is off.

SCAN_TURNING_ON

The local adapter is turning on but still not ready to be connected.

SCAN_ON

The local adapter is on and ready to use.

SCAN_TURNING_OFF

The local adapter is turning off. This state can be used by local clients to

prepare for disconnection.

3.1.2.1 Bluetooth Adapter Initialization

In this step, the BluetoothAdapter will be initialized so the application can be

able to discover BLE devices and connect to them. The BluetoothAdapter will be

obtained through the BluetoothManager, so the first objective is to assure that it

is not null. The method getSystemService(Context.BLUETOOTH_SERVICE) will

retrieve a BluetoothManager. After that, the method getAdapter() from the object

BluetoothManager will return a BluetoothAdapter.

32

3.1. MOBILE APPLICATION

1 public boolean initialize() {

2

3 if (mBluetoothManager == null) {

4 mBluetoothManager = (BluetoothManager) getSystemService(

5 Context.BLUETOOTH_SERVICE);

6 if (mBluetoothManager == null) {

7 Log.e(TAG, "Unable to initialize BluetoothManager.");

8 return false;

9 }

10 }

11

12 mBluetoothAdapter = mBluetoothManager.getAdapter();

13 if (mBluetoothAdapter == null) {

14 Log.e(TAG, "Unable to obtain a BluetoothAdapter.");

15 return false;

16 }

17

18 return true;

19 }

3.1.3 Creation of the Service

As seen in 2.1.1.5, data moves in BLE through Services. So in the app, Service
and all the objects related need to be created and defined. All the Service related

objects and methods will be declared in a different file, the RFDuinoService.java.

First, the concept of Service is defined through the Android classes app.Service and

bluetooth.BluetoothGattService. The first one corresponds to the Android concept

of Service, and it is related to functionalities the mobile application will use and

if necessary to share resources between applications. The second one is related to

the GATT definition of service as a level in the data hierarchy, seen in fig.2.4.

The Service definition is handled in the RFDuinoService.java file, resulting in

the RFDuinoService class creation, as depicted by this code excerpt:

1 public class RFDuinoService extends Service {

In this class the main object that will be set are:

BluetoothGattCallback To implement BluetoothGatt callback methods related

to the application.

Binder and LocalBinder Derive from app.Service object definition.

IntentFilter Will define the Intents to which the service will respond.

33

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

Next, the methods associated with the class to handle:

• Initialization;

• Connection and Disconnection;

• Sending Data.

3.1.3.1 Initialization

In the initialization will be initialized the entity mGattCallback, a BluetoothGattCall-
back that as referred before, will define callbacks to handle the connection, service

discovery and reception of data. As explained further in Sec.3.2, according to

GATT data hierarchy, a service and respective characteristics are already defined

and are the following ones:

• UUID_SERVICE, with the UUID 0x2220;

• UUID_RECEIVE, with the UUID 0x2221;

• UUID_SEND, with the UUID 0x2222;

• UUID_DISCONNECT, with the UUID 0x2223;

• UUID_CLIENT_CONFIGURATION, with the UUID 0x2902;

In the callback onConnectionChanged, each time there is a change in the ap-

plication state, the information is broadcast to the main activity. Then in onSer-
vicesDiscovered, the characteristics are verified so the application can transfer data.

The reception of data is handled here too, in the callbacks onCharacteristicsRead
and onCharacteristicsChanged. Whenever there is a change in the characteristic

UUID_RECEIVE, which means data is received, the information is broadcast to

the main activity, that will handle the data after.

1 public final static UUID UUID_SERVICE =

2 BleUtils.sixteenBitUuid(0x2220);

3 public final static UUID UUID_RECEIVE =

4 BleUtils.sixteenBitUuid(0x2221);

5 public final static UUID UUID_SEND =

6 BleUtils.sixteenBitUuid(0x2222);

7 public final static UUID UUID_DISCONNECT =

8 BleUtils.sixteenBitUuid(0x2223);

9 public final static UUID UUID_CLIENT_CONFIGURATION =

10 BleUtils.sixteenBitUuid(0x2902);

11 //org.bluetooth.descriptor.gatt.client_characteristic_configuration

34

3.1. MOBILE APPLICATION

12

13 private final BluetoothGattCallback mGattCallback =

14 new BluetoothGattCallback() {

15 @Override

16 public void onConnectionStateChange(BluetoothGatt gatt,

17 int status, int newState) {

18

19 switch (newState){

20 case BluetoothProfile.STATE_CONNECTED:

21 Log.i(TAG, "Connected to RFDuino");

22 Log.i(TAG, "Attempting Service Discovery:"

23 + mBluetoothGatt.discoverServices());

24 connectionState = STATE_CONNECTED;

25

26

27 case BluetoothProfile.STATE_DISCONNECTED:

28 Log.i(TAG, "Disconnected from RFDuino.");

29 broadcastUpdate(ACTION_DISCONNECTED);

30

31 case BluetoothProfile.STATE_CONNECTING:

32 Log.d(TAG, "state: Connecting to GATT server.");

33

34 case BluetoothProfile.STATE_DISCONNECTING:

35 Log.d(TAG, "state: Disconnecting from GATT server.");

36

37 default:

38 Log.d(TAG, "Unknown Status:" + status);

39 }

40

41 }

42

43 @Override

44 public void onServicesDiscovered(BluetoothGatt gatt, int status) {

45 if(status == BluetoothGatt.GATT_SUCCESS){

46 mBluetoothGattService = gatt.getService(UUID_SERVICE);

47 if (mBluetoothGattService == null){

48 Log.e(TAG, "RFDuino GATT Service not found.");

49 return;

50 }

51

52 BluetoothGattCharacteristic receiveCharacteristic =

53 mBluetoothGattService

54 .getCharacteristic(UUID_RECEIVE);

55 if(receiveCharacteristic != null){

56 BluetoothGattDescriptor receiveConfigDescriptor =

35

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

57 receiveCharacteristic.

58 getDescriptor(UUID_CLIENT_CONFIGURATION);

59 if(receiveConfigDescriptor != null){

60 gatt.setCharacteristicNotification(

61 receiveCharacteristic ,true);

62

63 receiveConfigDescriptor.setValue(

64 BluetoothGattDescriptor

65 .ENABLE_NOTIFICATION_VALUE);

66 gatt.writeDescriptor(receiveConfigDescriptor);

67 } else {

68 Log.e(TAG, "RFDuino receive config descriptor

69 not found.");

70 }

71 } else {

72 Log.e(TAG, "RFDuino receive characteristic

73 not found.");

74 }

75 broadcastUpdate(ACTION_CONNECTED);

76 } else {

77 Log.w(TAG, "onServicesDiscovered received:" + status);

78 }

79 }

80

81 @Override

82 public void onCharacteristicRead(BluetoothGatt gatt,

83 BluetoothGattCharacteristic characteristic, int status) {

84 if(status == BluetoothGatt.GATT_SUCCESS){

85 broadcastUpdate(ACTION_DATA_AVAILABLE ,characteristic);

86 }

87

88 }

89

90 @Override

91 public void onCharacteristicChanged(BluetoothGatt gatt,

92 BluetoothGattCharacteristic characteristic) {

93 broadcastUpdate(ACTION_DATA_AVAILABLE , characteristic);

94 }

95 };

3.1.3.2 Connection and Disconnection

The entity BluetoothGatt has a method for connection, .connect() and other for

disconnection,.disconnect(). Before calling the .connect() method, it is necessary to

36

3.1. MOBILE APPLICATION

verify if a connection can be established, through the device address validation.

Then if the device entity is valid, it will connected to a GATT entity. As in the

connection process, for the disconnection it is verified if the BluetoothAdapter is

valid, and then it is proceed the disconnection, closing the BluetoothGatt after.

1 public boolean connect(final String address) {

2 if (mBluetoothAdapter == null || address == null) {

3 Log.w(TAG, "BluetoothAdapter not initialized or unspecified

4 address.");

5 return false;

6 }

7

8 if (mBluetoothDeviceAddress != null

9 && address.equals(mBluetoothDeviceAddress)

10 && mBluetoothGatt != null) {

11 Log.d(TAG, "Trying to use an existing mBluetoothGatt

12 for connection.");

13 return mBluetoothGatt.connect();

14 }

15

16 final BluetoothDevice device =

17 mBluetoothAdapter.getRemoteDevice(address);

18 mBluetoothGatt = device.connectGatt(this, false, mGattCallback);

19 Log.d(TAG, "Trying to create a new connection.");

20 mBluetoothDeviceAddress = address;

21 return true;

22 }

23

24 public void disconnect() {

25 if (mBluetoothAdapter == null || mBluetoothGatt == null) {

26 Log.w(TAG, "BluetoothAdapter not initialized");

27 return;

28 }

29 mBluetoothGatt.disconnect();

30 }

31

32 public void close() {

33 if (mBluetoothGatt == null) {

34 return;

35 }

36 mBluetoothGatt.close();

37 mBluetoothGatt = null;

38 }

37

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

3.1.3.3 Sending Data

To send data, the process is similar to the data reception, it is necessary to write

on the characteristic UUID_SEND, which is the one define on the service to send

data. The verifications made before writing on the characteristic are for the Blue-
toothAdapter and then for the characteristic itself to see if the application has found

it and is able to write it.

1 public boolean send(byte[] data){

2 if(mBluetoothGatt == null || mBluetoothGattService == null){

3 Log.w(TAG, "BluetoothGatt not initialized");

4 return false;

5 }

6

7 BluetoothGattCharacteristic characteristic =

8 mBluetoothGattService.getCharacteristic(UUID_SEND);

9

10 if(characteristic == null){

11 Log.w(TAG, "Send Characteristic not found");

12 return false;

13 }

14

15 characteristic.setValue(data);

16 characteristic.setWriteType(BluetoothGattCharacteristic

17 .WRITE_TYPE_NO_RESPONSE);

18 return mBluetoothGatt.writeCharacteristic(characteristic);

19 }

3.1.4 Auxiliary Files

The mobile application will deal with data transfer between a mobile device and

a BLE module, thus data conversion is mandatory. The mobile application will

present data in a ASCII format while the data is received in bytes. In the opposite

path, the same problem arise. To overcome this issue, methods to convert bytes to

ASCII and ASCII to bytes need to be created. The class where methods responsible

to convert data formats are defined is HexAsciiHelper.

Another issue that needs attention is the BLE addressing through UUID. As

seen in SubSec.2.1.1.5 there is shorts and longs UUID, so to be easier handling

the addressing to attributes another class, BleUtils, will define methods to do so.

38

3.1. MOBILE APPLICATION

3.1.4.1 Data Conversion

The data conversion performed by the application is due to difference between

format used in transfer, which are bytes, and the format used to display the data,

which is characters. So a conversion from bytes to ASCII and vice-versa has to

be done each time there is a data transfer. The conversion from bytes to ASCII

is performed by the function bytesToAsciiMaybe, where a string is build through

StringBuilder element, and then characters are added after verified if they are

ASCII.

1 public static String bytesToAsciiMaybe(byte[] data,

2 int offset, int length) {

3

4 StringBuilder ascii = new StringBuilder();

5 boolean zeros = false;

6 for(int i = offset;i<offset + length;i++){

7 int c = data[i] & 0xFF;

8 if(isPrintableAscii(c)){

9 if(zeros) {

10 return null;

11 }

12 ascii.append((char) c);

13 } else if (c == 0){

14 zeros = true;

15 } else {

16 return null;

17 }

18 }

19 return ascii.toString();

20 }

3.1.5 Sequence Diagrams

When using the mobile application, there is a list of actions that can be performed:

Enable Bluetooth
This function allow the user to enable Bluetooth on his mobile phone or

tablet. By clicking the button, the app will turn on Bluetooth and it is now

possible connecting to other Bluetooth devices or, in this case, to the system

BLE module.

Scan Devices
After having Bluetooth enabled on the device, it is possible to perform this

39

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

action. When clicking the Scan Devices button, the app will start to seek for

others Bluetooth devices. After a few seconds, a list of the Bluetooth devices

in range with the user’s device information will be showed and the user can

now try a connection with one of them.

Connect
This option is only available after the scanning process. After showing the

list of devices available, it is possible to connect to one of them by click-

ing the button Connect. After that, and for the Lighting Controller case, it

becomes possible to interact with the module.

Refresh
After the connection is established, the exchange of data between the BLE

module and the application will start. The module will send the data re-

trieved from the sensors and send it to the app repeatedly in defined time

intervals. If the user want to manually request the sensors’s value at that

moment, clicking the Refresh button will send an instruction for the module

to send the sensors’s values out of the defined time intervals.

Set Automatic/Manual Control
Just as in Refresh, the option Set Automatic Control is only available after

a connection established. To set the automatic control mode for the smart

system, application has a switch button to select between automatic and

manual mode control.

Enable
Bluetooth

1.Click Enable
Bluetooh

2.Bluetooth Enabled

3.Actions Available:
- Scan Devices;
- (Connect);

Figure 3.4: Enabling Bluetooth

40

3.1. MOBILE APPLICATION

Scan
Devices

1. Current State:
Advertising

2. Press Scan Devices

3. Catch RFD22301
Signal and Display

Information

(3) RFD22301
Information

Figure 3.5: Scanning Devices

Connect

1. Current State:
Advertising

2. Press Connect

6. Change State to
Connected

(3) RFD22301
Information 3. Send a Connection Request

4. Connect Request Response

5. Change State to
Connected

Figure 3.6: Connection Process

Set Dimmer Value If the manual control mode is selected, the seek bar with the

values possible for dimming becomes avalaible. It allows values between

zero and 128, which after every change on the bar, the application sends a

packet with the new dimming value selected.

41

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

3. Verify and
calculate light level

every cycle

1. Switch to
Automatic Control

2. Sends the instruction for automatic
control

4. Send dimming
value calculated to

the driver

Automatic
Control

ON

Dimming Circuit4.

5. Generate PWM

Figure 3.7: Automatic Control Setup

1. Select Value for
Manual Control

2. Sends the value selected in manual
control

3. Send dimming
value selected to

driver

Manual
Control

Dimming Circuit3.

5. Generate PWM

Figure 3.8: Manual Control Setup

3.2 BlueIoT Embedded

Since the objective is to develop an application for IoT, the module chosen has

to process data, control actuators and be able to communicate with other devices

through BLE.

3.2.1 BLE Module

The module chosen for the system is the RFD22301(fig.3.10) produced by RFDig-

ital®. This module allows the development of low-cost and low-power applica-

tions since it is based on the Nordic Semiconductors module, the nRF51822. The

RFD22301 module is powered by a 32-bit ARM®Cortex®M0 processor, which is

42

3.2. BLUEIOT EMBEDDED

Figure 3.9: Mobile Application Layout

the processor with better results relative to power consumption in comparison

with others processors used in BLE modules. The embedded flash memory has

128 Kbytes of capacity and the RAM is 8 Kbytes. The General-Purpose input/out-

put pins present are seven, with an analog-to-digital converter, and allows the

communicate between the module and others devices using Inter-Integrated Cir-

cuit (I2C), an asynchronous communication protocol that allows multiple master
devices to communicate with one or more slave devices, Serial Peripheral Interface

(SPI), a synchronous serial communication protocol, and Universal Asynchronous

Receiver/Transmitter (UART), an asynchronous serial communication protocol.

The electrical specifications of the module, provided by the manufacturer [22],

are present in the table 3.3.

3.2.2 Module Programming

An application (Sec.2.1.1 and fig.2.1) will run on the module MCU. The objec-

tive is to implement the procedures to advertise, settle connections and perform

actions for the smart interaction system. The module programming is done in

43

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

Table 3.3: Electrical Specifications of RFD22301 Module

Description Min Nom Max

VDD - Supply Voltage 2.1V 3.0V 3.6V
Radio Output Power -30 dBm N/D +4 dBm
Receiver Sensivity N/D -93 dBm N/D

ADC Internal Reference Voltage 1.182V 1.200V 1.218V
ADC External Reference Voltage 0.83V 1.20V 1.30V

Tx Current N/D 12 mA N/D
Rx Current N/D 12 mA N/D

the Arduino IDE environment, recommended by the manufacturer [23]. Since

the company decide to not release all the libraries open-source, it is not possible

to develop a Service, as seen in SubSec. 2.1.1.5, because the libraries implement

Services already for receiving and sending data. Using the Service available and

this module specifically, it eases the development of applications, reduces their

complexity and benefits from the FCC and CE certification of the module [24].

The inherent cost of using their Service will be reflected in coding efficiency since

it is not possible to associate directly sensor values, buttons information or data

from a mobile application to a specific Characteristic(SubSec.2.1.1.5).

The manufacturer provides a library (RFDuino.h) that eases the development

of applications, with procedures for advertising, connecting, send data and call-

backs for each module states. The states possible are OFF/Not Ad or Sleeping,

Advertising and Connected. As explained in Sec.2.1.2, the application will have a

life-cycle, shown in fig.3.11, starting in the OFF/Not Advertising state, then when

movement is detected by the Passive Infrared Sensor (PIR) sensor it starts adver-

tising and goes to Advertising state, then if it receives a connection request and

establish a connection, it goes to Connected state. If the module is advertising

for two minutes without a connection established, it stops advertising. In the

Connected state, the application can send and receive data. In the end, when the

Figure 3.10: The RFD2301 Module

44

3.2. BLUEIOT EMBEDDED

application ceases the connection, it goes to the Disconnected state. In this state,

the application can return to advertising or turn off the BLE stack. The start and

the end of the application cycle are defined by two functions: begin() and end().
When the procedure RFduinoBLE.begin() is called, the BLE stack will start and

then it start advertising. On the opposite way, to end the BLE stack and there-

for to stop advertising, the procedure RFduinoBLE.end() is called. To allow the

developer to define the actions performed by the application in each state, the

library implements five callbacks, three for the application states, one to receive

data and one(not used in this application) that returns the signal strength after a

connection. The actions performed in each state are:

onAdvertisement
When the application enter this state, it sets the variable *padvertisement,
that indicates if the application is advertising or not, to TRUE.

onConnect
In this state, the application sets the variable *pconnection to TRUE, that

indicates the connection has been settled. This variable will be used as

verification in all procedures that need to send data via BLE, to guarantee

that the module does not try to send data without a connection established

so the application does not crash.

onReceive
In this state, the callback onReceive has two input parameters, *data and len,

that corresponds to an array and its length and it is where the data received

can be accessed. It is here that the instructions received from the mobile

application. There is three instructions possible: activate the automatic

control, set the dimming value chosen by the user and a request for sending

the sensors values. For automatic control, the instruction sent will be an

A. For the manual control, it will be a MXXX, with XXX being a value

comprised between 0-128 which is the dimming levels allowed. Accordingly

to the data received, the procedure actuatorsAction(char c,int v) with c being

A or M and v being the dimming value(for automatic control, the value in

v is set to 0). In the case that a sensor values resend has been requested,

the procedures getLightSensorValue() and getTemperatureSensorValue() are

called.

onDisconnect
In this state, the application sets the variable *pconnection to FALSE, that

indicates the connection has ended.

45

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

begin()

onAdvertisement() onConnect() onDisconnect()

end()

Device

Transfer Data

Figure 3.11: States of the BLE Application

The objective of this system is the integration with sensors and actuators, so

to handle processing of the data retrieved in sensors, the control of actuators and

the commands received by the mobile application, some procedures have to be

implemented:

getLightSensorValue()
The procedure getLightSensorValue() has the function of retrieving values

from the light sensor connected to the module and send them in BLE pack-

ets to a connected device. The module will retrieve the data using the

method defined in the RFDuino library for analog-to-digital readings analo-
gRead(SensorLPin), where SensorLPin is the pin defined for the light sensor.

This function will return a integer with the light value, accordingly with the

light intensity measured(fig.3.17) that will be stored in the integer variable

LightValue. The data flow of this action is described in fig.3.12(a).

getTemperatureSensorValue()
The procedure getTemperatureSensorValue() follow the same pattern as the

getLightSensorValue() procedure. It will retrieve the temperature value from

an analogRead(SensorTPin), this time on the pin defined for the temperature

sensor. The value retrieved from the sensor will come from the RFDuino

ADC, that has a 10-bit resolution for reading values. So to convert from

46

3.2. BLUEIOT EMBEDDED

10K

VDD

V_out @
GPIO4

 analogRead(SensorLPin)

 Store Data in Variable
LightValue

(a) getLightSensorValue()

LM35
DZ

5V

 analogRead(SensorTPin)

 Store Data in Variable
TempValue

V_out @
GPIO5

(b) getTemperatureSensorValue()

HC-
SR505

5V

 digitalRead(Pir)

 Begin Advertise
V_out @
GPIO2

(c) PIR Presence Detection

Figure 3.12: Data Flow Between Sensors and RFD22301

47

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

millivolts, that comes from the temperature sensor, to Celsius, first it is nec-

essary to divide the value received by the ADC resolution. After dividing by

1024, to finish the conversion, the value will be multiplied by the reference

voltage, which is 5V, which is 5000 mV (since the sensor returns a value in

millivolts, the reference voltage has to be in millivolts too). The returned

value will be a float, since the sensor allow values with decimal cases, and

will be stored in the float variable TempValue. The data flow of this action is

described in fig.3.12(b).

actuatorsAction(char c,int v)
This procedure handles the automatic and manual control for the illumi-

nation. Each time a packet is received from the mobile application by the

procedure onReceive(), as explained above, a filtering is performed to select

what procedure will be called. In this case, that means that an instruction

related to the automatic or manual control has been sent. If a request for

activating the automatic control is sent, the variable autoControl is set to

true, that will indicate to the application that the routine to check the light

level needs to be called each cycle. If the request is to indicate that manual

control has been activated, a value corresponding to the desired light level

is received and will be sent to the LED driver.

autoControlFunc(int lightValue)
For the auto-control implementation, it was necessary to define a reference

value for the ideal illumination level. To achieve a greater comfort in the il-

lumination control, the objective is to adapt the illumination level measured

to a level defined as ideal. For different tasks and spaces, the ideal value

varies so it is only possible to approximate the value based on recommend

light levels [25]. Table 3.4 presents some of the recommended values for

different activities.

The value defined as ideal in the application is 400, due to being comprised

between the values defined for office work. Nevertheless, since the system is

re-programmable, this value can be changed easily. Each time this function

is called, a verification is made to check if the value sense in the light sensor

is above or below the ideal, and then an increment or decrement is made

accordingly, which will also avoid a abrupt change in the illumination if a

dimming value was calculated. It will also prevent situation as momentarily

change on outside illumination, due the clouds passing by for example, that

would reflect in abrupt changes on the lamp intensity.

48

3.2. BLUEIOT EMBEDDED

Table 3.4: Indoor Light Values

Activity Illumination Level (Lux)

Public areas with dark surroundings 20 - 50

Simple orientation for short visits 50 - 100

Working areas where visual tasks
are only occasionally performed

100 - 150

Warehouses, Homes, Theaters, Archives 150

Easy Office Work, Classes 250

Normal Office Work, PC Work, Study Library,
Groceries, Show Rooms, Laboratories

500

Supermarkets, Mechanical
Workshops, Office Landscapes 750

Normal Drawing Work, Detailed Mechanical
Workshops, Operation Theaters

1000

timer_config(void)
In this procedure will be defined the parameters for the system timer2. The

timer main parameters are:

• PRE-SCALER

• CC[0]

• attachInterrupt()

The PRE-SCALER is used to set the timer frequency. It follows the equation:

Oscillator Frequency

2N
= T imer Frequency

N will be the PRE-SCALER factor, which means with a N equal to 9 (value

used in this timer configuration) and knowing that the internal oscillator

frequency is 16 MHz, the timer frequency that will be set is 31250 Hz. The

period of 31250 Hz is 32 µs, so in the CC[0] parameter, the next calcula-

tion needed is the multiplication factor that will be one millisecond (one

thousand µs) divided by 32 µs:
2This timer does not define the communications timings, there is a timer dedicated for BLE

communication.

49

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

1000
32

= 31.25

After finding the multiplication factor, in the application constant values

it is defined the trigger value, which in this case will be one second (one

thousand milliseconds) which will be easy to handle for counting. So the

parameters CC[0] will be the desired trigger value multiplied by the multi-

plication factor:

CC[0] = TRIGGER_VALUE ∗ (31) + TRIGGER_VALUE ∗ (1
4

)

TIMER1_Interrupt(void)
Each time a timer interrupt occur, this procedure is called and the instruc-

tions to perform at each timer event are defined here. The application has a

time variable (aux_timing) that will be increment every timer event. Since

timer events occur each the variable will work as a counter set in seconds.

The complete decision chart can be observed in fig.3.13, and is implemented

by the code present in Appendix B.1. Although this application being designed

for indoor, some concepts have been adapted from an street light control sys-

tem [26]. After main program starts, the automatic control starts too due to the

AutoControl variable that is set on by default. Then the application wait for a

presence detection, when movement is detected, advertising starts. After each

verification of movement, since the application is set on automatic control, the

light level is verified and a adjustment is made if needed. When on advertising,

the application will check if a connection has been established, if not and it is not

the fourth time without a connection, then it proceeds to verify the light level

and wait for a connection, if it is the fourth time, it means that two minutes have

passed without a connection so the application assume that the user has no in-

tention to connect, returning to the presence detection state. If a connection is

established, the application will send the light and temperature values retrieved

in sensors, each thirty seconds, and check if instructions have been sent by the

user. The instructions possible are refresh and automatic/manual control, where in

manual control a value is sent by the mobile application as explained before. If

the manual control is set ON, the AutoControl variable will be set to false, which

means that no verification on the illumination level will be performed, the light

level will be the one choose by the user. If an user disconnect after setting the

light level, it will remain until the user changes it or set the automatic control on.

50

3.2. BLUEIOT EMBEDDED

Start

Start Autocontrol

Presence Detected

Begin Advertise

Connection

Send Temperature and
Light Value

Wait 30 Seconds

Instruction
Received

Refresh Sensor
Values

Manual Control AutoControl On

Set AutoControl Off

Send Light Control
Value

2 Minute Without
Connection

Check Light
Level

Calculate Ideal Light
Value

Adjust Light Value

YES

YES

NO

YES

NO

NO

YES

YES

YES

YES

NO

Figure 3.13: Complete Decision Diagram

51

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

3.3 BlueIoT Hardware

3.3.1 Sensor Module Development

The ambient variables measured by the smart system are light level, temperature

and presence. Thus, the sensors module will be composed by a light, a tempera-

ture and a PIR sensor.

Light Sensor
There is several options for light sensitive components, in this case the

choice was between two component: Light Dependent Resistor (LDR) and

phototransistor.

A LDR, or photoresistor, is a photoelectric device. It is a resistor with vari-

able resistance in function with the intensity of light incidence [27] [28].

The LDR usually exhibits high impedance, nearly 1MΩ in dark ambients

(there are LDR with the opposite behavior), and when the light intensity

increases the impedance suffer a drastic reduction on his value that can go

to 100Ω approximately.

(a) LDR (b) Circuit Symbol

Figure 3.14: An example of a LDR and the Circuit Symbol

A phototransistor is a photosensitive device, based in the regular transistor

but with a transparent cover, which makes easier for light to reach the base-

collector junction. Although normal transistor exhibit photosensitive effect,

in phototransistor their structure is designed to optimize it [29]. When pho-

tons contact the base-collector junctions, the electrons start to flow, creating

a current in base, that will be amplified by the transistor’s current gain β.

The first approach for measuring light used a LDR as photosensitive device.

The first problem detected was related to the LDR sensitivity. Due to the

52

3.3. BLUEIOT HARDWARE

(a) Phototransistor (b) Circuit Symbol

Figure 3.15: An example of a Phototransistor and the Circuit Symbol

lack of precision in the measure process and different values obtained in

the same lighting conditions, the conclusion was that a LDR only fitted in

this system if the objective was to use light values in a switch, i.e, detect

the presence or absence of light only. Since phototransistor have an higher

sensitivity to light changes and the values obtained did not changed too

much in similar light conditions, it allows the system to act according the

light conditions in a space and to do it with an higher precision.

The phototransistor circuit (fig.3.16) consists of using the phototransistor

as a Common-Collector amplifier, biased with a 10 kΩ between emitter and

ground [30]. Usually the topology used is the Common-Emitter amplifier,

due to gain, but in this case since the gain is not relevant, the Common-
Collector was choose for offering a crescent output voltage for crescent values

of light. Thus, it is possible to analyze the values directly in the MCU, which

facilitate the decision making of the system.

The component chosen was a BPW85A by Vishay [31]. It is a silicon NPN

phototransistor with high sensitivity and fast response times to light varia-

tion. The relation between voltage output and Lux (SI unit for Illuminance)

is shown in fig.3.17, where the values for Illuminance were obtained at dif-

ferent distances from the light source and measured with the application

Light Meter [32] while the voltage values for each level were measured at

the phototransistor pins. After twenty measures, the graphic was generated

on Matlab using both linear and cubic interpolation. It is possible to ob-

serve three slope level: from zero to two hundred Lux, from two hundred to

five hundred Lux and finally after the five hundred level the slope start to

stabilize.

53

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

R

VDD

Vout

Figure 3.16: Common-Collector Topology Using Phototransistor

Figure 3.17: Relation between Lux and Voltage Output of the Phototransistor
Circuit

Temperature Sensor
Since the objective is to integrate all sensors in the smallest circuit board

possible with the lowest cost too, this constraint led us to choose an inte-

grated circuit sensor rather than try to implement with other options like

mechanical or electrical sensors.

The module chosen is the LM35-DZ temperature sensor by Texas Instru-

ments [33]. It is calibrated directly in Centigrade temperature and has a

54

3.3. BLUEIOT HARDWARE

LM35
DZ

V
D

D

G
N

D

V
O

U
T

(a) LM35 DZ Pins (b) Basic Range Configuration

(c) Full Range Configuration

Figure 3.18: Symbol and Configurations of LM35-DZ [33]

precision of approximately ±1\4 °C when set in the basic mode for the range

of 2°C to 150 °C. There is two possible configurations to use the LM35-DZ:

Basic Range(fig.3.18(b)) and Full Range(fig.3.18(c)). Since the Full Range con-

figurations returns a negative voltage output and the ADC of our module

only allows positive voltages, it is used the Basic Range configuration.

Passive Infrared Motion Sensor
A PIR is a device that senses motion through infrared waves. The sensor

contains a material infrared sensitive with two slots covered by a Fresnel

lens. The signal output of the PIR is generated when a warm body crosses

one of the slots range, causing a differential voltage across the material.

The sensor choose was a HC-SR505, due to his reduced price and low-voltage

operation (4.5-20V) [34]. The sensor can sense presence in a 3 meters range

inside a 100 angle vision.

55

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

3.3.2 Actuators

On smart control systems that work with light, the actuators are mostly circuits to

turn on or dim lamps. The way light dimming is performed on lamps differs from

their type, i.e, incandescent lamps are dimmed through the variation of voltage

and LED, since they work as semiconductors, will work at constant voltage and

current. So the way to dim LED is using Pulse Width Modulation (PWM)(fig.3.20).

Longer pulses means higher intensity while smaller pulses means lower inten-

sity. As depicted in fig.3.19 several manufacturers have developed modules for

integration with microcontrollers, designed for dimming lamps through PWM

signals [35, 36].

(a) Digital AC Dimmer by InMojo [35] (b) AC 50/60 Hz Dimmer/SSR Control Board
by Tindie [36]

Figure 3.19: Example of Commercial AC Dimmers

The way how PWM controls the light intensity involves another concept: Zero
Cross Detection. It consists of detecting when the 230 VAC wave (fig.3.21) from

supply crosses zero. This detection will be done with an optocoupler, after the

signal rectification by a diode bridge-rectifier, obtaining a wave with only positive

values (fig.3.22).

The optocoupler will have as input the rectified wave on the diode side. Each

time the wave is below a certain threshold, the diode stops conducting(fig.3.23(b)),

which will stop the phototransistor conduction on the other side. When the photo-

transistor stops conducting, a current starts flowing on the zero-cross pin. When

the wave is above the threshold and the diode is conducting (fig.3.23(a)), the pho-

totransistor will be conducting too, forming a current flow that passes through

the phototransistor ending in the grounded pin. The resulting output on the zero-

cross pin will be pulses for each time the signal is below the threshold, i.e. two

times for each period. Since the frequency for AC voltage home supply is 50 Hz

56

3.3. BLUEIOT HARDWARE

LED Dimming
@100%

LED Dimming
@80%

LED Dimming
@50%

LED Dimming
@25%

LED Dimming
@10%

Figure 3.20: PWM Signals at Different Dimming Rates

Figure 3.21: 230VAC 50Hz Waveform

57

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

Figure 3.22: Rectified 230VAC 50Hz Waveform

(for Europe), the zero-crossing time can be calculated by:

t =
1
f
, with f = 50Hz

t = 20ms and
t
2

= 10ms

In fig.3.24, it is shown the 4N25 optocoupler output, that as expected, has

each pulse separated by 10 milliseconds. The waveform not being exactly a pulse

is explained by the voltage threshold of conduction not being exactly zero and by

the LED switching time trise and tf all that are, accordingly to the datasheet [37],

2 µs.

In fig.3.26, the Zero Cross Detection part is represented by the red square.

The Zero-Cross Detection allows that the start of each semi-period can be

known by the microcontroller, which leads to the second part of light control:

the light intensity leveling. The PWM(fig.3.20) is applied through a digital sig-

nal that comes from the MCU, that set the optocoupler’s diode on conduction,

therefore setting the triac output on conduction too. The triac placed between the

optocoupler and AC load, will be open each time his base receive a signal from the

optocoupler, specifically each time a digital HIGH is set on the optocoupler input.

Once the triac open, the AC load will be supplied by the 230 VAC, consequently

being turned on. The triac is closed when the 230 VAC crosses zero. The light in-

tensity is defined by the optocoupler input timing, since the zero-cross detection

is synchronized with this dimming part, each time a zero-crossing is detected, a

delay is applied (tdimming) and the light intensity will be inversely proportional to

tdimming as a smaller delay means more time the lamp is supplied(3.25).

58

3.3. BLUEIOT HARDWARE

4N25

10K
Current

Flow

Diode
Conducting

(a) Optocoupler 4N25 Conducting

4N25

10K
Current

Flow

Diode Not
Conducting

(b) Optocoupler 4N25 Not Conducting

Figure 3.23: Conduction on the Optocoupler 4N25

Figure 3.24: Output of 4N25 Optocoupler

59

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

Synchronism required to dim a lamp without flickering is tight. The only way

to do it was with hardware interrupts, but since it is needed at least one more

to control the radio timings to process the BLE communication, conflicts with

interrupts will occur. In this scenario, the priority is always for the communi-

cation, which in high data throughput will severely affect the others interrupts.

As depicted in fig.3.25, if the triac opening is ahead or delayed, the lamp will be

supplied more or less time that supposed, which will result in an higher or lower

light intensity. Further, if the opening time is different at each wave period, that

means a different light intensity every 10 milliseconds (for the case that in every

cycle the triac is open out of time). The resulting flicker is so high making the

circuit inviable. So the solution passed by include a separated microcontroller to

control the dimming process by receiving directly from the RFD22301 a dimming

value. The RFD22301 now does not have the control timings to generate the PWM

wave, liberating the timer destined to do so, allowing now the implementation

of a timer with less precision needed, that will be used to generate a one second

spaced interrupt for the MCU to know when to send sensors values. Since the BLE

module was programed in Arduino IDE, the microcontroller choose to control the

dimming circuit was an Arduino Mega 2560. Code present in the Arduino can be

consulted in Appendix B.2.

t_dimming

Triac open

Figure 3.25: Triac Opening According to tdimming

In fig.3.26, the Dimmer part is represented by the green square.

60

3.4. PRINTED BOARD CIRCUIT DESIGN

230 VAC

AC LOAD

ZERO
CROSS

DIMMER

120K

4N25

MOC3021

120K

1K

10K

470

Figure 3.26: AC Led Dimmer Driver Circuit

3.4 Printed Board Circuit Design

To finalize the system development, a Printed Circuit Board (PCB)was designed

with the help of EAGLE software. One of the initial constraints about the system

implement was the circuit board size, that had to fit in an equipment box(fig.3.30)

to be embedded in a wall after. The size of equipment boxes varies from different

vendors, so the value used as reference was a 60 by 60 millimeters square. As

shown in fig.3.4, this value is respected, with the circuit board size being 59 by

52 millimeters, where some space is available for cutting corners.

A division had to be made in the circuit, due the different voltages present: 5V

and 3.3V for the RFD22301, sensors and half of the dimming circuit, and 230V

coming from home supply that will be connected to the triac, bridge rectifier and

lamp. A 10mm space was left open to separate the parts working at different

voltages to prevent the remaining parts of the circuit to burn due to high voltage.

Also, since 230V are very dangerous and even mortal, the space was used to

left a message to avoid touching the board when switched on. Another concern

about the 230V voltage was the track width. To support high voltage, the track

needed to be wider, so with the help of PCB track width calculator, the minimum

width for the tracks with 230V was calculated [38]. For the remaining tracks

working at low voltage, a thicker trace was used. In the datasheet [22], some

61

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

26/03/2016 01:47 f=0.80 C :\Users\Dan ie l\Docum ents\eag le\BLE_2\C ircu ito .sch (Sheet: 1/1)

RFD22301

BPW 85A

10
k

1.
5k

1k

1.
5k

1k

D
F0

4S

4N25M

M OC3031M

TIC206D

120k

120k

1k

10
k

470

10
uF

GND
GND
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GND

GND
GND

EXTANT
GND
+ 3V

RESET
FACTORY

GPIO0/AREF
GPIO1

GND
GND

U1

PHOTOTRANSISTOR

R
1

R
3

R
4

R
7

R
9

LM 35DZ

TEM PERATURE-SENSOR

VCC3

GND1
ADJ 2

B1O K1
1

2

6

4

5

OK2
1

2 4

6
TRIAC

AC_220

12
34

AC_LOAD

12
34

R6

R8

R10

R
11

R 12

PIR
1
2
3

C1

L IGHT_VALUE

LIGHT_VALUE

TEM P_VALUE

TEM P_VALUE

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

/RESET
FACTORY
GPIO1

3V

3V

GPIO0_PROG

VDD

VDD

VDD

5V

5V

5V

V+

V-

ZERO_CROSS

ZERO_CROSS

DIM M ER

DIM M ER

PIR_VALUE

PIR_VALUE

Released under the C reative Com m ons
Attribution Share-A like 4.0 L icense
 https://creativecom m ons.org/licenses/by-sa/4.0/

Design by:

ANTENNA

pw r 0

pw r 0

io 0

io 0

io 0

io 0

io 0

pw r 0

pw r 0

pw r 0

nc 0

pw r 0

pw r 0

io 0

io 0

io 0

io 0

pw r 0

pw r 0
pa

s
0

pa
s

0
pa

s
1

pa
s

1

pa
s

1
pa

s
1

pa
s

1
pa

s
1

pa
s

1
pa

s
1

pa
s

1
pa

s
1

io 0

io 0

io 0

pas 0

pa
s

0

pas 0

pa
s

0

pas 0

pas 0

pas 0

pas 0

pas 0

pas 0

pas 0 pas 0

pas 0 pa
s

0
pa

s
0

pas 0

pas 0pas 0

pas 0pas 0

pas 0pas 0

pas 0pas 0

pas 1 pas 1

pas 1 pas 1

pas 1 pas 1

pa
s

1
pa

s
1

pas 1 pas 1

pas 0

pas 0

pas 0

pas 1 pas 1

Figure 3.27: Complete Circuit

Circuit

BLE
Module

Sensors
LED

Driver

Arduino Mega 2560Arduino Uno

Mobile Application

Android

 Power Supply

 Programming the
RFD22301

 Zero-Cross
Detection and
Lamp Actuation

 Interaction
between User and
Circuit

Figure 3.28: Prototype Block Diagram

recommendations are made for the module integration in a PCB, in order to

improve the antenna performance. Thus, the module localization in the board

is on the inferior left corner, leaving some around the antenna without coper or

components to maximize the signal output and minimize interference.

62

3.4. PRINTED BOARD CIRCUIT DESIGN

Figure 3.29: Proposed Prototype

63

CHAPTER 3. PROPOSED SMART INTERACTIVE SYSTEM (BLUEIOT)

Figure 3.30: Example of an Equipment Box

28/03/2016 18:47 f=0.80 C :\Users\Dan ie l\Docum ents\eag le\PCB 20160308 - Cóp ia\BLE_2\C ircu ito .brd

4N
25
M

AC_220

AC_LOAD

OK1

PI
R

12

12

H
IG

H
 V

O
LT

AG
E

D
O

 N
O

T
TO

U
CH

ANT AREA
No Copper

GND

+ 5V

FRST
RST

GPIO1
GPIO0

GND

+ 5V
VOUT

LOAD

AC
 I

N

B1

PI
N

S

LM
35

D
Z

PHOTOTRANSISTOR

R
1

R 10

R
11 R

12

R 3R4

R6
R7

R
8

R
9

TR
IA

C

U1

C
1

J1

J2

J3

J4

OK3

DF04S

TE
M

PE
R

A
TU

R
E-

SE
N

SO
R

BPW 85A

10
k

1 k

10
k 47

0

1 .5k1k

120k
1 .5k

12
0k

1k

TI
C2

06
D

RFD22301

10
uF

M
O

C3
02

1M

59

52

Figure 3.31: PCB Designed

64

C
h
a
p
t
e
r

4
BLE Energy Budget Analysis

4.1 Power Consumption

The measurements for power consumption were made through a shunt resistor

used to convert the resistor voltage into current using the following equation:

P ower = Vdd ∗ (
Vrms
Rshunt

) (4.1)

The equipments used for measurements were:

• Iso-Tech IDS8062 60MHz, 2 Channel Digital Oscilloscope

• Xindar DB600.031 Digital Multimeter

• Resistor 10 Ω ±5%

There is six states where power consumption calculation matters:

• Deep Sleep

• Idle

• Advertising

• Connecting

• Receiving Data

• Sending Data

65

CHAPTER 4. BLE ENERGY BUDGET ANALYSIS

4.1.1 Deep Sleep

The Deep Sleep state is the main responsible for the low power consumption in

BLE since it allow to implement delays, both in the communication process, as

between the timings to send or receive data, or in the middle of application actions

when delays can occur. Accordingly to the module datasheet [22], the average

current consumption is 4 µA that corresponds to an expected power consumption

of 13,2 µW with a 3.3V supply, which is far below power consumed in other states.

4.1.2 Idle

When the module enters Idle state it does not advertise nor is able to start a con-

nexion. This state is used to perform actions that does not involve communication

with others devices as retrieving data from sensors. Unlike Deep Sleep where only

the oscillator is running, in this state the MCU needs to be on so it can perform

actions. The average current consumption for the MCU is around 4 mA, which

results in an expected power consumption of 13,2 mW .

4.1.3 Advertising

As the module starts advertising, packets are sent which results in an power

consumption increase. In order to control power consumption some parameters

can be defined, as the advertising interval and the number of packets sent in each

interval. Fixing the number of packets sent, a larger interval results in a minor

power consumption. Fixing the time interval, sending more packet per interval

will increase power consumption. The advertising power consumption is not

referred in the module datasheet, so from fig.4.1 to fig.4.7, samples of advertising

intervals are shown for different transmit power, in which it is possible to observe

variables like peak-to-peak voltage - Vpp and root-mean-square voltage - Vrms,

alongside with the waveform in which is possible to detect, through peak voltages,

advertising packets being sent.

The average values for current consumption, in the advertising state, are

present in table 4.1. As it can be in fig.4.1 to fig.4.7, when an advertising packet

is sent, a peak voltage occur, which means that the power consumption will be

higher. It can occur that in a sample of an advertising interval peak voltages are

higher for a smaller output power comparing to a sample with an higher output

power. Another constraint relatively to measurements is that in the oscilloscope,

sample with the size of an advertisement interval are captured, but it does not

necessarily means that it is a complete advertising interval (it is more probable

66

4.1. POWER CONSUMPTION

Figure 4.1: Voltage Drop in Advertising State with +4 dBm Output Power

Figure 4.2: Voltage Drop in Advertising State with 0 dBm Output Power

67

CHAPTER 4. BLE ENERGY BUDGET ANALYSIS

Figure 4.3: Voltage Drop in Advertising State with -4 dBm Output Power

Figure 4.4: Voltage Drop in Advertising State with -8 dBm Output Power

that the waveform in oscilloscope is two different advertising intervals). A prob-

lem that comes from this fact, for example in fig.4.1 is visible, some samples does

not have the expected ten advertising packets, which can reflect a smaller Vrms
resulting in a smaller average power consumption.

68

4.1. POWER CONSUMPTION

Figure 4.5: Voltage Drop in Advertising State with -12 dBm Output Power

Figure 4.6: Voltage Drop in Advertising State with -16 dBm Output Power

4.1.4 Connexion

When establishing a connection, it is expected a power consumption increase due

to packet exchange between devices to define the connexion parameters. After

the connexion establishment, the power consumption will be proportional to the

69

CHAPTER 4. BLE ENERGY BUDGET ANALYSIS

Figure 4.7: Voltage Drop in Advertising State with -20 dBm Output Power

Table 4.1: Average Current Consumption for Different Output Power in Advertis-
ing

Output Power Average Current

+4 dBm 3.52 mA
0 dBm 3.48 mA
-4 dBm 3.43 mA
-8 dBm 3.35 mA

-12 dBm 3.29 mA
-16 dBm 3.22 mA
-20 dBm 3.18 mA

data throughput.

4.1.5 Sending and Receiving Data

The values obtained during the measurements made sending a packet of 4 bytes

every second, the maximum size that the module will trade with the mobile

application, are presented in table 4.3.

When measuring the current consumed in the receive state, the values mea-

sured were all equal, around 4,4 mA.

70

4.2. RECEIVED STRENGTH SIGNAL INFORMATION

Table 4.2: Average Current Consumption for Different Output Power during a
Connection Event

Output Power Average Current

+4 dBm 4,89 mA
0 dBm 4,82 mA
-4 dBm 4,75 mA
-8 dBm 4,73 mA

-12 dBm 4,72 mA
-16 dBm 4,71 mA
-20 dBm 4,70 mA

Table 4.3: Average Current Consumption for Different Output Power Sending a 4
bytes Packet

Output Power Average Current

+4 dBm 4,42 mA
0 dBm 4,39 mA
-4 dBm 4,38 mA
-8 dBm 4,38 mA

-12 dBm 4,37 mA
-16 dBm 4,36 mA
-20 dBm 4,36 mA

4.2 Received Strength Signal Information

RSSI measurements are an indicator of the signal strength received by devices

and are used to map an area where it possible to establish a connection. There is

two factors that have influence on the RSSI value:

• Distance

• Output Power

Based on those two factors, some measurements were made for different

distances and output power. The output power range that can be set on the

RFD22301 is from +4 to -20 dBm, for multiples of 4 [22]. As expected, an higher

output power results in an higher RSSI. Relatively to distance, when the distance

is higher, the RSSI comes down.

71

CHAPTER 4. BLE ENERGY BUDGET ANALYSIS

Figure 4.8: RSSI Values at 1 Meter Distance

Figure 4.9: RSSI Values at 2 Meters Distance

72

4.3. IMPLEMENTATION COSTS

Figure 4.10: RSSI Values at 4 Meters Distance

Table 4.4: Average RSSI Values for Different Distance and Output Power

Output Power
Distance

1m 2m 4m

+4 dBm -63.97 -61.50 -70.97
0 dBm -62.17 -64.60 -74.63
-4 dBm -65.90 -68.37 -79.10
-8 dBm -68.67 -73.60 -83.20

-12 dBm -71.83 -75.97 -84.60
-16 dBm -75.80 -81.57 -90.57
-20 dBm -79.43 -82.47 -92.23

4.3 Implementation Costs

In this section, the list billing for the components used is presented in table 4.5.1.

The circuit implemented has a lower cost than one of the commercial circuits

seen earlier [35, 36] for dimming, that costs around 35 AC, and have more func-

tionalities as the communication and sensors. The sensor part is also cheaper than

the commercial sensor boards seen [4, 5], although some questions can be raised

about the performance, since the objective here was to use low-cost components.

Finally comparing with ZigBee, modules costs between 20 and 40 AC [39, 40],

which is above the RFD22301 cost. As referred in the introductory chapter, one of

1The HC-SR505 was ordered on Ebay, while the rest at www.mouser.pt or avalaibe at the
university

73

CHAPTER 4. BLE ENERGY BUDGET ANALYSIS

Table 4.5: Billing List of the Prototype Components

Component Quantity Price

BLE Module

RFDuino22301 1 18,10 AC
100pF Capacitor 1 0,10 AC

1kΩ 1/2W Resistor 1 0,06 AC
2kΩ 1/2W Resistor 1 0,06 AC

Sensors Module

BPW85A 1 0,62 AC
LM35-DZ 1 1,41 AC
HC-SR505 1 1,12 AC

10 kΩ 1/2W Resistor 1 0,06 AC

Dimming Circuit

4N25 Optocoupler 1 0,53 AC
MOC3021 Optocoupler 1 0,56 AC

BT137-600 Triac 1 0,63 AC
1N5404 Diode 4 4 x 0,15 AC

Terminal Connectors 2 2 x 0,55 AC
120kΩ 1/2W Resistor 2 2 x 0,06 AC

1kΩ 1/2W Resistor 1 0,06 AC
470 Ω 1/2W Resistor 1 0,06 AC
10 kΩ 1/2W Resistor 1 0,06 AC

Total 25,25 AC

the main advantages of development this type of application with BLE is that it

does not need a specific controller, any smartphone compatible with BLE or using

an USB dongle can act as a controller. This will result in a smaller development

cost without losing processing capacity.

74

C
h
a
p
t
e
r

5
Conclusions and Future Work

5.1 Conclusions

The objective of this thesis was to develop a smart system, based on BLE commu-

nication, capable of sensing environment variable, control the illumination and

to interact with a mobile application designed for it.

Based on the work of Cho et al [18], the objective was to embedded MCU,

sensors and actuators all in one board. Two majors improvements were made: the

inclusion of all sensors and BLE on the same circuit board and the development

of an automatic illumination control.

The dimming control due to the limitations presented in Chapter 3 was imple-

mented in a different MCU, which remove the high flickering existent when the

RFD22301 module were handling the dimming process.

As exposed in the beginning of Sec.3.1 several issues needed correction in the

first versions compatible with BLE. The mobile application for the SLABLE was

tested in both Android version 4.3 and 5.0. The performance differences observed

are relative to connection establishment delay and connection loss. For version

5.0 connection was established faster and almost no connection loss was detected,

while in version 4.3 it was common to lose connection with the module after some

time connected.

5.2 Future Work

For the future work to be done, there is two main paths to be followed:

75

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

• Extend connectivity of the device through cloud computing or other proto-

cols

• Add new functionalities and integrate with other systems

As the technology evolves, along the development of this system new modules

with BLE built-in were released that would allowed developing a system with

cloud connectivity. The major differences comparing to the module used in this

thesis are the possibility to have two or more communication protocols and better

MCU. With a BLE and WiFi embedded module it would be possible connect to

clouds. Cloud connectivity allow to introduce a new layer between the mobile

application and the physical system, where processing and data storage can be

implemented outside those.

Another improvement possible is to migrate from a one communication mod-

ule system to a multi communication module through Gazelle Link Layer protocol.

This would turn possible to create a wireless sensor network, allowing modules

to turn into connected sensing nodes with the ability to trade data between them.

Initially, both ideas were planned to be implemented in this thesis, the first

one could not be done because of the module limitation, while the second one for

lack of time.

For the second path, there is already several home automation protocol as

HVAC or DALI. Since the principle premise of IoT is to connect the larger num-

ber of device in the same network, a study could be made about the viability

of integrating the implemented system into another existent home automation

protocol.

76

Bibliography

[1] Kevin Ashton. That ‘Internet of Things’ Thing. 2009. url: http://www.

rfidjournal.com/articles/view?4986.

[2] M. Collotta and G. Pau. “A Novel Energy Management Approach for Smart

Homes Using Bluetooth Low Energy”. In: IEEE Journal on Selected Areas
in Communications 33.12 (2015), pp. 2988–2996. issn: 0733-8716. doi:

10.1109/JSAC.2015.2481203.

[3] M. Choi, W. K. Park, and I. Lee. “Smart office energy management system

using bluetooth low energy based beacons and a mobile app”. In: Consumer
Electronics (ICCE), 2015 IEEE International Conference on. 2015, pp. 501–

502. doi: 10.1109/ICCE.2015.7066499.

[4] Virtenio GmbH. Sensor board for the expansion board Preon32Shuttle Datasheet.
url: http://www.virtenio.com/en/assets/downloads/datenblaetter/

DS_VariSen_v14_2page%20[EN].pdf.

[5] Develco Products. Motion Sensor. Last Accessed: 26/03/2016. url: http:

//www.develcoproducts.com/media/1677/motion-sensor-datasheet.

pdf.

[6] Bluetooth SIG. Bluetooth Specification 4.0. 2010. url: http://www.bluetooth.

com.

[7] J. DeCuir. “Introducing Bluetooth Smart: Part 1: A look at both classic

and new technologies.” In: IEEE Consumer Electronics Magazine 3.1 (2014),

pp. 12–18. issn: 2162-2248. doi: 10.1109/MCE.2013.2284932.

[8] K. H. Chang. “Bluetooth: a viable solution for IoT? [Industry Perspectives]”.

In: IEEE Wireless Communications 21.6 (2014), pp. 6–7. issn: 1536-1284.

doi: 10.1109/MWC.2014.7000963.

[9] Akiba Kevin Townsend Carles Cufí and Robert Dadidson. Getting Started
with Bluetooth Low Energy: Tools and Techniques for Low-Power Networking.

O’Reilly Media, 2013, pp. 35–51.

77

http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
http://dx.doi.org/10.1109/JSAC.2015.2481203
http://dx.doi.org/10.1109/ICCE.2015.7066499
http://www.virtenio.com/en/assets/downloads/datenblaetter/DS_VariSen_v14_2page%20[EN].pdf
http://www.virtenio.com/en/assets/downloads/datenblaetter/DS_VariSen_v14_2page%20[EN].pdf
http://www.develcoproducts.com/media/1677/motion-sensor-datasheet.pdf
http://www.develcoproducts.com/media/1677/motion-sensor-datasheet.pdf
http://www.develcoproducts.com/media/1677/motion-sensor-datasheet.pdf
http://www.bluetooth.com
http://www.bluetooth.com
http://dx.doi.org/10.1109/MCE.2013.2284932
http://dx.doi.org/10.1109/MWC.2014.7000963

BIBLIOGRAPHY

[10] ISO/IEC 9834-8:2005. ISO. 2005. url: http://www.iso.org/iso/

catalogue_detail.htm?csnumber=36775.

[11] Mikhail Galeev. Bluetooth 4.0: An introduction to Bluetooth Low Energy—Part
II. Last Accessed: 13/01/2016. 2011. url: http://www.eetimes.com/

document.asp?doc_id=1278966.

[12] Joe Decuir. Bluetooth 4.0: Low Energy. Cambridge Silicon Radio plc, 2010.

[13] Rob van Kranenburg. The Internet of Things. url: http://www.theinternetofthings.

eu/what-is-the-internet-of-things.

[14] L. Coetzee and J. Eksteen. “The Internet of Things - promise for the future?

An introduction”. In: IST-Africa Conference Proceedings, 2011. 2011, pp. 1–

9.

[15] Rob van der Meulen. Gartner Says 6.4 Billion Connected Things Will Be in
Use in 2016, Up 30 Percent From 2015. 2015. url: http://www.gartner.

com/newsroom/id/3165317.

[16] Nordic Semiconductors. 3rd Party Bluetooth Smart Modules. Last Accessed:

15/02/2016. url: http://www.nordicsemi.com/eng/Products/3rd-

Party-Bluetooth-Smart-Modules.

[17] Liisa Halonen. Guidebook on Energy Efficient Electric Lighting for Buildings.
Helsinki University of Technology, Lighting Laboratory. 2010.

[18] Y. S. Cho, J. Kwon, S. Choi, and D. H. Park. “Development of smart

LED lighting system using multi-sensor module and bluetooth low energy

technology”. In: Sensing, Communication, and Networking (SECON), 2014
Eleventh Annual IEEE International Conference on. 2014, pp. 191–193. doi:

10.1109/SAHCN.2014.6990353.

[19] R. A. Ramlee, M. A. Othman, M. H. Leong, M. M. Ismail, and S. S. S. Ran-

jit. “Smart home system using android application”. In: Information and
Communication Technology (ICoICT), 2013 International Conference of. 2013,

pp. 277–280. doi: 10.1109/ICoICT.2013.6574587.

[20] Argenox Technologies. Android 5.0 Lollipop brings BLE Improvements. Last

Acessed: 13/03/2016. 2015. url: http://www.argenox.com/blog/

android-5-0-lollipop-brings-ble-improvements/.

[21] John Callaham. Google says there are now 1.4 billion active Android de-
vices worldwide. Last Acessed: 13/03/2016. 2015. url: http://www.

androidcentral . com / google - says - there - are - now - 14 - billion -

active-android-devices-worldwide.

78

http://www.iso.org/iso/catalogue_detail.htm?csnumber=36775
http://www.iso.org/iso/catalogue_detail.htm?csnumber=36775
http://www.eetimes.com/document.asp?doc_id=1278966
http://www.eetimes.com/document.asp?doc_id=1278966
http://www.theinternetofthings.eu/what-is-the-internet-of-things
http://www.theinternetofthings.eu/what-is-the-internet-of-things
http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3165317
http://www.nordicsemi.com/eng/Products/3rd-Party-Bluetooth-Smart-Modules
http://www.nordicsemi.com/eng/Products/3rd-Party-Bluetooth-Smart-Modules
http://dx.doi.org/10.1109/SAHCN.2014.6990353
http://dx.doi.org/10.1109/ICoICT.2013.6574587
http://www.argenox.com/blog/android-5-0-lollipop-brings-ble-improvements/
http://www.argenox.com/blog/android-5-0-lollipop-brings-ble-improvements/
http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-devices-worldwide
http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-devices-worldwide
http://www.androidcentral.com/google-says-there-are-now-14-billion-active-android-devices-worldwide

BIBLIOGRAPHY

[22] RF Digital. RFD22301 Datasheet. Last Accessed: 13/01/2016. 2015. url:

http://www.rfdigital.com/wp-content/uploads/2015/08/RFD22301.

Data.Sheet.08.20.15_4.36PM.pdf.

[23] RF Digital. RFD22301 Programming Reference. Last Accessed: 21/01/2016.

2015. url: http://www.rfdigital.com/wp-content/uploads/2014/03/

rfduino.ble_.programming.reference.pdf.

[24] Anne Van Rossum. RFduino without RFduino code. Last Accessed: 18/02/2016.

url: https://dobots.nl/2014/03/05/rfduino-without-rfduino-

code/.

[25] The Engineering ToolBox. Illuminance - Recommended Light Levels. Last

Accessed: 26/03/2016. url: http://www.engineeringtoolbox.com/

light-level-rooms-d_708.html.

[26] L. Lian and L. Li. “Wireless dimming system for LED Street lamp based

on ZigBee and GPRS”. In: System Science, Engineering Design and Manufac-
turing Informatization (ICSEM), 2012 3rd International Conference on. Vol. 2.

2012, pp. 100–102. doi: 10.1109/ICSSEM.2012.6340818.

[27] Popescu Marian. LDR = Light Dependent Resistor = Photoresistor. Last Ac-

cessed: 22/01/2016. url: http://www.electroschematics.com/6355/

ldr-light-dependent-resistor-photoresistor/.

[28] Jacob Fraden. Handbook of Modern Sensors: Physics, Designs, and Applica-
tions. 4th Edition. Springer, 2010.

[29] Ian Poole. Phototransistor Tutorial. url: http://www.radio-electronics.

com/info/data/semicond/phototransistor/photo_transistor.php.

[30] Fairchild Semiconductor. Application Note AN-3005 Design Fundamentals
for Phototransistor Circuits. url: https : / / www . fairchildsemi . com /

application-notes/AN/AN-3005.pdf.

[31] Vishay Semiconductors. BPW85, BPW85A, BPW85B, BPW85C Datasheet.
url: http://www.vishay.com/docs/81531/bpw85a.pdf.

[32] Classicharmony. Light Meter for Android. Last Accessed: 26/07/2016.

url: https : / / play . google . com / store / apps / details ? id = com .

classicharmony.lightmeter.

[33] Texas Instruments. LM35 Precision Centigrade Temperature Sensors. url:

http://www.ti.com/lit/ds/symlink/lm35.pdf.

[34] Elecrow. HC-SR505 PIR Motion Sensor. url: http://www.elecrow.com/

wiki/index.php?title=HC-SR505_Mini_PIR_Motion_Sensor.

79

http://www.rfdigital.com/wp-content/uploads/2015/08/RFD22301.Data.Sheet.08.20.15_4.36PM.pdf
http://www.rfdigital.com/wp-content/uploads/2015/08/RFD22301.Data.Sheet.08.20.15_4.36PM.pdf
http://www.rfdigital.com/wp-content/uploads/2014/03/rfduino.ble_.programming.reference.pdf
http://www.rfdigital.com/wp-content/uploads/2014/03/rfduino.ble_.programming.reference.pdf
https://dobots.nl/2014/03/05/rfduino-without-rfduino-code/
https://dobots.nl/2014/03/05/rfduino-without-rfduino-code/
http://www.engineeringtoolbox.com/light-level-rooms-d_708.html
http://www.engineeringtoolbox.com/light-level-rooms-d_708.html
http://dx.doi.org/10.1109/ICSSEM.2012.6340818
http://www.electroschematics.com/6355/ldr-light-dependent-resistor-photoresistor/
http://www.electroschematics.com/6355/ldr-light-dependent-resistor-photoresistor/
http://www.radio-electronics.com/info/data/semicond/phototransistor/photo_transistor.php
http://www.radio-electronics.com/info/data/semicond/phototransistor/photo_transistor.php
https://www.fairchildsemi.com/application-notes/AN/AN-3005.pdf
https://www.fairchildsemi.com/application-notes/AN/AN-3005.pdf
http://www.vishay.com/docs/81531/bpw85a.pdf
https://play.google.com/store/apps/details?id=com.classicharmony.lightmeter
https://play.google.com/store/apps/details?id=com.classicharmony.lightmeter
http://www.ti.com/lit/ds/symlink/lm35.pdf
http://www.elecrow.com/wiki/index.php?title=HC-SR505_Mini_PIR_Motion_Sensor
http://www.elecrow.com/wiki/index.php?title=HC-SR505_Mini_PIR_Motion_Sensor

BIBLIOGRAPHY

[35] InMojo. Digital AC Dimmer Module. Last Accessed: 26/03/2016. url:

http://www.inmojo.com/store/inmojo-market/item/digital-ac-

dimmer-module-lite-v.2/.

[36] Tindie. AC 60Hz/50Hz Dimmer/SSR Controller Board. Last Accessed: 26/03/2016.

url: https://www.tindie.com/products/thewp122/ac- 60hz50hz-

phase-controller-dimmer-board-arduino-compatible-2/.

[37] Vishay Semiconductors. 4N25, 4N26, 4N27, 4N28 Optocoupler, Phototran-
sistor Output, with Base Connection. url: http://www.vishay.com/docs/

83725/4n25.pdf.

[38] Nick de Smith. ANSI IPC-2221A PCB Trace Width Calculator. Last Ac-

cessed: 26/03/2016. url: http://www.desmith.net/NMdS/Electronics/

TraceWidth.html.

[39] Adafruit. XBee Module - ZB Series 2. Last Accessed: 26/03/2016. url:

https://www.adafruit.com/products/968.

[40] Adafruit. XBee Pro Module - ZB Series 2. Last Accessed: 26/03/2016. url:

https://www.adafruit.com/products/967.

80

http://www.inmojo.com/store/inmojo-market/item/digital-ac-dimmer-module-lite-v.2/
http://www.inmojo.com/store/inmojo-market/item/digital-ac-dimmer-module-lite-v.2/
https://www.tindie.com/products/thewp122/ac-60hz50hz-phase-controller-dimmer-board-arduino-compatible-2/
https://www.tindie.com/products/thewp122/ac-60hz50hz-phase-controller-dimmer-board-arduino-compatible-2/
http://www.vishay.com/docs/83725/4n25.pdf
http://www.vishay.com/docs/83725/4n25.pdf
http://www.desmith.net/NMdS/Electronics/TraceWidth.html
http://www.desmith.net/NMdS/Electronics/TraceWidth.html
https://www.adafruit.com/products/968
https://www.adafruit.com/products/967

A
p
p
e
n
d
i
x

A
Appendix A

www.RFdigital.com • sales@rfdigital.com
1601 Pacific Coast Hwy • Suite 290

Hermosa Beach • CA • 90254
Tel: 949.610.0008

Email your application questions to support@rfdigital.com 2

© Copyright, RF Digital
11/22/2013 12:42 AM

Patents Pending

RoHS
CE • ETSI • IC • FCC

Approved & Certified

RF Module
Model Number: R25

PN: RFD22301
PN: RFD22302

BLE

RFD22301 Pinout - Top View

RFD22301 Pinout - Bottom View

GND pins 1, 2, 8,
9, 10, 18 and 19

are optional.

GND pins 1, 2, 8,
9, 10, 18 and 19

are optional.

Figure A.1: RFD22301 Pinout

81

A
p
p
e
n
d
i
x

B
Appendix B

B.1 RFD22301 Code

1 #include <RFduinoBLE.h>

2 #include <wiring_analog.h>

3 #include <string.h>

4 #include <Wire.h>

5

6 //BLE related

7 int advertisement_interval = 2; //in seconds;

8 length of advertisement cycle

9 int numberOfAdvertisements = 10; //number of advertisement per cycle

10 bool connection = false;

11 bool *pconnection= &connection;

12 bool advertisement = false;

13 bool *padvertisement = &advertisement;

14

15 //GPIO definition

16 const int pir = 2;

17 const int SensorTPin = 3;

18 const int SensorLPin = 4;

19 const int i2c_out = 5;

20 const int i2c_in = 6;

21

22 //Control

23 bool autoControl = true;

24 int dimming = 128;

25 bool presence = false;

83

APPENDIX B. APPENDIX B

26 bool *ppresence = &presence;

27

28

29 //Timer Variables

30 #define TRIGGER_INTERVAL 1000 //ms

31

32 int aux_timing = 30; //30 seconds

33

34 float temp;

35 int light;

36

37 int val = 5;

38

39 void setup() {

40

41 Serial.begin(9600);

42 RFduinoBLE.advertisementInterval=100; //ms

43 //RFduinoBLE.txPowerLevel = -20;

44

45 //Pin initialization

46 pinMode(pir,INPUT);

47 //pinMode(LEDDriver, OUTPUT);

48 pinMode(SensorTPin, INPUT);

49 pinMode(SensorLPin, INPUT);

50

51 //Timer Initialization

52 timer_config();

53

54 Wire.begin();

55 }

56

57 void loop() {

58

59 if(digitalRead(pir)){

60 *ppresence = true;

61 aux_timing = 30;

62 Serial.println("Movement Detected");

63 } else{

64 *ppresence = false;

65 }

66 //Wait for movement detection to start advertising

67 if(*ppresence && !*padvertisement && !*pconnection){

68 advertise(SECONDS(advertisement_interval));

69 autoControlFunc(getLightSensorValue());

70 }

84

B.1. RFD22301 CODE

71

72 //Check if a connection is established

73 if(*pconnection){

74 aux_timing = 30;

75 //Serial.println("connection");

76 if(autoControl){

77 autoControlFunc(getLightSensorValue());

78 temp = getTemperatureSensorValue();

79 light = getLightSensorValue();

80 } else

81 {

82 temp = getTemperatureSensorValue();

83 light = getLightSensorValue();

84 delay(1000);

85 }

86 if(!aux_timing){

87 dimming = 128;

88 I2CSend();

89 }

90 //If no connection is established, only verify AutoControl

91 } else{

92 if(aux_timing){

93 autoControlFunc(getLightSensorValue());

94 } else{

95 if(!aux_timing && !*ppresence){

96 dimming = 128;

97 I2CSend();

98 }

99

100 }

101

102 }

103 }

104

105 void RFduinoBLE_onAdvertisement(bool start)

106 {

107 *padvertisement = true;

108 Serial.println("In onAdvertisement");

109 }

110

111 void RFduinoBLE_onConnect()

112 {

113 *pconnection=true;

114 *padvertisement = false;

115 Serial.println("In onConnect");

85

APPENDIX B. APPENDIX B

116 }

117

118 void RFduinoBLE_onDisconnect()

119 {

120 *pconnection=false;

121 RFduinoBLE.end();

122 Serial.println("Disconnected");

123 }

124

125 void advertise(int interval){

126 RFduinoBLE.begin();

127 while ((!RFduinoBLE.radioActive)||(*pconnection));

128 while((! *padvertisement)||(*pconnection));

129 *padvertisement = false;

130 //time after impulse

131 //(to let the central the time to request a connection)

132 delay(20);

133 for(int i=0 ; (i<(numberOfAdvertisements -1)); i++){

134 if(! *pconnection){RFduino_ULPDelay(100-(15+0*10+5));}

135 if(! *pconnection){

136 while ((!RFduinoBLE.radioActive)||(*pconnection));}

137 if(! *pconnection){delay(20);}

138 }

139 if(! *pconnection){

140 RFduinoBLE.end();

141 RFduino_ULPDelay(SECONDS(advertisement_interval));

142 }

143 }

144

145 void RFduinoBLE_onReceive(char *data, int len){

146

147 int i;

148 int val;

149

150 Serial.print(data);

151 //Set Automatic Control

152 if(data[0] == ’A’){

153 actuatorsAction(data[0],0);

154 }

155 //Set Manual Control

156 if(data[0] == ’M’){

157 byte aux[3] = {data[1],data[2],data[3]};

158 int *lval = (int *) aux;

159 actuatorsAction(’M’,*lval);

160 //Serial.println(*lval);

86

B.1. RFD22301 CODE

161 }

162 //Refresh Data

163 if(data[0] == ’R’){

164 light = getLightSensorValue();

165 temp = getTemperatureSensorValue();

166 }

167 }

168

169 //Timer configuration

170 void timer_config(void){

171

172 NRF_TIMER1->TASKS_STOP = 1; //Stop timer

173 //Set the timer to Counter Mode

174 NRF_TIMER1->MODE = TIMER_MODE_MODE_Timer;

175 NRF_TIMER1->BITMODE =

176 (TIMER_BITMODE_BITMODE_16Bit << TIMER_BITMODE_BITMODE_Pos);

177 NRF_TIMER1->PRESCALER = 9; //32us resolution

178 NRF_TIMER1->TASKS_CLEAR = 1; // Clear timer

179 // converting from 32us to 1ms

180 NRF_TIMER1->CC[0] = (TRIGGER_INTERVAL*31) + (TRIGGER_INTERVAL/4);

181 NRF_TIMER1->INTENSET =

182 TIMER_INTENSET_COMPARE0_Enabled << TIMER_INTENSET_COMPARE0_Pos;

183 NRF_TIMER1->SHORTS =

184 (TIMER_SHORTS_COMPARE0_CLEAR_Enabled

185 << TIMER_SHORTS_COMPARE0_CLEAR_Pos);

186 attachInterrupt(TIMER1_IRQn,TIMER1_Interrupt);

187 NRF_TIMER1->TASKS_START = 1; // Start timer;

188 }

189

190 void TIMER1_Interrupt(void){

191

192 //Timer @1 sec

193 if(NRF_TIMER1->EVENTS_COMPARE[0] != 0){

194 //Serial.println("Timer interrupt called");

195 NRF_TIMER1->EVENTS_COMPARE[0] = 0;

196 if(aux_timing >0){

197 aux_timing--;

198 Serial.println(aux_timing);

199 }

200 }

201 }

202

203 float getTemperatureSensorValue(){

204

205 int rawvoltage= analogRead(SensorTPin);

87

APPENDIX B. APPENDIX B

206 float millivolts= (rawvoltage/1024.0) * 5000;

207 float celsius= millivolts/10;

208

209 // send temperature to connected BLE device

210 RFduinoBLE.sendFloat(celsius);

211

212 return celsius;

213

214 }

215

216 int getLightSensorValue(){

217

218 int light;

219 String L = "L";

220 String aux_light;

221 char send_light[5];

222

223 light = analogRead(SensorLPin);

224 if(light <100){

225 aux_light = L + light + ’ ’;

226 } else{

227 aux_light = L + light;

228 }

229

230 aux_light.toCharArray(send_light,sizeof(send_light)+1);

231 RFduinoBLE.send(send_light,sizeof(send_light));

232

233 return light;

234

235 }

236

237 void actuatorsAction(char c,int v){

238

239 if(c == ’A’){

240 autoControl = true;

241 }

242

243 if(c == ’M’){

244 autoControl = false;

245 //analogWrite(LEDDriver,v);

246 //Serial.println(v);

247 dimming = v;

248 //Serial.println(dimming);

249 I2CSend();

250

88

B.2. ARDUINO MEGA CODE

251 }

252 }

253

254 void autoControlFunc(int lightValue){

255

256 int ControlValue;

257 if(lightValue < 500 && dimming > 5){

258 ControlValue = dimming - 4;

259 dimming = ControlValue;

260 }

261 if(lightValue > 500 && dimming < 120){

262 ControlValue = dimming + 4;

263 dimming = ControlValue;

264 }

265 Serial.println(dimming);

266 I2CSend();

267 }

268

269 // Send data to slave

270 void I2CSend()

271 {

272 Wire.beginTransmission(4); // transmit to device #4

273 Wire.write(dimming); // sends one byte

274 Wire.endTransmission(); // stop transmitting

275

276 delay(500);

277 }

B.2 Arduino Mega Code

1 #include <avr/interrupt.h>

2

3 const int AC_LOAD = 4; // Output to Opto Triac pin

4 const int Dimmer = 1; // Dimming Value Received from RFD22301

5 int dimming = 128; // Dimming level (0-128) 0 = ON, 128 = OFF

6

7 void setup()

8 {

9 pinMode(AC_LOAD, OUTPUT);// Set AC Load pin as output

10 pinMode(Dimmer, INPUT);// Set dimming vales as input

11 attachInterrupt(0, zero_crosss_int, RISING);

12 }

13

14 //function to be fired at the zero crossing to dim the light

89

APPENDIX B. APPENDIX B

15 void zero_crosss_int()

16 {

17 // Firing angle calculation : 1 full 50Hz wave =1/50=20ms

18 // Every zerocrossing thus: (50Hz)-> 10ms (1/2 Cycle)

19 // 10ms=10000us

20 // (10000us - 10us) / 128 = 75 (Approx)

21

22 int dimtime = (75*dimming);

23 delayMicroseconds(dimtime); // Wait till firing the TRIAC

24 digitalWrite(AC_LOAD, HIGH); // Fire the TRIAC

25 delayMicroseconds(10); // triac On propogation delay

26 // No longer trigger the TRIAC

27 digitalWrite(AC_LOAD, LOW);

28 }

29

30 void loop() {

31

32 dimming = analogRead(Dimmer);

33

34 }

90

20
16

D
ev

el
op

m
en

t
of

a
Sm

ar
t

L
ig

h
ti

n
g

A
n

d
ro

id
-b

as
ed

A
p

p
li

ca
ti

on
u

si
n

g
B

lu
et

oo
th

L
ow

E
n

er
gy

D
an

ie
lB

at
is

ta

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Background and Motivation
	Thesis Organization
	Contributions

	Bluetooth Low-Energy for Internet-of-Things
	BLE Overview
	Core Architecture
	Application Architecture

	Internet-of-Things Overview
	IoT Applications Domains
	Bluetooth Low Energy vs. Other Communication Protocols

	Hardware Available for IoT BLE-Based and Non-BLE Development

	Proposed Smart Interactive System (BlueIoT)
	Mobile Application
	GATT Elements
	Elements Initialization
	Creation of the Service
	Auxiliary Files
	Sequence Diagrams

	BlueIoT Embedded
	BLE Module
	Module Programming

	BlueIoT Hardware
	Sensor Module Development
	Actuators

	Printed Board Circuit Design

	BLE Energy Budget Analysis
	Power Consumption
	Deep Sleep
	Idle
	Advertising
	Connexion
	Sending and Receiving Data

	Received Strength Signal Information
	Implementation Costs

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Appendix A
	Appendix B
	RFD22301 Code
	Arduino Mega Code

