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Abstract: Since the 1990s, studies and pilot tests have been conducted to reduce traffic, accidents, and
pollution due to urban freight transport (UFT). These ended up in several policies, regulations, and
restrictions for UFT, such as low emission zones, delivery time windows, and vehicle size and weight
restrictions. However, issues in UFT under regulatory measures still persist. This study introduces
an optimization framework for deriving an optimal combination of various types of vehicles with
different capacities for vehicle replacement with UFT. This framework allows an understanding of
how an urban freight company with a limited budget efficiently satisfies its freight demand within
an urban area in the presence of regulatory measures by urban administrators. The introduced
formulation, which is mixed-integer linear programming, will assist the operator in choosing the best
investment strategy for introducing new vehicles of certain types and sizes, for operation in different
zones, into its fleet while gaining economic benefits and having a positive impact on the liveability
of the urban area. Furthermore, an elasticity analysis is performed to consider the effects of specific
uncertain parameters on the total cost. The numerical results show that the share of electric vehicles
in the fleet increases, and they are more competitive than diesel vehicles.

Keywords: urban freight transport; freight fleet optimization; vehicle replacement; electric vehicle;
regulatory measures; mixed-integer linear programming

1. Introduction

The continuous growth of the urban population is a global phenomenon, with the
European Union projecting an increase in the proportion of urban residents from 55% in
2018 to 68% by 2050 [1]. This rapid urbanization, coupled with the rise of globalization,
economic development, e-commerce, and omnichannel retailing, has led to a significant
surge in urban freight transportation (UFT) [2,3]. However, this upsurge in UFT has also
brought forth various challenges and concerns, including emissions, air and noise pollution,
traffic congestion, accidents, and damage to road networks [3–5]. The implications of these
issues are particularly pronounced in city centers, where a substantial portion of freight
movement occurs. It is estimated that approximately 20–25% of truck travel distance in
urban areas is dedicated to outgoing freight, 40–50% to incoming freight, and the remainder
consists of movements between depots and destinations within the city [6]. Furthermore,
city centers often face limited parking spaces and narrow streets, exacerbating the problems
associated with freight delivery using large vehicles. The resulting congestion and emission
issues not only hinder efficient freight transportation but also impact the livability and
sustainability of these urban areas [7].

In response to the growing concerns surrounding UFT, various studies and pilot tests
have been conducted since the 1990s to mitigate traffic, accidents, and pollution. These
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efforts have resulted in the implementation of policies, regulations, and restrictions for
UFT operations, such as low emission zones, delivery time windows, and limitations
on vehicle size and weight [8–10]. Consequently, access to city centers for certain types
of vehicles has become restricted due to measures established by local authorities to
improve traffic flow and reduce emissions [11–13]. As a result, urban freight operators
must carefully consider these restrictions when determining their fleet composition. This
involves selecting the appropriate number and types of vehicles with the necessary capacity
and cost-effectiveness to meet customer demands within restricted areas and beyond. It is
crucial for UFT companies to periodically assess and optimize their strategies for utilizing
each vehicle type, minimizing associated costs, and maintaining service levels [13,14].

UFT is fundamental for the economy of cities and the quality of life of those who live
and work there. However, by providing necessary goods and services, freight transport
has a detrimental impact on urban areas. To overcome these impacts, policymakers should
promote regulatory measures for UFT that attempt to balance the economic, social, and
environmental impacts of UFT operations [15].

Various regulatory measures, mainly to control the type, size, and load factor in
terms of lower carbon emissions, weight, volume, and the number of parcels to deliver
to the customer’s point of use, have already been implemented to control UFT in the
inner city [13]. Comi et al. [16] state that the goal of the regulatory measures is mainly
social, such as reducing congestion to expand accessibility and efficiency in goods delivery
and related activities. The authors analyze the existing regulatory measures in Rome and
Milan and present a theoretical framework to highlight and identify accessible regulations
to control vehicle movements. Nuzzolo and Comi [12] analyzed the effectiveness of the
measures set by Rome’s administrators on the types of freight vehicles in the inner city areas
between 1999 and 2008. Under these enforced measures, they showed that the proportion
of environmentally friendly vehicles in the freight fleet has increased over time. The use
of electric vehicles (EVs) for delivering goods and parcels to customers in urban areas
has received more attention from urban policymakers and private stakeholders [17–20].
For instance, small EVs could be a viable alternative for delivering goods and services
within congested urban areas due to their small size and reduced environmental impact.
Small EVs are more suitable for urban distribution and last-mile deliveries because of their
battery limitations [21–23]. In another research study by Dablanc [24], the author studied
the challenges of transporting goods in large European cities. The author proposes to fix
and implement simple regulations in cities for UFT and indicates some decision-making
processes, such as identifying measures based on truck age, environmental performance,
weight, and size.

The European Commission [25] presented and evaluated methods and measures
mainly focused on optimizing the operation of truck fleets in highly congested cities,
such as the application of modern devices and appropriate administrative measures, to
optimize truck use in the cities toward achieving economic and environmental benefits.
Implementing regulations based on the weight and dimensions of vehicles operating in
cities could be a very effective measure. Lindholm [11] has concluded that the current
models for UFT mainly focus on transport planning or short-term measures. The author
identified the need to develop sustainable measures to manage the lack of applicable
restrictions for a long-run perspective method in UFT.

A study by Lebeau et al. [18] analyzed the total cost of ownership (TCO) and competi-
tiveness of light commercial vehicles and quadricycles in the UFT. The study found electric
quadricycles to be a better solution to shifting from light diesel vehicles to electric vehicles.
The authors considered the effect of utilization level and battery life on TCO and the manner
of changing the competitiveness of EVs in the future market. Crist [19] studied the TCO of
internal combustion engine vehicles (ICEVs) and EVs and the effect of utilization levels
on the competitiveness of those vehicles. The author shows that high levels of utilization
have a positive impact on the vehicle’s cost. The study shows that, considering a 15-year
planning horizon, EVs (vans) in France would cost about 4000 EUR less than diesel vehicles
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(DVs). Currently, EVs are more suitable for urban distribution and last-mile deliveries
because of their battery limitations [21,22]. Nina [26] performed a cost-benefit analysis of
C-segment passenger EVs in Portugal by considering user and social factors. From a user
point of view, it compares EVs with ICEVs by considering factors such as acquisition and
resale, maintenance, energy, insurance, periodic inspection, and vehicle-to-grid. From a
societal point of view, the author compared local and global greenhouse gas emissions
between EVs and ICEVs. The work also considers the contribution of technologies, tax
incentives, and governmental support in reducing energy import dependency as the most
important goal.

Despite the extensive research conducted in the field of UFT, there is a notable gap in
addressing the challenges posed by regulatory measures imposed by urban policymakers
on vehicle size and type for operating in different areas of a city. To bridge this gap, this
study aims to guide urban freight operators in identifying the optimal fleet configuration
and investment strategy for introducing new vehicles of specific types and sizes into their
fleets to comply with regulatory measures. In pursuit of this goal, we present an innovative
optimization framework designed to reconfigure the fleet of an urban freight transport
operator over a planning period, taking into account the regulatory measures imposed
by urban policymakers. The proposed framework considers vehicle characteristics and
determines the appropriate number of vehicles of each type to be used, purchased, or
salvaged in each year of the planning period. Notably, the framework addresses the novelty
of incorporating urban restrictions set by policymakers regarding vehicle size and type in
different zones of an urban area, as suggested by Maxner et al. [13].

By utilizing this optimization framework, urban freight operators can make informed
decisions regarding fleet reconfiguration, ensuring compliance with regulatory measures
while optimizing operational efficiency and cost-effectiveness. This study’s outcomes
can potentially enhance the sustainability and effectiveness of UFT operations within
urban areas.

The rest of the paper is organized as follows: Section 2 reviews the fleet replacement
problem; Section 3 describes the studied problem, its formulation, and the data sources
and assumptions; Section 4 presents and discusses computational results; and Section 5
presents the conclusions and implications.

2. Fleet Replacement Problem

The desire to determine an optimal charter to guide vehicle replacement, particularly
in the urban freight fleet, has resulted in multiple studies. One basic approach to managing
vehicle replacement is to find optimal replacement strategies by considering related total
costs (TCs) [27]. Redmer [28] developed a deterministic replacement model by considering
the reduction in utilization level by age. Rees et al. [29] proposed an optimization model
for police patrol vehicle replacement analysis and planning by considering a network
simulation model with probabilistic transition times. In another study, the authors present
a vehicle replacement optimization model for the motor carrier by using actual data
and presenting a sensitivity analysis to test the effect of changes in vehicle resale values
and insurance costs [30]. Kim et al. [31] proposed an automobile replacement model
for determining the optimal vehicle age by analyzing life cycle inventories for different
vehicles. Their model considers several variables: material production, manufacturing,
use, maintenance, and end-of-life environmental impact. Emiliano et al. [32] developed an
optimization replacement by solving an integer linear programming problem to indicate
different types and ages of diesel buses over a period of 50 years, considering budgetary
and environmental constraints. The results show the possibility of emission reduction with
a low annual budget using an optimal replacement policy.

In addition, several studies have investigated the combination of fleet replacement
with fleet management problems, such as fleet sizing problems (FSPs), composition prob-
lems (CPs), and vehicle routing problems (VRPs) [30,33–36]. Raposo et al. [37] have
suggested a solution for the replacement problem that is combined with FSP by develop-
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ing a global econometric replacement model. Their model mainly focuses on bus fleets’
maintenance approach and related costs. Feng and Figliozzi [21] propose a deterministic,
integer linear programming model combining the replacement problem with the FSP in
commercial fleets, comparing EVs and DVs. In another study, the authors proposed an
optimization framework to find the optimal mix in bus fleets by solving an integer linear
programming model that combines the replacement problem with the FSP and VRP [34].

While various studies have been conducted on fleet replacement problems and achiev-
ing optimized vehicle replacement frameworks to some extent, to the best of our knowledge,
no research has been carried out on regulatory restriction as an important factor in fleet
replacement problems.

3. Materials and Methods
3.1. Problem Setting

In this paper, we assume that an UFT operator wants to select the best strategy for
the vehicle composition of their fleet over a specific planning time period. It is assumed
that city administrators have regulated the size and type of vehicles that can operate in
specific city zones. As a result, the operator must choose vehicles that comply with such
restrictions. The city area is divided into different zones based on regulatory measures. In
particular, we consider rectangular nested zones [38]. We assume the operator will use a
single vehicle type in each zone for operational convenience. The operator must determine
the best vehicle replacement strategy while minimizing its TC over a given planning period.
Various factors, such as the characteristics of vehicles, related costs, and demand levels
in each zone, are incorporated into the model. The model output will determine the type
and number of vehicles of each size that need to be purchased and used for operating in
various city zones in each year of the planning period. In addition, it will determine the
number of vehicles of any type and size that should be salvaged in any year of the planning
time period. The works of Feng and Figliozzi [21] and Tipagornwong and Figliozz [20]
inspired the derived model, a mixed-integer linear programming model, which will help
the operator derive an efficient composition of vehicles for his fleet to operate in different
city zones.

3.2. Formulation of the Problem

As stated previously, the objective is to minimize the TC of a fleet over a time period
operating in a city area divided into different zones with different regulatory measures. The
TC consists of different cost components such as energy, operation, maintenance, purchase,
and emission costs. In all cases, the costs are accounted for at the beginning of the planning
horizon.

The fleet composition is determined for the years t = 0, . . . , T. Given vehicle types k =
1, . . . , K, for allowed vehicle ages of the i = 0, . . . , Ak. The considered urban area is divided
into z = 1, . . . , Z zones.

The decision variables are as follows:

• xz
itk: number of vehicles of type k and age i used in zone z during year t;

• yitk: number of salvaged vehicles of type k and age i at the end of year t;
• ptk: number of vehicles of type k purchased at the beginning of year t.

The objective function comprises all TC parcels, namely, the purchase costs, energy
costs, maintenance costs, emission costs, and salvage revenue. In what follows, we describe
each parcel of the cost.

Purchase Cost:

PC =
K

∑
k=1

T−1

∑
t=0

vtkZtk(1 + dr)−t (1)

vk,t is the purchase cost (EUR) per unit of type k vehicle at the end of year t. The discount
rate dr accounts for the decreased value of money over time.
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Energy Cost:

FC =
Z

∑
z=1

K

∑
k=1

Ak−1

∑
i=0

T−1

∑
t=0

f z
itkuz

iktx
z
itk(1 + dr)−t (2)

f z
itk represents energy cost per kilometer (EUR/km) of vehicle type k of age i in year t in

serving zone z, and uz
ikt is the annual distance traveled (kilometer per year) of vehicle type

k in zone z during year t.
The following formula, adapted from Daganzo [39], will be used for calculating the

distance traveled by all vehicles in zone z during year t:

uz
ikt(n

z
t ) = 2

nz
t rz

ck
+ 0.57

√
nz

t Az (3)

rz is the average distance from the depot assigned to zone z to the center of the zone, ck is
the number of customers that are served by vehicle type k, Az represents the area of zone z,
and nz

t represents the number of customers in zone z during year t.
Maintenance Cost:

MC =
Z

∑
z=1

K

∑
k=1

Ak−1

∑
i=0

T−1

∑
t=0

mz
itkuz

iktx
z
itk(1 + dr)−t (4)

where mi,t,k represents per-km operation and maintenance cost (EUR/km) of vehicle type k
of age i during the year t.

Emission Cost:

EC =
Z

∑
z=1

K

∑
k=1

Ak−1

∑
i=0

T−1

∑
t=0

ez
itkuz

iktx
z
itk(1 + dr)−t (5)

where ez
itk represents CO2 emission cost (EUR/km) of vehicle k of age i, in year t, and zone z.

Salvage revenue:

SR =
K

∑
k=1

Ak−1

∑
i=0

T−1

∑
t=0

sitkyitk(1 + dr)−t (6)

where sitk represents salvage revenue (EUR) of vehicle k of age i in year t.
Labor cost:

LC =
K

∑
k=1

Ak−1

∑
i=0

T−1

∑
t=0

lktxz
itk(1 + dr)−t (7)

where lkt is labor cost (EUR/year) associated with a vehicle of type k.
Objective function:
Therefore, the objective function, TC, is as follows:

TC =
K
∑

k=1

T−1
∑

t=0
vkt ptk(1 + dr)−t −

K
∑

k=1

Ak
∑

i=1

T
∑

t=0
sitkyitk(1 + dr)−t+

+
Z
∑

z=1

K
∑

k=1

Ak−1
∑

i=0

T−1
∑

t=0

(
f z
itk + mz

itk + ez
ik
)
uz

iktx
z
itk(1 + dr)−t+

+
K
∑

k=1

Ak−1

∑
i=0

T−1
∑

t=0
lktxz

itk(1 + dr)−t

(8)

In the following, we present the constraints of the problem. The total of all newly
purchased vehicles in period t must be lower than budget bt of that year:

K

∑
k=1

vkt ptk ≤ bt, ∀t ∈ {0, 1, 2, . . . , T − 1} (9)
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Furthermore, the total kilometers traveled by all used vehicles cannot be lower than
the demand of each zone every year:

K

∑
k=1

Ak−1

∑
i=0

ckxz
itk > dz

t , ∀t ∈ {0, 1, 2, . . . , T − 1}, ∀z ∈ {1, 2, . . . , Z} (10)

where dz
t represents the demand of zone z at each year t.

The number of newly available vehicles of type k and the number of newly purchased
vehicles of type k ( p0,k), must be greater or equal to the number of used new vehicles of the
corresponding type: (

p0,k +
Z

∑
z=1

h0,k

)
≥

Z

∑
z=1

x0,0,k, ∀k ∈ {1, 2, . . . , K} (11)

where h0,k represent new vehicles of type k available in the existing fleet at the beginning of
the planning period.

At the beginning of the planning horizon, the number of used and salvaged vehicles
should be equal to the number of existing vehicles in each zone:

Z

∑
z=1

(xz
i0k + yz

i0k) =
Z

∑
z=1

hz
ik , ∀i ∈ {1, 2, . . . , Ak}, ∀k ∈ {1, 2, . . . , K} (12)

In any year on the planning horizon, the number of purchased vehicles of any type
should be equal to the number of used new vehicles in that zone:

ptk =
Z

∑
z=1

xz
0tk, ∀t ∈ {1, 2, . . . , T}, ∀k ∈ {1, 2, . . . , K} (13)

In each year, the number of used vehicles of any type should be equal to the number
of used and salvaged vehicles in the following year:

Z

∑
z=1

xz
(i−1)(t−1)k =

Z

∑
z=1

(xz
itk + yz

itk), ∀i ∈ {1, 2, . . . , Ak}, ∀t ∈ {1, 2, . . . , T}, k ∈ {1, 2, . . . , K} (14)

At the end of the last year on the planning horizon, all the vehicles will be sold:

xz
iTk = 0, ∀i ∈ {1, 2, . . . , Ak − 1}, ∀k ∈ {1, 2, . . . , K}, ∀z ∈ {1, 2, . . . , Z} (15)

No vehicle will be used again when it reaches its maximum age:

xz
Aktk = 0, ∀t ∈ {1, 2, . . . , T}, ∀k ∈ {1, 2, . . . , K} ∀z ∈ {1, 2, . . . , Z} (16)

No newly purchased vehicle will be salvaged in the first year of its lifetime:

yz
0tk = 0, ∀t ∈ {1, 2, . . . , T}, ∀k ∈ {1, 2, . . . , K} (17)

At each period, the number of purchased, used, and salvaged vehicles of type k that
are not allowed to operate in zone z must be zero:

ptk = xz
itk = yz

itk = 0, ∀t ∈ {1, 2, . . . , T}, ∀i ∈ {1, 2, . . . , Ak − 1}, ∀k ∈ K r Kz, ∀z ∈ {1, 2, . . . , Z} (18)

Kz is the set of vehicle types allowed to operate in zone z.
Finally, the decision variables can take only non-negative integer values:

ptk, xz
itk, yz

itk ∈ Z+ = {0, 1, 2, . . .} (19)
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To minimize the TC, the following mixed integer linear optimization problem needs
to be solved: {

min[TC]
s.t.(9)− (19)

(20)

3.3. Elasticity Analysis

Some input parameters have high uncertainty, which inevitably propagates to the
TC [20,21]. These parameters are particularly affected by uncertainty during the planning
horizon. For that, we adopted the arc elasticity formula proposed by Allen [40] and adopted
in similar studies [20,21,41]:

EA(TC, p) =
% change in TC

% change in parameter p
=

p1 + p2

TC1 + TC2
× TC2 − TC1

p2 − p1
(21)

where EA(TC, p) is the elasticity of TC to parameter p.

3.4. Zone Characterization

We assume the regulatory measures divide the city area into three different zones,
denoted by z1, z2, and z3, respectively (Figure 1 and Table 1) [38]. Additionally, we consider
zone z4 (out of zones) a suburban area where the depot point to supply the city can be
placed. We presume the zones are nested with the same center and with the areas of Az.

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 19 
 

𝑦 = 0, ∀𝑡 ∈ {1,2, … , 𝑇}, ∀𝑘 ∈ {1,2, … , 𝐾} (17) 

At each period, the number of purchased, used, and salvaged vehicles of type k that 
are not allowed to operate in zone z must be zero: 𝑝 = 𝑥 = 𝑦 = 0, ∀𝑡 ∈ {1,2, … , 𝑇}, ∀𝑖 ∈ {1,2, … , 𝐴 − 1}, ∀𝑘 ∈ 𝐾 ∖ 𝐾 , ∀𝑧 ∈ {1,2, … , 𝑍} (18)𝐾  is the set of vehicle types allowed to operate in zone z. 

Finally, the decision variables can take only non-negative integer values: 𝑝 , 𝑥 , 𝑦 ∈ ℤ = {0,1,2, … } (19) 

To minimize the TC, the following mixed integer linear optimization problem needs 
to be solved: 𝑚𝑖𝑛 𝑇𝐶

 s.t. (9) − (19) (20) 

3.3. Elasticity Analysis 
Some input parameters have high uncertainty, which inevitably propagates to the TC 

[20,21]. These parameters are particularly affected by uncertainty during the planning 
horizon. For that, we adopted the arc elasticity formula proposed by Allen [40] and 
adopted in similar studies [20,21,41]: EA(𝑇𝐶, 𝑝) = % change in TC % change in parameter 𝑝 = 𝑝 + 𝑝𝑇𝐶 + 𝑇𝐶 × 𝑇𝐶 − 𝑇𝐶𝑝 − 𝑝  (21) 

where EA(𝑇𝐶, 𝑝) is the elasticity of TC to parameter p. 

3.4. Zone Characterization 
We assume the regulatory measures divide the city area into three different zones, de-

noted by z1, z2, and z3, respectively (Figure 1 and Table 1) [38]. Additionally, we consider 
zone z4 (out of zones) a suburban area where the depot point to supply the city can be 
placed. We presume the zones are nested with the same center and with the areas of 𝐴 . 

 
Figure 1. Characteristics of the zones (Di: depot point in zi). Figure 1. Characteristics of the zones (Di: depot point in zi).

We considered that the zones where the depots are localized are known to the operator.
As shown in Figure 1, we characterized these known depot points with D1, D2, and D3
for zones z1 to z3, and D4 for the outside of all zones. We do not consider depot-related
costs such as handling, storage, operations administration, and general administrative
expenses [42].
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Table 1. Characteristics of the zones.

Zone

Coordinates (x, y) of
the Left-Down Corner

of Each Zone
(km, km)

Outer Dimensions of
Each Zone
(km × km)

Area of Each Zone (A)z

(km2)

Coordinates (x, y) of
Each Depot

(km, km)

Distance from Depots to the
Center of the Zones

(rz) (km)

z1 2.5, 4.5 5 × 2 10 3.0, 5.5 2.0
z2 1.0, 3.0 8 × 5 30 1.5, 5.5 3.5
z3 0.5, 0.5 9 × 10 50 0.5, 5.5 4.5

Suburban zone
(Out of zones) 0.0, 0.0 10 × 11 20 0.0, 5.5 5.0

Different scenarios are considered to assess the impact on TC of the number and
location of depot points:

• S1: each zone has its own depot points (D1, D2 and D3);
• S2: depot points are located only in zone 2 and zone 3 (D2 and D3);
• S3: depot point is located only in zone 3 (D3);
• S4: depot point is out of all zones and in the suburb of the city (D4);
• S5: all vehicle types can access all zones, each with its own depot points (D1, D2, and D3).

3.5. Vehicle Characterization

We consider three vehicle capacities (in m3): light (L), medium (M), and heavy (H).
We consider a DV and an EV for each capacity. Thus, we consider a set of six vehicle types
{LDV, LEV, MDV, MEV, HDV, and HEV}, where LDV, for example, indicates a light diesel
vehicle, and we denote this set of vehicles by k = {1, 2, . . ., 6}. The main characteristics of
the vehicles are presented in Table 2, and the main input parameters to determine the TC
are in Table 3.

Table 2. Characteristics of the vehicles.

k Vehicle Model Motor
Type

Size
Type

Capacity
(m3) Price (Euro) Driver Salary

(EUR/Month) [43]
Energy

Consumption

1 Renault New Kangoo
Express [18] Diesel Light 2 13,600 750 5.2 l/100 km

2 Renault Kangoo ZE [18] Electric Light 2 21,150 750 15.5 kWh:100 km
3 Nissan NV200 [18] Diesel Medium 4 15,400 932 5.7 L/100 km
4 Nissan e-NV200 [44] Electric Medium 4 25,652 932 16.5 k Wh:100 km
5 Isuzu N-Series [21] Diesel Heavy 12 48,450 1068 17.47 L/100 km
6 eStar (Navistar) [21] Electric Heavy 12 133,369 1068 50 kWh:100 km

Table 3. Vehicles input parameters data.

Parameter Diesel Vehicle Electric Vehicle

Maximum age (Ak) [21,45] 15
Discount rate(dr) [21] 6.50%

Working days in a year (Wd) 251
Planning time horizon(year) (t) [21] 30

Depreciation rate (θk) [21,41] 0.15 0.198
Energy cost growth rate (fd, fe) [46] 0.0582 0.0289

Energy consumption (Rk, Qk) [47,48] 0.062 L/km 0.145 kWh/km
Energy cost [46] 1.167 EUR/L 0.167 EUR/kWh

CO2 emissions (Well-to-Wheel) [49,50] 2.63 kg/L 0.47 kg/kWh

A daily utilization level of 64 km is assumed for both DVs and EVs, equivalent to
16,064 km per year, considering 251 working days a year. We considered a planning horizon
of 30 years. The EVs considered in this paper use Lithium-ion batteries, which have a longer
lifetime and, according to Emiliano et al. [32], have a lifetime of 240,000 km, equivalent
to 15 years, considering a maximum utilization level of 16,000 km/year. Considering the
predicted daily utilization, we assume only one battery will be required during the 15-year
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lifetime of the EVs. We included the battery and any other technology costs of EVs in their
purchase costs.

To calculate the energy cost (euro/km), we use the following formulas:

fitk = 1.16Rke fd .t , ∀t ∈ {1, 2, . . . , T}, ∀i ∈ {1, 2, . . . , Ak − 1}, k = 1, 3, 5 (22)

fitk = 0.16Qke fe .t , ∀t ∈ {1, 2, . . . , T}, ∀i ∈ {1, 2, . . . , Ak − 1}, k = 2, 4, 6 (23)

Rk (L/km) and Qk (kWh/km) represent the energy consumption of DVs and EVs,
respectively, as shown in Table 3. The values 1.16 and 0.16 represent the energy costs of
DVs in EUR/l and EVs in EUR/kWh, respectively. Parameters fd and fe are the inflation
rates of fuel and electricity prices, respectively, about 6% and 3% per year. These numbers
were inferred in accordance with the yearly history of fuel prices from 1981 to 2014 and
electricity prices from 2001 to 2013 in Portugal [46].

According to Adeniran [49], the average amount of well-to-wheel-produced CO2
emissions by DVs and EVs is about 2.63 kg/L and 0.47 kg/kWh, respectively. The value of
CO2 emissions from EVs is the result of various types of power generation technologies.
The emission costs of DVs and EVs with age i are calculated as follows [49]:

eiD = 2.63× Rk × 0.001× ec, ∀t ∈ {1, 2, . . . , T}, ∀i ∈ {1, 2, . . . , Ak − 1}, k = 1, 3, 5 (24)

eiE = 0.47×Qk × 0.001× ec, ∀t ∈ {1, 2, . . . , T}, ∀i ∈ {1, 2, . . . , Ak − 1}, k = 2, 4, 6 (25)

ec represents the CO2 emission cost of 25 EUR/ton [51].
For calculating salvage revenue, we use the following formula [19]:

sitk = (1− θtk)s(i−1)tk = vk · (1− θtk)
i, ∀k ∈ K, ∀i ∈ {1, . . . , Ak−1}, ∀t ∈ {1, . . . T} (26)

θtk is the depreciation rate of vehicle type k, which is assumed to be 15% [21] for DVs and
19% for EVs, as reported in Ahani et al. [41]. The depreciation rate of EVs is lower than that
of DVs because of their rapid development and the less mature market for second-hand
EVs. According to Lee et al. [52], the total maintenance cost of EVs is half the maintenance
cost of DVs. Thus, we use the following linear functions to estimate the maintenance costs
of light vehicles [41]:

mit1 = 0.2 + 0.04× i, ∀i ∈ {0, 1, . . . , Ak−1}, ∀t ∈ {1, . . . T} (27)

mit2 = 0.1 + 0.02× i, ∀i ∈ {0, 1, . . . , Ak−1}, ∀t ∈ {1, . . . T} (28)

We assume the maintenance costs of vehicles of medium and heavy size are as fol-
lows [53,54]:

mit3 = 1.5mit1, mit5 = 1.5mit1 (29)

mit4 = 1.5mit2, mit6 = 1.5mit2 (30)

where mit3 and mit5 for MDVs and HDVs, respectively, and where mit4 and mit6 for MEVs
and HEVs, respectively.

Finally, based on the regulatory measures, it is assumed that LDV and LEV (i.e.,
k = 1 and 2) can operate in zone z1, which is the most congested zone. In zone z2, LDV,
LEV, MDV, and MEV (i.e., k = 1, 2, 3, and 4) can operate. Finally, all six types of vehicles,
LDV, LEV, MDV, MEV, HDV, and HEV (i.e., k = 1 to 6), can operate in zone z3.

3.6. Demand and Fleet Composition

We assume the company has an average daily demand of 270 customers distributed in
the three zones, as shown in Table 4. The average demand for each customer is assumed
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to be 0.333 m3. Thus, based on the capacities given in Table 2 and considering that the
vehicles operate fully loaded:

• Light-size vehicles can serve c1 = 6 customers;
• Medium-size vehicles can serve c2 = 12 customers;
• Heavy vehicles can serve c3 = 36 customers.

Table 4. Existing fleet composition.

Zone Demand
(Customer/Day) LDV MDV HDV

z1 n1 = 60 10 - -
z2 n2 = 90 5 5 -
z3 n3 = 120 4 2 2

Total 270 19 1 7 2
1 Six vehicles, ages 0 to 2, with two of each age. The remaining ones are of different ages.

In the first fleet configuration, the existing fleet composition is according to the demand
and capacity of the vehicles assigned to each zone, comprising only DVs with two- and one-
year-old vehicles (Table 4), and the operator has a budget of 500,000 EUR for purchasing
new vehicles in each year of the planning horizon; in the second configuration, there is no
existing fleet, and the operator has a budget of 810,000 EUR for purchasing new vehicles in
each year.

4. Results and Discussion

In this section, we report some experimental results for the presented optimization
framework using the initial parameters and data described in the previous section as input
parameters: total cost, fleet composition, and capacity. Additionally, an elasticity analysis is
presented concerning several key parameters. The results comprise six scenarios regarding
the locations of depot points combined with two existing fleet configurations. For every
combination of scenario and fleet configuration, the optimization problem (20), which is
a mixed integer linear optimization problem, is solved by solver Cplex of GAMS 2019
version 27.3 on a laptop computer with a CPU Intel core i3-4030U 1.90 GHz and RAM of
4 GB running Windows 10 64-bits, and execution time needed to perform is close to 0.62 s.

4.1. Total Cost

Figure 2 presents the TC associated with the fleet over the time period of analysis for
each scenario and both existing fleet configurations. Whatever the scenario considered,
the TC with an existing fleet is always higher than when the company has no vehicles in
its existing fleet. This reflects that without an imposed existing fleet and with a bigger
budget, the model can optimize the fleet composition from the beginning of the planning
horizon without the constraint of the existing fleet, thus obtaining lower costs. Therefore,
the budget available to update the fleet is paramount to achieving lower UFT total costs
over the considered time period, which is in line with Emiliano et al. [32] and Li et al. [34].
Moreover, considering the variation of the scenario, with or without the existing fleet,
the TC increases from S1 to S4, which was expected, once the number of depot points is
progressively reduced, increasing the distances between depots and clients, thus increasing
the energy costs [55].
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Figure 2. Total cost for all scenarios with and without an existing fleet.

Figure 3 compares the fleet composition, considering the average usage of vehicles
between scenarios S1 and S5. It shows the changes in the number of light, medium, and
heavy vehicles in different zones. Particularly in zone z1, the change from medium and
heavy vehicles to light vehicles and the decrease in their number highlight the impact of
regulatory measures. Moreover, as expected, the TC in scenario S5 is the lowest (Figure 1),
which can be explained by the absence of regulatory measures and the presence of depot
points in all zones. This occurs because the distances are reduced, and without restrictions,
it is more economical to use larger vehicles (Figure 3). These findings are important to fleet
operators but also for urban policymakers, who must realize that regulatory measures, like
those considered in this study, surge the costs of UFT, which can have a negative economic
impact on urban areas under these measures [12].
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4.2. Fleet Composition

Table 5 shows the number of vehicles of different types used in the fleet at the begin-
ning of the planning time horizon, their average number, and their final number when the
operator has an existing fleet. The existing fleet has different-sized vehicles, but they are
all diesel. However, at the beginning of the planning horizon, the model reconfigures the
fleet composition according to the budget available and the existing fleet, originating the
initial fleet.
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Table 5. The average, initial, and final usage of different vehicle types under different scenarios with
an existing fleet.

Scenario Vehicle Type
Average Usage Initial Usage Final Usage

z1 z2 z3 z1 z2 z3 z1 z2 z3

S1 LDV 0.033 0 0 1 0 0 0 0 0
LEV 9.967 0 0 9 0 0 10 0 0
MDV 0 2.133 0 0 8 0 0 0 0
MEV 0 5.867 0 0 0 0 0 8 0
HDV 0 0 1.067 0 0 4 0 0 0
HEV 0 0 2.933 0 0 0 0 0 4

S2 LDV 1.267 0 0 10 0 0 0 0 0
LEV 8.733 0 0 0 0 0 10 0 0
MDV 0 2.133 0 0 8 0 0 0 0
MEV 0 5.867 0 0 0 0 0 8 0
HDV 0 0 1.067 0 0 4 0 0 0
HEV 0 0 2.933 0 0 0 0 0 4

S3 LDV 0.7 0 0 10 0 0 0 0 0
LEV 9.3 0 0 0 0 0 10 0 0
MDV 0 1.6 0 0 8 0 0 0 0
MEV 0 6.4 0 0 0 0 0 8 0
HDV 0 0 1.067 0 0 4 0 0 0
HEV 0 0 2.933 0 0 0 0 0 4

S4 LDV 0.933 0 0 10 0 0 0 0 0
LEV 9.067 0 0 0 0 0 10 0 0
MDV 0 1.067 0 0 8 0 0 0 0
MEV 0 6.933 0 0 0 0 0 8 0
HDV 0 0 1.3 0 0 4 0 0 0
HEV 0 0 2.7 0 0 0 0 0 4

S5 LDV 0 0.033 0 0 1 0 0 0 0
LEV 0 0 0 0 0 0 0 0 0
MDV 0 0.4 0.167 0 1 1 0 0 0
MEV 0.467 1.567 0.667 0 0 0 2 2 1
HDV 1.6 1.567 2.233 2 2 3 0 0 0
HEV 0.167 0.433 0.933 0 0 0 1 2 3

As mentioned, different vehicles are permitted to operate in different zones: light DVs
and EVs in zone z1; light and medium DVs and EVs in zone z2; and all types and sizes in
zone z3. In all scenarios, in the final year of the planning time horizon, all DVs are replaced
by EVs. Hence, the energy cost becomes the dominant factor in the TC, as EVs have lower
energy costs than DVs, reinforcing the findings of Lebeau et al. [18]. Moreover, reflecting
the regulatory measures, in all scenarios except S5, at the end of the planning time horizon,
the fleet in zone z1 ended up with LEVs, z2 with MEVs, and z3 with HEVs. As already
verified, in scenario S5, the lack of regulatory measures allowed for an increase in the size
of the vehicles in all zones, thus reflecting economies of scale in the fleet.

Conclusion: regulatory measures based on vehicle size restrictions per zone present a
determinant impact on the size of fleet vehicles. On the other hand, the costs of operating
the fleet, as a result of the optimization framework used, overcome the purchase costs of
the vehicles [12,16,18] and tend to determine the type of motorization; EVs, with a higher
purchase cost but lower energy cost, replace DVs in the initial fleets over the planning time
horizon of the analysis.

Table 6 shows the number of vehicles of different types used in the fleet at the begin-
ning of the planning time horizon, their average number, and their final number when
the operator does not have an existing fleet. In this case, the model suggests the use of
different types of vehicles at the beginning of the planning horizon according only to the
available budget (which is higher than in the previous case). The results show that the fleet
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composition over the planning horizon is similar to the previous case with the existing fleet.
Comparing Table 5 to Table 6, the initial fleets are identical in scenarios S2 to S4, suggesting
it is worth updating the existing fleet because it minimizes TC in the long run. The swiftness
of fleet reconfiguration will depend on the budget available and the composition of the
existing fleet at the beginning of the planning horizon.

Table 6. The average, initial, and final usage of different vehicle types under different scenarios
without an existing fleet.

Scenario Vehicle Type
Average Usage Initial Usage Final Usage

z1 z2 z3 z1 z2 z3 z1 z2 z3

S1 LDV 0.133 0 0 4 0 0 0 0 0
LEV 9.867 0 0 6 0 0 10 0 0
MDV 0 2.133 0 0 8 0 0 0 0
MEV 0 5.867 0 0 0 0 0 8 0
HDV 0 0 1.067 0 0 4 0 0 0
HEV 0 0 2.933 0 0 0 0 0 4

S2 LDV 1.267 0 0 10 0 0 0 0 0
LEV 8.733 0 0 0 0 0 10 0 0
MDV 0 2.133 0 0 8 0 0 0 0
MEV 0 5.867 0 0 0 0 0 8 0
HDV 0 0 1.067 0 0 4 0 0 0
HEV 0 0 2.933 0 0 0 0 0 4

S3 LDV 0.7 0 0 10 0 0 0 0 0
LEV 9.3 0 0 0 0 0 10 0 0
MDV 0 1.6 0 0 8 0 0 0 0
MEV 0 6.4 0 0 0 0 0 8 0
HDV 0 0 1.067 0 0 4 0 0 0
HEV 0 0 2.933 0 0 0 0 0 4

S4 LDV 0.933 0 0 10 0 0 0 0 0
LEV 9.067 0 0 0 0 0 10 0 0
MDV 0 1.067 0 0 8 0 0 0 0
MEV 0 6.933 0 0 0 0 0 8 0
HDV 0 0 1.3 0 0 4 0 0 0
HEV 0 0 2.7 0 0 0 0 0 4

S5 LDV 0 0 0 0 0 0 0 0 0
LEV 0 0 0 0 0 0 0 0 0
MDV 0 0.433 0.167 0 2 1 0 0 0
MEV 0.467 1.567 0.667 0 0 0 2 2 1
HDV 1.6 1.567 2.333 2 2 3 0 0 0
HEV 0.167 0.433 0.933 0 0 0 1 2 3

4.3. Capacity Analysis

Figure 4 compares the average capacity of the fleet over the planning horizon of each
type, DVs and EVs, for each scenario with an existing fleet. As shown, the average capacity
of EVs is dominant in all scenarios except Scenario S5. In other words, this means that
EVs serve most of the customers. Scenario S5, where any vehicle size and type are free to
operate in all zones and each zone has its own depot, favors the usage of HDVs, particularly
in zone z3, which confirms previous results (Figure 3).
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Moreover, scenarios S2, S3, and S4 show that the average EV capacity in the fleet tends
to increase as the travel distances increase due to the reduction of the number of depot
points, reflecting the advantage of EVs over DVs concerning energy cost and overriding the
higher purchase cost of EVs. These results confirm that EVs have become more competitive
regarding fleet capacity, thus serving more customers.

4.4. Elasticity Analysis

In this study, the EVs depreciation rate, DVs energy price, and EVs energy price
growth rates were considered to be the parameters with higher uncertainty concerning
their behavior during the planning horizon considered. Therefore, an elasticity analysis
was performed for different ranges of values of the mentioned parameters to support the
fleet operator in understanding their impact on the TC of operating the fleet. The results of
the elasticity analysis are shown in Table 7.

The elasticity of the depreciation rate of EVs was calculated for three intervals of 10%
to 20%, 14% to 24%, and 18% to 28%, as a low, medium, and high level of depreciation rate
for all scenarios. For instance, for EVs with a depreciation rate between 10% and 20%, the
elasticity for the S1 scenario is 0.055, indicating that when the depreciation rate increases
by 1%, the fleet TC increases by 5.5%; in other words, the impact on the TC is 5.5 times
higher compared with the rise in the depreciation rate. With or without an existing fleet,
on average, a 1% increase in the depreciation rate leads to a rise of around 7% in the TC,
which reveals the importance of the uncertainty associated with this parameter.

We also examined the elasticity of the growth rate of the energy price for intervals of
2.91% to 8.73% for DVs and 1.44% to 4.33% for EVs, both with and without an existing fleet.
Table 7 shows that the DVs energy price growth rate, when compared with the EVs energy
price growth rate, has a bigger impact on the fleet TC, whether there is an existing fleet or
not. When using DVs, the energy cost is higher, thus representing a more significant part
of the TC. On average, an increase of 1% in the diesel price growth rate results in a rise of
nearly 4% and 7% in the TC, respectively, with and without an existing fleet. On average,
the variations of the EV’s depreciation have a higher impact on the TC than the variations
in the energy price growth rate; the variation of the DV’s energy price growth rate presents
a higher impact on the TC than the EV’s energy price growth rate. Moreover, the range of
variation of the TC vis-à-vis the variation of the parameters is comparable to the results
achieved by Feng and Figliozzi [21], who conducted a study on EVs’ competitiveness
compared with DVs in the USA market.
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Table 7. Elasticity analysis of TC for depreciation rate and energy price.

Parameter Interval
(%)

Baseline
Value (%) S1 S2 S3 S4 S5

With an
existing fleet

EVs depreciation rate 10 to 20 15 0.055 0.132 0.193 0.055 0.055
EVs depreciation rate 14 to 24 19.8 0.015 0.135 0.095 0.015 0.015
EVs depreciation rate 18 to 28 23 0.025 0.130 0.048 0.025 0.025

DVs energy price
growth rate 2.91 to 8.73 5.82 0.069 0.005 0.004 0.069 0.069

EVs energy price
growth rate 1.44 to 4.33 2.89 0.016 0.016 0.026 0.016 0.016

Without an
existing fleet

EVs depreciation rate 10 to 20 15 0.091 0.098 0.118 0.129 0.055
EVs depreciation rate 14 to 24 19.8 0.052 0.054 0.079 0.095 0.015
EVs depreciation rate 18 to 28 23 0.026 0.026 0.04 0.052 0.025

DVs energy price
growth rate 2.91 to 8.73 5.82 0.069 0.068 0.063 0.061 0.132

EVs energy price
growth rate 1.44 to 4.33 2.89 0.016 0.018 0.021 0.024 0.014

To conclude, the results of the elasticity analysis emphasize that fleet operators must
be fully aware of variations and evolutionary trends in the parameters relevant to the
minimization of the fleet’s TC, in particular the EVs depreciation and DVs energy price
growth rates. Therefore, in the presence of unexpected changes in those parameters’
evolutionary trends, operators can quickly adapt the optimal fleet configuration and the
investment strategy for introducing new vehicles of specific types and sizes into their fleets.

4.5. Limitations and Future Research

This work has some limitations that can be resolved in future research. For example,
costs related to depot points, multiple depot configurations, and fleet assignment to each
depot point should also be considered in the total cost, as emphasized by Pettersson and
Segerstedt [55]. An optimization framework integrating the operational cost of the depots
and the fleet would even further reduce the TC of servicing customers in urban areas subject
to regulatory measures [3]. This framework would allow the UFT operator to develop an
adequate strategy for the vehicle composition of their fleet jointly with the number, size,
and locations of the depots over a particular planning time horizon.

Moreover, the uncertain effects of other parameters using an optimization framework
based on portfolio theory, such as the one developed by Ahani et al. [41], need further
investigation.

Finally, although the optimization framework for deriving an optimal combination of
various types of vehicles with different capacities for vehicle replacement in UFT developed
in the present research is a valid and solid contribution, one should expect that the number,
type, and capacity of the vehicles used influence the results and, potentially, change some
of the findings. Thus, in the future, the optimization framework should be used with more
vehicles of various types and capacities to expand and improve the findings.

5. Conclusions

The quality of delivering and distributing goods to customers is of prime importance
for companies. Thus, choosing the best strategy for purchasing, using, and salvaging each
vehicle size and type, electric or diesel-powered, while minimizing the related total cost
and maintaining the quality of its service becomes a critical issue for an urban freight
transportation (UFT) company. On the other hand, access to the city centers for certain
types of vehicles might be restricted due to regulatory measures set by city authorities to
ease traffic movements and reduce carbon emissions within such areas. Notwithstanding,
there is a manifest gap in the literature on addressing these challenges.
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This study contribution is an innovative framework to assist UFT operators in opti-
mizing their fleet composition, minimizing the total cost, and considering the regulatory
measures regarding the size and type of vehicles and the possibility of operating in specific
city areas defined by the city authorities. The developed framework considers the costs
of acquiring vehicles, energy consumption, emissions, maintenance, salvage, and labor of
different types of vehicles. The model output indicates the optimal composition of the fleet,
namely, the number, size, and types of vehicles required for operating in the various city
areas over the planning time horizon.

The results indicate that fleet composition depends on vehicle size and regulatory
measures, and the motor type, diesel or electric, depends on the trade-off between pur-
chasing and operating costs. This means that, by reducing regulatory measures, the size
of vehicles increases. Additionally, by reducing the number of depot points, the number
of electric vehicles increases due to the rise in operating costs driven by increased travel
distances. Moreover, the rate of fleet electrification depends on the existing fleet and the
budget to purchase new vehicles.

An elasticity analysis was also performed to consider some input parameters’ un-
certainty. The results show that the total cost is highly exposed to changes in electric
vehicle depreciation and diesel price growth rates. On average, an increase of 1% in the
depreciation rate leads to an increase of almost 7% in the total cost, and a rise of 1% in the
diesel price growth rate leads to an increase of nearly 6% in the total cost.

The findings of this study allow the delineation of several managerial implications.
When facing regulatory measures like those considered in this study, UFT operators must
be aware that to reduce the fleet’s total operation cost, they have to change their fleet
composition with the inevitable adoption of EVs over DVs, and that the budget available
for the fleet recomposition is critical to minimizing the total cost in the long run. Moreover,
fleet operators must be attentive to the evolutionary trends in the used electric vehicle
market and the diesel price, as these parameters greatly impact the total cost. Furthermore,
the number and localization of the depot points that support the UFT play a key role in the
recomposition of the fleet.

Finally, regulatory measures increase UFT costs, which can lead to an increase in logis-
tics costs or even the abandonment by UFT companies of urban areas under those measures.
Therefore, it is recommended that policymakers foresee economic and financial incentives
to encourage and support UFT companies to comply with the regulatory measures, thus
maintaining the economic level of these urban areas.
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