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Abstract: Dende and babassu coconuts are largely used in tropical countries, namely in Brazil, for
the extraction of oils from kernels. The remaining biowastes are industrially processed to produce
porous carbons (PCs). PCs derived from dende and babassu biowastes and produced at an industrial
scale have been characterized by textural, chemical, and ecotoxicological parameters. A commercial
activated carbon (CC) of mineral origin has been used as a benchmarking material. Although the CC
sample presented a higher surface area (SBET = 1083 m2/g), the PCs derived from the biowastes were
richer in micropores (Vmicro = 0.25–0.26 cm3/g), while the CC carbon presented wider pore size dis-
tribution with a higher mesopore volume (Vmeso = 0.41 cm3/g). All the adsorbents used in this work
have shown a non-acute ecotoxic behavior for the bacterium Vibrio fischeri (EC50-30 min > 99% v/v).
The adsorbents have been tested for paracetamol and Cu2+ adsorption in mono- and bicomponent
solutions. The uptake capacities of paracetamol (qe, 98–123 mg g−1) and Cu2+ (qe, 15–18 mg g−1)
from monocomponent solutions were similar to the ones obtained in the bicomponent solutions,
indicating no competition or cooperative effects but a site-specific adsorption. This finding represents
an advantage for the removal of these adsorbates when present in the same solution as they can
be adsorbed under similar rates as in the single systems. Paracetamol adsorption was related to
micropore filling, π-π interactions, and H-bonding, whereas Cu2+ removal was attributed to the
cation exchange mechanism and complexation to the hydroxyl groups at the carbons’ surface.

Keywords: biowastes; activated porous carbons; adsorption; single system; binary system

1. Introduction

In Brazil, babassu production in 2021 reached 32,074 tons of kernels, being an im-
portant economic activity for rural traditional communities. Babassu is present mainly in
the states of Piauí, Tocantins, and Mato Grosso, and in greater quantities in the state of
Maranhão, which in 2021 concentrated 90% of almond extraction [1]. The babassu coconut
has a fibrous layer called epicarp. This fiber constitutes 12.6% of the fruit weight and
involves an essential layer, the mesocarp or pulp, which is rich in starch and fiber. The
mesocarp has 20.4% weight of the babassu fruit. Immediately further inside is the endocarp,
which is responsible for 58.4% weight of the raw fruit. It is a very resistant layer around 2
to 3 cm thick, which is essential for the production of charcoal. Finally, at the core of the
fruit are the kernels, which correspond to 8.7% of the babassu fruit weight. The babassu oil
is extracted from these kernels [2].
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Like babassu, dende oil or palm oil is widely used in Brazil. In 2022, the world palm oil
production is estimated to reach 79,564 × 103 Mt [3]. The ranking is led by Indonesia, with a
production of 47,000 × 103 Mt, followed by Malaysia with a production of 19,300 × 103 Mt.
Brazil is in 10th place with a production of 585 × 103 Mt. Within Brazil, the Pará state
represents 84% of the total dende oil production while Bahia state represents 16%.

Several biowastes are generated during the processing of dende and babassu coconuts,
such as the outer layer of the epicarp, endocarp, and kernel cake resulting from the oil
extraction. There are already several valorization pathways for these biowastes such as the
production of fibers from the epicarp, flour from the mesocarp, charcoal from the endocarp,
and biofuels, among others [2,4,5].

Some industries have envisaged other noble valorization pathways for babassu and
dende coconut biowastes such as their conversion into porous carbons for which several
adsorption applications have been studied [6–10].

The use of activated carbons to remove pharmaceutically active compounds (PhACs)
from aqueous solutions has been largely studied, particularly those derived from agro-
industrial biowastes, such as babassu and dende coconut [7,11], almond shell [12], paper
mill sludge [13], dende (palm) kernel shell [14], among other biowastes as indicated in
some review papers [15–17].

Conventional water and wastewater treatment plants are unable to completely remove
micro-pollutants such as PhACs; therefore, these compounds can reach natural ecosystems
through the discharge of treated wastewaters [18]. Generally, PhACs and their metabolites
are excreted through the urine and feces being currently found in raw wastewaters, treated
wastewaters, and sewage sludge. Also, hospital effluents and livestock are responsible for
the presence of these compounds in the environment [19,20]. Despite the evidenced toxicity
to aquatic organisms [21], caffeine, salicylic acid, carbamazepine, and acetaminophen,
among other compounds, have been detected in treated wastewaters, which demonstrates
the inefficiency of conventional primary, secondary, and tertiary treatment systems existing
in the wastewater treatment plants concerning the removal of PhACs [19,22].

The non-prescribed analgesic acetaminophen, commercially known as paracetamol,
is already considered one of the six most frequent pharmaceutical compounds present in
water bodies and drinking water [19,22–24] with proven ecological risks [25,26].

Besides PhACs, ions of heavy metals, such as Cu2+, are also commonly found in
water bodies [27–29]. Copper has been known for many decades as a pollutant for aquatic
ecosystems, not only concerning the water itself but also the sediments and biota. Although
copper is an essential element for the metabolism in humans and animals, under certain
concentrations and physicochemical conditions, it can pose risks to the environment,
human health, and animals [30–32]. According to Luo et al. [33], copper is a chalcophile
element that is widely spread in the earth’s mantle and crust. Therefore, it must be
assumed that this is a ubiquitous element in natural ecosystems. However, depending
on the environmental conditions, it must be present in different oxidation states, which
affects its solubility in water and mobility through the environment. In natural ecosystems
without the influence of anthropogenic activities, their concentrations are usually low.
Higher and toxic concentrations in soil and aquatic ecosystems are due to the discharge
of liquid and solid wastes from industrial activities into the environment [34]. In this
context, copper must be present in industrial effluents together with other organic and
inorganic contaminants.

Adsorption processes are typically easy, simple, and cost-effective engineering so-
lutions, and can improve substantially the treatment of wastewaters. Highly efficient
adsorbents obtained from low-cost and renewable raw materials have been studied with
notable efficiency in micropollutants’ removal [16,35]. The conversion of biowastes into
high-value porous carbons for the removal of contaminants has several advantages, such
as the low cost of precursors and the valorization of wastes that frequently are discarded.

In the present work, babassu and dende biowastes have been used as precursors of
porous activated carbons at an industrial plant. The authors have previously demonstrated
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the high potential of babassu and dende-derived activated carbons for paracetamol removal
in a single system [6,11]. However, the simultaneous removal of paracetamol with metals
has been poorly investigated. This is a relevant topic as water-soluble complexes of
heavy metals and pharmaceutical compounds can be formed in aqueous solutions when
occurring simultaneously, presenting challenges to their removal. Although some studies
have been dedicated to the simultaneous removal of PhACs and heavy metals (Cu, Ni, Pb,
Cd) [36], most of those studies only consider PhACs from the antibiotic class, neglecting
the coexistence of other pharmaceutical classes with heavy metals. Cu ions are amongst the
most frequent heavy metals present in surface and groundwaters and although its toxicity
is lower when compared to other heavy metals such as Pb, Cr, or Cd, it was previously
observed that Cu ions are able to interact with PhACs generating complexes of higher
toxicity [36] being more difficult to remove.

Recently, Ferreira et al. (2022) [37] have studied the simultaneous removal of parac-
etamol with Cu2+ ions by using bone char, and a cooperative adsorption mechanism was
observed. The present work intends to give continuity to that study by evaluating the
competitiveness/cooperativeness between both adsorbates when removed with low-cost
carbons from babassu and dende biowastes. The performance of the biomass-derived
carbons was compared with a commercial activated carbon.

2. Materials and Methods
2.1. Origin of Carbon Materials

The carbons derived from babassu coconut biomass (BBS) were produced by Tobasa
Bioindustrial de Babaçu S.A. (Tocantins, Brazil). The carbons derived from dende coconut
(DND) were produced by Bahiacarbon Agro Ind. (Bahia, Brazil). Due to industrial property
rights, the production processes cannot be disclosed in this work. A commercial activated
carbon (NORIT GAC 1240W) (NOR) was used as a benchmark. All carbons were sieved
for a particle size of 0.210–0.250 mm. The supplied carbons were previously washed with
deionized water until the pH of the washing water become stable. Afterwards, the washed
carbons were oven-dried at 60 ◦C for 24 h and stored until their use.

2.2. Characterization of Carbon Materials

The proximate analysis was determined by the gravimetric method: moisture content
(M) was determined at 105 ◦C (EN 14774-1:2009), volatile matter (VM) at 900 ◦C (EN
15148:2009), and ashes (Ash) at 750 ◦C (ASTM D1762). The fixed carbon (FC) was calculated
by the difference: FC = 100 − (M + VM + Ash).

The elemental analysis (C, H, N, and S content) was carried out using a Thermo
Finnigan elemental analyzer (CE Instruments, model Flash EA 1112 CHNS series).

Thermogravimetric analysis (TGA) was performed between 30 ◦C and 850 ◦C, by
using a heating rate of 5 ◦C min−1, under a continuous argon flow (Setaram Lab-sys EVO).

The pH at the point of zero-charge (pHpzc) was established by using pH shift analysis,
according to the following procedure: 0.1 mol L−1 NaCl solutions with initial pH values
between 2.0 and 12.0 were prepared (pH adjustment was performed with solutions of
NaOH or HCl 0.01–1 mol L−1). A mass of 0.1 g of the activated carbons was added to
20 mL of each NaCl 0.1 mol L−1 solution. The mixtures were stirred for 24 h and the
final pH was measured. The pHpzc value corresponds to the plateau of the pHfinal vs.
pHinitial curve.

The bulk mineral content was determined by microwave-assisted acid digestion with
3 mL H2O2 (30% v/v), 8 mL HNO3 (65% v/v), and 2 mL HF (40% v/v), followed by a
neutralization step with H3BO3 (4% w/v) (EN 15290:2011). The quantification of several
metals and metalloids in the acidic eluates was performed by inductively coupled plasma
atomic emission spectroscopy (ICP-AES).

The mobility of chemical species from the carbons was determined by a leaching test
(EN 12457-2:2002): the adsorbents were mixed for 24 h with deionized water at 10 rpm,
under a liquid/solid ratio of 10 L kg−1, using a top-to-top shaker. At the end of the
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stirring time, the mixtures were filtrated through cellulose nitrate membranes of 0.45 µm
porosity. The resulting aqueous eluates were characterized for pH and several metals and
metalloids using ICP-AES. The relative mobility of chemical elements was determined by
Equation (1) [38]:

RM =
Caqueous eluate

Cacidic eluate
× 100 (1)

where RM is the relative mobility of the chemical element (%), Caqueous eluate is the concen-
tration of the chemical element in the aqueous eluate obtained in the leaching test (mg L−1),
and Cacidic eluate is the concentration of the chemical element quantified in the bulk mineral
content (mg L−1).

The carbons were also analyzed by Fourier-transform infrared (FTIR) (Perkin-Elmer-
Spectrum 1000 Spectrometer instrument), using the KBr disk method, to identify the
functional groups on their surfaces. The textural properties were also characterized by
using nitrogen (N2) adsorption-desorption isotherms, at 77 K (Micromeritics ASAP2010).
The samples were previously outgassed overnight at 150 ◦C under vacuum pressure. The
surface area was determined through the Brunauer–Emmett–Teller (BET) equation by
using a range of relative pressures (p/p0) determined by the Rouquerol method [39]. The
micropore volume was determined by the t-plot method. The total pore volume was
determined from the amount of N2 adsorbed at p/p0 = 0.95. The mesopore volume was
calculated by subtracting the micropore volume from the total pore volume.

2.3. Batch Adsorption Assays

The Cu2+ aqueous solutions were prepared by the dissolution of a 1000 mg Cu2+ L−1

stock solution, which was obtained from CuSO4.5H2O salt (VETEC, p.a.) dissolved in
ultrapure water (Milli-Q Academic, Millipore). The paracetamol aqueous solutions were
prepared by dilution of a 1000 mg L−1 paracetamol standard solution. This standard
solution was obtained by dissolution of the paracetamol pure compound (Sigma-Aldrich,
Burlington, MA, USA, purity > 98%) in ultrapure water.

The adsorption experiments were carried out by mixing 10 mg of carbon with 20 mL
of the adsorbate solution. Each batch adsorption assay was performed in duplicate. The
kinetic and equilibrium studies were undertaken at the pH 3.00 adjusted by adding HNO3
0.1–1.0 mol L−1. The solid/liquid ratio as well as the solution pH used in the adsorp-
tion experiments were previously optimized in laboratory essays [37]. Doses of carbon
below 10 mg provided very low removals of Cu ions. To avoid copper precipitation, pH
conditions below 5 were used and a pH of 3 provided the highest copper removal with
minimal precipitation.

The solutions containing the carbons were stirred at 150 rpm. At the end of the mixing
period, the suspension was filtrated and the concentrations of paracetamol and Cu2+ in the
filtrates were determined by UV-VIS spectrophotometry, at λ = 245 nm (HACH DR 5000),
and ICP-AES, respectively.

The uptake capacity of paracetamol and Cu2+ was calculated from Equation (2):

qt =
C0 − Ce

M
× V (2)

where qt is the uptake capacity (mg g−1), C0 and Ce are the initial and equilibrium concen-
trations, respectively, of paracetamol and Cu2+ (mg L−1), M is the mass of adsorbent (g),
and V is the solution volume (L).

2.4. Adsorption Experiments on the Single Component System—Kinetics

The kinetic runs on single-component systems were carried out with 50 mg L−1 of
each adsorbate. Samples were taken between 5 to 1440 min at room temperature. The pH
value was determined after each adsorption assay. Several models have been proposed
to express the mechanism of kinetic removal. The most used ones are the pseudo-first-
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order (PFO) kinetic model [40] (Equation (3)) and the pseudo-second-order (PSO) kinetic
model [41] (Equation (4)):

qt = qe

(
1 − e−k1t

)
(3)

qt =
qe

2k2t
1 + k2qet

(4)

where qt and qe are the uptake capacities of paracetamol and Cu2+ (mg g−1) at time t and
equilibrium (min), respectively, k1 is the rate constant of the PFO kinetic model (min−1),
and k2 is the rate constant of the PSO kinetic model (g mg−1 h−1).

The modeling of experimental data was performed using the OriginLab software. The
experimental uptake capacities were compared to those calculated from the models by
using the chi-square, χ2, test according to Equation (5) [42]:

χ2 = ∑
(qe − qe,m)

2

qe,m
(5)

where qe is the experimental uptake capacity at equilibrium (mg g−1) and qe,m is the
modeled uptake capacity at equilibrium (mg g−1).

The model for which Akaike Information Criterion (AIC) is a minimal value was se-
lected as the ideal model that better describes the experimental data. AIC can be calculated
by Equation (6) [43]:

AIC = 2k − 2 ln(L) (6)

where L is the likelihood function and k is the number of estimated parameters.

2.5. Adsorption Experiments on the Binary Component System

The kinetic runs on the binary component system were conducted with mixed solu-
tions of 50 mg L−1 Cu2+ + 50 mg L−1 paracetamol. The experimental conditions were the
same used for the single system (time range of 5 min to 1440 min, 10 mg of carbon, 20 mL
of solution, initial pH of 3 and room temperature). The kinetic data for binary adsorption
were also modeled according to the kinetic models proposed for the single system.

For batch equilibrium experiments, the initial concentration of the two adsorbates was
kept in the range of 5 mg L−1 to 250 mg L−1.

The mechanism of binary adsorption may be quantitatively discussed through the
effect of interaction (Equation (7)):

EI =
qe,mix

qe
(7)

where EI is the effect of interaction (dimensionless), qe,mix is the uptake capacity of each
adsorbate in equilibrium in the binary system (mg g−1), and qe is the uptake capacity of
each adsorbate in equilibrium in the single system (mg g−1).

Three types of effects may be observed: positive synergism (EI > 1), antagonism
(EI < 1), and no interaction (EI = 1) [44,45].

2.6. Ecotoxicity Assessment

The ecotoxicity level of the aqueous eluates obtained in the leaching test of carbons
and the aqueous solutions before and after binary adsorption assays was assessed by using
the Microtox® assay (ISO 11348-3:2007). In this ecotoxicity assay, the bioluminescence
inhibition of the Vibrio fischeri bacterium is evaluated after 30 min of exposure to the
aqueous samples. The result is expressed as the effective concentration (% v/v) of the
aqueous solution that induces a 50% decrease in the V. fischeri bioluminescence (EC50-30
min) (% v/v). The lower the EC50 value, the higher the ecotoxicity level of the eluate for
the bacterium. Control tests corresponding to paracetamol and Cu2+ in single and binary
solutions with a concentration of 50 mg L−1 were also performed.
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3. Results and Discussion
3.1. Characterization of the Carbons and Their Eluates
3.1.1. Proximate and Elemental Analyses and pHpzc

Table 1 presents the results of the proximate and elemental analyses as well as the
pHpzc for all the carbons. The biomass-derived carbons showed very similar characteristics
between them. The NOR carbon presented around twice the ash content and approximately
half of the oxygen content of the biomass-derived carbons. These differences should be
related to the precursors used in the production of the carbons: biomass for BBS and DND
versus mineral coal for NOR. The values of pHpzc are neutral to slightly alkaline, which
agrees with already reported results in the literature [7,9,46].

Table 1. Proximate and elemental analyses, and pHpzc of the three carbons.

Parameters
Carbons

BBS DND NOR

Proximate analysis a

(% w/w)
Moisture (%) 10.2 8.9 11.7

Volatile matter 8.6 11.7 7.0
Ashes 7.4 6.6 11.6

Fixed carbon 73.8 72.7 69.7
Elemental analysis a

(% w/w)
C 79.6 78.9 80.2
H 0.7 1.0 0.3
N 0.4 0.5 0.4
S <0.03 <0.03 <0.03

O b 11.9 13.0 7.5

pHpzc 7.5 7.8 8.0
BBS: Babassu-derived carbon; DND: Dende-derived carbon; NOR: Commercial activated carbon; a as-received
basis; b O = 100 − (C + H + N + S + Ashes).

3.1.2. Thermogravimetric Analysis

TGA curves of the carbons are shown in Figure S1 (Supplementary Material). All the
samples presented high thermal stability with mass losses below 10% up to 850 ◦C. The
mass loss at around 110 ◦C is due to the evaporation of water contained in the samples.
The high thermal stability indicates that the biomass-derived carbons can be submitted to
thermal regeneration.

3.1.3. Bulk Mineral Content

Table 2 shows the bulk mineral content of all activated carbons.

Table 2. Bulk mineral content (mg kg−1 db; X ± σ, n = 3 replicates) of the three carbons.

Chemical
Element

Carbons

BBS DND NOR

Si 25,907 ± 554 17,521 ± 234 32,016 ± 120
K 6043 ± 467 5189 ± 113 623 ± 3.1
Fe 1323 ± 205 1692 ± 97 7255 ± 551
Ca 786 ± 3.4 1165 ± 61 1524 ± 35
Mg 749 ± 68 4525 ± 508 170 ± 29
Al 452 ± 63 1148 ± 32 13,473 ± 2006
Mn 49 ± 0.1 53 ± 0.2 30 ± 3.9
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Table 2. Cont.

Chemical
Element

Carbons

BBS DND NOR

Zn 35 ± 13 30 ± 3.5 20 ± 3.7
Na 23 ± 19 276 ± 13 257 ± 42
Cu 22 ± 0.3 45 ± 0.4 9.0 ± 0.1
Se 22 ± 0.1 <1.8 30 ± 0.2
Ba 13 ± 1.1 14 ± 0.3 70 ± 0.9
Pb 13 ± 0.3 <0.2 19 ± 1.9
As <0.2 <0.2 31 ± 0.3
Ni <1.5 <1.5 38 ± 0.3
Cr <0.6 <0.6 11 ± 0.1
Mo <0.2 <0.2 <0.2

The biomass-derived carbons presented high content of Si, K, Fe, Ca, and Mg, which
was expected given their lignocellulosic origin. On the other hand, besides Si, Fe, and Ca,
the NOR sample also presented high content of Al, which is related to its mineral origin.
These results are in agreement with previous studies [37,38].

3.1.4. Mobility of Chemical Elements

Table 3 shows the chemical characterization of the eluates of the carbons obtained in
the leaching test.

Table 3. Chemical characterization of the eluates (mg kg−1 db; X ± σ, n = 3 replicates) and relative
mobility of chemical elements (%) of the three carbons.

Chemical
Element

BBS DND NOR

Eluate
Concentration

Relative
Mobility

Eluate
Concentration

Relative
Mobility

Eluate
Concentration

Relative
Mobility

K 3221 ± 237 53.3 1262 ± 50 24.3 8.20 ± 0.30 1.31
Mg 69.0 ± 2.9 15.3 36.0 ± 3.4 0.800 5.30 ± 0.60 3.12
Ca 22.0 ± 1.9 2.80 0.700 ± 0.100 0.060 36.0 ± 1.0 2.36
Na 3.30 ± 0.40 14.4 30.0 ± 0.1 10.9 2.80 ± 0.10 1.09
Si 80.0 ± 0.3 0.310 123 ± 1 0.700 26.0 ± 1.1 0.008
Fe 0.060 ± 0.120 0.004 0.110 ± 0.080 0.006 0.090 ± 0.050 0.001
Al <0.050 <0.010 <0.050 <0.004 0.550 0.004
Ba <0.001 <0.007 <0.001 <0.007 <0.001 <0.001
Zn <0.004 <0.010 <0.004 <0.010 <0.004 <0.02
Cu <0.041 <0.180 <0.041 <0.090 <0.041 <0.45
Se <0.053 <0.240 <0.053 n.a. <0.053 <0.17
As <0.005 n.a. <0.005 n.a. <0.005 <0.01
Ni <0.043 n.a. <0.043 n.a. <0.043 <0.11
Pb <0.005 <0.030 <0.005 n.a. <0.005 <0.02
Cr <0.018 n.a. <0.018 n.a. <0.018 <0.16
Mo <0.006 n.a. <0.006 n.a. <0.006 n.a.

pH 7.8 n.a. 9.5 n.a. 7.9 n.a.

db: dry basis; n.a.: not applicable.

The BBS and DND had the highest mobility rates, indicating that a significant fraction
of the metallic elements was present in the carbons as water-soluble salts [38,47,48]. Partic-
ularly, K was the ash-forming element that showed greater mobility during the leaching
test for both BBS (53.3%) and DND (24.3%). Na element also presented significant mobility
with mobility rates of 14.4% for BBS and 10.9% for DND. The BBS carbon also showed high
mobility of Mg (15.3%). The higher mobility of these alkaline and alkaline-earth elements of
the biomass-derived carbons might induce a cation-exchange mechanism in the adsorption
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process. Other elements that were quantified in the carbons with high concentrations, such
as Si, Fe, and Al, presented a low release or were not leached, suggesting that they are well
immobilized in the carbon matrix. Overall, the NOR sample provided low mineral mobility
suggesting that its minerals are well retained. All the eluates presented basic character,
particularly the aqueous eluate from DND carbon.

3.1.5. Ecotoxicity Assessment of the Carbons

The EC50–30 min of all carbon samples was >99.0% v/v, indicating a non-ecotoxic
behavior. This result indicates that all the adsorbents did not mobilize chemical elements
in acute toxic concentrations for the bacterium in the leaching test.

3.1.6. FTIR Spectra

Figure 1 displays the FTIR spectra of the three carbons BBS, DND, and NOR.
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Figure 1. FTIR spectra of the three carbon samples (BBS: Babassu—derived carbon; DND: Dende—
derived carbon; NOR: Commercial activated carbon).

The BBS and DND samples have similar bands because both are derived from ligno-
cellulosic biowastes of the coconut fruits. A common band in the region of 3650–3200 cm−1

can be observed for all the spectra attributed to the stretching vibration of hydroxyl groups
(O–H) of water, phenols, and alcohols [49,50]. The bands located between 2930–2800 cm−1

correspond to C–H stretching vibrations of methyl and/or methylene groups. Very
small peaks at around 2307 cm−1 indicate stretching vibrations of the acetylenic group,
C≡C [50,51].

The small peaks between 1626–1654 cm−1 for all spectra can be attributed to the C=O
stretching vibrations of ketones, aldehydes, lactones, or carboxyl groups [51,52]. The band
at 1560 cm−1 can be assigned to the C=C aromatic ring stretching vibrations [50]. The
peaks around 1386 cm−1 can be attributed to the C–H stretching vibrations of aliphatic
groups [49]. The peaks between 1030 cm−1 and 1170 cm−1 can be associated with the
C-O stretching of alcohols and/or phenols and/or the stretching vibration of C–O–C from
ethers [49].

3.1.7. Textural Properties of the Carbon Samples

The N2 adsorption-desorption isotherms (Figure S2, Supplementary Material) of BBS
and DND samples are of type I (a) according to IUPAC classification [53]. These isotherms
are typical of microporous materials having mainly narrow micropores (width < ≈ 1 nm).
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NOR sample shows an isotherm of type I(b), which is typical of microporous materials
with an enlarged distribution of pore sizes including micropores and narrow mesopores
(< ≈2.5 nm).

The textural data obtained from the N2 physisorption analysis are shown in Table 4.

Table 4. Textural properties of the three activated carbons.

Carbon SBET
(m2 g−1)

Vtotal
(cm3 g−1)

Vmes
(cm3 g−1)

Vmicro
(cm3 g−1)

BBS 784 0.34 0.08 0.26
DND 767 0.34 0.09 0.25
NOR 1083 0.57 0.41 0.16

SBET: surface area; Vtotal: total pore volume; Vmes: mesopore volume; Vmicro: micropore volume.

BBS and DND carbons showed relatively high surface area (SBET) associated with their
high volume of micropores. The values are close to those found in the literature for babassu
(SBET of 624, 625, and 688 mg2 g−1 according to [7,51,54]) and dende carbons (SBET of
672 mg2 g−1 according to [11]). The NOR carbon shows the highest SBET with 1083 m2 g−1,
although it presents a smaller micropore volume but a much higher mesopore volume.

3.2. Adsorption in Single and Binary Systems: Kinetics, Equilibrium Assays, and Ecotoxicity
3.2.1. Adsorption Kinetics

Results for single and binary adsorption experiments are shown in Figure S3. The
experimental data were adjusted to PFO and PSO kinetic models, and the best model was
selected according to the highest determination coefficient (R2), lower χ2 value, and lower
AIC value.

For both the single and binary systems and all the adsorbents, the best fitting was
obtained with the PSO model. The calculated parameters (experimental and modeled with
the PSO kinetic model) are summarized in Table S1 (Supplementary Material).

The single paracetamol adsorption (Figure 2A,D,G) shows a kinetic equilibrium occur-
ring at around 300 min, for BBS and DND carbons, and 60 min for the NOR carbon. The
fastest adsorption associated with NOR carbon is related to the higher mesopore content
of this sample (Table 4). The experimental maximum uptake capacities of paracetamol
were 90.4 mg g−1 for BBS, 94.2 mg g−1 for DND, and 95.2 mg g−1 for the NOR sample.
Despite the different surface areas of biowaste-derived carbons and commercial carbon, the
paracetamol uptake capacity was quite similar for all samples indicating a strong influence
of the pore size, particularly the micropore size as it was pointed out by Cabrita et al.
(2010) [55].

The carbons’ surfaces are positively charged since the pHPZC values are quite above
the solution pH of 3.0 (Table 1), and the paracetamol molecule is in its protonated form
(pKa ≈ 9.0); therefore, electrostatic interactions between the molecule and the carbons’
surface are not not expected. The π-π bonding between the aromatic rings of the carbons
and the aromatic ring of the organic molecule, as well as hydrogen bonding, might have
been responsible for the paracetamol removal from the single and binary solutions [56,57].

Figure 2B,E,H show that Cu2+ adsorption is very rapid within the first 30 min and
then the equilibrium is reached. This behavior is due to the few sites available for Cu2+

adsorption. Although the biowaste carbons presented some K, Na, and Mg mobility
(Table 3) that may have played a role in the cation exchange mechanism, the Cu2+ uptake
was low. Complexation of Cu2+ by oxygenated functional groups at carbons’ surface is
another possibility since the importance of hydroxyl groups in Cu removal was previously
demonstrated [58–60]. As shown in FTIR spectra (Figure 1), hydroxyl groups are effectively
present at carbons’ surface.
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Figure 2. Kinetic data from single and binary adsorption systems with the carbons BBS ((A): single
paracetamol, (B): single Cu2+; (C): binary system with paracetamol and Cu2+), DND ((D): single
paracetamol, (E): single Cu2+; (F): binary system with paracetamol and Cu2+), and NOR ((G): single
paracetamol, (H): single Cu2+; (I): binary system with paracetamol and Cu2+); (solid line) PFO and
(dotted line) PSO non—linear fitting; dots—experimental points.

Figure 2C,F,I depict the adsorption in binary systems. Compared to the single systems,
no relevant changes in the kinetic curves and equilibrium times have been registered. Thus,
no collaborative or competitive adsorption was found for both the metal ion and pharma-
ceutical molecule, indicating that Cu2+ and paracetamol adsorption was site-specific.

The lack of competition between paracetamol and Cu2+ was also confirmed for single
and binary systems with a higher concentration of paracetamol and Cu2+ (100 mg L−1

Cu2+ + 100 mg L−1 paracetamol.) Table 5 shows the uptake capacities for paracetamol and
Cu2+ in single and binary systems for each carbon, as well as the Effect of Interaction (EI).
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Table 5. Uptake capacities and EI on the adsorption process of paracetamol and Cu2+ in single and
binary systems under an initial concentration of 100 mg L−1 for each adsorbate.

Carbon

Paracetamol Cu2+

qe
Single

(mg g−1)

qe
Binary

(mg g−1)
EI

qe
Single

(mg g−1)

qe
Binary

(mg g−1)
EI

BBS 98.4 97.8 0.99 15.0 12.2 0.81
DND 109 104 0.95 16.6 15.7 0.94
NOR 123 115 0.93 18.1 16.2 0.89

The EI values are quite close to 1.0, meaning that no significant interaction exists
between paracetamol and Cu2+ even for the double of the concentration tested in the
kinetic study.

3.2.2. Equilibrium Studies—Adsorption Isotherms

Since there was no interaction between paracetamol and Cu2+, the adsorption isotherms
were only determined for the binary systems. The obtained results were fitted to the
widely used Langmuir and Freundlich models [61,62] (Figure S3, Supplementary Material).
The isotherms are convex, revealing a favorable adsorption process. In addition, the
isotherms can be classified as type L [63], where adsorption increases markedly un-
der low equilibrium concentrations and reaches a plateau after continuously increasing
equilibrium concentration.

Table 6 shows that the Langmuir model obtained the best fit for paracetamol in the
binary system for all adsorbents, while for Cu2+, the Freundlich model showed the best fit.
The Langmuir model is associated with the monolayer adsorption concept assuming that
once an adsorbate molecule occupies a site, no further adsorption can take place at that site
and no interaction occurs between the molecules adsorbed on and the adjacent or nearby
sites. On the other hand, the Freundlich model conceives an energetic heterogeneity of the
active sites, considering multilayer formation.

Table 6. Langmuir and Freundlich parameters for paracetamol and Cu2+ adsorption in
binary systems.

Adsorbent Isotherm Model Parameters Paracetamol
Binary

Cu2+

Binary

BBS

qe exp 115 10.7

Langmuir

qmax 128 12.2
KL 0.090 0.090
R2 0.880 0.846

AIC 61.4 16.8

Freundlich

KF 26.4 3.65
1/n 0.343 0.248
R2 0.816 0.850

AIC 57.5 17.1

DND

qe exp 104 15.7

Langmuir

qmax 149 16.6
KL 0.070 0.160
R2 0.921 0.971

AIC 48.8 10.5

Freundlich

KF 16.4 5.18
1/n 0.523 0.263
R2 0.837 0.973

AIC 54.6 10.7
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Table 6. Cont.

Adsorbent Isotherm Model Parameters Paracetamol
Binary

Cu2+

Binary

NOR

qe exp 132 17.8

Langmuir

qmax 148 20.2
KL 0.115 0.058
R2 0.952 0.949

AIC 51.4 14.7

Freundlich

KF 30.3 3.19
1/n 0.362 0.389
R2 0.881 0.962

AIC 59.9 12.3

qe exp: experimental uptake capacity in mg g−1; qmax: maximum uptake capacity in mg g−1; KL: Langmuir
constant in L mg−1; KF: Freundlich constant in (mg g−1)(mg L−1)n; 1/n: dimensionless adsorption intensity.

Considering the obtained results, the DND carbon presented the highest affinity for
Cu2+ (highest KF), while the BBS showed the second highest affinity for paracetamol quite
close to the NOR activated carbon.

3.2.3. Ecotoxicity

Ecotoxicity tests were also performed in the adsorbates’ solutions at a pH of 3.0
(natural solutions’ pH) and the optimum pH for V. fischeri bacterium (pH = 8.0). These
results were previously reported [37]. The single paracetamol solution (50 mg L−1), at
pH 3.0, presented an EC50-30 min of 14.8% v/v showing a high ecotoxic level. When the
pH was adjusted for 8.0, the EC50-30 min increased to 21.7% indicating a small decrease
in the toxicity, but it is still a relevant effect on V. fischeri. The literature is quite variable
presenting very different EC50 values for paracetamol [64–66].

The single Cu2+ solution (50 mg L−1), at pH 3.0, showed an EC50-30 min < 2.5% v/v,
indicating a very high toxicity level. In fact, the high toxicity of Cu ions for V. fischeri at
low concentrations was reported in the literature [67]. After the pH correction to 8.0, the
toxicity for the bacterium was not detectable (EC50-30 min > 99% v/v). The toxicity was
probably due not only to the Cu2+ but also to the natural pH of the solution. Considering
that Cu2+ ions form insoluble hydroxides when pH > 5, the pH correction to a value of 8.0
precipitated the Cu present in the solution, decreasing its toxicity level to the bacterium [68].

For the paracetamol and Cu2+ binary solution (50 mg L−1 + 50 mg L−1), at both pH 3.0
and pH = 8.0, the ecotoxic level was quite high (EC50-30 min < 2.5% v/v), indicating that the
simultaneous presence of these substances may have a synergistic toxic effect to V. fischeri.

The ecotoxicity evaluation after adsorption on the binary systems before pH correction
(final pH = 3.0) provided an EC50-30 min of <2.5% v/v for the aqueous solutions, indicating
a high acute toxicity level for Vibrio fischeri. After the pH correction (final pH = 8.0), the
EC50-30 min increased dramatically to a non-toxic level (>99% v/v), resulting from the large
removal of paracetamol, since the pharmaceutical molecule presented an EC50-30 min of
21.7% v/v by itself. This result differs from the ones obtained by Ferreira et al. (2022) [37],
where the binary mixture of paracetamol + Cu2+ still presented high toxicity after adsorp-
tion due to a low removal of paracetamol. This result demonstrates the importance of the
high-efficiency removal of paracetamol from the aqueous solutions to decrease their acute
toxicity levels.

4. Conclusions

The characterizations performed on the carbons allowed concluding that although
the CC sample presented a higher surface area (SBET = 1083 m2/g), the porous carbons
derived from the biowastes were richer in micropores (Vmicro = 0.25—0.26 cm3/g), while
the CC carbon presented wider pore size distribution with a higher mesopore volume
(Vmeso = 0.41 cm3/g). Regarding the surface chemistry, all the carbons presented a slightly
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alkaline behavior with pHpzc values between 7.0 and 8.0. The biowaste-derived carbons
presented high concentrations of metallic elements such as Si, K, Ca, and Mg, while the
commercial carbon presented high content of Si, Al, and Fe. The mobility of the K element
was significant in the biowaste-derived carbons while the commercial sample showed that
its metallic elements are well immobilized in the carbonaceous matrix. The ecotoxicity
assessment indicated a non-ecotoxic behavior for all the carbons (EC50-30 min > 99% v/v).
While the bicomponent solution presented a high ecotoxicity (EC50-30 min < 2.5% v/v)
before adsorption, the EC50-30 min increased dramatically to a non-toxic level (>99% v/v)
after adsorption, resulting from the large removal of paracetamol.

No significant competition between the adsorbates was observed in the bicomponent
solutions adsorption experiments since the uptake capacities obtained were similar to the
ones obtained in the monocomponent solutions, indicating that paracetamol and Cu2+

adsorption was site-specific.
Paracetamol adsorption was related to the micropore filling, π-π interactions, and

H-bonding, whereas Cu2+ removal was attributed to the cation exchange mechanism and
complexation with the hydroxyl groups at the carbons’ surface.

This work demonstrates that it is possible to valorize babassu and dende byproducts
produced at oil plants as carbons with high efficiency in the removal of paracetamol and
Cu2+ from aqueous solutions. Further studies on the application of these biowaste-derived
carbons in real wastewater matrices are required.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pr11072146/s1, Figure S1: TGA curves of the carbons
(BBS: babassu−derived carbon; DND: Dende−derived carbon; NOR: Commercial activated carbon).;
Figure S2: N2 adsorption−desorption isotherms at 77 K of the carbons (BBS: babassu−derived carbon;
DND: Dende−derived carbon; NOR: Commercial activated carbon); Figure S3: Experimental data
and fitting to the Langmuir and Freundlich isotherm models for paracetamol and Cu2+ adsorption in
binary systems (A, C, and E: paracetamol adsorption in a binary system with BBS, DND, and NOR,
respectively; B, D, and F: Cu2+ adsorption in a binary system with BBS, DND, and NOR, respectively;
BBS: babassu; DND: Dende; NOR: Norit); Table S1: Kinetic parameters from PSO kinetic model for
single and binary adsorption experiments.
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