
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2023) 24:16
https://doi.org/10.1007/s10710-023-09463-1

1 3

On the hybridization of geometric semantic GP
with gradient‑based optimizers

Gloria Pietropolli1 · Luca Manzoni1 · Alessia Paoletti1 · Mauro Castelli2

Received: 2 November 2022 / Revised: 27 June 2023 / Accepted: 23 September 2023
© The Author(s) 2023

Abstract
Geometric semantic genetic programming (GSGP) is a popular form of GP where
the effect of crossover and mutation can be expressed as geometric operations on a
semantic space. A recent study showed that GSGP can be hybridized with a stand-
ard gradient-based optimized, Adam, commonly used in training artificial neural
networks.We expand upon that work by considering more gradient-based optimiz-
ers, a deeper investigation of their parameters, how the hybridization is performed,
and a more comprehensive set of benchmark problems. With the correct choice of
hyperparameters, this hybridization improves the performances of GSGP and allows
it to reach the same fitness values with fewer fitness evaluations.

Keywords Geometric semantic genetic programming · Stochastic gradient descent ·
Adam · Evolutionary algorithm

 * Gloria Pietropolli
 gloria.pietropolli@phd.units.it

 Luca Manzoni
 lmanzoni@units.it

 Alessia Paoletti
 paoletti.alessia@gmail.com

 Mauro Castelli
 mcastelli@novaims.unl.pt

1 Dipartimento di Matematica e Geoscienze, Universitá degli Studi di Trieste, Via Alfonso
Valerio 12/1, Trieste 34127, TS, Italy

2 NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa,
Campus de Campolide, 1070-312 Lisbon, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-023-09463-1&domain=pdf

 Genetic Programming and Evolvable Machines (2023) 24:16

1 3

 16 Page 2 of 20

1 Introduction

Genetic programming (GP) [1] is one of the most prominent evolutionary com-
putation techniques, with the ability to evolve programs, usually represented as
trees, to solve specific problems given a collection of input and output pairs. Tra-
ditionally, operators in GP have focused on manipulating the syntax of GP indi-
viduals, like swapping subtrees for crossover or replacing subtrees for mutation.
While simple to describe, these operations produce effects on the semantics [2] of
the individuals that can be complex to predict, with small variations in the syn-
tax that may significantly affect the semantics. To address this problem, semantic
operators were introduced. In particular, geometric semantic operators, first intro-
duced in [3], have been used for defining Geometric Semantic GP (GSGP), a new
kind of GP where crossover and mutation operators directly act on the seman-
tics of the candidate solutions. Successively, the work described in [4] introduced
an implementation of GSGP that allows overcoming the limitation caused by the
growth of the individuals at each generation, thus making it possible to address
complex real-world problems.

While the introduction of GSGP establishes a clear effect of recombination and
mutation operators on the semantics of the candidate solutions and improves the
quality of the generated solutions, there is still a largely untapped opportunity for
combining GSGP with local search methods. In particular, we can observe that,
given two GP trees T1 and T2 , their recombination is obtained as �T1 + (1 − �)T2 ,
and the mutation of one of them is given by T1 + ms(R1 − R2) , where R1 and R2
are two random trees. As we can observe, three parameters, � , � = 1 − � , and
ms are either fixed or randomly selected during the evolution process. As long as
each function used in the generation of the individuals is derivable, we can com-
pute the gradient of the error with respect to the parameters used in crossover and
mutation. Thus, we can employ a gradient-based optimizer to update the param-
eters of each crossover and mutation.

In this paper, we investigate the combination of GSGP with two gradient-based
optimizers: stochastic gradient descent and Adam. In some sense, by combining
GSGP with a gradient-based optimizer, we are leveraging the strengths of each
of the two methods: GSGP (and GP in general) is good at providing structural
changes in the shape of the individuals, while gradient-based methods are perfect
for optimizing a series of parameters of the individuals that the evolutionary pro-
cess has difficulty in optimizing.

GSGP, thanks to the recombination operators, leads to the exploration of mul-
tiple zones in the solution space. Geometric semantic crossover allows the crea-
tion of a child on the segment that connects two parents (in the semantic space)
even if they are a long way apart. Geometric semantic mutation introduces ran-
dom perturbations, leading to solution space exploration. On the other side, gra-
dient-based methods perform local changes, so no big jumps in the solution space
are done, but only small shifts in the local area of the solution space.

Concerning the gradient-based optimizer choice, we compare two of the most
commonly used in the neural networks’ training process: SGD and Adam. We

1 3

Genetic Programming and Evolvable Machines (2023) 24:16 Page 3 of 20 16

selected the former because, despite its simplicity, it remains one of the most per-
forming methods. On the other hand, Adam consists of a more elaborated tech-
nique, which takes into account not only the directions of the gradient but also
the first and the second moment, thus resulting in a more suitable choice—but
also more computationally expensive—when dealing with challenging tasks.

This work is the natural consequence of a preliminary study [5] that presented
promising results achieved by combining GSGP with gradient-based optimization.
This study aims to provide a clear picture concerning the combination of GSGP
and gradient-based optimizers. In the preliminary study, only the Adam optimizer
was considered, while here, we want to study also the effect of a combination with
Stochastic Gradient Descent to investigate if a powerful—yet expensive—method
is necessary to render this combination more performing w.r.t. classic GSGP or if it
is sufficient an easier—yet cheaper and faster—optimizer. We will also investigate
the performance of both gradient-based methods by choosing different hyperparam-
eters settings, specifically considering different learning rate values. Moreover, we
will study different alternatives to alternate between GSGP steps and gradient-based
steps, gradually increasing the number of gradient descent steps at the expense of
the total amount of GSGP generations.

We experimentally show that the proposed method can provide better perfor-
mance with respect to plain GSGP, thus suggesting that a combination of local
search (via gradient-based optimizers) with GSGP is a new promising way to lever-
age knowledge from other areas of artificial intelligence.

Recalling that we were inspired by the neural network framework when intro-
ducing gradient-based optimization among GSGP, we will also observe some strong
analogies with the deep learning world. Specifically: experimental results will show
that the quality of the proposed hybridization will depend on the choice of some
hyperparameters of the algorithm. In turn, the optimal value of the hyperparameters
will not be universal and unique but will change depending on the benchmark prob-
lem under consideration.

This paper is structured as follows: Sect. 2 provides an overview of the applica-
tions of local search to evolutionary methods and GP in particular. Section 3 recalls
the reliant notions of GSGP (Sect. 3.1) and the gradient-based algorithms studied
in this work (Sect. 3.2). Section 3.3 introduces the proposed hybridized algorithms
combining GSGP and gradient-based optimizers. The experimental settings and the
dataset used in the experimental validation are described in Sect. 4, and the results
of the experimental campaign are presented in Sect. 5. Section 6 summarizes the
main contributions of the study and provides directions for further research.

2 Related works

The combination of evolutionary algorithms (EAs) and local search strategies
received greater attention in recent years [6–8]. While EAs can explore large areas
of the search space, the evolutionary search process improves the programs in a dis-
continuous way [9]. On the other hand, when considering local optimizers, solu-
tions can be improved gradually and steadily in a continuous way. Thus, as stated

 Genetic Programming and Evolvable Machines (2023) 24:16

1 3

 16 Page 4 of 20

by Z-Flores et al. [10], a hybrid approach that combines EAs with a local optimizer
can result in a well-performing search strategy. Such approaches are a simple type of
memetic search [6], and the basic idea is to include within the optimization process
an additional search operator that, given an individual, searches for the local optima
around it. Thanks to the possibility of fully exploiting the local region around each
individual, memetic algorithms obtained satisfactory results over different domains
[6, 7], and they outperform evolutionary algorithms in multimodal optimisa-
tion [11]. Despite these results, the literature presents a poor number of contribu-
tions dealing with GP [12], thus indicating that the GP community may not have
addressed the topic adequately. Some examples are the works of Eskridge [13] and
Wang [14] that are domain-specific memetic techniques not addressing the task of
symbolic regression considered in this work. Muñoz et al. [15] proposed a memetic
algorithm that, given a regression (or classification) problem, creates a new feature
space that, subsequently, is considered for addressing the underlying optimization
problem. The algorithm maximizes the mutual information [16] in the new feature
space and shows superior results with respect to other state-of-the-art techniques.

Focusing on the use of gradient descent in GP, existing contributions concen-
trate on particular tasks or components of the solutions. For instance, Topcyy et al.
[17] analyzed the effectiveness of gradient search optimization of numeric leaf val-
ues in GP. In particular, they tuned conventional random constants utilizing gradi-
ent descent and considered several symbolic regression problems to demonstrate
the approach’s effectiveness. Zhang et al. [18] applied a similar strategy to address
object classification problems and obtained better results compared to the ones
achieved with standard GP. Graff et al. [19] employed resilient backpropagation
with GP to address a complex real-world problem concerning wind speed forecast-
ing, showing improved results. In [20], the authors used gradient-descent search to
make partial changes in certain parts of genetic programs during evolution. To do
that, they introduced weight parameters for each function node, what the authors call
inclusion factors. These weights modulate the importance that each node has within
the tree. The proposed method, which uses standard genetic operators and gradient
descent applied to the inclusion factors, outperformed the basic GP approach that
only uses standard genetic operators (i.e., without gradient descent and inclusion
factors).

The aforementioned contributions are related to syntax-based GP. In the context
of semantics-based GP [2], the integration of a local search strategy into GP was
proposed by Castelli et al. [21] with the definition of a specific semantic mutation
operator. Experimental results showed satisfactory performance on the training set,
but with important overfitting [22, 23].

To the best of our knowledge, the only attempt to integrate a local optimizer—
specifically Adam—within semantic GP has been presented by Pietropolli et al. [5].
In their work, the authors only considered the Adam optimizer and proposed two
different manners for combining it with GSGP. The first approach alternates one
step of GSGP and one step of Adam. Experimental results demonstrated that this

1 3

Genetic Programming and Evolvable Machines (2023) 24:16 Page 5 of 20 16

combination outperforms classic GSGP with a statistical significance difference
over all the considered benchmark problems. The second option proposes to perform
all the GSGP steps initially, followed by an equal number of Adam optimizers steps.
However, this different algorithm did not produce superior results compared to
GSGP.

Driven by the promising results obtained by the former method, we decided to
investigate its potentiality further in this paper. Here, we will consider the combina-
tion of GSGP also with another well-known optimizer and propose different possi-
bilities for the alternation of GSGP and gradient-based optimizers. We will also test
the results over a new dataset concerning a classification task (while in the previous
paper only the regression task has been analyzed), characterized by a significantly
higher number of variables and instances. With this extended study, we aim to pro-
vide a clear and complete analysis concerning the integration of GSGP and gradient-
based optimizers.

3 Gradient descent GSGP

This section discusses the two tools that will be combined later in this work. Firstly:
Sect. 3.1 describes geometric semantic GP. Afterward, two gradient descent opti-
mizers techniques—gradient descent and Adam—are introduced and discussed.
Finally, Sect. 3.3 presented a framework where these two powerful techniques are
combined.

3.1 Geometric semantic GP

Traditional genetic programming investigates the space of programs exploiting
search operators that analyze their syntactic representation. Programs usually are
represented as syntax trees, guaranteeing syntactically well-formed individuals.
To improve the performance of GP, recent years have witnessed the integration of
semantic awareness in the evolutionary process [2]. The semantics of a solution can
be identified by the vector of its output values calculated on the training data. Thus,
we can represent a GP individual as a point in a real finite-dimensional vector space,
the so-called semantic space. The semantics concerns the meaning of the program,
which is, on the other hand, completely ignored in traditional GP. Geometric seman-
tic genetic programming (GSGP) is an evolutionary technique originating from GP
that directly searches the semantic space of the programs. GSGP has been intro-
duced by Moraglio and coauthors [3], together with the definition of the correspond-
ent geometric semantic operators (GSOs). These operators replace traditional (syn-
tax-based) crossover and mutation, inducing geometric properties in the semantic
space. GSOs induce on the training data a unimodal error surface for any supervised
learning problem where input data has to match with known targets.

 Genetic Programming and Evolvable Machines (2023) 24:16

1 3

 16 Page 6 of 20

Let us recall the definition of crossover and mutation in the semantic framework:

Definition 1 (Geometric semantic crossover) Given two parents functions T1 ,
T2 ∶ ℝ

n
→ ℝ , geometric semantic crossover (GSC) generates the real function

where TR is a random real function whose output range in the interval [0, 1].

Definition 2 (Geometric semantic mutation) Given a parent function T1 ∶ ℝ
n
→ ℝ ,

geometric semantic mutation (GSM) generates the real functions

where TR1 and TR2 are random real functions whose output range in the interval [0, 1]
and ms is a parameter called mutation step.

This means that GSC generates one offspring whose semantics stands on the line
joining the semantics of the two parents in the semantic space, while GSM gener-
ates an individual contained in the hyper-sphere of radius ms centered in the seman-
tics of the parent in the semantic space. An intrinsic GSGP’s problem is that this
technique leads to larger offspring with respect to their parents. Due to this issue,
the algorithm becomes slower generation after generation, making it unsuitable for
real-world applications. In [4, 24], Vanneschi and coauthors introduced a GSGP
implementation that solves this problem and consists in storing only the semantic
vectors of newly created individuals, besides storing all the individuals belonging to
the initial population and all the random trees generated during the generations. This
improvement turns the cost of evolving g generations of n individuals from O(ng)
to O(g) . The same idea was subsequently adopted to reconstruct the best individual
found by GSGP, thus allowing for its usage in a production environment [25].

3.2 Gradient‑based optimizers

Consider a D-dimensional search space S ⊆ ℝ
D and a function f ∶ ℝ

D
→ ℝ . A min-

imization (maximization) problem consists in finding the optimal x̄ ∈ ℝ
D such that

f (x̄) ≤ f (x) (f (x̄) ≥ f (x)) ∀x ∈ ℝ
D⧵{x̄} . A wide range of techniques has been intro-

duced to successfully find the optimal solution, among which the so-called gradi-
ent-based optimizers. These algorithms are characterized by the fact that the search
direction is defined by the gradient of the loss function at the current point.

Gradient-based optimizers are optimization algorithms used in the training phase
of many machine learning models, usually employed to update the model’s param-
eters, like linear regression coefficients and neural network weights.

In the following, two of the most well-known gradient-based optimizers will be
described: stochastic gradient descent and Adam. The former is one of the most
intuitive and straightforward techniques, while the latter exploits not only the gradi-
ent of the function but also its first and second momentum.

TXO = (T1 ⋅ TR) + ((1 − TR) ⋅ T2)

TM = T1 + ms ⋅ (TR1 − TR2)

1 3

Genetic Programming and Evolvable Machines (2023) 24:16 Page 7 of 20 16

3.2.1 Stochastic gradient descent

Stochastic gradient descent (SGD) is a variant of the vanilla gradient descent (GD).
Classic GD finds the solution to the minimization problem directly following the
direction of the gradient of f, as follows:

where � are the parameters and � is the learning rate—the hyperparameter that con-
trols how much to change the parameter in response to the estimated error. The core
idea of SGD is to decompose the function that needs to be optimized as follows:

where Nf represents the dimension of the space to which f belongs. Consequently,
the parameters can be updated as:

This decomposition renders SGD drastically cheaper to compute w.r.t plain GD,
without affecting the performance. Moreover, SGD can be thought as GD with
noise, as we are replacing the actual gradient with an approximation of it, and this
noise can prevent the optimizing from converging to bad local minima. Nowadays,
SGD—despite its simplicity—remains one of the most powerful techniques to
update weights and biases in neural network theory.

3.2.2 Adam

Adam (Adaptive moment estimation) [26] is an algorithm for first-order gradient-
based optimization of stochastic objective functions based on adaptive estimates of
lower-order models. Adam optimizer is efficient, easy to implement, requires little
memory usage for its execution, and is well suited for problems dealing with a vast
amount of data and/or parameters. The steps performed by the Adam optimizer are
summarized in Algorithm 1. The inputs required for this method are the paramet-
ric function f (�) , the initial parameter vector �0 , the number of steps Nepochs , the
learning rate � , the exponential decay rate of the first momentum �1 , the one for the
second momentum �2 , and � , set by default at 10−8 . At every iteration, the algorithm
updates first and second moment estimates using the gradient computed with respect
to the stochastic function f. These estimates are then corrected to contrast the pres-
ence of an intrinsic initialization bias through the divisions described in lines 7 and
8, where � i+1

1
 stands for the element-wise exponentiation. For further details about

the implementation of the Adam optimizer and the demonstration of its properties,
the reader can refer to [26].

(1)�i+1 = �i − �∇f (�i)

(2)f (�i) =
1

N

Nf
∑

j=1

fj(�i)

(3)�i+1 = �i − �∇fi(�i)

 Genetic Programming and Evolvable Machines (2023) 24:16

1 3

 16 Page 8 of 20

3.3 GSGP hybridized with gradient descent

The idea introduced in this work is to investigate the results of the combination of
the strength of an evolutionary algorithm, i.e., GSGP, and gradient-based optimiz-
ers, which are one of the principal tools exploited in the neural network theory. Geo-
metric semantic GP, thanks to the intrinsic nature of geometric semantic operators,
allows big jumps in the solution space. Thus, new areas of the solution space can
be explored, with GSOs also preventing the algorithm from getting stuck in a local
optimum. Gradient-descent optimizers, on the other hand, are optimization tech-
niques based on the direction of the gradient of the loss function. Thus, they typi-
cally perform small shifts in the local area of the solution space. A combination of
these techniques should guarantee a jump in promising areas (i.e., where good-qual-
ity solutions lie) of the solution space, thanks to the evolutionary search of GSGP
and subsequent refinement of the solution obtained with a gradient-based algorithm.
Let us describe in more detail how to implement this combination. Let us consider
an input vector x of N features and the respective expected scalar value output y. By
applying GSGP, an initial random population of functions in n variables is created.

1 3

Genetic Programming and Evolvable Machines (2023) 24:16 Page 9 of 20 16

After performing the evolutionary steps involving GSM and GSC, a new popula-
tion T = (T1, T2,… , TM) of M individuals is obtained. The resulting vector T is com-
posed of derivable functions, as they are obtained through additions, multiplications,
and compositions of derivable functions. At this point, to understand for which
parameters we should differentiate T, it is necessary to introduce an equivalent defi-
nition of the geometric semantic operators presented in Sect. 3.1. In particular let
us redefine the Geometric Semantic Crossover as TXO = (T1 ⋅ �) + ((1 − �) ⋅ T2) ,
where 0 ≤ � ≤ 1 , and the geometric semantic mutation as TM = T + m ⋅ (R1 − R2) ,
where 0 ≤ m ≤ 1 . As the values of � and m are randomly initialised, we can derive
T with respect to � , � = (1 − �) , and m. Therefore, the gradient-based optimizer can
be applied using as objective function f (�) at the considered generation, while the
vector of parameters becomes � = (�, �,m) . Thus, GSGP and a gradient-based opti-
mizer can be combined to find the best solution for the problem at hand. We propose
and investigate different ways to perform this integration. The most trivial one con-
sists of alternating one step of GSGP and one step of the gradient-based optimizers.

Henceforth in the text, a single step of GSGP indicates one complete generation
of GSGP, while a single step of the gradient-descent optimizer stands for one epoch
during which the gradient of the function to be optimized is computed, and the
weights are adjusted accordingly. Thus, when there is more than one step of the gra-
dient-based optimizer, it signifies that the weights are being updated multiple times.

Anyway, there is also the possibility to alternate one step of GSGP with mul-
tiple steps of gradient-based optimizers. Improving the number of gradient-based
steps—at the expense of GSGP steps—is an interesting option to understand how
far the small shifts performed by a gradient-based optimizer can improve the over-
all performance. Let’s indicate with the tuple (p1, p2) the number of steps that we
alternate GSGP (p1) and gradient-based optimization (p2). Therefore, we will fix
p1 = 1 while considering different values for the hyperparameter p2 . Let n be the
total number of fitness evaluations. The procedure introduced in this paper can be
summarized by Algorithm 2.

4 Experimental settings

This section describes the datasets considered for validating our technique
(Sect. 4.1) and provides all the experimental settings (Sect. 4.2) to make the experi-
ments completely reproducible. The code, for the complete reproducibility of the
proposed experiments, is available at https:// github. com/ gpiet rop/ Gradi entBa sedGS
GP.

4.1 Dataset

To assess the validity of the technique proposed in Sect. 3.3, real-world, complex
datasets, ranging from different areas, have been considered and tested. All of them
have been widely used as benchmarks for GP, and their properties have been dis-
cussed in [27].

https://github.com/gpietrop/GradientBasedGSGP
https://github.com/gpietrop/GradientBasedGSGP

 Genetic Programming and Evolvable Machines (2023) 24:16

1 3

 16 Page 10 of 20

Table 1 summarizes the characteristics of the different datasets, such as the num-
ber of instances and variables. All of the proposed datasets but one deal with regres-
sion tasks. In fact, a classification problem is also considered to assert the validity of
our method.

The objective of the first group of datasets is the prediction of pharmacokinetic
parameters of potential new drugs. Human oral bioavailability (%F) measures the
percentage of initial drug dose that effectively reaches the system blood circula-
tion after passing through the liver; Median lethal dose (LD50), also informally
called toxicity, measures the lethal dose of a toxin, radiation, or pathogen required
to kill half the members of a tested population after a specified test duration; Pro-
tein-plasma binding level (%PPB) corresponds to the percentage of the initial drug
dose that reaches the blood circulation and binds the proteins of plasma. Also,
datasets originating from physical problems are considered: Yacht hydrodynamics
(yac) measures the hydrodynamic performance of sailing yachts starting from their
dimension and velocity; Concrete slump (slump) measures the value of the slump
flow of the concrete, that is influenced by the ingredients of the concrete itself; Con-
crete compressive strength (conc) measures values about the compressive strength
of concrete (the most important material in civil engineering); Airfoil self-noise
(air) is a NASA dataset obtained from a series of aerodynamic and acoustic test
of two and three-dimensional airfoil blade sections, conducted in an anechoic wind
tunnel. Lastly, the Parkinson’s disease dataset (park)—which is the classification
task dataset—collects biomedical voice measurements from a sample of individuals
having (or not) Parkinson’s disease.

4.2 Experimental study

For all the datasets described in Sect. 4.1, samples have been split among train and
test sets: 70% of randomly selected data has been used as a training set, while the
remaining 30% has been used as a test set. For each experiment, 30 runs have been
performed, with a random train/test split in each run.

To assess the performance of the hybridization of GSGP and gradient-based opti-
mizers, the results obtained within these methods are compared to the ones achieved
with classical GSGP. The comparison with the performance achieved by standard GP

Table 1 Main characteristics
of the considered datasets: the
number of variables, the number
of instances, the domain, and
the type of task

Dataset Variables Instances Area Task

%F 242 359 Pharmacokinetic Regression
LD50 627 234 Pharmacokinetic Regression
%PPB 627 131 Pharmacokinetic Regression
Yac 7 308 Physics Regression
Slump 10 102 Physics Regression
Conc 9 1030 Physics Regression
Air 6 1503 Physics Regression
Park 19 5875 Biomedical Classification

1 3

Genetic Programming and Evolvable Machines (2023) 24:16 Page 11 of 20 16

is not reported because, after some preliminary tests, it has been observed that standard
GP is non-competitive against GSGP. To make the comparison fair, the total number of
fitness evaluations must be equal for every method considered.

Recall that with the tuple (p1, p2) , we will indicate how we alternate steps of GSGP
and the gradient-based optimizer. In this paper, we will always consider p1 = 1 , while
p2 will take values in the range {0, 1, 2, 5, 10} . Setting p2 = 0 means that we are not
performing any gradient-based optimization of the parameters, i.e., that we are consid-
ering vanilla GSGP.

Let n denote the total number of fitness evaluations we want to perform. Let n1 be
the total number of GSGP steps performed during the training, and n2 the total number
of gradient-based optimizer steps. The value of n1 and n2 will be determined by n, p1 ,
and p2 , which are the three main hyperparameters of our method, as follows:

This allows a fair comparison between different techniques, ensuring that the number
of fitness evaluations is the same for each choice of p2 . For example, (p1, p2) = (1, 1)
means that we are alternating one step of GSGP with one step of the gradient-based
optimizer, and we will perform—in total—n

2
 steps of GSGP and n

2
 optimization steps.

Regarding the choice of the hyperparameter of the gradient-based optimizers, both
for Adam and SGD, we will investigate the performance of the hybridization method
proposed varying the learning rate � over the following range � ∈ {0.1, 0.01, 0.001}
The choice of exploring relatively higher learning rates is due to the small number of
subsequent gradient descent iterations which are performed in the proposed methods
(that are 1, 2, 5 or 10). In fact, higher learning rates can facilitate faster exploration of
the solution space, where optimal solutions may reside.

In this experimental phase, we set n = 200 . The population’s size for all the con-
sidered systems is set to 50, and the individuals in the initial population are generated
with the ramped half-and-half technique. Further details concerning the implementa-
tion of the semantic system and the gradient-based optimization algorithm are reported
in Table 2. To maintain fairness and observe the method’s performance in a general
context, hyperparameters known to work well in classic GSGP were selected, and no
dedicated tuning phase was conducted to avoid introducing biases in the comparison
between the methods.

The considered fitness function is the root mean squared error (RMSE):

where yi is the true value while ŷi is the predicted one.

(4)n1 =
n

p1 + p2
p1 n2 =

n

p1 + p2
p2

(5)RMSE =

√

√

√

√

n
∑

i=1

(ŷi − yi)
2

n

 Genetic Programming and Evolvable Machines (2023) 24:16

1 3

 16 Page 12 of 20

5 Experimental results

As stated in Sect. 3.3, this study aims to investigate the results of combining a gra-
dient-based optimizer with GSGP. Figures 1, 2, and 3 show the box plots—obtained
comparing the testing results over 30 independent runs—when GSGP is combined
with SGD, with a learning rate value set to, respectively, 0.1, 0.01, and 0.001. Sim-
ilarly, Figs. 4, 5, and 6 display the same study, but when the Adam optimizer is
selected. Thus, each box plot allows comparing the fitness of standard GSGP and

Table 2 Experimental settings

A horizontal line separates the parameters belonging to the GSGP
algorithm and the ones of the gradient-based optimizers. The values
for the learning rate are common for Adam and SGD, while other
optimizer parameters are necessary only for the definition of the
Adam algorithm

Parameter Value

Function set + , −, ∗ , //
Max. initial depth 6
Crossover rate 0.9
Mutation rate 0.3
Mutation step 0.1
Selection method Tournament of size 4
Elitism Best individuals survive
Learing rate (�) 0.1, 0.01, 0.001
Exponential decay

rate—first momen-
tum (�1)

0.9

Exponential decay
rate—second
momentum (�2)

0.99

� 10−8

Fig. 1 Boxplots of testing RMSE over 30 independent runs, with SGD and � = 0.1

1 3

Genetic Programming and Evolvable Machines (2023) 24:16 Page 13 of 20 16

Fig. 2 Boxplots of testing RMSE over 30 independent runs, with SGD and � = 0.01

Fig. 3 Boxplots of testing RMSE over 30 independent runs, with SGD and � = 0.001

Fig. 4 Boxplots of testing RMSE over 30 independent runs, with Adam and � = 0.1

 Genetic Programming and Evolvable Machines (2023) 24:16

1 3

 16 Page 14 of 20

the one obtained by our algorithm over a different benchmark problem, considering
different values assigned to p2—the number of gradient-based optimizers steps per-
formed after one step of GSGP.

To provide a statistical assessment of the obtained results, a yellow star was
placed above the boxplots to denote the presence of statistically significant differ-
ences. The statistical analysis was performed through the Wilcoxon rank-sum test,
with a significance level of � = 0.05 . The alternative hypothesis is that the distribu-
tion of the considered method is below the distribution of classic GSGP.

Moreover, we report the median fitness—of the 30 runs performed—over the
total number of fitness evaluations for the test set, but only for the Adam optimizer.
As we will explain later, we concentrate our discussion on the Adam optimizer con-
sidering the higher quality of the results obtained.

By observing the experimental results, it is possible to notice that the per-
formance of the proposed algorithm is significantly influenced by the value of
the learning rate. For example, the choice of SGD as a gradient-based optimizer

Fig. 5 Boxplots of testing RMSE over 30 independent runs, with Adam and � = 0.01

Fig. 6 Boxplots of testing RMSE over 30 independent runs, with Adam and � = 0.001

1 3

Genetic Programming and Evolvable Machines (2023) 24:16 Page 15 of 20 16

with � = 0.1 (Fig. 1) leads to results not satisfactory—with a few exceptions. This
behavior is not surprising because a high learning rate value tends to result in
instability also when used in the neural network framework [28]. On the contrary,
considering SGD with � = 0.001 (Fig. 3)—which is the standard learning rate for
this algorithm—results are comparable to (or outperforming) classic GSGP.

On the other hand, the integration of Adam optimizer in the GSGP frame-
work shows a generally better performance—over all the benchmark problems
considered—w.r.t. the use of classic SGD. These results confirm the necessity
of choosing a more complex gradient-based optimizer (which leverages the first
and second momentum for updating the parameters) to improve the algorithm’s
performance.

Adam is known to demonstrate advantages in convergence properties and robust-
ness, particularly in complex and high-dimensional search spaces [29, 30], as the
ones studied in this work. The adaptive learning rate mechanism and momentum in
Adam provide it with the ability to dynamically adjust the step size during optimiza-
tion, leading to faster convergence and improved performance. Moreover, Adam has
been reported to demonstrate reduced oscillations during the optimization phase,
contributing to its ability to achieve more stable convergence and avoid local min-
ima [31].

The rest of the discussion will focus on the results obtained by the hybridization
of GSGP within Adam.

Concerning the best choice of the learning rate parameter � for the Adam algo-
rithm or the best value for the number of refinement steps p2 , experimental results
do not provide a unique and universal answer. For example, let us focus on the
results obtained with p2 = 1 . Considering Figs. 4, 5, and 6, we can observe that, for
each problem, there is a learning rate value that makes the proposed method outper-
form standard GSGP. However, the best � is not unique but depends on the specific
benchmark problem under study. Specifically, for we improve the performance w.r.t.
classic GSGP when LD50 when � = 0.1, 0.001 , for yac when � = 0.1 , for conc when
� = 0.1, 0.01 , for air when � = 0.001 , for park when � = 0.01, 0.01 . On the other
hand, considering the %F, the %PPB, and the slump dataset, all the choices for �
lead to an improvement in terms of test fitness.

Again, these results are not surprising. In fact, the idea of applying a gradient-
based optimizer is inspired by the neural network reality, where, typically, there is
no better choice of parameters—such as learning rate—a priori. On the contrary, the
most suitable value depends on the network’s topology and the problem’s complex-
ity. Thus, it is plausible and reasonable that, in this neural network-inspired frame-
work, different benchmark problems need different hyperparameters values to obtain
a significant fitness improvement.

Concerning, on the other hand, the best choice for the number of gradient-based
refinement p2 performed after a generation of GSGP, results indicate that p2 = 1
leads to better performance most of the times. Choosing p2 = 1 means that we are
performing the same number of GSGP generations and Adam optimization. Thus,
this combination reaches its maximum potential when takes full advantage of both
methods in an equal way. This confirms the utility of hybridizing the two methods.
In particular, the structural change of the individuals of GSGP and the ability of

 Genetic Programming and Evolvable Machines (2023) 24:16

1 3

 16 Page 16 of 20

Adam to optimize slightly (but wisely) the parameters of the evolutionary process
are both essential to achieving a good performance.

Furthermore, considering Figs. 7, 8, and 9, we can draw some conclusions on the
stability and the rate of convergence. Firstly, Fig. 7 shows that despite the results
obtained by our algorithm (which often outperform classic GSGP), there is a high
level of instability, especially for higher values of p2 . This is caused (again) by the
choice of � = 0.1 (a relatively high value for the learning rate), which tends to cause
instability also in neural network applications. Another important conclusion we
can draw is that once we find a good set of hyperparameter values for the proposed
method, the convergence rate is way higher w.r.t. standard GSGP. In fact, most of
the times, when our method outperforms GSGP, it reaches better fitness results after
a few fitness evaluations, even if compared with the results obtained by GSGP at
the last generation executed. Thus, we can conclude that using this hybridization—
under the right choice of hyperparameters setting—allows for a reduction of the
overall number of fitness evaluations.

Fig. 7 Median of the testing fitness over 30 independent runs, with Adam and � = 0.1

Fig. 8 Median of the testing fitness over 30 independent runs, with Adam and � = 0.01

1 3

Genetic Programming and Evolvable Machines (2023) 24:16 Page 17 of 20 16

Finally, one last important remark should be done about the increasing trend in
fitness for the %PPB dataset, which can be attributed to the dataset’s challenging
nature, characterized by a propensity for overfitting, wherein the model achieves bet-
ter performance on the training set but struggles to generalize effectively to the test
set [21].

6 Conclusions

This paper investigates the results of the integration of gradient-based optimiza-
tion methods, SGD and the Adam algorithm, within a genetic programming system,
GSGP. The idea behind this work relies on the possibilities of exploiting and com-
bining the advantages of these two methods to achieve faster convergence of the
evolutionary search process.

Different ways of hybridizing these methods have been investigated, reported,
and compared with vanilla GSGP on eight real-world, complex problems (concern-
ing both the regression and the classification task) belonging to different applica-
tive domains. Specifically, we considered two of the most famous optimizers in the
neural network field (SGD and Adam) and studied their integration with GSGP
assigning them different values to their learning rate—which is the most relevant
parameter of both the SGD and Adam algorithm. Moreover, we compare the results
obtained by our method by augmenting the number of gradient-based refinements
after one generation of GSGP (performing a fair comparison by always taking into
account the overall number of fitness evaluations as stopping criteria).

Experimental results show that, with the right choice of hyperparameters val-
ues, GSGP combined with the Adam algorithm outperforms classic GSGP. We
also observe strong parallelism with the neural network framework, as the right
choice of the optimizer and the learning rate drastically influence the results.
Results confirm the necessity of choosing a more efficient optimizer—even
though more expensive—to obtain better performance while avoiding instability

Fig. 9 Median of the testing fitness over 30 independent runs, with Adam and � = 0.001

 Genetic Programming and Evolvable Machines (2023) 24:16

1 3

 16 Page 18 of 20

issues. As in deep learning, the optimal choice for these hyperparameters depends
on the complexity of each benchmark problem under analysis.

We also observe that best results are achieved when we set p2 = 1 , thus when
the contribution provided by GSGP and Adam refinement optimization is equal,
confirming the utility of fully leveraging and combining the complementary
strengths of these algorithms.

These results corroborate our hypothesis: the combination of GSGP with a
gradient-based optimizer can improve the performance of GSGP. Moreover, this
study highlights the importance of hybridizing the evolutionary process with
other techniques of the artificial intelligence spectrum.

Even after this more detailed study of the integration of GSGP and gradient-based
optimizer, multiple possible future developments focused on improving the benefits
provided by this combination are still possible. It is interesting, as research direc-
tions, the idea of applying gradient-descent optimization not only for the parameters
related to the GSC but to entire GP trees. Consider, for example, a normal functional
f ∶ ℝ

n
→ ℝ , like the sum. If the results of the subtrees on which f is applied are

z1,… , zn , then the usual application is f (z1,… , zn) . But this can also be rewritten as
f (�1z1,… , �nzn) with all �i initially with value 1. The parameters �1,… , �n can then
be optimized with methods like Adam or SGD, allowing us to perform parameter
optimization on entire GP trees (non necessarily only for GSGP).

Author contributions All authors contributed to the study conception and design. Material preparation,
data collection and analysis were performed by GP. The first draft of the manuscript was written by GP
and all authors commented on previous versions of the manuscript. All authors read and approved the
final manuscript

Funding Open access funding provided by Università degli Studi di Trieste within the CRUI-CARE
Agreement. This work was supported by national funds through FCT (Fundação para a Ciência e a Tec-
nologia), under the Project—UIDB/04152/2020—Centro de Investigação em Gestão de Informação
(MagIC)/NOVA IMS.

Data availibility The datasets presented in this study can be found in online repositories. The names of
the repository/repositories and accession number(s) can be found in the article.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Genetic Programming and Evolvable Machines (2023) 24:16 Page 19 of 20 16

References

 1. J.R. Koza, J.R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection, vol. 1 (MIT Press, Cambridge, 1992)

 2. L. Vanneschi, M. Castelli, S. Silva, A survey of semantic methods in genetic programming.
Genet. Program Evol. Mach. 15(2), 195–214 (2014)

 3. A. Moraglio, K. Krawiec, C.G. Johnson, Geometric semantic genetic programming, in Interna-
tional Conference on Parallel Problem Solving from Nature (Springer, 2012), pp. 21–31

 4. L. Vanneschi, M. Castelli, L. Manzoni, S. Silva, A new implementation of geometric semantic
GP and its application to problems in pharmacokinetics, in European Conference on Genetic
Programming (Springer, 2013), pp. 205–216

 5. G. Pietropolli, L. Manzoni, A. Paoletti, M. Castelli, Combining geometric semantic GP with gra-
dient-descent optimization, in European Conference on Genetic Programming (Part of EvoStar)
(Springer, 2022), pp. 19–33

 6. X. Chen, Y.-S. Ong, M.-H. Lim, K.C. Tan, A multi-facet survey on memetic computation. IEEE
Trans. Evol. Comput. 15(5), 591–607 (2011)

 7. F. Neri, C. Cotta, Memetic algorithms and memetic computing optimization: a literature review.
Swarm Evol. Comput. 2, 1–14 (2012)

 8. M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: a
survey. ACM Comput. Surv. (CSUR) 45(3), 1–33 (2013)

 9. W. Smart, M. Zhang, Continuously evolving programs in genetic programming using gradient
descent. Technical Report CS-TR-04-10, Computer Science, Victoria University of Wellington,
New Zealand (2004)

 10. L. Trujillo, O. Schütze, P. Legrand, Evaluating the effects of local search in genetic programming, in
EVOLVE-A Bridge Between Probability. Set Oriented Numerics, and Evolutionary Computation V
(Springer, Cham, 2014), pp. 213–228

 11. P.T.H. Nguyen, D. Sudholt, Memetic algorithms outperform evolutionary algorithms in multimodal
optimisation. Artif. Intell. 287, 103345 (2020)

 12. L. Trujillo, P.S. Juárez-Smith, P. Legrand, S. Silva, M. Castelli, L. Vanneschi, O. Schütze, L.
Muñoz, Local search is underused in genetic programming, in Genetic Programming Theory and
Practice XIV (Springer, Cham, 2018), pp. 119–137

 13. B.E. Eskridge, D.F. Hougen, Imitating success: a memetic crossover operator for genetic pro-
gramming, in Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.
04TH8753), vol. 1 (IEEE, 2004), pp. 809–815

 14. P. Wang, K. Tang, E.P. Tsang, , X. Yao, A memetic genetic programming with decision tree-based
local search for classification problems, in 2011 IEEE Congress of Evolutionary Computation
(CEC) (IEEE, 2011), pp. 917–924

 15. L. Muñoz, L. Trujillo, S. Silva, M. Castelli, L. Vanneschi, Evolving multidimensional transforma-
tions for symbolic regression with M3GP. Memet. Comput. 11(2), 111–126 (2019)

 16. I. Kojadinovic, On the use of mutual information in data analysis: an overview, in Proceedings of
International Symposium Application of Stochastic Models and Data Analysis (2005), pp. 738–47

 17. A. Topchy, W.F. Punch, Faster genetic programming based on local gradient search of numeric leaf
values, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),
vol. 155162 (Morgan Kaufmann, 2001)

 18. M. Zhang, W. Smart, Genetic programming with gradient descent search for multiclass object clas-
sification, in European Conference on Genetic Programming (Springer, 2004), pp. 399–408

 19. M. Graff, R. Pena, A. Medina, Wind speed forecasting using genetic programming, in 2013 IEEE
Congress on Evolutionary Computation (IEEE, 2013), pp. 408–415

 20. W. Smart, M. Zhang, Continuously evolving programs in genetic programming using gradient
descent, in Proceedings of the Second Asian-Pacific Workshop on Genetic Programming, Cairns,
Australia (2004), 16pp

 21. M. Castelli, L. Trujillo, L. Vanneschi, S. Silva, E. Z-Flores, P. Legrand, Geometric semantic genetic
programming with local search, in Proceedings of the 2015 Annual Conference on Genetic and Evo-
lutionary Computation (2015), pp. 999–1006

 22. M. Castelli, L. Trujillo, L. Vanneschi, Energy consumption forecasting using semantic-based genetic
programming with local search optimizer. Comput. Intell. Neurosci. (2015). https:// doi. org/ 10. 1155/
2015/ 971908

https://doi.org/10.1155/2015/971908
https://doi.org/10.1155/2015/971908

 Genetic Programming and Evolvable Machines (2023) 24:16

1 3

 16 Page 20 of 20

 23. P. Hajek, R. Henriques, M. Castelli, L. Vanneschi, Forecasting performance of regional innovation
systems using semantic-based genetic programming with local search optimizer. Comput. Oper.
Res. 106, 179–190 (2019)

 24. M. Castelli, S. Silva, L. Vanneschi, A C++ framework for geometric semantic genetic program-
ming. Genet. Program Evolvable Mach. 16(1), 73–81 (2015)

 25. M. Castelli, L. Manzoni, GSGP-C++ 2.0: a geometric semantic genetic programming framework.
SoftwareX 10, 100313 (2019)

 26. D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization (2017)
 27. J. McDermott, D.R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jaskowski, K.

Krawiec, R. Harper, K. De Jong, Genetic programming needs better benchmarks, in Proceedings of
the 14th Annual Conference on Genetic and Evolutionary Computation (2012), pp. 791–798

 28. I. Kandel, M. Castelli, The effect of batch size on the generalizability of the convolutional neural
networks on a histopathology dataset. ICT Express 6(4), 312–315 (2020)

 29. S.J. Reddi, S. Kale, S. Kumar, On the convergence of Adam and beyond. arXiv preprint arXiv: 1904.
09237 (2019)

 30. S. Ruder, An overview of gradient descent optimization algorithms. arXiv preprint arXiv: 1609.
04747 (2016)

 31. X. Chen, S. Liu, R. Sun, M. Hong, On the convergence of a class of Adam-type algorithms for non-
convex optimization. arXiv preprint arXiv: 1808. 02941 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1808.02941

	On the hybridization of geometric semantic GP with gradient-based optimizers
	Abstract
	1 Introduction
	2 Related works
	3 Gradient descent GSGP
	3.1 Geometric semantic GP
	3.2 Gradient-based optimizers
	3.2.1 Stochastic gradient descent
	3.2.2 Adam

	3.3 GSGP hybridized with gradient descent

	4 Experimental settings
	4.1 Dataset
	4.2 Experimental study

	5 Experimental results
	6 Conclusions
	References

