
Vol.:(0123456789)

Genetic Programming and Evolvable Machines           (2023) 24:16 
https://doi.org/10.1007/s10710-023-09463-1

1 3

On the hybridization of geometric semantic GP 
with gradient‑based optimizers

Gloria Pietropolli1 · Luca Manzoni1 · Alessia Paoletti1 · Mauro Castelli2

Received: 2 November 2022 / Revised: 27 June 2023 / Accepted: 23 September 2023 
© The Author(s) 2023

Abstract
Geometric semantic genetic programming (GSGP) is a popular form of GP where 
the effect of crossover and mutation can be expressed as geometric operations on a 
semantic space. A recent study showed that GSGP can be hybridized with a stand-
ard gradient-based optimized, Adam, commonly used in training artificial neural 
networks.We expand upon that work by considering more gradient-based optimiz-
ers, a deeper investigation of their parameters, how the hybridization is performed, 
and a more comprehensive set of benchmark problems. With the correct choice of 
hyperparameters, this hybridization improves the performances of GSGP and allows 
it to reach the same fitness values with fewer fitness evaluations.
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1 Introduction

Genetic programming (GP) [1] is one of the most prominent evolutionary com-
putation techniques, with the ability to evolve programs, usually represented as 
trees, to solve specific problems given a collection of input and output pairs. Tra-
ditionally, operators in GP have focused on manipulating the syntax of GP indi-
viduals, like swapping subtrees for crossover or replacing subtrees for mutation. 
While simple to describe, these operations produce effects on the semantics [2] of 
the individuals that can be complex to predict, with small variations in the syn-
tax that may significantly affect the semantics. To address this problem, semantic 
operators were introduced. In particular, geometric semantic operators, first intro-
duced in [3], have been used for defining Geometric Semantic GP (GSGP), a new 
kind of GP where crossover and mutation operators directly act on the seman-
tics of the candidate solutions. Successively, the work described in [4] introduced 
an implementation of GSGP that allows overcoming the limitation caused by the 
growth of the individuals at each generation, thus making it possible to address 
complex real-world problems.

While the introduction of GSGP establishes a clear effect of recombination and 
mutation operators on the semantics of the candidate solutions and improves the 
quality of the generated solutions, there is still a largely untapped opportunity for 
combining GSGP with local search methods. In particular, we can observe that, 
given two GP trees T1 and T2 , their recombination is obtained as �T1 + (1 − �)T2 , 
and the mutation of one of them is given by T1 + ms(R1 − R2) , where R1 and R2 
are two random trees. As we can observe, three parameters, � , � = 1 − � , and 
ms are either fixed or randomly selected during the evolution process. As long as 
each function used in the generation of the individuals is derivable, we can com-
pute the gradient of the error with respect to the parameters used in crossover and 
mutation. Thus, we can employ a gradient-based optimizer to update the param-
eters of each crossover and mutation.

In this paper, we investigate the combination of GSGP with two gradient-based 
optimizers: stochastic gradient descent and Adam. In some sense, by combining 
GSGP with a gradient-based optimizer, we are leveraging the strengths of each 
of the two methods: GSGP (and GP in general) is good at providing structural 
changes in the shape of the individuals, while gradient-based methods are perfect 
for optimizing a series of parameters of the individuals that the evolutionary pro-
cess has difficulty in optimizing.

GSGP, thanks to the recombination operators, leads to the exploration of mul-
tiple zones in the solution space. Geometric semantic crossover allows the crea-
tion of a child on the segment that connects two parents (in the semantic space) 
even if they are a long way apart. Geometric semantic mutation introduces ran-
dom perturbations, leading to solution space exploration. On the other side, gra-
dient-based methods perform local changes, so no big jumps in the solution space 
are done, but only small shifts in the local area of the solution space.

Concerning the gradient-based optimizer choice, we compare two of the most 
commonly used in the neural networks’ training process: SGD and Adam. We 
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selected the former because, despite its simplicity, it remains one of the most per-
forming methods. On the other hand, Adam consists of a more elaborated tech-
nique, which takes into account not only the directions of the gradient but also 
the first and the second moment, thus resulting in a more suitable choice—but 
also more computationally expensive—when dealing with challenging tasks.

This work is the natural consequence of a preliminary study [5] that presented 
promising results achieved by combining GSGP with gradient-based optimization. 
This study aims to provide a clear picture concerning the combination of GSGP 
and gradient-based optimizers. In the preliminary study, only the Adam optimizer 
was considered, while here, we want to study also the effect of a combination with 
Stochastic Gradient Descent to investigate if a powerful—yet expensive—method 
is necessary to render this combination more performing w.r.t. classic GSGP or if it 
is sufficient an easier—yet cheaper and faster—optimizer. We will also investigate 
the performance of both gradient-based methods by choosing different hyperparam-
eters settings, specifically considering different learning rate values. Moreover, we 
will study different alternatives to alternate between GSGP steps and gradient-based 
steps, gradually increasing the number of gradient descent steps at the expense of 
the total amount of GSGP generations.

We experimentally show that the proposed method can provide better perfor-
mance with respect to plain GSGP, thus suggesting that a combination of local 
search (via gradient-based optimizers) with GSGP is a new promising way to lever-
age knowledge from other areas of artificial intelligence.

Recalling that we were inspired by the neural network framework when intro-
ducing gradient-based optimization among GSGP, we will also observe some strong 
analogies with the deep learning world. Specifically: experimental results will show 
that the quality of the proposed hybridization will depend on the choice of some 
hyperparameters of the algorithm. In turn, the optimal value of the hyperparameters 
will not be universal and unique but will change depending on the benchmark prob-
lem under consideration.

This paper is structured as follows: Sect. 2 provides an overview of the applica-
tions of local search to evolutionary methods and GP in particular. Section 3 recalls 
the reliant notions of GSGP (Sect. 3.1) and the gradient-based algorithms studied 
in this work (Sect. 3.2). Section 3.3 introduces the proposed hybridized algorithms 
combining GSGP and gradient-based optimizers. The experimental settings and the 
dataset used in the experimental validation are described in Sect. 4, and the results 
of the experimental campaign are presented in Sect.  5. Section 6 summarizes the 
main contributions of the study and provides directions for further research.

2  Related works

The combination of evolutionary algorithms (EAs) and local search strategies 
received greater attention in recent years [6–8]. While EAs can explore large areas 
of the search space, the evolutionary search process improves the programs in a dis-
continuous way [9]. On the other hand, when considering local optimizers, solu-
tions can be improved gradually and steadily in a continuous way. Thus, as stated 
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by Z-Flores et al. [10], a hybrid approach that combines EAs with a local optimizer 
can result in a well-performing search strategy. Such approaches are a simple type of 
memetic search [6], and the basic idea is to include within the optimization process 
an additional search operator that, given an individual, searches for the local optima 
around it. Thanks to the possibility of fully exploiting the local region around each 
individual, memetic algorithms obtained satisfactory results over different domains 
[6, 7], and they outperform evolutionary algorithms in multimodal optimisa-
tion [11]. Despite these results, the literature presents a poor number of contribu-
tions dealing with GP [12], thus indicating that the GP community may not have 
addressed the topic adequately. Some examples are the works of Eskridge [13] and 
Wang [14] that are domain-specific memetic techniques not addressing the task of 
symbolic regression considered in this work. Muñoz et al. [15] proposed a memetic 
algorithm that, given a regression (or classification) problem, creates a new feature 
space that, subsequently, is considered for addressing the underlying optimization 
problem. The algorithm maximizes the mutual information [16] in the new feature 
space and shows superior results with respect to other state-of-the-art techniques.

Focusing on the use of gradient descent in GP, existing contributions concen-
trate on particular tasks or components of the solutions. For instance, Topcyy et al. 
[17] analyzed the effectiveness of gradient search optimization of numeric leaf val-
ues in GP. In particular, they tuned conventional random constants utilizing gradi-
ent descent and considered several symbolic regression problems to demonstrate 
the approach’s effectiveness. Zhang et al. [18] applied a similar strategy to address 
object classification problems and obtained better results compared to the ones 
achieved with standard GP. Graff et  al. [19] employed resilient backpropagation 
with GP to address a complex real-world problem concerning wind speed forecast-
ing, showing improved results. In [20], the authors used gradient-descent search to 
make partial changes in certain parts of genetic programs during evolution. To do 
that, they introduced weight parameters for each function node, what the authors call 
inclusion factors. These weights modulate the importance that each node has within 
the tree. The proposed method, which uses standard genetic operators and gradient 
descent applied to the inclusion factors, outperformed the basic GP approach that 
only uses standard genetic operators (i.e., without gradient descent and inclusion 
factors).

The aforementioned contributions are related to syntax-based GP. In the context 
of semantics-based GP [2], the integration of a local search strategy into GP was 
proposed by Castelli et al. [21] with the definition of a specific semantic mutation 
operator. Experimental results showed satisfactory performance on the training set, 
but with important overfitting [22, 23].

To the best of our knowledge, the only attempt to integrate a local optimizer—
specifically Adam—within semantic GP has been presented by Pietropolli et al. [5]. 
In their work, the authors only considered the Adam optimizer and proposed two 
different manners for combining it with GSGP. The first approach alternates one 
step of GSGP and one step of Adam. Experimental results demonstrated that this 
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combination outperforms classic GSGP with a statistical significance difference 
over all the considered benchmark problems. The second option proposes to perform 
all the GSGP steps initially, followed by an equal number of Adam optimizers steps. 
However, this different algorithm did not produce superior results compared to 
GSGP.

Driven by the promising results obtained by the former method, we decided to 
investigate its potentiality further in this paper. Here, we will consider the combina-
tion of GSGP also with another well-known optimizer and propose different possi-
bilities for the alternation of GSGP and gradient-based optimizers. We will also test 
the results over a new dataset concerning a classification task (while in the previous 
paper only the regression task has been analyzed), characterized by a significantly 
higher number of variables and instances. With this extended study, we aim to pro-
vide a clear and complete analysis concerning the integration of GSGP and gradient-
based optimizers.

3  Gradient descent GSGP

This section discusses the two tools that will be combined later in this work. Firstly: 
Sect.  3.1 describes geometric semantic GP. Afterward, two gradient descent opti-
mizers techniques—gradient descent and Adam—are introduced and discussed. 
Finally, Sect. 3.3 presented a framework where these two powerful techniques are 
combined.

3.1  Geometric semantic GP

Traditional genetic programming investigates the space of programs exploiting 
search operators that analyze their syntactic representation. Programs usually are 
represented as syntax trees, guaranteeing syntactically well-formed individuals. 
To improve the performance of GP, recent years have witnessed the integration of 
semantic awareness in the evolutionary process [2]. The semantics of a solution can 
be identified by the vector of its output values calculated on the training data. Thus, 
we can represent a GP individual as a point in a real finite-dimensional vector space, 
the so-called semantic space. The semantics concerns the meaning of the program, 
which is, on the other hand, completely ignored in traditional GP. Geometric seman-
tic genetic programming (GSGP) is an evolutionary technique originating from GP 
that directly searches the semantic space of the programs. GSGP has been intro-
duced by Moraglio and coauthors [3], together with the definition of the correspond-
ent geometric semantic operators (GSOs). These operators replace traditional (syn-
tax-based) crossover and mutation, inducing geometric properties in the semantic 
space. GSOs induce on the training data a unimodal error surface for any supervised 
learning problem where input data has to match with known targets.
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Let us recall the definition of crossover and mutation in the semantic framework:

Definition 1 (Geometric semantic crossover) Given two parents functions T1 , 
T2 ∶ ℝ

n
→ ℝ , geometric semantic crossover (GSC) generates the real function

where TR is a random real function whose output range in the interval [0, 1].

Definition 2 (Geometric semantic mutation) Given a parent function T1 ∶ ℝ
n
→ ℝ , 

geometric semantic mutation (GSM) generates the real functions

where TR1 and TR2 are random real functions whose output range in the interval [0, 1] 
and ms is a parameter called mutation step.

This means that GSC generates one offspring whose semantics stands on the line 
joining the semantics of the two parents in the semantic space, while GSM gener-
ates an individual contained in the hyper-sphere of radius ms centered in the seman-
tics of the parent in the semantic space. An intrinsic GSGP’s problem is that this 
technique leads to larger offspring with respect to their parents. Due to this issue, 
the algorithm becomes slower generation after generation, making it unsuitable for 
real-world applications. In [4, 24], Vanneschi and coauthors introduced a GSGP 
implementation that solves this problem and consists in storing only the semantic 
vectors of newly created individuals, besides storing all the individuals belonging to 
the initial population and all the random trees generated during the generations. This 
improvement turns the cost of evolving g generations of n individuals from O(ng) 
to O(g) . The same idea was subsequently adopted to reconstruct the best individual 
found by GSGP, thus allowing for its usage in a production environment [25].

3.2  Gradient‑based optimizers

Consider a D-dimensional search space S ⊆ ℝ
D and a function f ∶ ℝ

D
→ ℝ . A min-

imization (maximization) problem consists in finding the optimal x̄ ∈ ℝ
D such that 

f (x̄) ≤ f (x) (f (x̄) ≥ f (x)) ∀x ∈ ℝ
D⧵{x̄} . A wide range of techniques has been intro-

duced to successfully find the optimal solution, among which the so-called gradi-
ent-based optimizers. These algorithms are characterized by the fact that the search 
direction is defined by the gradient of the loss function at the current point.

Gradient-based optimizers are optimization algorithms used in the training phase 
of many machine learning models, usually employed to update the model’s param-
eters, like linear regression coefficients and neural network weights.

In the following, two of the most well-known gradient-based optimizers will be 
described: stochastic gradient descent and Adam. The former is one of the most 
intuitive and straightforward techniques, while the latter exploits not only the gradi-
ent of the function but also its first and second momentum.

TXO = (T1 ⋅ TR) + ((1 − TR) ⋅ T2)

TM = T1 + ms ⋅ (TR1 − TR2)
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3.2.1  Stochastic gradient descent

Stochastic gradient descent (SGD) is a variant of the vanilla gradient descent (GD). 
Classic GD finds the solution to the minimization problem directly following the 
direction of the gradient of f, as follows:

where � are the parameters and � is the learning rate—the hyperparameter that con-
trols how much to change the parameter in response to the estimated error. The core 
idea of SGD is to decompose the function that needs to be optimized as follows:

where Nf  represents the dimension of the space to which f belongs. Consequently, 
the parameters can be updated as:

This decomposition renders SGD drastically cheaper to compute w.r.t plain GD, 
without affecting the performance. Moreover, SGD can be thought as GD with 
noise, as we are replacing the actual gradient with an approximation of it, and this 
noise can prevent the optimizing from converging to bad local minima. Nowadays, 
SGD—despite its simplicity—remains one of the most powerful techniques to 
update weights and biases in neural network theory.

3.2.2  Adam

Adam (Adaptive moment estimation) [26] is an algorithm for first-order gradient-
based optimization of stochastic objective functions based on adaptive estimates of 
lower-order models. Adam optimizer is efficient, easy to implement, requires little 
memory usage for its execution, and is well suited for problems dealing with a vast 
amount of data and/or parameters. The steps performed by the Adam optimizer are 
summarized in Algorithm 1. The inputs required for this method are the paramet-
ric function f (�) , the initial parameter vector �0 , the number of steps Nepochs , the 
learning rate � , the exponential decay rate of the first momentum �1 , the one for the 
second momentum �2 , and � , set by default at 10−8 . At every iteration, the algorithm 
updates first and second moment estimates using the gradient computed with respect 
to the stochastic function f. These estimates are then corrected to contrast the pres-
ence of an intrinsic initialization bias through the divisions described in lines 7 and 
8, where � i+1

1
 stands for the element-wise exponentiation. For further details about 

the implementation of the Adam optimizer and the demonstration of its properties, 
the reader can refer to [26].

(1)�i+1 = �i − �∇f (�i)

(2)f (�i) =
1

N

Nf
∑

j=1

fj(�i)

(3)�i+1 = �i − �∇fi(�i)
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3.3  GSGP hybridized with gradient descent

The idea introduced in this work is to investigate the results of the combination of 
the strength of an evolutionary algorithm, i.e., GSGP, and gradient-based optimiz-
ers, which are one of the principal tools exploited in the neural network theory. Geo-
metric semantic GP, thanks to the intrinsic nature of geometric semantic operators, 
allows big jumps in the solution space. Thus, new areas of the solution space can 
be explored, with GSOs also preventing the algorithm from getting stuck in a local 
optimum. Gradient-descent optimizers, on the other hand, are optimization tech-
niques based on the direction of the gradient of the loss function. Thus, they typi-
cally perform small shifts in the local area of the solution space. A combination of 
these techniques should guarantee a jump in promising areas (i.e., where good-qual-
ity solutions lie) of the solution space, thanks to the evolutionary search of GSGP 
and subsequent refinement of the solution obtained with a gradient-based algorithm. 
Let us describe in more detail how to implement this combination. Let us consider 
an input vector x of N features and the respective expected scalar value output y. By 
applying GSGP, an initial random population of functions in n variables is created. 
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After performing the evolutionary steps involving GSM and GSC, a new popula-
tion T = (T1, T2,… , TM) of M individuals is obtained. The resulting vector T is com-
posed of derivable functions, as they are obtained through additions, multiplications, 
and compositions of derivable functions. At this point, to understand for which 
parameters we should differentiate T, it is necessary to introduce an equivalent defi-
nition of the geometric semantic operators presented in Sect. 3.1. In particular let 
us redefine the Geometric Semantic Crossover as TXO = (T1 ⋅ �) + ((1 − �) ⋅ T2) , 
where 0 ≤ � ≤ 1 , and the geometric semantic mutation as TM = T + m ⋅ (R1 − R2) , 
where 0 ≤ m ≤ 1 . As the values of � and m are randomly initialised, we can derive 
T with respect to � , � = (1 − �) , and m. Therefore, the gradient-based optimizer can 
be applied using as objective function f (�) at the considered generation, while the 
vector of parameters becomes � = (�, �,m) . Thus, GSGP and a gradient-based opti-
mizer can be combined to find the best solution for the problem at hand. We propose 
and investigate different ways to perform this integration. The most trivial one con-
sists of alternating one step of GSGP and one step of the gradient-based optimizers.

Henceforth in the text, a single step of GSGP indicates one complete generation 
of GSGP, while a single step of the gradient-descent optimizer stands for one epoch 
during which the gradient of the function to be optimized is computed, and the 
weights are adjusted accordingly. Thus, when there is more than one step of the gra-
dient-based optimizer, it signifies that the weights are being updated multiple times.

Anyway, there is also the possibility to alternate one step of GSGP with mul-
tiple steps of gradient-based optimizers. Improving the number of gradient-based 
steps—at the expense of GSGP steps—is an interesting option to understand how 
far the small shifts performed by a gradient-based optimizer can improve the over-
all performance. Let’s indicate with the tuple (p1, p2) the number of steps that we 
alternate GSGP ( p1 ) and gradient-based optimization ( p2 ). Therefore, we will fix 
p1 = 1 while considering different values for the hyperparameter p2 . Let n be the 
total number of fitness evaluations. The procedure introduced in this paper can be 
summarized by Algorithm 2.

4  Experimental settings

This section describes the datasets considered for validating our technique 
(Sect. 4.1) and provides all the experimental settings (Sect. 4.2) to make the experi-
ments completely reproducible. The code, for the complete reproducibility of the 
proposed experiments, is available at https:// github. com/ gpiet rop/ Gradi entBa sedGS 
GP.

4.1  Dataset

To assess the validity of the technique proposed in Sect. 3.3, real-world, complex 
datasets, ranging from different areas, have been considered and tested. All of them 
have been widely used as benchmarks for GP, and their properties have been dis-
cussed in [27].

https://github.com/gpietrop/GradientBasedGSGP
https://github.com/gpietrop/GradientBasedGSGP
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Table 1 summarizes the characteristics of the different datasets, such as the num-
ber of instances and variables. All of the proposed datasets but one deal with regres-
sion tasks. In fact, a classification problem is also considered to assert the validity of 
our method.

The objective of the first group of datasets is the prediction of pharmacokinetic 
parameters of potential new drugs. Human oral bioavailability (%F) measures the 
percentage of initial drug dose that effectively reaches the system blood circula-
tion after passing through the liver; Median lethal dose (LD50), also informally 
called toxicity, measures the lethal dose of a toxin, radiation, or pathogen required 
to kill half the members of a tested population after a specified test duration; Pro-
tein-plasma binding level (%PPB) corresponds to the percentage of the initial drug 
dose that reaches the blood circulation and binds the proteins of plasma. Also, 
datasets originating from physical problems are considered: Yacht hydrodynamics 
(yac) measures the hydrodynamic performance of sailing yachts starting from their 
dimension and velocity; Concrete slump (slump) measures the value of the slump 
flow of the concrete, that is influenced by the ingredients of the concrete itself; Con-
crete compressive strength (conc) measures values about the compressive strength 
of concrete (the most important material in civil engineering); Airfoil self-noise 
(air) is a NASA dataset obtained from a series of aerodynamic and acoustic test 
of two and three-dimensional airfoil blade sections, conducted in an anechoic wind 
tunnel. Lastly, the Parkinson’s disease dataset (park)—which is the classification 
task dataset—collects biomedical voice measurements from a sample of individuals 
having (or not) Parkinson’s disease.

4.2  Experimental study

For all the datasets described in Sect. 4.1, samples have been split among train and 
test sets: 70% of randomly selected data has been used as a training set, while the 
remaining 30% has been used as a test set. For each experiment, 30 runs have been 
performed, with a random train/test split in each run.

To assess the performance of the hybridization of GSGP and gradient-based opti-
mizers, the results obtained within these methods are compared to the ones achieved 
with classical GSGP. The comparison with the performance achieved by standard GP 

Table 1  Main characteristics 
of the considered datasets: the 
number of variables, the number 
of instances, the domain, and 
the type of task

Dataset Variables Instances Area Task

%F 242 359 Pharmacokinetic Regression
LD50 627 234 Pharmacokinetic Regression
%PPB 627 131 Pharmacokinetic Regression
Yac 7 308 Physics Regression
Slump 10 102 Physics Regression
Conc 9 1030 Physics Regression
Air 6 1503 Physics Regression
Park 19 5875 Biomedical Classification
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is not reported because, after some preliminary tests, it has been observed that standard 
GP is non-competitive against GSGP. To make the comparison fair, the total number of 
fitness evaluations must be equal for every method considered.

Recall that with the tuple (p1, p2) , we will indicate how we alternate steps of GSGP 
and the gradient-based optimizer. In this paper, we will always consider p1 = 1 , while 
p2 will take values in the range {0, 1, 2, 5, 10} . Setting p2 = 0 means that we are not 
performing any gradient-based optimization of the parameters, i.e., that we are consid-
ering vanilla GSGP.

Let n denote the total number of fitness evaluations we want to perform. Let n1 be 
the total number of GSGP steps performed during the training, and n2 the total number 
of gradient-based optimizer steps. The value of n1 and n2 will be determined by n, p1 , 
and p2 , which are the three main hyperparameters of our method, as follows:

This allows a fair comparison between different techniques, ensuring that the number 
of fitness evaluations is the same for each choice of p2 . For example, (p1, p2) = (1, 1) 
means that we are alternating one step of GSGP with one step of the gradient-based 
optimizer, and we will perform—in total—n

2
 steps of GSGP and n

2
 optimization steps.

Regarding the choice of the hyperparameter of the gradient-based optimizers, both 
for Adam and SGD, we will investigate the performance of the hybridization method 
proposed varying the learning rate � over the following range � ∈ {0.1, 0.01, 0.001} 
The choice of exploring relatively higher learning rates is due to the small number of 
subsequent gradient descent iterations which are performed in the proposed methods 
(that are 1, 2, 5 or 10). In fact, higher learning rates can facilitate faster exploration of 
the solution space, where optimal solutions may reside.

In this experimental phase, we set n = 200 . The population’s size for all the con-
sidered systems is set to 50, and the individuals in the initial population are generated 
with the ramped half-and-half technique. Further details concerning the implementa-
tion of the semantic system and the gradient-based optimization algorithm are reported 
in Table 2. To maintain fairness and observe the method’s performance in a general 
context, hyperparameters known to work well in classic GSGP were selected, and no 
dedicated tuning phase was conducted to avoid introducing biases in the comparison 
between the methods.

The considered fitness function is the root mean squared error (RMSE):

where yi is the true value while ŷi is the predicted one.

(4)n1 =
n

p1 + p2
p1 n2 =

n

p1 + p2
p2

(5)RMSE =

√

√

√

√

n
∑

i=1

(ŷi − yi)
2

n
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5  Experimental results

As stated in Sect. 3.3, this study aims to investigate the results of combining a gra-
dient-based optimizer with GSGP. Figures 1, 2, and 3 show the box plots—obtained 
comparing the testing results over 30 independent runs—when GSGP is combined 
with SGD, with a learning rate value set to, respectively, 0.1, 0.01, and 0.001. Sim-
ilarly, Figs.  4, 5, and 6 display the same study, but when the Adam optimizer is 
selected. Thus, each box plot allows comparing the fitness of standard GSGP and 

Table 2  Experimental settings

A horizontal line separates the parameters belonging to the GSGP 
algorithm and the ones of the gradient-based optimizers. The values 
for the learning rate are common for Adam and SGD, while other 
optimizer parameters are necessary only for the definition of the 
Adam algorithm

Parameter Value

Function set + , −, ∗ , //
Max. initial depth 6
Crossover rate 0.9
Mutation rate 0.3
Mutation step 0.1
Selection method Tournament of size 4
Elitism Best individuals survive
Learing rate ( �) 0.1, 0.01, 0.001
Exponential decay 

rate—first momen-
tum ( �1)

0.9

Exponential decay 
rate—second 
momentum ( �2)

0.99

� 10−8

Fig. 1  Boxplots of testing RMSE over 30 independent runs, with SGD and � = 0.1
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Fig. 2  Boxplots of testing RMSE over 30 independent runs, with SGD and � = 0.01

Fig. 3  Boxplots of testing RMSE over 30 independent runs, with SGD and � = 0.001

Fig. 4  Boxplots of testing RMSE over 30 independent runs, with Adam and � = 0.1
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the one obtained by our algorithm over a different benchmark problem, considering 
different values assigned to p2—the number of gradient-based optimizers steps per-
formed after one step of GSGP.

To provide a statistical assessment of the obtained results, a yellow star was 
placed above the boxplots to denote the presence of statistically significant differ-
ences. The statistical analysis was performed through the Wilcoxon rank-sum test, 
with a significance level of � = 0.05 . The alternative hypothesis is that the distribu-
tion of the considered method is below the distribution of classic GSGP.

Moreover, we report the median fitness—of the 30 runs performed—over the 
total number of fitness evaluations for the test set, but only for the Adam optimizer. 
As we will explain later, we concentrate our discussion on the Adam optimizer con-
sidering the higher quality of the results obtained.

By observing the experimental results, it is possible to notice that the per-
formance of the proposed algorithm is significantly influenced by the value of 
the learning rate. For example, the choice of SGD as a gradient-based optimizer 

Fig. 5  Boxplots of testing RMSE over 30 independent runs, with Adam and � = 0.01

Fig. 6  Boxplots of testing RMSE over 30 independent runs, with Adam and � = 0.001
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with � = 0.1 (Fig. 1) leads to results not satisfactory—with a few exceptions. This 
behavior is not surprising because a high learning rate value tends to result in 
instability also when used in the neural network framework [28]. On the contrary, 
considering SGD with � = 0.001 (Fig. 3)—which is the standard learning rate for 
this algorithm—results are comparable to (or outperforming) classic GSGP.

On the other hand, the integration of Adam optimizer in the GSGP frame-
work shows a generally better performance—over all the benchmark problems 
considered—w.r.t. the use of classic SGD. These results confirm the necessity 
of choosing a more complex gradient-based optimizer (which leverages the first 
and second momentum for updating the parameters) to improve the algorithm’s 
performance.

Adam is known to demonstrate advantages in convergence properties and robust-
ness, particularly in complex and high-dimensional search spaces [29, 30], as the 
ones studied in this work. The adaptive learning rate mechanism and momentum in 
Adam provide it with the ability to dynamically adjust the step size during optimiza-
tion, leading to faster convergence and improved performance. Moreover, Adam has 
been reported to demonstrate reduced oscillations during the optimization phase, 
contributing to its ability to achieve more stable convergence and avoid local min-
ima [31].

The rest of the discussion will focus on the results obtained by the hybridization 
of GSGP within Adam.

Concerning the best choice of the learning rate parameter � for the Adam algo-
rithm or the best value for the number of refinement steps p2 , experimental results 
do not provide a unique and universal answer. For example, let us focus on the 
results obtained with p2 = 1 . Considering Figs. 4, 5, and 6, we can observe that, for 
each problem, there is a learning rate value that makes the proposed method outper-
form standard GSGP. However, the best � is not unique but depends on the specific 
benchmark problem under study. Specifically, for we improve the performance w.r.t. 
classic GSGP when LD50 when � = 0.1, 0.001 , for yac when � = 0.1 , for conc when 
� = 0.1, 0.01 , for air when � = 0.001 , for park when � = 0.01, 0.01 . On the other 
hand, considering the %F, the %PPB, and the slump dataset, all the choices for � 
lead to an improvement in terms of test fitness.

Again, these results are not surprising. In fact, the idea of applying a gradient-
based optimizer is inspired by the neural network reality, where, typically, there is 
no better choice of parameters—such as learning rate—a priori. On the contrary, the 
most suitable value depends on the network’s topology and the problem’s complex-
ity. Thus, it is plausible and reasonable that, in this neural network-inspired frame-
work, different benchmark problems need different hyperparameters values to obtain 
a significant fitness improvement.

Concerning, on the other hand, the best choice for the number of gradient-based 
refinement p2 performed after a generation of GSGP, results indicate that p2 = 1 
leads to better performance most of the times. Choosing p2 = 1 means that we are 
performing the same number of GSGP generations and Adam optimization. Thus, 
this combination reaches its maximum potential when takes full advantage of both 
methods in an equal way. This confirms the utility of hybridizing the two methods. 
In particular, the structural change of the individuals of GSGP and the ability of 
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Adam to optimize slightly (but wisely) the parameters of the evolutionary process 
are both essential to achieving a good performance.

Furthermore, considering Figs. 7, 8, and 9, we can draw some conclusions on the 
stability and the rate of convergence. Firstly, Fig. 7 shows that despite the results 
obtained by our algorithm (which often outperform classic GSGP), there is a high 
level of instability, especially for higher values of p2 . This is caused (again) by the 
choice of � = 0.1 (a relatively high value for the learning rate), which tends to cause 
instability also in neural network applications. Another important conclusion we 
can draw is that once we find a good set of hyperparameter values for the proposed 
method, the convergence rate is way higher w.r.t. standard GSGP. In fact, most of 
the times, when our method outperforms GSGP, it reaches better fitness results after 
a few fitness evaluations, even if compared with the results obtained by GSGP at 
the last generation executed. Thus, we can conclude that using this hybridization—
under the right choice of hyperparameters setting—allows for a reduction of the 
overall number of fitness evaluations.

Fig. 7  Median of the testing fitness over 30 independent runs, with Adam and � = 0.1

Fig. 8  Median of the testing fitness over 30 independent runs, with Adam and � = 0.01
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Finally, one last important remark should be done about the increasing trend in 
fitness for the %PPB dataset, which can be attributed to the dataset’s challenging 
nature, characterized by a propensity for overfitting, wherein the model achieves bet-
ter performance on the training set but struggles to generalize effectively to the test 
set [21].

6  Conclusions

This paper investigates the results of the integration of gradient-based optimiza-
tion methods, SGD and the Adam algorithm, within a genetic programming system, 
GSGP. The idea behind this work relies on the possibilities of exploiting and com-
bining the advantages of these two methods to achieve faster convergence of the 
evolutionary search process.

Different ways of hybridizing these methods have been investigated, reported, 
and compared with vanilla GSGP on eight real-world, complex problems (concern-
ing both the regression and the classification task) belonging to different applica-
tive domains. Specifically, we considered two of the most famous optimizers in the 
neural network field (SGD and Adam) and studied their integration with GSGP 
assigning them different values to their learning rate—which is the most relevant 
parameter of both the SGD and Adam algorithm. Moreover, we compare the results 
obtained by our method by augmenting the number of gradient-based refinements 
after one generation of GSGP (performing a fair comparison by always taking into 
account the overall number of fitness evaluations as stopping criteria).

Experimental results show that, with the right choice of hyperparameters val-
ues, GSGP combined with the Adam algorithm outperforms classic GSGP. We 
also observe strong parallelism with the neural network framework, as the right 
choice of the optimizer and the learning rate drastically influence the results. 
Results confirm the necessity of choosing a more efficient optimizer—even 
though more expensive—to obtain better performance while avoiding instability 

Fig. 9  Median of the testing fitness over 30 independent runs, with Adam and � = 0.001
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issues. As in deep learning, the optimal choice for these hyperparameters depends 
on the complexity of each benchmark problem under analysis.

We also observe that best results are achieved when we set p2 = 1 , thus when 
the contribution provided by GSGP and Adam refinement optimization is equal, 
confirming the utility of fully leveraging and combining the complementary 
strengths of these algorithms.

These results corroborate our hypothesis: the combination of GSGP with a 
gradient-based optimizer can improve the performance of GSGP. Moreover, this 
study highlights the importance of hybridizing the evolutionary process with 
other techniques of the artificial intelligence spectrum.

Even after this more detailed study of the integration of GSGP and gradient-based 
optimizer, multiple possible future developments focused on improving the benefits 
provided by this combination are still possible. It is interesting, as research direc-
tions, the idea of applying gradient-descent optimization not only for the parameters 
related to the GSC but to entire GP trees. Consider, for example, a normal functional 
f ∶ ℝ

n
→ ℝ , like the sum. If the results of the subtrees on which f is applied are 

z1,… , zn , then the usual application is f (z1,… , zn) . But this can also be rewritten as 
f (�1z1,… , �nzn) with all �i initially with value 1. The parameters �1,… , �n can then 
be optimized with methods like Adam or SGD, allowing us to perform parameter 
optimization on entire GP trees (non necessarily only for GSGP).
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