
DEPARTMENT OF
COMPUTER SCIENCE

GONÇALO ANDRÉ SANTOS ANTUNES

Bachelor in Computer Science

DEEP TEST TO TRANSFORMERS
ARCHITECTURE IN NAMED ENTITY
RECOGNITION

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
⟨September⟩, ⟨2022⟩

DEPARTMENT OF
COMPUTER SCIENCE

DEEP TEST TO TRANSFORMERS ARCHITECTURE IN
NAMED ENTITY RECOGNITION

GONÇALO ANDRÉ SANTOS ANTUNES

Bachelor in Computer Science

Adviser: Joaquim Francisco Ferreira da Silva
Associate Professor, NOVA University Lisbon

Examination Committee

Chair: Maria Armanda Simenta Rodrigues Grueau
Associate Professor, FCT-NOVA

Rapporteur: Francisco José Moreira Couto
Auxiliar Professor, FCT-NOVA

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
⟨September⟩, ⟨2022⟩

Deep test to transformers architecture in Named Entity Recognition

Copyright © Gonçalo André Santos Antunes, NOVA School of Science and Technology,

NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.5) [26].

https://github.com/joaomlourenco/novathesis

To family and friends.

Acknowledgements

Firstly, I want to express my sincere gratitude to Joaquim Silva, without whom the work

presented in this thesis would not have been possible.

I want to thank all my friends for motivating me and being with me in this journey.

Finally, I would like thank my mother, father and brother for always encouraging me

to do better, and be better. They taught me that you only need a seed and water to grow a

tree .

iv

“When you change your thoughts, remember to
also change your world.” (Norman Vincent Peale)

Abstract

Named Entity Recognition is a task of Natural Language Processing, which aims to extract

and classify named entities such as ”Queen of England”. Depending on the objective of

the extraction, the entities can be classified with different labels. These labels usually are

Person, Organization, and Location but can be extended and include sub-entities like cars,

countries, etc., or very different such as when the scope of the classification is biological,

and the entities are Genes or Virus. These entities are extracted from raw text, which may

be a well-structured scientific document or an internet post, and written in any language.

These constraints create a considerable challenge to create an independent domain model.

So, most of the authors have focused on English documents, which is the most explored

language and contain more labeled data, which requires a significant amount of human

resources. More recently, approaches are focused on Transformers architecture models,

which may take up to days to train and consume millions of labeled entities.

My approach is a statistical one, which means it will be language-independent while

still requiring much computation power. This model will combine multiple techniques

such as Bag of Words, Steeming, and Word2Vec to compute his features. Then, it will

be compared with two transformer-based models, that although they have similar archi-

tecture, they have respectful differences. The three models will be tested in multiple

datasets, each with its challenges, to conduct deep research on each model’s strengths

and weaknesses.

After a tough evaluation process the three models achieved performances of over 90%

in datasets with high number of samples. The biggest challenge were the datasets with

lower data, where the Pipeline achieved better performances than the transformer-based

models.

Keywords: Natural Language Processing, Named Entity Recognition, Machine Learn-

ing, Statistical, Independent Domain

vi

Resumo

Named Entity Recognition é uma tarefa no Processamento de Língua Natural, que tem

como objectivo extrair e classificar entidades como ”Rainha da Inglaterra”. Dependendo

do objectivo da extração, as entidades podem ser classificadas em diferentes categorias.

As categorias mais comuns são: Pessoa, Organização e Local, mas podem ser estendidas e

incluir sub-entidades como carros, países, entre outros. Existem ainda categorias muito

diferentes, por exemplo, quando o texto é do domínio da Biologia e as categorias são Ge-

nes ou Vírus. Essas entidades são extraídas de diferentes tipos de texto como documentos

científicos estruturados corretamente ou um post da internet, podendo ser escritos em

qualquer idioma. Estes constrangimentos criam um enorme desafio, sendo muito am-

bicioso criar um modelo independente do idioma. Acontece que a maioria dos autores

está focado em documentos em inglês, uma vez que este é o idioma mais explorado e

aquele que contém mais dados rotulados. Para obter estes dados são necessários recursos

humanos capazes de os classificar à mão. Mais recentemente, as abordagens estão focadas

em modelos de Deep Learning que podem levar dias para treinar e consomem milhões

de entidades rotuladas.

A minha abordagem é uma abordagem estatística, o que significa que será indepen-

dente da língua, embora ainda necessite de muito poder de computação. Este modelo

combinará múltiplas técnicas tais como Bag of Words, Steeming, e Word2Vec para carac-

terizar os dados. De seguida, será comparado com dois modelos baseados em transformers,

que embora tenham uma arquitectura semelhante, têm diferenças significativas. Os três

modelos serão testados em múltiplos conjuntos de dados, cada um com os seus desafios,

para conduzir uma pesquisa profunda sobre os pontos fortes e fracos de cada modelo.

Após uma extenso processo de avaliação os três modelos obtiveram métricas supe-

riores a 90% em datasets com grandes quantidades de dados. O maior desafio foram

os datasets com menos dados onde o Pipeline obteve métricas superiores aos modelos

baseados em transformers.

Palavras-chave: Named Entity Recognition, Processamento de Língua Natural, Inteli-

gência Artificial , Estatística, Independente do Domínio

vii

Contents

List of Figures x

List of Tables xi

Acronyms xiv

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 3

1.3 Objectives and Contributions . 3

1.4 Document Structure . 4

2 Related Work 5

2.1 Feature Extraction . 5

2.1.1 Rule Based . 5

2.1.2 Gazetteers . 6

2.1.3 Stemming . 6

2.1.4 Lemmatization . 6

2.1.5 Part-of-Speech Tagging . 6

2.1.6 Bag of Words and Word Embeddings 7

2.1.7 Document and corpus features . 8

2.1.8 TF-IDF . 8

2.1.9 Extraction of Multi-grams . 9

2.1.10 Tokenization . 10

2.1.11 Conclusion . 10

2.2 Learning methods . 10

2.2.1 Supervised Learning . 10

2.2.2 Unsupervised Learning . 14

2.2.3 Semi-supervised Learning . 16

2.2.4 Deep learning . 16

viii

2.2.5 Conclusion . 21

2.3 Evaluation . 22

2.3.1 MUC evaluations . 22

2.3.2 Exact-match evaluation . 23

2.3.3 Automatic content extraction evaluation 23

2.4 State of Art . 23

3 Implemented solution 30

3.1 Pipeline . 30

3.2 Transformers . 35

3.3 BERT Fine tuning . 36

4 Results 39

4.1 Datasets . 39

4.2 Results . 42

4.2.1 English . 42

4.2.2 Spanish . 44

4.2.3 Portuguese . 46

4.2.4 Swedish . 49

4.2.5 Twitter . 51

4.2.6 Species . 52

4.2.7 Medical . 53

4.3 Discussion . 54

5 Conclusion and Future Works 56

5.1 Recap . 56

5.2 Conclusion . 56

5.3 Future Works . 57

Bibliography 59

ix

List of Figures

2.1 Most similar words to car using Word2Vec 8

2.2 SVM using soft Margins . 12

2.3 Applying a Kernel trick in SVM . 12

2.4 KNN classification of the same data with different K 13

2.5 Comparison of Different UL Algorithms in different data sets 15

2.6 Transformer encoder at the left and a Transformer decoder at the right . . 19

2.7 Graphical representation of Sigmoid, Tanh and Relu activation functions . 21

3.1 Graph representing how the slope is done to find the stop words 31

3.2 Graphical representation of the transformers block 37

3.3 Graphical representation of the transformers neural network 38

x

List of Tables

2.1 Comparison of Stemming vs Lemmatization 7

2.2 Part-of-Speech tagging . 7

3.1 Bag of Words . 32

3.2 List of words that are the most common word’s neighbors per class 33

3.3 Creation of stems . 33

3.4 Occurrences of Waterloo’s Subsets . 33

4.1 Dataset Status . 41

4.2 Named Entities per Class . 41

4.3 Unique Named Entities per Class . 41

4.4 Precision Results in English dataset with 3 types of Named Entity 43

4.5 Recall Results in English dataset with 3 types of Named Entity 43

4.6 F-Score Results in English dataset with 3 types of Named Entity 43

4.7 Precision Results in English dataset . 44

4.8 Recall Results in English dataset . 44

4.9 F-Score Results in English dataset . 44

4.10 Precision Results in Spanish dataset with 3 types of Named Entity 45

4.11 Recall Results in Spanish dataset with 3 types of Named Entity 45

4.12 F-Score Results in Spanish dataset with 3 types of Named Entity 45

4.13 Precision Results in Spanisn dataset . 46

4.14 Recall Results in Spanisn dataset . 46

4.15 F-Score Results in Spanisn dataset . 46

4.16 Precision Results in Portuguese dataset with 3 types of Named Entity . . . 47

4.17 Recall Results in Portuguese dataset with 3 types of Named Entity 47

4.18 F-Score Results in Portuguese dataset with 3 types of Named Entity 47

4.19 Precision Results in Portuguese dataset . 48

4.20 Recall Results in Portuguese dataset . 48

4.21 F-Score Results in Portuguese dataset . 48

4.22 Precision Results in Swedish dataset with 3 types of Named Entity 49

xi

4.23 Recall Results in Swedish dataset with 3 types of Named Entity 49

4.24 F-Score Results in Swedish dataset with 3 types of Named Entity 50

4.25 Precision Results in Swedish dataset . 50

4.26 Recall Results in Swedish dataset . 50

4.27 F-Score Results in Swedish dataset . 50

4.28 Precision Results in Twitter dataset . 51

4.29 Recall Results in Twitter dataset . 51

4.30 F-Score Results in Twitter dataset . 51

4.31 Precision Results in Species dataset . 52

4.32 Recall Results in Species dataset . 52

4.33 F-Score Results in Species dataset . 52

4.34 Precision Results in Medical dataset . 53

4.35 Recall Results in Medical dataset . 53

4.36 F-Score Results in Medical dataset . 53

xii

xiii

Acronyms

BERT Bidirectional Encoder Representations from Transformers ix, 4, 26, 30, 36,

37, 42–54, 56, 57

BNER Biomedical Named Entity Recognition 27

CNN Convolutional Neural Networks 16, 26, 27, 36

CRF Conditional random field 11, 12, 24–28

DBSCAN Density-based spatial clustering of applications with noise 14

DL Deep Learning 16, 19, 20, 26

FDPN Fair Dispersion Point Normalization 9

GRU Gated Recurrent Unit 17, 28

HMM Hidden Markov Models 11, 12, 24

KNN K-Nearest Neighbour x, 13, 25

LSTM Long Short-Term Memory 17, 26, 27

ML Machine Learning 10, 14, 16, 19, 20, 57

NE Named Entity 8, 9, 11, 24, 25, 31, 32, 34, 39, 40, 42, 44, 46, 47, 49–51, 53, 54

NER Named Entity Recognition 1–5, 7, 10, 16, 18, 22–24, 26–28, 57

NLP Natural Language Processing 1, 2, 6, 25, 26, 29, 57, 58

NN Neural Networks 16, 17, 28, 30, 57, 58

POS Part-of-Speech xi, 6, 7, 10, 24, 25

xiv

RE Relevant Expression 6, 8–10

RNN Recurrent neural networks 17

SCP Symmetric Conditional Probability 9

SL Supervised Learning 10, 11, 30

SVM Support Vector Machines x, 11, 12, 24, 35

TF-IDF Term frequency-inverse document frequency 8–10

UL Unsupervised Learning x, 14, 15

xv

1

Introduction

Humans are well known for their greed for getting things faster and better. Natural

Language Processing (NLP) started has a new desire to improve the relationship between

humans and computer information like documents, newspapers, scientific reports, and

others. As NLP developed, new sub-tasks appeared, one of them was Named Entity

Recognition (NER), or in other words, the ability to detect and extract entities from a

document. As examples of named entities we may consider: "United Nations", which

is an institution; "New York", being a location; "Barack Obama", which is a person, and

25-12-2021, a data.

With the years passing by, massive development in hardware and communications

brought the need for an excellent NER model. Researchers continue their pursuit for

state of the art, models mixing innovative techniques with old ones. With this, the big

technology companies invest millions of dollars in developing their own systems, for

example, Comprehend from Amazon or Watson Natural Language Understanding from

IBM. The question is, what is the way to go now that big technology companies have

come to the field? NER is still a task in progress, and most of the work done has only been

in English. With the advances of the internet, there is a vast increase in non-English data,

like Chinese or Korean, and small texts like tweets or Facebook posts, creating ample

opportunities to continue the study of NER.

1.1 Context

NER recognizes mentions of rigid designators from a text belonging to predefined seman-

tic types such as Person, Location, Organization, etc. It was first introduced in the Sixth

Message Understanding Conference (MUC-6) as a sub-task of Information Extraction,

transforming unstructured data from articles to structured information of companies’

activities. Since the MUC-6 in 1995, different approaches have been made to develop a

model that can precisely recognize entities.

1

CHAPTER 1. INTRODUCTION

Such as in other artificial intelligence tasks, models needed hardware to achieve re-

sults and create the opportunity to explore artificial intelligence tasks at their full po-

tential. In 1995 the internet speed was 28.8Kbps, most people were not connected to

the internet, and there were no more than 100,000 websites. Nowadays, we live in a

different world. After one crisis and another still going through, everyone in a developed

country has access to the internet, where most have multiple social networks, which were

invented during this period. The liberty to access the internet through the palm of our

hands turned Tech companies the most powerful on earth, and their most significant asset

is users’ data. As in any other company, social media wants the users to stay connected as

long as possible, and for that, they need to feed them with content that they relate to. One

way to explore it is to look up the user post and find the aspects they are most interested

in. These aspects can be identified by the strong semantics of the named entities, ex:

"Black Lives Matter"or “Ukraine". This is an example of the use of NER in the modern

world. Besides this, NER is also crucial in other NLP tasks such as:

Information Extration aims to extract data from unstructured textual sources to a more

comprehensive machine way through the creation of relationships. A good example

may be an input text about the Prime Ministers of Portugal, and the Information

Extration creates a sorted table ordered by the year that each one took office. Here,

NER can be used to identify names of the prime ministers and dates.

Opinion Mining is used to understand the opinion and emotions of a user towards a

product, event, service, etc. In this case, NER identifies the products that a user

refers to.

Automatic Text Summarization is a system that selects the essential parts of a document

and creates a summary of it. NER is used to find some of the topics in the record

and show which parts should appear in the resume.

Machine Translation is a task that intends to translate a text or speech from one lan-

guage to another. One of the most challenging parts of translation is naming the

proper entities to translate since a wrong choice may have a massive impact on the

translated sentence’s semantics.

Information Retrieval is the problem of dealing with the organization, storage, retrieval,

and evaluation of documents due to a query, like the use of web search engines. NER

comes in hand to name the entities present in each record for then being classified,

sorted, and evaluated by the system.

Question-Answering is a system that generates answers to human questions. NER finds

entities in the questions that are then used by the system to look for documents

that best correlates with them. After selecting the best documents, it generates an

answer for the human, using an automatic text summarization technique.

2

1.2. MOTIVATION

When comparing the different possibilities for NER is easy to deduct that we have the

same problem but in different context. Sometimes there is an extensive corpus to analyze,

and other times there is just a question. It may be a very formal and professionally written

document or an inappropriate comment from a hater in any language of the world. Finally,

we may be looking for a Person, Location, or Organization, but it is also possible to look

for genes and viruses. Therefore NER can be studied in three dimensions. The language

one, which takes into account the different languages that can be evaluated by a model.

The corpus size. And the type of entities the systems aims to extract [14].

To conclude, the complexity of NER is increasing, and while some authors just make

a solution for a specific problem, others create systems that are versatile.

1.2 Motivation

My motivation for this thesis concerns the problems put aside in NER during the most

recent years. My primary motivation is to challenge the transformer’s architectures in

a different context, from English to Swedish, one class to ten, and in different writing

styles. While deep learning techniques reported better results, as shown in chapter 2,

what is its actual cost concerning hardware and human resources, and how can this affect

NER in other languages? The second is to develop a competitive model using statistical

and neural network features, combining the engineering power with new state-of-the-art

techniques. The third focuses on a multi-language approach. Since most of the work

has been done in English, reporting great results, can the other languages, which use a

different model, be affected by the lack of exclusivity? The fourth is to explore more types

of named entities without losing the quality of the model. Some researchers have already

changed the evaluated entities, for instance, in biological or medical documents, besides

other fields that are still yet to be explored, like fashion and products. These new entities

can be fundamental when applied to short-length text, like questions, conversations, or

social media posts.

1.3 Objectives and Contributions

Having in consideration the motivations reported in the previous Section, the initial

objectives were achieved and constitute my contribution in this dissertation:

• To create challenging scenarios by changing the language, writing style, number of

classes, and corpus size for transformer-based and more classical models.

• To design a model mixing neural networks with statistical features. For this achieve-

ment, I developed new features based on the entities’ neighbors, entities’ stemming,

and Word2Vec tested in first point conditions.

3

CHAPTER 1. INTRODUCTION

• To keep language independence. A statistical features methodology is more language-

independent than analyzing a complete sentence in the text. So, efforts were made

for the model to be practical in many languages with no changes.

• To develop a transformer model and test it in the same conditions as the first point.

• To use different approaches for the transformers-based model, testing how the tech-

niques succeed and fail in different scenarios.

1.4 Document Structure

The remaining of this document is composed of five chapters that are structured as fol-

lows:

Chapter 2 approaches the techniques utilized in NER and how machine learning

algorithms extract features from documents to use in their fitting procedures. Then we

discuss how authors came along with different paradigms of NER and which solution

reported the best results.

Chapter 3 discusses the three different models tested during this research. It starts

by presenting a model, fully developed by me, with all features and considerations taken.

Then it shows a model based on transformers and how I implemented its neural network.

The last one is a model based on Bidirectional Encoder Representations from Transform-

ers (BERT), which can be used in NER tasks with a finetuning technique.

Chapter 4 presents the results of the three methods with seven different datasets.

There is a brief explanation of the datasets, followed by the results in three metrics. In

the end, a results discussion compares the methods and their performance in the different

paradigms.

Chapter 5 is the final one where the conclusions and future works are presented.

4

2

Related Work

This chapter aims to discuss the different methodologies used to extract entities from

the corpus. NER can be split into three major phases, Feature Extraction, Model, and

Evaluation. All three phases existing since the MUC-6, and there have been numerous

developments in all of them. At first, the document presents different techniques or

algorithms for the task. The second part gives an overview of the various combinations

of methods and models addressed by the researchers and their results.

2.1 Feature Extraction

Feature Extraction is probably the most important of the three phases since we will need

good features for the model to classify each entity correctly. We can use different pro-

cesses to extract information about each entity considering the size of the corpus, the

words that are nearby the entity, and the own entity. When choosing which technique

to apply, we may eventually need to consider the language in the study. There are more

than 6000 languages worldwide, and they don’t go by the same rules. Let’s consider the

Japanese language. In Japanese, words aren’t split with space or split at all. Spaces are

only used after punctuation, which is entirely different from most European languages.

This example gives us an idea of how hard it is to make a NER model suitable for many

languages. It is possible and highly recommended to combine multiple techniques, cre-

ating a vector of features, each one for a particular characteristic, such that the set of

features is complete enough to discriminate different entity classes..

2.1.1 Rule Based

Rule-based was the first approach made by the researchers to select named entities. As the

name says, it is based on rules to distinguish the different classes. These rules can be case

sensitive, like starting with upper case or all the letters are in upper case; suffix or prefix,

where checks if a word contains a suffix like or for a profession; punctuation, identifying

if it is a percentage, maybe if it contains an internal apostrophe represents a person; digit

patterns, that are very practical to distinguish dates as four digits represent a year, two

5

CHAPTER 2. RELATED WORK

digits with an s a decade. This technique does not fully discriminate entity classes but

can work as a first filter feature to eliminate many wrong entity candidates [31].

2.1.2 Gazetteers

Gazetteers is a geographical index or dictionary. In NLP, Gazetteers are also lists of

Names, Organizations, and other types of entities besides locations. The authors create

these lists by extracting entities from documents, news, or web pages. One way of doing

this is by selecting an online news article. On this page, select the HTML tag representing

the location of the news. Since every article has multiple links to other news articles, it

sets a random new piece and restarts the process. These lists are then used to check if the

entity being evaluated is in any list or not. So for each list, there is a position in a binary

vector representing if it is contained or not. Although being an efficient tool, these lists

are static unless some process regularly updates them [31].

2.1.3 Stemming

Stemming is a technique used to obtain a word stem. It is often implemented as a series

of rules applied to a word. It is essential to consider that the final word does not need to

exist. It should be the same for all the words it represents. Usually, prefix and suffix are

removed, keeping the rest of the word, which most of the time matches the word’s root.

The actual effect of this technique is to reduce the problem’s dimensionality. It is not

essential if a verb is in the present or past tense but the relationship between two words.

In the following examples, "Pedro eats an apple" or "John is eating an apple", it is essential

to understand that before the verb eat it is a person or animal, not an organization. Table

2.1 shows some examples of the stemming process.

2.1.4 Lemmatization

Lemmatization aims at normalizing each word to its lemma, and the final word can be

found in a dictionary. Another difference is that lemmatization outputs the same for

words with the same semantic, unlike Stemming. It is crucial in irregular verbs like to be
or swim, where they have different terminations in different terms; or with adjectives like

better that is transformed to good. Lemmatization depends on Part-of-Speech techniques

to make a reliable performance and a dictionary that relates each word with its lemma

See exemples in Table 2.1.

2.1.5 Part-of-Speech Tagging

Part-of-Speech (POS) is a technique that classifies each word in a sentence to one of the

eight morphosyntactic parts of speech, such as noun, pronoun, verb, etc. Identifying the

part of speech of a word can help filter RE to discard the wrong ones since RE tends to be

6

2.1. FEATURE EXTRACTION

Table 2.1: Comparison of Stemming vs Lemmatization .

Word Stemming Lemmatization

Peter Peter Peter
is is be

eating eat eat
an an an

apple appl apple

noun phrases. English noun phrases have some patterns: Adj-Noun (New York), Noun-

Prep-Noun (Bank of England), etc... Although, these patterns are language-dependent

since they do not work for Portuguese, for example, where noun phrases usually follow

different patterns: Noun-Adj (dias cinzentos), among others. So, Part of Speech tagging

can be beneficial but is strongly language-dependent. POS algorithm is composed of a

rule-based approach and a HMM. It can benefit NER, but it also has the same difficulties.

The semantic ambiguity of words (ex. Orlando, which can refer to a city or a person)

imposes a barrier that makes it impossible to be 100% precise. Table 2.2 shows some

word tags.

Table 2.2: Part-of-Speech tagging .

John bought a blue car from Mercedes in Orlando

NN VDB DT JJ NN IN NN IN NN

2.1.6 Bag of Words and Word Embeddings

The Bag of Words concept usually considers a document as a vector of words where the

number of word occurrences is represented in each vector position.

However, this methodology can be combined with other approaches to cope with

different objectives. Bag of Words can be used to consider the context of an entity. It

uses a window of size N, typically N is 5, where the word in the middle is the one being

evaluated. Classified entities will have similar bags.

Word embedding is a famous representation of documents recently used as a feature

for NER. It captures the context of an entity in a document and creates a vector repre-

sentation for it. These vectors relate words that are similar semantically or syntactically.

Cosine similarity, which measures the similarity between two vectors by inner product,

is used to measure the similarity between the embeddings. It outputs a continuous value

between 0 and 1, whereas close to 1, the more similar the vectors are. Different models

have different approaches to creating a word embedding, a famous one in the Word2Vec

with CBOW, which uses a bag of words with dimension C to feed the algorithm. The

Figure 2.1 shows which words are semantic close to car.

7

CHAPTER 2. RELATED WORK

Figure 2.1: Most similar words to car using Word2Vec

2.1.7 Document and corpus features

Document and corpus features are defined by both content and document structure. In-

stead of focusing only on one word at a time, we take advantage of the corpus to find out

new features about the statistics of an entity. Some valuable metrics to consider are the

number of times a word appears in a document (term frequency), the number of docu-

ments a word seems (document frequency), the subject of a document, co-occurrences.

All this information can help to understand from the starting point which words

or sequences of words are entities or not. Let us look at the single word the. It is the

most used word in English, and it will never be a NE since it is semantically weak. Like

the, there are other examples like a, be, etc. that are known as stop words. However,

a considerable number of RE are semantically strong units, such as Bank of England or

Primeiro Ministro da Nova Zelândia, which are good candidates to be Named Entity (NE),

while containing stop words within it. The nature and the specificity of the corpus can be

crucial to explore new entity types.

2.1.8 TF-IDF

Term frequency-inverse document frequency (TF-IDF) is a well-known metric to repre-

sent how important a word is to a document in a collection of documents. Term frequency,

as explained before, is the number of times a term i appears in a document j (tfi,j); and

document frequency (dfi) is the number of documents a word i appears. This metric is

often used in search engines to qualify pages considering the user queries. In formula 2.1

N stands for the number of documents in the corpus.

T f − IDFi,j = tfi,j ∗ log(
N
dfi

) (2.1)

8

2.1. FEATURE EXTRACTION

This metric can select the meaningful words from documents, such as China, Obama,

Putin, Portugal, lungs, etc., which are clearly NE due to their strong semantics. So, TF-IDF

can be a tool to contribute to select NE.

2.1.9 Extraction of Multi-grams

Three tools working together, are used for extracting RE from any corpus: the Local-

Maxs algorithm, Symmetric Conditional Probability (SCP) statistical measure and the

Fair Dispersion Point Normalization (FDPN).

Thus, let us consider that an N -gram is a sequence of words in text. For example

the word Minister is an 1-gram; the sequence Prime Minister of Portugal is a 4-gram.

LocalMaxs is based on the idea that each N -gram has a kind of "glue"or cohesion sticking

the words together within the N -gram. Then it is possible to distinct the N -grams quality

according to their cohesion metric. One can intuitively accept that there is a strong

cohesion within the N -gram between the words Berlin and Wall making the bi-gram

(Berlin , Wall). However, there is not a strong cohesion within the N -gram (to , the). To

calculate the cohesion in a N -gram the authors [18] use SCP or other metrics. So, the

SCP(.) cohesion value of a generic bigram (x,y) is obtained by Equation (2.2)

SCP ((x,y)) = p(x|y).p(y|x) =
p(x,y)2

p(x).p(y)
(2.2)

where p(x,y), P (x) and p(y) are the probabilities of occurrence of bigram (x,y) and

unigrams x and y in the corpus; p(x|y) stands for the conditional probability of occurrence

of x in the first (left) position of a bigram, given that y appears in the second (right)

position of the same bigram. Similarly p(y|x) stands for the probability of occurrence of y

in the second (right) position of a bigram, given that x appears in the first (left) position

of the same bigram.

However, in order to measure the cohesion value of each N -gram of any size in the

corpus, the FDPN concept is applied to the SCP(.) measure and a new cohesion measure,

SCP_f (.) , is obtained.

SCP _f ((W1...Wn)) =
p(W1...Wn)2

F
(2.3)

where

F =
1

n− 1

i=n−1∑
i=1

p(W1...Wi).p(Wi+1...Wn) (2.4)

where is the probability of the N -gram W1...Wn in the corpus. So, any N -gram of any

length is "transformed"into a pseudo-bigram that reflects the average cohesion between

each two adjacent contiguous sub N -grams of the original N -gram.

Then, LocalMaxs algorithm elects the cohesion of the N -gram is greater or equal than

the cohesion of any of its contiguous sub- n− 1-grams, and greater than the cohesion of

any n+ 1-gram of which it is a sub-sequence of words. Analyzing the following N -gram

9

CHAPTER 2. RELATED WORK

The King of Sweden visited it is easy to deduct that King of Sweden should be the extracted

RE, but it had to compare it with the other n+ 1-grams (The King of Sweden and King of
Sweden visited) and n− 1-grams (King of and of Sweden) to be select as a RE .

2.1.10 Tokenization

Tokenization is applying a function that transforms words into tokens. This function

may change according to the objective. Using the NLTK, it splits a sentence by his words

[35]. Another famous tokenization function is the BIESO. B represents the beginning of

an N -gram; I the inside of an N -gram; E the end of an N -gram, S represents a unigram;

and O represents an Outsiders, in other words, an entity that it is not a named entity.

Applying BIESO will distinguish the N -gram in our data.

2.1.11 Conclusion

To conclude, this Section is important to reflect how each technique is affected by the

different dimensionalities of NER.

Analyzing the Language Dimensionality, Rule-Based, Stemming, Lemmatization, and

Part-of-Speech are all language-dependent, so a system can not be multilingual when

developed with some of these tools. The best that can be done is using different tools in

different languages, but it is not easy to find it for other languages besides the most spoken

ones. Bag of Words, TF-IDF, Document, and corpus features are not language-dependent

and can be easily transferred from one language to another.

In terms of corpus size dependence, the quality of the results obtained by TF-IDF and

the Extraction of Multi-grams heavily depend on big corpus. Without them, these tools

may become useless, providing a misleading output. On the other side of the balance, the

remaining techniques are not corpus size-dependent.

Regarding the sorted entities, Rule-Based, Stemming, Lemmatization are dependent

on our target entities. So if the model is made to be more flexible concerning the extracted

entities, corpus features and TF-IDF are the suitable options.

2.2 Learning methods

As in other Machine Learning (ML) problems, we have different approaches to classify

the entities and as always there are some constraints that make us choose one method

over the other, such as the data we have, if it’s annotated or not, and the cost to annotate

it.

2.2.1 Supervised Learning

Supervised Learning (SL) is a methodology in ML that utilizes labeled data to train a

model that predicts an output. When the output is a class, such as in Named Entity

10

2.2. LEARNING METHODS

Recognition applications, it is called Classification. When the output is a continuous

value, it is called Regression, which is not in the scope of this thesis. In our case, the

class that we want to indicate is the type of Named Entity, and the input is a vector of

features. The quality of the features is crucial to provide a good clustering division, that

is, no overlap between clusters. The model needs to train, or in order words, to find

out relations and patterns between the input and the output to distinguish the different

classes. The second step is to test the model, which is done by applying unseen data to

the model and comparing the handmade label with the models’ label. The test step is

critical to check if the model is overfitting, adapting too much to the training data, or

underfitting. The objective is to find the sweet spot between overfitting and underfitting

by fine-tuning the models’ parameters and training with different data. Unfortunately,

SL depends on labeled data, which requires many hours and human resources, and time

to train, which may go from a few hours to a few days [31].

2.2.1.1 Decision Trees

As the name suggests, it can be visualized as an inverted tree where a node is a decision

based on the data features, and a leaf is a classification for the input. Since it is a greedy

algorithm, the tree’s base will have the features that cost the least; in other words, the

element that best splits the data.

2.2.1.2 Support Vector Machines

Support Vector Machines (SVM) finds a Hyperplane in an N -dimensional space, N be-

ing the number of features. SVM selects the two closest points to the possible hyperplane,

which are called support vectors. Since it is possible to find multiple hyperplanes capable

of distinct the data, SVM maximizes the distance between the support vectors and the

hyperplane. This approach reinforces the confidence that future vectors will be better

classified, decreasing the overfitting of the algorithm. After finding the best hyperplane,

a vector is classified by the hyperplane’s side. To deal with outliers, SVM softens the mar-

gins of the hyperplane. It is done by allowing some vectors to go through the hyperplane

and not be considered as the support points; this allowance is tunned by hyperparame-

ters. Even if it misclassifies the vector, it generally creates a better classification line. This

concept is called soft margins and can be observed in Figure 2.2 . Sometimes there may

be no hyperplane able to distinguish the classes. In these cases, SVM applies a kernel

trick consisting of mathematical functions, like a third-degree polynomial, to the features,

making the data linearly separable. The Figure 2.3 represents it.

2.2.1.3 Hidden Markov Models, Conditional random field and Viterbi Algorithm

Hidden Markov Models (HMM) is a powerful statistical tool for modeling generative

sequences that can be characterized by an underlying process generating an observable

sequence. This algorithm is based on the Markov Process, a series of states that depend

11

CHAPTER 2. RELATED WORK

Figure 2.2: SVM using soft Margins

Figure 2.3: Applying a Kernel trick in SVM

only on the previous one. It’s called hidden because the underlying process is not visible

to the outside. [5]

Conditional random field (CRF) is a discriminant classifier that takes into consider-

ation the context of the input. Although it is similar to HMM due to both being used to

deal with sequential data, CRF models the conditional probability distribution. It also

does not rely on independent data. In fact, HMM is a particular case of CRF.

Viterbi Algorithm is not a Supervised Learning model but a dynamical programming

algorithm that allows us to compute the most probable path considering the input and

the model.

12

2.2. LEARNING METHODS

2.2.1.4 K-Nearest Neighbour

The K-Nearest Neighbour (KNN) algorithm assumes that similar things exist nearby. It

aims to locate all of the closest neighbors around a new unknown data point to figure out

what class it belongs to. It is a distance-based approach. K is defined in the algorithm’s

hyperparameters and represents the number of neighbors a new point will consider to

find out his class. So, when a new point is added, it calculates the distance to each point

and selects the closest K points to him. Then, the new point classification will be the

same as most of the points K closer to him. In cases where there is no majority, the class

will be selected as odd. A critical phase is to fine-tune the K value. A smaller K creates an

overfitted model, capturing noise data and failing to perform with test data. If a larger K

value is selected, the model will underfit the data and fail to perform well in the training

data. This can be observerd in figure 2.4

Figure 2.4: KNN classification of the same data with different K

2.2.1.5 Naive Bayes Classifier

Naive Bayes Classifier is based on the Bayes Theorem, where it gives the probability of

A happening knowing that B has already occurred. It also assumes that features are

independent of each other. In other words, the occurrence of one feature does not affect

the others, which is why it is called naive. Another important note is that all features have

an equal effect on the classification. The Bayes algorithm has the following expression

P (Y |X) =
P (X |Y)P (Y)

P (X)
(2.5)

where Y represents the output class and X the features. So, X can be seen as vector

of n features, such as X = (x1,x2,x3, ...,xn). Then it is possible to substitute in the Bayes

Theorem for:

13

CHAPTER 2. RELATED WORK

P (Y |x1, , ...,xn) =
P (x1|Y)P (x2|Y)P (x3|Y)...P (xn|Y)P (Y)

P (x1)P (x2)P (x3)...P (xn)
(2.6)

For all data, the denominator does not change, it remain static. So, it can be seen as a

proportion.

P (Y |x1, ...,xn) ∝ P (Y)
n∏
i=1

P (xi |Y) (2.7)

The class of the input will be the one with higher probability according to the features

Ŷ = argmaxY P (Y)
n∏
i=1

P (xi |Y) (2.8)

2.2.2 Unsupervised Learning

Contrary to Supervised Learning, Unsupervised Learning (UL) does not use annotated

data to train its model. This type of algorithm finds out the patterns in the input data

to cluster it. The typical output is clustering, and the optimal cluster number may not

be the same as the real number of classes of entities we are trying to predict. We can use

different algorithms in UL like Spectral Clustering, DBSCAN, etc. [31]

2.2.2.1 Clustering Algorithms

Density-based spatial clustering of applications with noise (DBSCAN) is a well-known

clustering algorithm used in ML that groups points that are closed to each other through

a distance metric, usually Euclidian distance, and a minimum number of points. This

algorithm needs two inputs:eps, which specifies how close points should be to each other

to be considered a part of a cluster; and minPoints, the minimum number of points to

form a dense region. Points that are in low-density spaces are classified as outliers [42].

This algorithm is suitable to locate clusters having irregular shapes.

K-Means cluster the points by their distance between each other. Its starts with K

centroids (an input parameter), where each point is associated with the closest centroid.

Then it calculates a new position for the centroid, considering the points that have se-

lected it as the closest one. This iteration of defining a new position for the centroid keeps

going until the centroid position stabilizes or we get to the maximum number of itera-

tions defined by the user [19]. Due to the euclidean distance usually used, this clustering

method assumes that clusters are spheroid and all with the same volume, which is not

the case in most situations. The clustering quality depends on the number of centroids

defined by the user.

Spectral Clustering is one of the best unsupervised learning algorithms. It has three

phases. At first, it builds a similarity graph between all points; in this case, similarity will

be the distance between the points. Secondly, it projects the data in a lower-dimensional

space computing the graph laplacian matrix. Then it calculates the Degree matrix, which

is a diagonal matrix with the degree of each point. Then the graph Laplacian matrix

14

2.2. LEARNING METHODS

Figure 2.5: Comparison of Different UL Algorithms in different data sets

is equal to the Degree matrix minus the similarity matrix. The last step is to cluster

the reduced data using a traditional clustering algorithm like K-Means. This algorithm

clusters data that may not be close together, but it is obviously in the same cluster (like

in a ring); it is fast and easy to implement but does not scale well with data size [30].

Figure 2.5 provides a visual comparison between the studied algorithms in different

data sets.

2.2.2.2 Measuring the Quality of the Cluster

An important note in some algorithms is that they may require selecting the number

of clusters. In that case, the user needs to calculate a posteriori the more likely number

of clusters by measuring the clustering quality of each clustering proposal, using well-

known algorithms like Silhouette score or Sum of Square Errors.

Silhouette score is a technique to calculate the quality from the clusters. Its values

range from 1 to -1, where 1 is an optimal clustering and values close to -1 means that

clustering was poorly done. To calculate, we need A, the average distance between the

points in a cluster, and B, the distance between the points at different clusters. With this,

15

CHAPTER 2. RELATED WORK

we just need to:

SilhouetteScore =
B−A

max(A,B)
(2.9)

Sum of Square Errors is the sum of the squared distance between each point and the

cluster mean. Objectively it measures the variation in a cluster.

2.2.3 Semi-supervised Learning

Semi-Supervised Learning is a technique that mixes Supervised Learning with Unsuper-

vised Learning. It uses a small amount of annotated data with a big amount of unlabeled

data to train the model. In this case, the authors [39] wanted to create a list of Location

named entities. Although it would be simple to create a list with the countries and their

capitals, the same do not apply to cities. So, the authors created a model that recognizes

new cities through patterns. To create this patterns a seed must be given to the model, in

this case the seed is a city name. Then the model finds the pattern according to the seeds

and looks for others entities that follow the same pattern.

2.2.4 Deep learning

Deep Learning (DL) has been state-of-the-art for recent years in most tasks from Natural

Language Processing. The artificial neurons compose layers of artificial neural networks

inspired by the brain’s structure. The first layer is the input one, and the last is the output

layer. The layers from the middle are not "visible", and from this fact comes the name

Deep. These layers are composed of nodes that receive input, and based on what has

previously been learned, it computes an output that will be the input of the next layer.

The essential advantage of deep learning is representation learning and the semantic

composition empowered by both vector representation and neural processing. This allows

a machine to be fed with raw data and to automatically discover latent representations

and processes needed for classification or detection [22]. There are three critical facts

for DL thriving in NER: first, it benefits from non-linear transformations that cannot be

done in every classical ML model; second, deep learning is, say, more independent from

the features; and finally, it is easier to make complex systems.

2.2.4.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) is comprised of neurons that self-optimize through

learning like Artificial Neural Networks. The significant difference is that CNN is primar-

ily used to find patterns in data, usually imaged focus data, due to their three-dimensional

structure. The first layer is the convolutional layer, which filters the input data. The in-

put may be a word or a sentence, depending on the application of the Neural Networks

(NN). This filter is applied to all the data to detect unknown patterns used to classify

the input. Convolutional layers are commonly referred to as partially connected layers

since the output is not directly connected to the input but either with the result of the

16

2.2. LEARNING METHODS

filter application. Another Convolutional layer can follow a Convolutional one, creating a

hierarchical pattern detecting structure, where earlier layers detect simple patterns, and

later ones detect the combination of these patterns. The pooling layer filters the input

data applying an aggregation function. This layer reduces the dimensionality of the data

while preventing the overfitting of the model. The most used aggregation function is

the max pool, which selects the most valuable parts of the data while moving to throw

it, but there is also the average pool, which makes an average of the filtered data. The

final layer is the Fully-Connected layers, where each node is connected to all the nodes

in the previous layer. This layer is responsible for classifying the data, using a softmax

activation function, predicting a value between 0 and 1 for each class.

2.2.4.2 Recurrent neural networks

Recurrent neural networks (RNN) are widely used for modeling sequential data. RNN

are known for their memory since it uses information from older inputs in the current

input. RNN interprets inputs as sequential instead of independent data like other NN

models, allowing NLP models to connect words and identify N -grams. Another differ-

ence is that RNN layers share the same weighted parameters within each layer, which are

still tunned in with backpropagation and gradient descent. Since it implements backprop-

agation using gradient-based learning methods, it suffers from the Vanishing gradient

problem. When we train a model, the gradient, which measures the change in all weights

regarding the error, will be so slight that it may stop training.

Long Short-Term Memory (LSTM) is an advanced RNN that minimizes the Vanish-

ing gradient problem using the information from events that happened thousands or

hundreds of times steps earlier.

Gated Recurrent Unit (GRU)) is a variation of RNN that solves the Vanishing gradient

problem and is a big rival to LSTM [16].

2.2.4.3 Deep Transformers

Deep transformers like RNN captures the timely dependencies in sequence, but it adopts

a different mechanism for this purpose. Transformers use self-attention, which gives other

importance to distinct parts of data. Although each word has sequence data, it does not

need to be processed by order. It is possible to paralyze the training phase, making it

much faster than RNN models. The transformer encoder starts with adding the positional

encoder to the word embedding. This prevents the model from losing the sequence of the

words. Then comes the encoder block, composed of:

• Multi-Head Attention layer, which produces the attention vectors of each word. It

is a Multi-Head because each word produces multiple attention vectors that will

produce the final vector through a weighted average. An attention vector contains

the relationship between the word it represents and the words in the input. For each

relation, the value range from 0 to 1, where 1 represents a stronger relationship.

17

CHAPTER 2. RELATED WORK

• Feed Forward is a simple layer applied to every attention vector to transform the

vector to a more comprehensive structure for the next encoder or decoder. Each

attention vector is passed one at a time, but it is possible to paralyze the process

with multiple Feed-Forward Networks layers since each vector is independent.

The transformer decoder starts the same way as the encoder, with an output embed-

ding and a positional encoder. Then, it is composed of three blocks:

• Masked Multi-Head Attention, which makes the attention vectors from the output

embedding. It is called masked because it can only represent relationship between

the word it represents and the previous words.

• Multi-Head Attention, which takes the vectors from the encoder and the Masked

Multi-Head. It produces another attention vector representing the relationship

between both input vectors.

• Feed Forward makes the attention vector more comprehensive for the Linear layer.

In the end, a linear layer and a Softmax algorithm will calculate the probability of

each output class according to the input. The class with a higher probability will be the

label of the input word. The described components can be seen in the figure 2.6.

While the transformers architecture was designed to a sequence-to-sequence task, it

can be adapted to fit in different categories. These changes are easily done my using only

part of the architecture creating three types:

• The Encoder-only which converts a sentence to a numerical representation that can

be used in text classification task such as NER.

• The Decoder-only which given a sentence tries to predict the next word.

• The Encoder-Decoder which is used in translation or summarization tasks convert-

ing one sequence of text to another.

2.2.4.4 Deep Learning Techniques

In addition to the presented network architectures, a few more techniques are being

explored in NER that are presented next.

Deep multi-task is a technique that learns different tasks in just one model. Since it

has multiple tasks, it needs more training data, but it will be more heterogeneous to learn

more generalized features. An additional advantage of this model is learning a feature

that can be easily identified in task A but can also be applied to task B. Considering these

advantages, it is easy to understand that these models can not suffer from overfitting.

Deep Transfer Learning is a technique that mimics the human brain’s ability to use

the knowledge learned from one situation in the others. A real-life example is when

learning a new language, and it is possible to know the meaning of a word just from

18

2.2. LEARNING METHODS

Figure 2.6: Transformer encoder at the left and a Transformer decoder at the right

the similarity between it and the learner’s mother language. In Deep Learning, this is

very useful since some models take more than one day to finish the learning process,

and applying this step to every task would have a considerable cost. So Deep Transfer

learning pre-trains a model that is then retrained with new data for a specific purpose.

This is also very helpful in tasks that do not have a large data set, whereas the model is

pre-trained with generic data and finned with specific data.

Deep Active Learning is a mixture of DL with Active Learning. Active Learning is

a method that assumes that each sample of data can be more or less helpful for training

the algorithm. In other words, it selects the data that is more beneficial for training the

model, reducing the cost of obtaining the labeled data and training the model. On the

other hand, DL is a very robust ML model that is highly dependent on data to be prepared.

The marriage of these two fields is expected to achieve superior results while reducing

19

CHAPTER 2. RELATED WORK

the dependence on labeled data [38].

Deep Reinforcement Learning is another union of two fields in ML, DL with Rein-

forcement Learning. It is inspired by the human behavior of trial and error, creating a

new way for the models to learn the data. Reinforcement Learning can be seen as a player

in a game where each good decision is rewarded, and a bad one is penalized. DL helps

Reinforcement Learning to solve new problems that at first were unsolvable due to the

high-dimensional state and action spaces [2].

Neural Attention is the ability to give a different weight to different parts of the

data. This is used in Transformers but can also be applied when analyzing a character or

word-level feature.

2.2.4.5 Activation Functions

An Activation function is responsible for deciding whether or not a neuron is activated. It

takes the input from the previous layer and decides the output for the next until it reaches

the end of the neural network. Having an Activation function is more important than it

may look. The neural network would consist of linear transformations that would always

have the same behavior if it did not exist. The image 2.7 have the graphical representation

of Sigmoid, Tanh and ReLu functions.

The Rectified Linear Activation Function is a nonlinear function that acts like a

linear one, allowing for complex data relationships to be learned. If the input is positive,

it returns the same value as the input. If the input is negative, it returns zero. Due to its

similarities with linear functions, it preserves many properties that make linear models

generalize well [33].

The Sigmoid function has an S shape that outputs between zero and one for any

given number. The bigger the input, the closer the result is to one; the lower is, the input

has closer to zero its outputs [34].

The Tanh function is also an S shape but ranges from -1 to 1. It is different from the

Sigmoid function as it will map the negative inputs strongly negative and will map the

zero inputs near zero [37].

The Softmax activation function converts a vector of K real numbers into a probabil-

ity distribution consisting of K probabilities proportional to the exponentials of the input

numbers. Due to this, it is used as a final layer in tasks with more than two classes. The

outputs will vary between 0 and 1, and the sum of all is equal to 1. Softmax follows the

following equation for i = 1...K and z = (z1, ..., zk) ∈RK [6].

σ (z)i = − ezi∑K
j=1 e

zj
(2.10)

20

2.2. LEARNING METHODS

Figure 2.7: Graphical representation of Sigmoid, Tanh and Relu activation functions

2.2.4.6 Loss Functions

The loss function is responsible for qualifying how a model learns his task. It uses the

input class and model output as input, ranging from close to zero to infinity, where close

to zero means it learned well, while the higher the number worst the model performance.

The neural network will update itself during training to minimize the loss function. In the

case of NER, which is a single label classification task, the most common loss functions

are:

Categorical Crossentropy loss function calculates the loss using the following equa-

tion, where Yi is the target value and Ŷi is the predicted value.

Loss = −
∑

Yi · log(Ŷi) (2.11)

This loss is an excellent measure of distinguishable two discrete probability distribu-

tions from each other. In this context, Yi is the probability that event i occurs and the

sum of all Yi is 1, meaning that precisely one event may occur. The minus sign ensures

that the loss gets smaller when the distributions get closer. It is highly recommended for

this function to be used after a Softmax activation function [13].

Focal loss is an extension of the Categorical Crossentropy. A weighting factor is

added to the function that allows the focal loss function to focus on actual mistakes.

The Categorical Crossentropy gives a much higher loss value than the Focal when the

probability of ground truth class gets lower.

Loss = −
∑

(1− Ŷi)γ ·Yi · log(Ŷi) (2.12)

Once again Yi is the target value and Ŷi is the predicted value. the γ is a parameter

that adjust the rate that the examples are down-weighted [23].

2.2.5 Conclusion

Summing up, all the algorithms presented are not language or entity-dependent. Besides

that, Deep Learning algorithms are corpus dependent since they only provide good scores

when trained by millions of documents. Even though it is possible to bypass this problem

21

CHAPTER 2. RELATED WORK

with learning transfer, it still needs a cluster to train the model for more than one day.

When choosing a suitable model, this back-and-forth between document size and resource

capability is the only consideration.

2.3 Evaluation

Evaluation is the last part of the NER process. It is helpful for the researcher to get

an overview of the model’s performance and compare it with the other models already

developed. To determine if an entity is incorrect, the output is compared with the solution,

which must be labeled by hand. But before going deeper into the different evaluation

models, it is essential to understand the 5 mistakes a model can make.

1. The model identifies an entity where there is none

2. An entity was missed by the model

3. An entity was poorly classified by the model

4. An entity was well classified but got its boundaries wrong, such as identifying York
instead of New York

5. An entity was poorly classified and got its boundaries wrong

The most used metrics for evaluating the performance in classification context, are the

Precision (Eq.2.13), the Recall (Eq. 2.14) and F-Score (eq.2.15).

P recision =
T rueP ositives

T rueP ositives+FalseP ositives
(2.13)

Recall =
T rueP ositives

T rueP ositives+FalseNegatives
(2.14)

F − Score = 2 ∗ P recision ∗Recall
P recision+Recall

(2.15)

2.3.1 MUC evaluations

Message Understanding Conference (MUC) evaluation, developed for MUC events, split

the classification of the type and text in two. So if a model gets the right type without

getting the correct text, it receives a point and vice versa. This is a softer evaluation

metric since it will give better performance even when a model makes a mistake. In the

following sentence,"I Love New York", if the model classified New York as an entity and a

location, it would get 2 points. If it ranked New York as a person, it would get 1 point for

the text, and if instead of identifying New York, it marks just York as a location, it would

get just 1 point for type. To calculate the Precision of the model, it divides the number

of points for the number of entities * 2. For the Recall, we divide the number of points

22

2.4. STATE OF ART

for the number of correct entities * 2. The measure used to compare the systems is the

F-Score, a harmonic mean of Precision and Recall.

2.3.2 Exact-match evaluation

Exact-match evaluation is a simple protocol that classifies as correct if an entity has the

exact type and text. All the other cases are classified as mistakes. The models using these

systems compare to each other using the micro-averaged F-measure. It needs a micro-

averaged Precision and a micro-average Recall. The micro-averaged Precision divides the

sum of true positives in each class and divides it by the sum of positives in each class. The

micro-average Recall divides the sum of true positives in each class and divides by the

sum of the number of entities by class. The equations 2.16 and 2.17 are the micro-average

Precision and micro average Recall

micro − averageP recision =
T P0 + ...+ T Pn

T P0 + ...+ T Pn +FP0 + ...+FPn
(2.16)

micro − averageRecall =
T P0 + ...+ T Pn

T P0 + ...+ T Pn +FN0 + ...+FNn
(2.17)

where n in the number of classes.

Another important metric is the macro, which can be done to Precision, Recall and

F-Score. The macro works as a arithmetic average, which sums all the values and divides

by the number of classes.

2.3.3 Automatic content extraction evaluation

Automatic content extraction aims to automatically infer from human language data the

entities being mentioned, the relations among these entities that are directly expressed,

and the events in which these entities participate [11]. Even if it is a more complex

problem than NER, its evaluation is different from the ones we have mentioned before.

Automatic content extraction evaluation gives different weights to each type of entity,

meaning that having one person entity correctly identified is not the same as having a

location one. The system starts with a 100% classification that is then penalized for each

mistake done by himself.

2.4 State of Art

After an extensive revision of the most used algorithms and techniques used in NER,

this Section will discuss how they were combined by different authors. It is essential

to consider that while some models are focusing on solving NER in English with just

three classes, others may have a large number of classes. Language is also a vital aspect

to consider since most of the older implementations were only focused on English due

to the labeled data. Nowadays, more languages are taken in regard and models made

23

CHAPTER 2. RELATED WORK

for multi-languages. The last aspect is the data domain and if the model is made for

multi-domain or not.

D. Bikel et al. made a model based on HMM for English and Spanish. They considered

words a bi-dimensional tuple, where the first position was the word and the second a

word feature. These features were ordered, and when a word was meaningfully reflected

in more than one features, the one with a higher rank is selected. The features varied from

containing a certain number of digits, having a dot or a slash, starting with a capital letter,

or being the first word in a sentence. In total, there were 9 features. Since it implemented

HMM model, it analyzed words as bigrams, they came up with a solution to deal with

unknown bigrams that were to train a separate model to deal with it. The model was

trained in English with MUC-6 data set and in Spanish with articles from the agency AFP.

It reported 93% for English and 90% for Spanish with the F-Measure metric using an

exact match evaluation technique. [4].

A. McCallum and Wei Li implemented a CRF model for English and German that

makes an efficient feature induction. This model starts with no feature, and after a few

rounds, it selects the features that most increase the log-likelihood of the correct path

and trains the weight for the new features. This model that at the end contained 1,000

features reported an 84.04% F-Measure in English and 68.71% in German [27].

Asahara, Masayuki, and Matsumoto made an SVM model for Japanese where besides

the usual character features extracted, they developed a unique solution using POS and

Chunking. They applied a POS tagger that retrieved with n-best answers for each word

(in Japanese, a word is a character), then the n-best results with some other more usual

features are annotated for each word fed into the SVM model. After some tests, they

conclude that POS and character level features are crucial for NER in Japanese, where it

got an 87.21% in F-Measure, and in other languages that have word unit problem [3].

D. Nadeau et al. proposed an unsupervised algorithm that combines a Named Entity

Extraction with a Named Entity disambiguation model. The Named Entity Extraction

model creates gazetteers (named-entity lists) from the web. It starts with a query of 4

named Locations (this can be applied to any other entity) called seeds. Each retrieved

HTML page uses a Supervised Web Wrapper algorithm to extract similar cases as in the

input Query. They repeat this process with new seeds from the gazetteer that are not

noisy if possible. In the Named Entity disambiguation model they used, three problems

were identified:

• Entity-Noun Ambiguity. It occurs when an entity is a homograph and their solution,

which follows the heuristic proposed by Mikheev [28], assumes a word is a Named

Entity unless in three cases: It is at the start of a sentence; appears at a document

without the initial letter as a capital; and if it is in a sentence where all words are in

capital form.

• Entity Boundary Detection. Here they use the principle of the longest match, merg-

ing all consecutive entities of the same type and entities of other types with a capital

24

2.4. STATE OF ART

letter.

• Entity-Entity Ambiguity. It happens when an entity has more than one possible

classification. To solve that, they made a simple alias resolution algorithm that

when an entity is unclear, it classifies as the common entity to both words. For

example, for "Atlantic ocean"where Atlantic can be a Location or an Organization, it

results in the Location type.

In the end, Nadeau evaluated his model with the MUC-7 data set, performing a 73% in

F-Measure. It was only tested in English, but he considers this algorithm can be applied

to more languages and more than 3 entity types. [32].

J. Heng and Grishman suggested a Supervised NE algorithm improved by combining

bootstrapping with self-learning. Bootstrapping trains a segment of the data tests. The

new model rejects the data sets that did not improve, and finally restarts the process

with the new improved model. The self-training model creates an order by which the

documents are learned. It prioritizes the documents containing the entities with higher

confidence merged with the previous training data to start a new iteration on labeling.

Then they studied the impact of each document on the performance of the model. They

come to the fact that having a large data set is not enough by itself. There must be a

systematic process of selecting the richer documents on the quality of entities. Their

model reported 89.1% in F-Measure for English and 90% in Chinese [17].

Twitter is the only Big Social Network with an open API for researchers to use their

data in various studies. In NLP, tweets are widely explored since their unique character-

istics. A Tweet is a small message of 140 characters containing tags to other users, images,

links, or emojis. These characteristics make them quite different from the standard cor-
pus studied. The small length of the text with the informal writing and a higher chance

of an orthographic error make the use of classical POS taggers unreliable and increase

the unknown word curse. Furthermore, a considerable context can not be considered,

like location, friendship, age, and user genre, making it a significant challenge to mix

contextual and tweet information.

Xiaohua Liu et al. proposed a KNN classifier with a CRF model for extracting Named

Entity from Tweets that are retrained every 600 instances. The KNN considers global

information in Tweets by analyzing each word as a window of 5. The middle one is the

word in consideration, and the other 4 are the two previous and two followings. The

CRF takes advantage of the fine-grained information in each word using three types

of features: orthographic, lexical, and gazetteers related. Summing it up, the model

obtained an F-Measure of 80.2% in a data set of 12,245 English Tweets. They also showed

other results concerning the use of KNN. It adds a 5% performance increase in the model.

When comparing it with other models, the trade-off in efficiency retraining is not enough

for the performance buff [24].

Chanchal Suman et al. decided to take advantage of the images and URLs in tweets

and use them as features. The model was composed of word, character, hand-crafted,

25

CHAPTER 2. RELATED WORK

URL, and image features. The URL features were considered since users tend to use

URLs as a source, so analyzing can help disambiguate the entities. Similarly, like URL,

images can have the same impact. Images may contain person, location, graphics, brands,

etc.. that give contextual information for the model to consider. In the end, the model

proposed was composed of a CNN for character features; BI-LSTM for Word features; the

hand-crafted rules; a VGG model was used to extract the images features (VGG is CNN

model for image recognition); and for the URL they summarized the information from

the web page and then pulled some entities. In the end, they reported an F-1 of 72%.

Unfortunately, the impact of the URL and image features was not very beneficial, but it

comes from the fact of low number of tweets having images or URL [44].

BERT is a DL model based on transformers (2.2.4) developed by Google and used in

the most famous web browser. Its best feature is the bidirectional model being applied

to all layers. It was pre-trained with two unsupervised tasks: a Masked LM that, as the

name suggests, mask part of the input tokens and tries to predict the masked input; a Next

Sentence Prediction is a task that predicts the next sentence. This method was chosen

since the relationship between tasks is beneficial in different NLP tasks as Question

Answering. From a NER Point of view, it is easy to understand that the pre-trained model

will benefit NER. To solve Next Sentence Prediction, the model needs to identify the

right entities presented in both sentences. After this step, it is possible to combine the

Bert output with other extracted features as an input to a final layer or another kind of

model as CRF or even to Fine Tune BERT for NER tasks. Both possibilities were taken in

consideration and BERT Presented a F-Measure of 92.8% [10].

Bert was the kickstart for a new revolution in neural models. In the following years,

Bert inspired multiple researchers to create new versions of it.

DistilBERT is a distilled version of Bert with 97% of Bert’s performance with only half

of the parameters required. For this achievement, it introduces a triple loss combining

language modeling, distillation and cosine-distance losses while being 60% faster [40].

Robustly optimized BERT approach (RoBERTa) is a retraining of BERT with improved

training methodology, 1000% more data and compute power. It removed the Next Sen-

tence Prediction task from BERT’s pre-training, and instead of the ordinary Mask LM,

it has dynamic masking where the masked tokens change during the training epochs.

RoBERTa uses five datasets in its pre-training, making a total of 160 GB [25].

The XLM is a Cross-lingual Language Model pre-trained in three tasks: a next token

prediction, a masked language modeling, and a Translation Language Modeling extended

to multiple languages. The two main differences from Bert are that each training sample

consists of the same text in two different languages, and it has the language ID and

the positional embedding of each token in its metadata, which helps in learning the

relationship between different languages [20].

With the developments of XLM and RoBERTa, a combination of both was made, cre-

ating XLM-RoBERTa. It has 2.5 terabytes of texts in his pre-training with Masking LM

task. Once it did not contain parallel text data, the Translation Language Modeling was

26

2.4. STATE OF ART

dropped from the training data. This approach performed better than XLM and multi-

language Bert, especially in low resources languages [8].

A Lite BERT (ALBERT) is another version of Bert with three differences. First, it has

the same number of parameters for all layers, reducing the size of the model. Second,

It reduces the embeddings size instead of keeping it the same as the vectors that are

passed between the encoder layers. Finally, ALBERT uses Sentence Order Prediction,

which means whether two sentences appear consecutively or not, instead of Next Sentence

Prediction [21].

The DeBERTa model has two architectural changes. First, each token is represented

with two vectors instead of one. The first vector represents the content while the second

one the relative position. With this change, the self-attention layers can better model the

dependency of nearby token pairs. On the other hand, the absolute position of a word is

also important. For this reason, an absolute position embedding is added just before the

softmax layer of the token decoding head [15].

The authors of ELECTRA understood that MLM had a limitation that at each step only

the masked token are updated. Then, they developed a two-model approach. The first

model works as a standard MLM and Predicts Masked tokens. The second model takes

as input the output of the first model and predicts which of the tokens were originally

masked. This change makes the training 30 times more efficient. To use ELECTRA in

other NLP tasks the second model is fine-tuned while the first remains the same [7].

Jie Yang et al. made an article testing if it is worth it to have representations of a

word and/or character sequences. Each sequence was tested in the architecture of CNN

or LSTM. Their work concludes that character-level features can improve the model’s

performance, especially on disambiguation words. Yet, in character level, the CNN model,

even with a similar arrangement, has an advantage over LSTM. Meanwhile, in Word

Level, the LSTM had better performance overall. Finally, they concluded with testing the

effectiveness of a CRF model to decode the LSTM layer, and as in other authors’ reports,

it gives a better performance in NER [46].

J. Giorgi et al. researched Biomedical Named Entity Recognition (BNER). The differ-

ence between BNER and NER is the type of entities that each task aims to extract. BNER

aims for genes, diseases, and species. The model developed uses character and word

embeddings. The neural network is composed of BI-LSTM nodes that feed a prediction

label, responsible for calculating the probability of each class to each word. Finally, a CRF

model outputs the most likely sequence of labels. The model was the first pre-trained

with a Silver standard corpora, which are documents that were only classified using mul-

tiple BNER systems instead of human resources, so they have lower quality but a higher

number of labeled entities. Then it is tuned with Gold standard corpora that are handed

labeled data. They reported that transferring learning is better in small sets making an

11% reduction of errors. [12].

Yanyao Shen et al. made a Deep Active Learning model (2.2.4) with a CNN Word

encoder and character encoder combined with an LSTM tag decoder. They experimented

27

CHAPTER 2. RELATED WORK

with three different types of active learning:

1. Least Confidence: sort examples by ascending order to the probability assigned by

the model

2. Maximum Normalized Log-Probability: This method normalizes the Least Confi-

dence. This is important since it had the tendency to select longer sentences

3. Bayesian Active Learning by Disagreement: samples according to the measure of

uncertainty

When comparing the performance of the three different techniques with a normal base-

line, the models achieved a 99% performance of the best NN models using only 24.9% of

the training data in English. They also studied the impact of different data genres in the

data set. So they created three data sets, one containing all genres, one mostly made of the

newswire genre, and the last one is the opposite of the newswire one. The model with all

kinds of data had the best performance, confirming that a diverse data set is mandatory

for higher performance. Still, the most exciting conclusion is that the learning model, the

Maximum Normalized Log-Probability, in the newswire case select a lower number of

newswire sentences than the other two models. While the no newswire model was the

one that picked more newswire sentences of the three without any knowledge of the type

of data. In conclusion, this model did not just choose the more uncommon genre but also

understood the different genres in the data set. [43].

Alan Akbik et al. composed a model to mitigate the problem of unknown words. Typ-

ically, entities are not anonymous to a reader with the context in mind, so an unfamiliar

word to appear was already explained in the document or is well known in the domain.

To mitigate this problem, the simple solution proposed is to pool the word embedding

with a memory word embedding. In other words, the embedding will be made of a mix

between old embeddings and a new one calculated at the current time stamp. In con-

clusion, this model presented F-1 of 93.18% in CONLL-03 EN data set and proved to be

relevant in other languages such as German and Dutch with 88.27% and 90.44% in the

CONLL-03 DE CONLL-03 NL, respectively [1].

Zhilin Yang et al. presented a new model for sequence tagging based on gated recur-

rent units and conditional random fields. There were two versions of this model. The

first was a multi-task model for NER, POs, and Chunk in English, with a shared GRU

component that takes as input a character GRU model and word embeddings. Then each

task had its own CRF layer that would produce the desired output. The second was a

multi-lingual NER model for English, Spanish and Dutch. The model had a shared char-

acter embedding that would feed each language’s specific GRU and CRF model combined

with an independent language word embedding model. This research obtained state-of-

art results in a different task, NER, and Chunk, and in other languages reporting F-1

measures of 91,2% in NER English, 85.19% in NER Dutch, and 85.77% in NER Spanish

[47].

28

2.4. STATE OF ART

Besides this model previously presented, big tech companies have various private

approaches such as Amazon Comprehend or Comprehend Medical for medical proposes,

Watson Natural Language Understanding from IBM, Google Cloud Natural Language

API, etc. Unfortunately, there is no information on how these models work and how they

were trained. Thankfully there are some open license NLP tools, like NLTK, Spacy, or

DBPedia Spotlight. While some have an open API and straightforward implementation,

others still hide their secrets. No matter what, these tools can help to develop a new

model.

29

3

Implemented solution

This chapter discuss the three models that were developed. The three approaches distin-

guish themselves in their design, but keep a common characteristic: A word is always

classified taking into account the sentence context it is in. Also, a word may provide more

then one classification in the same sentence.

The first one, which I called Pipeline for simplicity, is a classic approach based on a set

of features designed to solve a classification problem, where objects has to be character-

ized according to their features. Using features of different kinds, some are obtained with

the aid of the class knowledge, others purely based on statistics, or even obtained from

NN. However, all are language-independent and do not consider the dataset’s classes.

Then a traditional SL algorithm classifies each word.

The second and third methodologies are transformer-based. While the second one con-

sists of full implementation of a neural network that is only trained with the dataset, the

third one finetunes the dataset in a pretrained BERT version. Both are encoder-only types,

transforming the word through a tokenizer to be classified by the Transformers neural

network layers. The full implementation of all models can be found in the following link

https://drive.google.com/drive/folders/1_QiBI4f7LEjYx2NXD2vmhNnaIoDe-qV0?usp=sharing

3.1 Pipeline

The Pipeline is made of statistics and neural network metrics has referred above. The

process starts by applying the Extraction of Multi-grams algorithm to all the datasets.

This algorithm provides three crucial features:

1. The N -grams can be extracted from the dataset, which is the primary purpose of

the algorithm.

2. The neighbor’s counter for each word is the number of different neighbors each

word has, being a neighbor, all the words before and after it.

3. The frequency of each word in all the dataset and in each document.

30

https://drive.google.com/drive/folders/1_QiBI4f7LEjYx2NXD2vmhNnaIoDe-qV0?usp=sharing

3.1. PIPELINE

Figure 3.1: Graph representing how the slope is done to find the stop words

Then the Pipeline creates the stop word list by sorting the words by the neighbor’s

counter, creating an elbow function. This is possible since most words have a similar and

low number of neighbors, except the stop words, which has a clearly higher number of

neighbors suggesting a natural frontier. Looking through the function and analyzing the

tangent periodically will be almost constant until reaching the elbow, where the tangent

increases very fast. This sweat spot, with the tangent higher than 11, distinguishes the

common words from the stop words. This can be visualized in Figure 3.1 where all the

words in this vocabulary are ordered by their number of neighbors.

At this point, the Pipeline can create a few more features that are, say, purely statistical

such as:

• If all the letters in the word are upper case.

• If the first letter of the word is in upper case.

• If there is no version of that word with all letters in lower case.

• The length of the word.

While these features are straightforward, they help to distinguish the NE from the

Outsiders. Most of them, independent of the dataset, start with an upper letter or are

longer. It is vital to check if there is a word version that does not begin with a capital

letter, as it may indicate that the occurrence was just the start of a sentence.

The third step is to compute a bag of words for each word. It uses a window of size

nine, counting the four words before and after the word. This computation is pivotal

once it is used in two features. The first feature is the number of words that appear in

31

CHAPTER 3. IMPLEMENTED SOLUTION

all windows of a given word. Looking at the following sentence Socrates was a Greek
philosopher and professor of Plato and Xenophon, Table 3.1 represents how this process is

done to each word.

Table 3.1: Bag of Words .

Word Counter Bag of Words

Socrates 4 was a Greek philosopher
was 5 Socrates a Greek philosopher and

a 6 Socrates was Greek philosopher and professor
Greek 7 Socrates was a philosopher and professor of

philosopher 8 Socrates was a Greek and professor of Plato
and 9 was a Greek philosopher professor of Plato and Xenophon

professor 8 a Greek philosopher and of Plato and Xenophon
of 7 Greek philosopher and professor Plato and Xenophon

Plato 6 philosopher and professor of and Xenophon
Xenophon 4 professor of Plato and

The second feature from the Bag of Words is made to distinguish the different NE in

the dataset. Thus, Considering the Person class, the Pipeline starts by creating a list with

words that appear near NE classified as Person but do not appear near other types of NE .

In this case, the list would be something like this: son, biographer, husband, and others. To

create this list, the Pipeline takes into consideration the following metrics:

M1 is the number of times the word is in the neighborhood of any word;

M2 is the number of times the word is in the neighborhood of an Outsider;

M3 is the number of times the word is in the neighborhood of a specific type of NE . This

metric is calculated for each class of the datasets.

With these metrics, the Pipeline computes the following expression for each word W :

P ercentageperClass(W) =
M3

M1−M2
(3.1)

The M1-M2 represents the number of times a word appears in the neighborhood of

any NE . In contrast, the M3 represents the number of times a word appears in the

neighborhood of specific class of NE . Before the calculation of the given formula, the

Pipeline selects the top 1000 words with a higher M1. This acts like a filter, preventing

more sporadic words from being on the list. The final step is to select all the words with

a higher PercentageperClass(W) than 60%. The remaing will be cut off the list as they

are too generic. In the end, the Pipeline has a list for each class of the dataset. Each list

correspond to the most common word’s neighbors in a class, as seen in Table 3.2.

Now that the Pipeline has the lists, it will use them to create a feature. For each word,

it will compare the word’s bag of words to each list. If a word in the list is also in the

32

3.1. PIPELINE

Table 3.2: List of words that are the most common word’s neighbors per class

Location Person Organization

mi Pierre Network
rivers Friedrich Committee

km von Association
borders poet Commission

coast Jean Corporation
northwest friend Conference
northeast theory Group
southwest actress Office

flows Chris Society
district marriage Federal

bag of words, then it is a True match. Else it is a False match. Let’s consider the word

Marie and his bag of words is a, the, of, and, married, son and Peter. Matching this bag of

words with the list in the Table 3.2, it would turn out as [0,1,0]. The 0 for the unmatch

with the Location list, 1 for the match with the Person List and 0 for the unmatch with

the Organization list .

In the fourth step, the Pipeline calculates the stems of each entity. Since it does not use

any language base, all the stems are calculated throw statistics. For this achievement, it

breaks each word making multiple combinations, from its full length to multiple subsets

with at least five letters, as shown in Table 3.3.

Table 3.3: Creation of stems

Length 8 7 6 5

America America Americ ; merica Ameri; meric; erica
Village Village Villag ; illage Villa; illag ; llage

Waterloo Waterloo Waterlo;aterloo Waterl;aterlo; terloo Water;aterl;terlo; erloo

The Pipeline counts how many times each subset appears for each word. With this

information, each entity is assigned to the subset that has a higher counter considering all

words. Looking at the word Waterloo, for example, it is represented with the stem Water
as shown by the Table 3.4.

Table 3.4: Occurrences of Waterloo’s Subsets

Subset Waterloo Waterlo aterloo Waterl aterlo terloo Water aterl terlo erloo

Counter 2 2 2 2 2 2 29 10 7 6

Some words that are also represented by the stem Water are Watergate, Waterway,

Waterlooville, Waterberg, and Waterman.

Then the Pipeline applies a similar idea as the bag of words to create new features.

33

CHAPTER 3. IMPLEMENTED SOLUTION

For each class, the Pipeline creates a list with the most common stems per Class. To

accomplish this, it applies the same function as (3.1) but in this case:

M1 is the number of times a stem represent a word;

M2 is the number of times a stem is representing an Outsider;

M3 is the number of times a stem represents a specific class. The Pipeline calculate this

metric for each class.

In order to create a more balanced list, it only considers the 100 most used stems of

each class and for a stem to be selected, it needs to have more than 60%, according to the

formula. In the end if the stem of a word is part of the list then it is a True match else is a

False one.

The last features to be created are based on Word2Vec. The Pipeline can create a

unique model to any language according to the dataset. Then, it realizes an analogous

procedure, like the stems or the bag of words. In this case, it compares the most similar

words of an entity to the classified words. By classified words I mean all words that

whose class(Named Entity) is known by supervision. Considering the previous case of

an English dataset with Location, Person and Organization classes, analyzing the entity

Portugal, which has Spain, Lisbon, France has most similar words, it would be represented

as [0,3,0,0], that is : 0 means that Portugal has no similar classified word as Outsiders; 3

means that there is 3 classified words similar to Portugal in class Location;0 means that

Portugal has no similar classified word as Person;0 means that Portugal has no similar

classified word as Organization.

To sum it all up, the Pipeline uses six plus three times the number of Classes. So

in a dataset where the classes are Location, Person, and Organization, it would have 15

features:

1. If all letters are upper case

2. If it starts with an upper case letter

3. if there is not a version of the word in lower case

4. the word’s number of letters

5. the size of its bag of words

6. if the stem is part of the Location stems list

7. if the stem is part of the Person stems list

8. if the stem is part of the Organization stems list

9. if there is a word in its neighborhood that is part of the Location’s neighborhood list

34

3.2. TRANSFORMERS

10. if there is a word in its neighborhood that is part of a Person’s neighborhood list

11. if there is a word in its neighborhood that is part of the Organization’s neighborhood

list

12. if a similar word is an Outsider

13. if a similar word is a Location

14. if a similar word is a Person

15. if a similar word is an Organization

The last step is to train the training data according to these features. Multiple algo-

rithms were tested being themselves SVM, Naive Bayes, Rigdge Classifier and MLPClassi-

fier. The algorithm chosen was the MLPClassifier as it was the one that presented better

results in all the tests made.

3.2 Transformers

The second approach was made through a transformer-based model with an Encoder-only

architecture. In Subsection 2.2.4.3, there is a high-level explanation of a Transformers

model. In this Section, there will be an extensive explanation of the transformers encoder.

The transformer encoder starts with transforming each word into a token and position

embedding, which are then mixed to create a single one. The token embedding maps

each word to an integer. In this case, all the words are converted to lower case to reduce

the vocabulary dimension and only take the 30 thousand most common words. The

others are considered unknown. The idea behind the positional embedding is if there is

a pattern correlated to the position of an entity, this layer can learn it. It is similar to the

token embedding but uses the position index instead of the token ID as input.

Then comes the essential part of the transformers, the self-attention layers.

The attention comes from considering the whole sentence to produce the embedding.

It is possible since it uses weighted vectors from different word relations to compute the

final embedding. Furthermore, the self comes from the weights being calculated to all

states in the same set.

A self-attention layer is implemented in 4 steps:

1. Project each token embedding in three vectors: query, key, and value.

2. Compute the dot product of the query and key to create the attention scores.

3. Normalize the variance of the attention scores, which is done to mitigate the ambi-

guity problem, and normalize it so that each column values sum to 1, creating the

attention weights.

35

CHAPTER 3. IMPLEMENTED SOLUTION

4. Multiply the value by the attention weights in order to update the token embeddings

Then multiple attention layers are stacked together, each with its query, key, and value

projections to create Multi-head attention. It is done to mimic the filters in CNN, where

each head focuses on one aspect of similarity between the words. With multiple heads,

the model can consider multiple similarities recognizing word relations. In the end, the

token embedding is concatenated to form a final embedding. The last part of the block is

the Normalization layers that normalize each input in the batch to have zero mean and

unity variance.

Finally, two more layers with droupouts are added to the transformer block. An initial

feedforward layer with a ReLU activation (2.2.4.5) and a second feedforward layer with a

Softmax (2.2.4.5) will give the final classification, as seen in image 3.3.

This model uses crossentropy as the loss function. As this model has a class for the

padded tokens, the loss function does not consider it when calculating the loss.

3.3 BERT Fine tuning

The last approach is also based on transformers, but it fine-tunes a pre-trained BERT

Model [46] with the training data. The BERT base uncased version would be used if the

data were in English. This version is an Encoder-only that was pre-trained on raw text for

masked language modeling and for next sentence prediction tasks that help the model

to learn an inner representation of the English language. BERT was trained on 4 clouds

TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of

256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the

remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, β1=0.9, and

β2=0.999, a weight decay of 0.01, a learning rate warmup for 10,000 steps, and linear

decay of the learning rate after. The data came from the BooksCorpus [48] with 800M

words and English Wikipedia with 2,500M words

The BERT multilingual base model is used if the data is in any other language. This

version was pre-trained on 104 languages with the largest Wikipedia. Not all the lan-

guages would have the same amount of data, as it is easier to find data in English than

in Galician. To make a more balanced data set, an exponential smooth was done with

a factor of S, S = 0.7. It turned high-resource languages to be under-sampled and low-

resource languages to be over-sampled. For tokenization, the model uses a 110k shared

WordPiece vocabulary [10].

In both models, tokenization is done in the same way in three steps:

Text normalization lowercase the input and removes the accents.

Punctuation Splitting breaks apart the punctuation from the rest of the sentence through

white spaces on both sides.

36

3.3. BERT FINE TUNING

Figure 3.2: Graphical representation of the transformers block

37

CHAPTER 3. IMPLEMENTED SOLUTION

Figure 3.3: Graphical representation of the transformers neural network

WordPiece tokenization apply whitespace tokenization to the input and apply Word-

Piece tokenization to each token separately.

Since both models are well trained and give essential knowledge on words’ relation-

ship, they can be used as a foundation for other models. With finetunnig is possible to

define a final layer that classifies the input according to the data. It is also known as

learning transferring.

Like any other model, it is biased and will affect any fine-tuned version.

38

4

Results

This chapter aims to analyze and discuss the results using the different solutions pre-

sented in chapter 3. It starts showing the datasets that are going to test the multiple

methods. Then a Section presenting the results for each data. This chapter ends with the

discussing of the results.

4.1 Datasets

Since this thesis aimed to evaluate how the different technologies react with distinct

datasets, seven datasets were chosen according to the three dimensions: size, language

and type of entities to be extracted. Some datasets are classified with BIO tags. However,

this study discards BIO tags as it was not in the scope of this research. So an entity

classified as B-CLASS would be considered as CLASS. Words that do not belong to any

type of NE are considered Outsiders("O").

This research studied 12 types of NE , but not all datasets contain all classes. This

explains why some classes may be contained in others. The following list presents a

definition for all classes.

Person represents a person’s name.

Local represents the name of a city, town, river, ocean, mountain and every other type of

geographical reference.

Organization represents an organization, public or private.

MISC represents Miscellaneous events, products, and nationalities.

Value represents any kind of numerical value.

Date Represent dates, as days, months ,or years.

Title represents the title of an oeuvre, such as a book or a movie.

Thing represents objects.

39

CHAPTER 4. RESULTS

Event represents events as conferences or festivals.

Abstraction represents something that can not be physically represented.

Other represents any other NE that is not represented by Person, Local, Organization,

Value, Date, Title, Thing, Event, or Abstraction.

Species represents a specie of a living organism.

Medical represents a disease.

This research studies seven datasets, each with different attributes from the other,

creating an opportunity for deep research. The following list presents the datasets:

English dataset from wikipedia with four types of NE as: Location, Person, Organization

and MISC [36].

Spanish dataset from WikiNEuRal exploits the texts of Wikipedia and introduces a new

methodology based on the effective combination of knowledge-based approaches

and neural models, together with a novel domain adaptation technique, to produce

high-quality training corpora for NER [45]. This dataset has four types of NE :

Location, Person, Organization and MISC .

Portuguese dataset with nine classes: Outsiders, Person, Organization, Location, Value,

Date, Title, Thing, Event, and Abstraction from multiple genres with origin in every

dialect of Portuguese. [41].

Swedish dataset was bootstrapped from Swedish gazetteers and manually corrected/reviewed

by two independent native-speaking Swedish annotators. It contains four types of

NE as Person, Location, Organization, and MISC.

Twitter dataset written in English made of tweets that was annotated by a combination

of NLP experts and crowd workers. The tweets are sampled across different regions,

temporal periods, and types of Twitter users. It contains three types of NE : Person,

Location, and Organization [9].

Species dataset written in English with only one type of NE that is Species.

Medical dataset written in Spanish from oncological clinical case reports, manually

annotated and mapped by clinical experts to a controlled terminology. The dataset

only has one type of NE , Medical [29].

Table 4.1 has a statistical representation of each dataset, reporting the total number

of tokens, the size of vocabulary, the number of phrases, the number of classes, the

median number of tokens per phrase, and the median number of NE per phrase. Table

4.2 describes the number of NE per class in each dataset. Table 4.3 presents the number

40

4.1. DATASETS

Table 4.1: Dataset Status

Dataset Tokens Distinct tokens Phrases Classes Tokens/phrase NE/phrase

English 2.2M 92335 87138 5 24.74 3.47
Spanish 2.4M 99597 95478 5 24.46 3.12

Portuguese 160K 21747 7524 10 21.32 2.42
Swedish 155K 26140 9036 5 17.19 0.90
Twitter 120K 26951 7339 4 16.47 2.01
Species 211K 17580 8196 2 25.84 1.04
Medical 1M 36511 48730 2 22.14 0.75

Table 4.2: Named Entities per Class

Dataset Person Organization Local MISC Species Medical Value

English 88476 54789 79846 79003 - - -
Spanish 90408 42835 95606 68890 - - -

Portuguese 3881 3502 3383 - - - 1876
Swedish 3976 1519 1797 820 - - -
Twitter 6958 4448 3357 - - - -
Species - - - - 8546 - -
Medical - - - - - 36731 -

Dataset Date Title Thing Event Abstraction Other

Portuguese 1615 1316 463 625 1403 140

Table 4.3: Unique Named Entities per Class

Dataset Person Organization Local MISC Species Medical Value

English 16464 8783 12199 14370 - - -
Spanish 19231 5567 8119 11760 - - -

Portuguese 1539 1191 1107 - - - 344
Swedish 2077 802 596 644 - - -
Twitter 3465 2081 1460 - - - -
Species - - - - 1840 - -
Medical - - - - - 2517 -

Dataset Date Title Thing Event Abstraction Other

Portuguese 362 545 549 314 689 140

of unique entities per class In both tables, the data is the train, test, and validation split

merge.

When comparing the different datasets, it is perceptible that the differences and sim-

ilarities create good research opportunities. English and Spanish datasets are similar

41

CHAPTER 4. RESULTS

in size but not in the same language. English and Twitter datasets are in the same lan-

guage but distinguish themselves in the size of the corpus and the sentences. The Species

and Medical datasets are equal in the number of classes but have different sizes. The

Portuguese dataset can also study the effect of the number of types.

4.2 Results

This Section presents the metrics for each method in the different datasets. The English,

Spanish, Portuguese and Swedish datasets were tested in two forms, the first considering

only the NE of Person, Organization and Location (POL) and the second with all the

classes belonging to it. To accomplish this, all NE that had another classification were

considered Outsiders.

In this research, I used the Exact-match evaluation (2.3.2), where for an entity to

be considered well classified, it only requires the correct class. It is a direct result of

removing the BIO tags from the classes and discarding the order and where an N -grams

starts and finishes.

Before discussing each dataset individually, it is essential to mention the different

results between the Macro and Micro metrics. This happens in all the datasets because

there is a massive discrepancy between the Outsiders and the other classes in terms of

representation. Looking at the English dataset, there are a total of 302K NE and 1.9M

Outsiders entities. This discrepancy means that the Micro results will be similar to the

Outsiders result, while the Macro results have a more balanced representation of each

type. It does not mean that one metric is more relevant than the other. Both are taken

into consideration when analyzing the results.

4.2.1 English

The English dataset is one of the most extensive datasets studied in this research. It is

made from Wikipedia and has a formal style and a comprehensive set of topics. It contains

a higher number of NE per phrase, with Location having the most representation. NE

only represent 13% of the tokens.

4.2.1.1 English POL

For this test, the MISC NE were removed, so that in the future comparisons can be made

between these dataset and others. MISC entities represent 79k of NE . Then the number

of NE per phrase is much smaller, being, in fact, 2.56.

The Pipeline had 15 features. The Transformer model was trained during 10 epochs,

finishing with a loss of 0.046. The BERT model was trained during 3 epochs and presented

a loss of 0.038.

42

4.2. RESULTS

Table 4.4: Precision Results in English dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9794 0.7906 0.575 0.5 0.7112 0.9508
Transformer 0.9769 0.7567 0.6315 0.6376 0.7507 0.9657

Bert 0.9647 0.8021 0.7071 0.7991 0.8182 0.9542

Table 4.5: Recall Results in English dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9746 0.8292 0.5348 0.8 0.7847 0.9508
Transformer 0.9910 0.3414 0.5714 0.6376 0.6354 0.9657

Bert 0.9961 0.4604 0.5265 0.5815 0.6411 0.9542

Table 4.6: F-Score Results in English dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9770 0.8095 0.5542 0.6153 0.7390 0.9508
Transformer 0.9839 0.4705 0.6000 0.6376 0.6730 0.9657

Bert 0.9801 0.5850 0.6036 0.6732 0.7105 0.9542

The results are the expected in the English POL dataset, with the Transformer having

the higher F-Score micro. The biggest surprise is the macro results, with the Pipeline

having the highest performance. Considering the dataset, which has a high number of

tokens, it was expected to perform well in identifying each class. Another conclusion

from this test is that both Transformer and BERT present higher Precision than Recall

values. Finally, in both Transformer and BERT models, the number of entities does not

reflect in the model’s performance once the class with the highest number of samples

is the one that underperforms (Organization). On the other side, the Pipeline has a

more direct connection between the number of samples and their performance, with the

Person’s class having the higher performance, followed by the Location and Organization.

4.2.1.2 English with all entities

In this case, all entities were tested, presenting a higher number of entities and one more

class for the models to classify. The Pipeline had a total of 18 features. The Transformer

model was trained during 10 epochs, ending with a loss of 0.085. The BERT model was

qualified during 3 epochs and presented a loss of 0.0425

43

CHAPTER 4. RESULTS

Table 4.7: Precision Results in English dataset

Model Outsiders Person Organization Local MISC Macro Micro

Pipeline 0.9890 0.6842 0.6875 0.5882 0.5568 0.7011 0.9243
Transformer 0.9575 0.6 0.5333 0.6666 0.7107 0.6936 0.9321

Bert 0.9493 0.6622 0.6486 0.7691 0.6698 0.7398 0.9286

Table 4.8: Recall Results in English dataset

Model Outsiders Person Organization Local MISC Macro Micro

Pipeline 0.9659 0.9069 0.5 0.9090 0.6621 0.7888 0.9243
Transformer 0.9810 0.4390 0.7619 0.7536 0.4479 0.6766 0.9321

Bert 0.9950 0.4787 0.3809 0.5274 0.4532 0.5670 0.9286

Table 4.9: F-Score Results in English dataset

Model Outsiders Person Organization Local MISC Macro Micro

Pipeline 0.9773 0.78 0.5789 0.7142 0.6049 0.7311 0.9243
Transformer 0.9691 0.5070 0.6274 0.7074 0.5495 0.6721 0.9321

Bert 0.9716 0.4836 0.5508 0.6257 0.5406 0.6345 0.9286

Once again, the three models present us with similar results. The Transformer and

the BERT performed better, with a 93% F-Score. Both these models had better Precision

than Recall performance. A good comparison may be between the Local and MISC classes.

Both had a similar number of entities, around 79k, but Location has better results than

MISC in all models. Location is less vague than MISC, which facilitates the models’

prediction task. The Pipeline is again the model with the higher Macro F-Score, with

73%, overtaking both transformer-based models. The last surprising factor may be the

low performance of transformer-based models in the Person class, given that it is the class

with the highest number of samples. It should make learning this class easier for the

models, something that did not come along.

4.2.2 Spanish

The Spanish dataset is the most extensive dataset studied in this research, with nearly

one million unique tokens. It is made from Wikipedia and has a formal style, where

topics range from geographical knowledge to socialite news. It has double the amount of

Location or Person NE than Organization ones. In this case, NE represent 17,4% of the

corpus.

4.2.2.1 Spanish POL

In this test, the MISC NE were removed, representing almost a quarter of all NE in this

dataset. The number of NE per phrase is 2.39, and Organization’s NE are only 18% of NE

44

4.2. RESULTS

, with Person and Location representing 40% each.

The Pipeline had 15 features. The Transformer model was trained during 10 epochs,

finishing with a loss of 0.024. The BERT model was trained during 3 epochs and presented

a loss of 0.013.

Table 4.10: Precision Results in Spanish dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9478 0.8534 0.6933 0.8284 0.8307 0.9200
Transformer 0.9849 0.9020 0.8547 0.8918 0.9084 0.9757

Bert 0.9732 0.9381 0.9210 0.9474 0.9449 0.9705

Table 4.11: Recall Results in Spanish dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9782 0.8996 0.4731 0.6007 0.7379 0.9200
Transformer 0.9915 0.8773 0.7795 0.8248 0.8683 0.9757

Bert 0.9988 0.5942 0.7568 0.8091 0.7897 0.9705

Table 4.12: F-Score Results in Spanish dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9627 0.8759 0.5624 0.6964 0.7744 0.9200
Transformer 0.9882 0.8895 0.8154 0.8570 0.8875 0.9757

Bert 0.9858 0.7275 0.8309 0.8570 0.8728 0.9705

Table 4.12 shows outperforming results, in the Spanish dataset with three classes,

from both transformer-based models, with a 97% Micro F-Score. Both models were once

more Precision-wise than Recall but could perform well in both metrics. The Pipeline

shows a good performance, achieving some good results that are not enough to compete

with the other models. It underperformed in the Organization class, where it could not

distinguish this class from the others. One of the reasons for this may be the underrepre-

sentation of this class compared to the Location and Person.

4.2.2.2 Spanish with all entities

In this trial, all entities were considered, presenting an increasing number of entities

and one more class for the models to classify. It reduces the Person’s and the Location’s

percentage from 40% to 30%, and Organization’s to 14%.

The Pipeline had a total of 18 features. The Transformer model was trained during 10

epochs, ending with a loss of 0.025. The BERT model was qualified during 3 epochs and

presented a loss of 0.019.

45

CHAPTER 4. RESULTS

Table 4.13: Precision Results in Spanisn dataset

Model Outsiders Person Organization Local MISC Macro Micro

Pipeline 0.9675 0.8697 0.6909 0.7666 0.7486 0.8087 0.9162
Transformer 0.9853 0.8678 0.8492 0.9127 0.8133 0.8857 0.9688

Bert 0.9661 0.8666 0.8719 0.9334 0.8925 0.9061 0.9586

Table 4.14: Recall Results in Spanisn dataset

Model Outsiders Person Organization Local MISC Macro Micro

Pipeline 0.9852 0.9198 0.5504 0.7443 0.6553 0.7710 0.9162
Transformer 0.9858 0.9262 0.8246 0.8437 0.8277 0.8816 0.9688

Bert 0.9987 0.5711 0.7405 0.7846 0.8277 0.7219 0.9586

Table 4.15: F-Score Results in Spanisn dataset

Model Outsiders Person Organization Local MISC Macro Micro

Pipeline 0.9762 0.8940 0.6127 0.7553 0.6989 0.7874 0.9162
Transformer 0.9856 0.8961 0.8367 0.8768 0.8204 0.8831 0.9688

Bert 0.9822 0.6885 0.8008 0.8526 0.7982 0.8245 0.9586

The results of the Spanish dataset with all the entities are pretty similar to those

reported in the previous Subsection. The transformer-based models report excellent

results with more than 95% of macro F-Score. The Transformer model is the winner in

this case as it also gave out 88% of micro F-Score, with all classes having more than 80%

individually. BERT had trouble identifying each word’s class, resulting in a low Recall.

However, the words it identified were almost all correct, reflecting a higher Precision

metric. The Pipeline could not keep up with the transformer-based models, nonetheless

achieved a 92% micro F-Score with a 79% macro. It’s a significant problem that the

Organization and MISC entities reported less than 70%. On the one hand, this may be

due to the fewer samples. On the other hand, the class with the highest representation

was not the one with best results and did not achieve outstanding ones.

4.2.3 Portuguese

The Portuguese dataset has the most classes, but on the other side, it does not have the

size of the English or Spanish datasets. Another challenge is the low number of samples

from some NE , with lower than 1k NE . This dataset has a vast genre distribution, from

e-mails to technical papers or newspapers, and different origins as Portugal, Brasil or

African countries [41].

46

4.2. RESULTS

4.2.3.1 Portuguese POL

Only Person, Organization, and Location’s NE are studied in this test. Although they are

only three of the ten kinds, they represent almost 60% of all NE , meaning that there are

1.4 tokens per phrase.

The Pipeline had a total of 15 features. The Transformer model was trained during 10

epochs, ending with a loss of 0.072. The BERT model was qualified during 3 epochs and

presented a loss of 0.207.

Table 4.16: Precision Results in Portuguese dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9276 0.7426 0.6910 0.6363 0.7494 0.9024
Transformer 0.9528 0.6672 0.4315 0.5886 0.6600 0.9431

Bert 0.96010 0.5034 0.5423 0.5207 0.6316 0.9456

Table 4.17: Recall Results in Portuguese dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9811 0.4023 0.4049 0.5811 0.5924 0.9024
Transformer 0.9921 0.2402 0.085 0.3927 0.4276 0.9431

Bert 0.9954 0.2708 0.2709 0.2195 0.4392 0.9456

Table 4.18: F-Score Results in Portuguese dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9536 0.5219 0.5106 0.6074 0.6484 0.9024
Transformer 0.9721 0.3533 0.1429 0.4711 0.4848 0.9431

Bert 0.9774 0.3522 0.3613 0.3088 0.4999 0.9456

The Portuguese dataset with three classes shows a discrepancy between the Outsiders

and the Person, Organization, and Location classes. The gap between the Micro results

and the Macro ones is the result of this discrepancy. While all models reported more than

90% in micro Precision, Recall, and F-Score, only the transformer-based models could

not achieve 50% of Micro F-Score. The Transformer could not classify the Organization

NE , having a difference of more than 20 percentage points from the other models. The

number of samples can not be taken as a reason for this performance once all classes have

an equal representation. The Pipeline and the BERT presented more homogeneous results,

with the Pipeline showing up with a 65% Macro F-Score. While any model presented

outstanding results, it is notorious that the smaller dataset penalized the transformer-

based models.

47

CHAPTER 4. RESULTS

4.2.3.2 Portuguese with all entities

This case studies how the different methodologies adapt to an unusually higher number of

classes. Another adversity is the low number of samples from Thing, Event, Abstraction

and Other and how the models will perform in these circumstances.

The Pipeline had a total of 36 features. The Transformer model was trained during 10

epochs, ending with a loss of 0.039. The BERT model was qualified during 5 epochs and

presented a loss of 0.342

Table 4.19: Precision Results in Portuguese dataset

Model Outsiders Person Organization Local Value Date Title

Pipeline 0.9285 0.6571 0.6510 0.6901 0.9375 0.8412 0.6571
Transformer 0.9343 0.2877 0.3783 0.4247 0.5791 0.6855 0.1639

Bert 0.9338 0.3482 0.3140 0.4090 0.6057 0.2061 0.4191

Model Thing Event Abstraction Other Macro Micro

Pipeline 0.7142 0.5365 0.6703 1,0000 0.7530 0.8829
Transformer 0.2285 0.2352 0.1012 0.0000 0.3653 0.8886

Bert 0.5 0.2933 0.1 0.0000 0.3754 0.8982

Table 4.20: Recall Results in Portuguese dataset

Model Outsiders Person Organization Local Value Date Title

Pipeline 0.9679 0.5679 0.5435 0.6666 0.75 0.7361 0.3239
Transformer 0.9615 0.3666 0.1153 0.4321 0.4893 0.4744 0.0212

Bert 0.9936 0.2568 0.2858 0.2443 0.0870 0.0284 0.0959

Model Thing Event Abstraction Other Macro Micro

Pipeline 0.4347 0.5945 0.5809 0.25 0.5833 0.8829
Transformer 0.0295 0.0343 0.0909 0.0000 0.2741 0.888

Bert 0.0036 0.0944 0.0362 0.0000 0.1933 0.8982

Table 4.21: F-Score Results in Portuguese dataset

Model Outsiders Person Organization Local Value Date Title

Pipeline 0.9478 0.6092 0.5924 0.6782 0.8333 0.7851 0.4339
Transformer 0.9477 0.3224 0.1767 0.4284 0.5304 0.5608 0.0375

Bert 0.9628 0.2956 0.2992 0.3059 0.1521 0.05 0.1561

Model Thing Event Abstraction Other Macro Micro

Pipeline 0.5405 0.5641 0.6224 0,4000 0.6370 0.8829
Transformer 0.0522 0.0599 0.0957 0,0000 0.2920 0.8886

Bert 0.0072 0.1428 0.0532 0,0000 0.2204 0.8982

48

4.2. RESULTS

The Portuguese dataset with ten entities is a different challenge from all the others in

this thesis and the results show that both transformer-based models show considerable

problems in this test. The BERT model had trouble with four different classes: Date,

Thing, Abstraction, and Others. It could not get over 10% of F-Score in any of these.

The Transformer had the same problem even if it achieved a good performance in the

Value class, it failed in the others classes. The main factor may be the number of entities

represented by each class, but it could not explain the performance in the Date class. The

main problem besides the representation may be a vague definition of each class and

how it reflects on the dataset. The Pipeline had an outstanding performance compared

to the other models. Even though they all had a close Micro F-Score, its Macro F-Score is

63%, which is more than double of transformer-based models. The Pipeline performed

much better in all classes than the other models, unless at the Outsiders class. This is an

excellent example of how much the Outsiders impact the Micro metrics.

4.2.4 Swedish

The Swedish dataset has the lowest number of NE per phrase. Since it is made from

news articles, it is expected to have a formal writing style but does not contain a vast text

genre. Person’s is the most represented entity, with more than double the other classes,

accounting for 49% of NE . Organization and Location’s entities have an identical share,

with around 20%, and MISC’s entities represent only 10% of the total.

4.2.4.1 Swedish POL

This test did not consider the MISC entities. On the one hand, Compared with the other

datasets, this is the one where the impact is not as notorious as it represents a small

number of samples. On the other hand, Person is more than 50% of the NE .

The Pipeline had 15 features. The Transformer model was trained during 10 epochs,

ending with a loss of 0.005. The BERT model was qualified during 5 epochs and presented

a loss of 0.018.

Table 4.22: Precision Results in Swedish dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9767 0.8230 0.6153 0.6991 0.7785 0.9577
Transformer 0.9920 0.5704 0.6962 0.1045 0.5908 0.9135

Bert 0.9759 0.8474 0.5284 0.8185 0.7925 0.9721

Table 4.23: Recall Results in Swedish dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9905 0.8263 0.3636 0.5895 0.6925 0.9577
Transformer 0.9260 0.6726 0.3791 0.8436 0.7053 0.9135

Bert 0.9992 0.4166 0.1641 0.5132 0.5233 0.9721

49

CHAPTER 4. RESULTS

Table 4.24: F-Score Results in Swedish dataset with 3 types of Named Entity

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9836 0.8247 0.4571 0.6396 0.7262 0.9577
Transformer 0.9579 0.6173 0.4909 0.1859 0.5630 0.9135

Bert 0.9874 0.5586 0.2504 0.6308 0.6068 0.9721

The Swedish dataset with three classes shows another good performance from the

Pipeline. It is the best model in this dataset, with a 95% in Micro and a 72% Macro

F-Score. Once again, his performance is related to the number of entities per class, where

the classes with higher representation have higher results. The transformer-based model

did not have exceptional performance, with their Macro results not passing the 60%. The

little difference in outcomes between the two models may have come from the knowledge

base of BERT. The last important aspect is that any models presented an acceptable

performance in the Organization class, which has fewer samples.

4.2.4.2 Swedish with all entities

This trial classifies all NE present in the dataset. The MISC class challenges the models,

as a low representation class is never easy to predict.

In this case, the Pipeline had 18 features, the Transformer model was trained during

10 epochs, ending with a loss of 0.007. The BERT model was qualified during 3 epochs

and presented a loss of 0.019.

Table 4.25: Precision Results in Swedish dataset

Model Outsiders Person Organization Local MISC Macro Micro

Pipeline 0.9709 0.7886 0.7222 0.8395 0.6923 0.8027 0.9526
Transformer 0.9828 0.7099 0.7567 0.2171 0.3653 0.6064 0.9504

Bert 0.9727 0.8307 0.5862 0.8132 0.3440 0.7094 0.9676

Table 4.26: Recall Results in Swedish dataset

Model Outsiders Person Organization Local MISC Macro Micro

Pipeline 0.9918 0.8690 0.4239 0.5151 0.1894 0.5978 0.9526
Transformer 0.9713 0.6200 0.3562 0.7762 0.0935 0.5635 0.9504

Bert 0.9989 0.4046 0.1717 0.5185 0.1576 0.4502 0.9676

Table 4.27: F-Score Results in Swedish dataset

Model Outsiders Person Organization Local MISC Macro Micro

Pipeline 0.9812 0.8269 0.5342 0.6384 0.2975 0.6556 0.9526
Transformer 0.9770 0.6619 0.4844 0.3394 0.1490 0.5223 0.9504

Bert 0.9856 0.5442 0.2656 0.6332 0.2162 0.5290 0.9676

50

4.2. RESULTS

When analyzing the Swedish dataset with all classes, the results are comparable to

the ones with three entities only. Then the Pipeline is the one with the best performance.

Although it has a lower Macro due to the MISC class, the other metrics are practically the

same. The MISC class is a rough challenge for all models due to its small representation,

with only 820 NE . Any models overpassed the 30% F-Score, and they all had the same

problem. They could not retrieve the proper entities, which is reflected in the Recall met-

rics. Lastly, it is interesting that the Transformer model presented a decent Organization

F-Score but a lower Location one while the BERT has a higher Location F-Score but a

minor Organization value.

4.2.5 Twitter

The Twitter dataset has the most informal writing style of all. It may create new challenges

for the models as they may not adapt. However, according to the table 4.2, the dataset has

the highest number of unique tokens related to the total number of words. Since Twitter

is a social media made of small texts between users, which explains why Person is the

most represented class, accounting for almost half of the NE .

The Pipeline had 15 features. The Transformer model was trained during 10 epochs,

ending with a loss of 0.046. The BERT model was qualified during 3 epochs and presented

a loss of 0.081.

Table 4.28: Precision Results in Twitter dataset

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.8793 0.5663 0.5714 0.6210 0.6595 0.8391
Transformer 0.9105 0.6201 0.1438 0.5304 0.5512 0.8339

Bert 0.8981 0.7004 0.4827 0.6450 0.6816 0.8831

Table 4.29: Recall Results in Twitter dataset

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9685 0.4965 0.2235 0.2251 0.4784 0.8391
Transformer 0.9354 0.1901 0.3263 0.2168 0.4171 0.8339

Bert 0.9940 0.1939 0.2297 0.3180 0.4341 0.8831

Table 4.30: F-Score Results in Twitter dataset

Model Outsiders Person Organization Local Macro Micro

Pipeline 0.9217 0.5291 0.3213 0.3305 0.5257 0.8391
Transformer 0.9228 0.2910 0.1997 0.3078 0.4303 0.8339

Bert 0.9436 0.3037 0.3113 0.4266 0.4963 0.8831

In the Twitter dataset, any of the models makes an notable performance. The Trans-

former model has the poorest performance of the three. It had some trouble identifying

51

CHAPTER 4. RESULTS

the Organization class, with a 19% F-Score, but it generally presented disappointing Re-

call value. The BERT is the model that made the best performance, with a Micro F-Score

of 88% and a Macro of 49%. Having in account the circumstances, the BERT model was

the one that brought more expectation, considering how it could transfer everything that

the BERT base model knows about the words’ relationship to a more informal scenario.

When comparing its performance to the Transformer model, it is deductible that the

BERT model has more knowledge than the Transformer. And even until this moment, it

was not that notorious. The Pipeline did not show the best performance of all datasets.

However, it still brought considerable results, achieving a 52% Macro F-Score. The Recall

metrics fall behind with a poor performance in the Organization and Local class, the least

represented.

4.2.6 Species

The Species dataset only has one class in a scientific writing style and a singular genre.

While this should simplify the prediction, it does not have a huge dataset. However, it

has a lower number of unique tokens, implying that each word has a higher frequency

when compared with a dataset of the same size.

The Pipeline has 9 features, the smaller number possible. The Transformer model was

trained during 10 epochs, ending with a loss of 0.029. The BERT model was qualified

during 3 epochs and presented a loss of 0.027.

Table 4.31: Precision Results in Species dataset

Model Outsiders Species Macro Micro

Pipeline 0.9918 1 0.9959 0.9919
Transformer 0.9839 0.2658 0.6248 0.9071

Bert 0.9752 0.7813 0.8782 0.9705

Table 4.32: Recall Results in Species dataset

Model Outsiders Species Macro Micro

Pipeline 1 0.625 0.8125 0.9919
Transformer 0.9179 0.6642 0.7911 0.9071

Bert 0.9945 0.4342 0.7144 0.9705

Table 4.33: F-Score Results in Species dataset

Model Outsiders Species Macro Micro

Pipeline 0.9958 0.7692 0.8825 0.9919
Transformer 0.9498 0.3797 0.6647 0.9071

Bert 0.9847 0.5582 0.7715 0.9705

52

4.2. RESULTS

The Pipeline outperformed the other in the Species dataset. A 100% Precision in the

Species class and a 100% Recall in the Outsiders class results in 88% Macro F-Score and

99% Micro. The Transformer model had poor Precision, while the BERT did not show a

great Recall. The most considerable adversity may have been the low number of samples,

only having 1.04 NE per phrase, or a lower number of unique tokens may have affected

their results. Once again, a considerable distinction between the Transformer and the

BERT models shows up, with a difference of 11 percentage points.

4.2.7 Medical

The Medical dataset is similar to the Species dataset, as they both have only one class.

However, this dataset is more extensive, with one million words, which should favor

transformer-based models. On the other hand, it has the lowest NE per phrase of all

datasets, which may impact the models’ performance. The Pipeline has 9 features, the

smaller number possible. The Transformer model was trained during 10 epochs, ending

with a loss of 0.024. The BERT model was qualified during 5 epochs and presented a loss

of 0.019.

Table 4.34: Precision Results in Medical dataset

Model Outsiders Medical Macro Micro

Pipeline 0.9700 0.6625 0.8162 0.9565
Transformer 0.9815 0.9162 0.9489 0.9804

Bert 0.9755 0.8260 0.9007 0.9737

Table 4.35: Recall Results in Medical dataset

Model Outsiders Medical Macro Micro

Pipeline 0.9842 0.5047 0.7445 0.9565
Transformer 0.9984 0.4725 0.7355 0.9804

Bert 0.9978 0.2868 0.6423 0.9737

Table 4.36: F-Score Results in Medical dataset

Model Outsiders Medical Macro Micro

Pipeline 0.9771 0.5729 0.7750 0.9565
Transformer 0.9899 0.6235 0.8067 0.9804

Bert 0.9865 0.4258 0.7061 0.9737

In the Medical dataset, the Transformer performed better, achieving 80% Macro and

98% Micro. In this case, the models would distinguish between each other according to

their performance in the Medical class. The Transformer had an exceptional Precision,

91%, even though its Recall was not that high. BERT had an acceptable Precision, but the

Recall was too low, resulting in a 42% F-Score, the weakest of all. In contrast to the others,

53

CHAPTER 4. RESULTS

the Pipeline had a better Recall but the most insufficient Precision, not going further than

a 57% F-Score.

4.3 Discussion

One necessary analysis is to compare the English and Spanish datasets due to the size

of the corpus and the high sample number. Both datasets have more than 2 million

tokens and more than 3 NE per phrase and sentence of the same length. However, the

results are not as similar as expected. The Spanish dataset performs better in the two case

studies, achieving Macro results of over 80% F-Score. While with the English dataset, the

models do not go over 75%. The most expected result would be that the English dataset

had a more significant performance, particularly in the BERT case, which has a broader

knowledge base. However, this did not occur. It does not mean that the multi-language

BERT is better, as the dataset’s quality or language may have impacted the results, but it

must have something into account.

Besides the big corpus, it is essential to compare the small ones. The Swedish and

Portuguese datasets can be compared in the three classes test. In this comparison, the

results are analogous. The models present better results in the Swedish dataset, but in

my opinion, the difference is not enough due to the different languages other than other

factors. It is relevant that the Pipeline was the model that presented higher Macro in both

cases while not being the one with higher Micro, mainly because it did not have the better

result in the Outsiders class.

The writing style is one of the aspects of the study by comparing the English dataset

with Twitter one. In both cases, the performance was not excellent, but it exists an

evolution from Twitter to English in all models. Once this upgrade happens in all models,

passing from 50% to 70%, it can not only be explained by the data size but by other

factors, such as the writing style and the length of each sentence, which are intrinsically

correlated to the first one.

The Medical and the Species dataset tested how the models behave with one class

in a larger or smaller dataset. According to the results, there is no clear sign that more

data helped the models. The Pipeline lost eleven percentual points, from the Species

to the Medical. The Transformer won fourteen points, and the BERT lost another seven.

These numbers are not easy to explain, as it is expected that better results will come from

transformer-based models with more data. However, changing from the English BERT to

the multi-language version may be the explanation.

When considering how the number of features affects the models, in my opinion, it is

not fair to take any consideration. In datasets with one to four classes, if the size of the

corpus increases, it also increases the quality of the transformer-based models. The test

with ten classes presented a low performance. However, I think this is more related to

the lack of samples than the number of classes. The performance would also increase if

54

4.3. DISCUSSION

each class had the same samples. Besides the transformer-based models, the Pipeline is

also stable in changing the number of classes, always presenting decent results.

55

5

Conclusion and Future Works

This is the final chapter. You will find a brief description of everything done during this

Thesis, the conclusion, and some future works.

5.1 Recap

This Thesis seeks to test how the transformer-based models perform in different contexts

and to compare them with a model that does not use the transformer architecture. First,

I developed three models:

Pipeline based on statistics and neural network features that is language independent

using multiple techniques such as Bag of Words, Steeming, W2V.

Transformer Network that is only trained with the dataset and can be adapted to any

language.

Fine-tuning a BERT model , which was the English or multi-language version depend-

ing on the dataset, that has a bidirectional architecture made of transformers.

Then I selected seven different datasets to test these models according to three impor-

tant factors: language, size and classes. The results were analyzed, and a few comparisons

between the datasets were made to understand better the performance and the best case

use for each model.

5.2 Conclusion

After an extensive analysis of the different tests, it is possible to obtain a few final re-

sults. It will start by discussing the transformer-based models and comparing them to

my Pipeline. The transformer-based models are highly dependent on data. It is not a

surprise, as multiple authors have already proved it. The most significant difference

between the Transformer and the BERT came when they were tested with insufficient

data. BERT performed better in every lower data case except the Portuguese dataset with

56

5.3. FUTURE WORKS

all the entities. This is primarily because of its bidirectional architecture of BERT and

its pretrain knowledge. On the other end of the spectrum, when more samples were

available, the Transformer model performed exceptionally well and kept up, sometimes

even overpassing, the BERT model. It occurred in the English dataset with all entities, in

both Spanish tests and the Medical. Regarding resources needed to compute the models,

BERT requires more from the hardware while being more time-consuming. Concerning

language independence, I think both models are equal, and it does not affect the final

results, as both exceeded well in different languages. Lastly, concerning the number of

features, the number of features, BERT was more affected when increasing the number of

classes. In all the datasets, when comparing the Macro from four to three classes, BERT

had a more considerable difference than the Transformer.

Designing a Pipeline based on statistical and neural network features that is language-

independent is not an easy task. However, this Pipeline can compete with the transformer-

based model. Starting with data size, the Pipeline fell behind the other models in big

data corpus. In the English dataset, it presented similar results to the other models. In

the Spanish dataset, it did not show up. On the other hand, it showed much better results

in low data cases, independent of having three, four, or ten classes and independent of

the language. Even when only one class was in the test, it got better results in lower

data. This is more important than it looks at first. The Medical and Species test have in

common the fact of being very specific, thus it is not common to be considered in NER

context. These datasets are almost particular, and increasing the data with more samples

is much more time and cost-consuming. It is more time-consuming as the creator has to

search in a smaller group of texts. It is possible to create a dataset of POL by looking in

newspapers, books, emails, and Wikipedia. This particular dataset has a smaller baseline.

Instead of looking in newspapers, you must look up scientific papers or journals. And

it is more cost-consuming to classify these entities as it requires someone from the field

with a high education level which takes more money for their time.

Summing up, BERT will always present better results in the most common cases

of NER , which is to identify a few classes in a formal writing style. However, when

the model aims to extract other entities or does not have an extensive dataset, I think

that BERT may not be the best solution. Every case should be analyzed individually,

considering that sometimes the most straightforward path is not the better one.

5.3 Future Works

As a proposal for future work, I think further tests should be made on the transformer

architecture and Neural Networks. My first notion is to continue this investigation, com-

paring these models with NER models made by tech companies. This Thesis only con-

sidered the NER task leaving behind other NLP tasks and Machine Learning problems.

My second recommendation is to test how well the transformers architecture work in the

different environments and where are its limits. The last ideia is to develop transformer

57

CHAPTER 5. CONCLUSION AND FUTURE WORKS

Neural Networks to be used in more problems besides NLP or Computer Vision and to

study how it adapts to different issues.

58

Bibliography

[1] A. Akbik, T. Bergmann, and R. Vollgraf. “Pooled Contextualized Embeddings for

Named Entity Recognition”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Associa-

tion for Computational Linguistics, 2019-06, pp. 724–728. doi: 10.18653/v1/N19-

1078. url: https://aclanthology.org/N19-1078 (cit. on p. 28).

[2] K. Arulkumaran et al. “Deep Reinforcement Learning: A Brief Survey”. In: IEEE
Signal Processing Magazine 34.6 (2017), pp. 26–38. doi: 10.1109/MSP.2017.2743240

(cit. on p. 20).

[3] M. Asahara and Y. Matsumoto. “Japanese Named Entity Extraction with Redundant

Morphological Analysis”. In: NAACL ’03. Edmonton, Canada: Association for

Computational Linguistics, 2003, pp. 8–15. doi: 10.3115/1073445.1073447. url:

https://doi.org/10.3115/1073445.1073447 (cit. on p. 24).

[4] D. M. Bikel et al. “Nymble: a High-Performance Learning Name-finder”. In: Fifth
Conference on Applied Natural Language Processing. Washington, DC, USA: Associa-

tion for Computational Linguistics, 1997-03, pp. 194–201. doi: 10.3115/974557.9

74586. url: https://aclanthology.org/A97-1029 (cit. on p. 24).

[5] P. Blunsom. “Hidden Markov Models”. In: (2004-08) (cit. on p. 12).

[6] J. S. Bridle. “Training Stochastic Model Recognition Algorithms as Networks Can

Lead to Maximum Mutual Information Estimation of Parameters”. In: Proceedings
of the 2nd International Conference on Neural Information Processing Systems. NIPS’89.

Cambridge, MA, USA: MIT Press, 1989, pp. 211–217 (cit. on p. 20).

[7] K. Clark et al. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than
Generators. doi: 10.48550/ARXIV.2003.10555. url: https://arxiv.org/abs/2003

.10555 (cit. on p. 27).

[8] A. Conneau et al. Unsupervised Cross-lingual Representation Learning at Scale. 2019.

doi: 10.48550/ARXIV.1911.02116. url: https://arxiv.org/abs/1911.02116

(cit. on p. 27).

59

https://doi.org/10.18653/v1/N19-1078
https://doi.org/10.18653/v1/N19-1078
https://aclanthology.org/N19-1078
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.3115/1073445.1073447
https://doi.org/10.3115/1073445.1073447
https://doi.org/10.3115/974557.974586
https://doi.org/10.3115/974557.974586
https://aclanthology.org/A97-1029
https://doi.org/10.48550/ARXIV.2003.10555
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
https://doi.org/10.48550/ARXIV.1911.02116
https://arxiv.org/abs/1911.02116

BIBLIOGRAPHY

[9] L. Derczynski, K. Bontcheva, and I. Roberts. “Broad twitter corpus: A diverse

named entity recognition resource”. In: Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics: Technical Papers. 2016, pp. 1169–

1179 (cit. on p. 40).

[10] J. Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-

guage Understanding”. In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805. url:

http://arxiv.org/abs/1810.04805 (cit. on pp. 26, 36).

[11] G. Doddington et al. “The Automatic Content Extraction (ACE) program-tasks,

data, and evaluation”. In: Proceedings of LREC 2 (2004-01) (cit. on p. 23).

[12] J. M. Giorgi and G. D. Bader. “Transfer learning for biomedical named entity

recognition with neural networks”. In: Bioinformatics 34.23 (2018-06), pp. 4087–

4094. issn: 1367-4803. doi: 10.1093/bioinformatics/bty449. eprint: https:

//academic.oup.com/bioinformatics/article-pdf/34/23/4087/26676581/bty449

.pdf. url: https://doi.org/10.1093/bioinformatics/bty449 (cit. on p. 27).

[13] I. J. Good. “Rational Decisions”. In: Journal of the Royal Statistical Society. Series
B (Methodological) 14.1 (1952), pp. 107–114. issn: 00359246. url: http://www.

jstor.org/stable/2984087 (visited on 2022-09-15) (cit. on p. 21).

[14] A. Goyal, V. Gupta, and M. Kumar. “Recent Named Entity Recognition and Classi-

fication techniques: A systematic review”. In: Computer Science Review 29 (2018),

pp. 21–43. issn: 1574-0137. doi: https://doi.org/10.1016/j.cosrev.2018.06.0

01. url: https://www.sciencedirect.com/science/article/pii/S1574013717302

782 (cit. on p. 3).

[15] P. He et al. DeBERTa: Decoding-enhanced BERT with Disentangled Attention. 2020.

doi: 10.48550/ARXIV.2006.03654. url: https://arxiv.org/abs/2006.03654

(cit. on p. 27).

[16] S. Hochreiter et al. “Gradient flow in recurrent nets: the difficulty of learning

long-term dependencies”. In: A Field Guide to Dynamical Recurrent Neural Networks.
Ed. by S. C. Kremer and J. F. Kolen. IEEE Press, 2001 (cit. on p. 17).

[17] H. Ji and R. Grishman. “Data Selection in Semi-supervised Learning for Name

Tagging”. In: Proceedings of the Workshop on Information Extraction Beyond The
Document. Sydney, Australia: Association for Computational Linguistics, 2006-07,

pp. 48–55. url: https://aclanthology.org/W06-0206 (cit. on p. 25).

[18] S. G. Joaquim Ferreira da Silva Gaël Dias and J. G. P. Lopes. “Using LocalMaxs

Algorithm for the Extraction of Contiguous and Non-contiguous Multiword Lexical

Units”. In: Session Poster, (1999) (cit. on p. 9).

[19] K means Clustering – Introduction. [Online; accessed 20-January-2022]. 2021-09.

url: https : / / www . geeksforgeeks . org / k - means - clustering - introduction/

(visited on 2021-09-21) (cit. on p. 14).

60

https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1093/bioinformatics/bty449
https://academic.oup.com/bioinformatics/article-pdf/34/23/4087/26676581/bty449.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/23/4087/26676581/bty449.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/23/4087/26676581/bty449.pdf
https://doi.org/10.1093/bioinformatics/bty449
http://www.jstor.org/stable/2984087
http://www.jstor.org/stable/2984087
https://doi.org/https://doi.org/10.1016/j.cosrev.2018.06.001
https://doi.org/https://doi.org/10.1016/j.cosrev.2018.06.001
https://www.sciencedirect.com/science/article/pii/S1574013717302782
https://www.sciencedirect.com/science/article/pii/S1574013717302782
https://doi.org/10.48550/ARXIV.2006.03654
https://arxiv.org/abs/2006.03654
https://aclanthology.org/W06-0206
https://www.geeksforgeeks.org/k-means-clustering-introduction/

BIBLIOGRAPHY

[20] G. Lample and A. Conneau. Cross-lingual Language Model Pretraining. 2019. doi:

10.48550/ARXIV.1901.07291. url: https://arxiv.org/abs/1901.07291 (cit. on

p. 26).

[21] Z. Lan et al. ALBERT: A Lite BERT for Self-supervised Learning of Language Repre-
sentations. doi: 10.48550/ARXIV.1909.11942. url: https://arxiv.org/abs/1909

.11942 (cit. on p. 27).

[22] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553 (2015-

05), pp. 436–444. issn: 1476-4687. doi: 10 . 1038 / nature14539. url: https :

//doi.org/10.1038/nature14539 (cit. on p. 16).

[23] T.-Y. Lin et al. Focal Loss for Dense Object Detection. 2017. doi: 10.48550/ARXIV.17

08.02002. url: https://arxiv.org/abs/1708.02002 (cit. on p. 21).

[24] X. Liu et al. “Recognizing Named Entities in Tweets”. In: HLT ’11. Portland,

Oregon: Association for Computational Linguistics, 2011, pp. 359–367. isbn:

9781932432879 (cit. on p. 25).

[25] Y. Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019. doi:

10.48550/ARXIV.1907.11692. url: https://arxiv.org/abs/1907.11692 (cit. on

p. 26).

[26] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/master/

template.pdf (cit. on p. ii).

[27] A. McCallum and W. Li. “Early results for Named Entity Recognition with Condi-

tional Random Fields, Feature Induction and Web-Enhanced Lexicons”. In: Pro-
ceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003.

2003, pp. 188–191. url: https://aclanthology.org/W03-0430 (cit. on p. 24).

[28] A. Mikheev. “A Knowledge-free Method for Capitalized Word Disambiguation”.

In: Proceedings of the 37th Annual Meeting of the Association for Computational
Linguistics. College Park, Maryland, USA: Association for Computational Lin-

guistics, 1999-06, pp. 159–166. doi: 10 . 3115 / 1034678 . 1034710. url: https :

//aclanthology.org/P99-1021 (cit. on p. 24).

[29] A. Miranda-Escalada, E. Farré, and M. Krallinger. “Named Entity Recognition,

Concept Normalization and Clinical Coding: Overview of the Cantemist Track for

Cancer Text Mining in Spanish, Corpus, Guidelines, Methods and Results.” In:

IberLEF@ SEPLN (2020), pp. 303–323 (cit. on p. 40).

[30] ML | Spectral Clustering. [Online; accessed 20-January-2022]. 2019-07. url: https:

//www.geeksforgeeks.org/ml-spectral-clustering/ (visited on 2019-07-19) (cit.

on p. 15).

61

https://doi.org/10.48550/ARXIV.1901.07291
https://arxiv.org/abs/1901.07291
https://doi.org/10.48550/ARXIV.1909.11942
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.48550/ARXIV.1708.02002
https://doi.org/10.48550/ARXIV.1708.02002
https://arxiv.org/abs/1708.02002
https://doi.org/10.48550/ARXIV.1907.11692
https://arxiv.org/abs/1907.11692
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://aclanthology.org/W03-0430
https://doi.org/10.3115/1034678.1034710
https://aclanthology.org/P99-1021
https://aclanthology.org/P99-1021
https://www.geeksforgeeks.org/ml-spectral-clustering/
https://www.geeksforgeeks.org/ml-spectral-clustering/

BIBLIOGRAPHY

[31] D. Nadeau and S. Sekine. “A Survey of Named Entity Recognition and Classifica-

tion”. In: Lingvisticae Investigationes 30 (2007-08). doi: 10.1075/li.30.1.03nad

(cit. on pp. 6, 11, 14).

[32] D. Nadeau and P. Turney. “Unsupervised Named-Entity Recognition: Generating

Gazetteers and Resolving Ambiguity”. In: vol. 4013. 2006-06. isbn: 978-3-540-

22004-6. doi: 10.1007/11766247_23 (cit. on p. 25).

[33] V. Nair and G. E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann

Machines”. In: Proceedings of the 27th International Conference on International
Conference on Machine Learning. ICML’10. Haifa, Israel: Omnipress, 2010, pp. 807–

814. isbn: 9781605589077 (cit. on p. 20).

[34] S. Narayan. “The generalized sigmoid activation function: Competitive super-

vised learning”. In: Information Sciences 99.1 (1997), pp. 69–82. issn: 0020-0255.

doi: https://doi.org/10.1016/S0020-0255(96)00200-9. url: https://www.

sciencedirect.com/science/article/pii/S0020025596002009 (cit. on p. 20).

[35] NLTK Documentation nltk.tokenize package. https://www.nltk.org/api/nltk.

tokenize.html. Accessed: 2022-02-02 (cit. on p. 10).

[36] J. Nothman et al. “Learning multilingual named entity recognition from Wikipedia”.

In: Artif. Intell. 194 (2013), pp. 151–175 (cit. on p. 40).

[37] A. Olgac and B. Karlik. “Performance Analysis of Various Activation Functions in

Generalized MLP Architectures of Neural Networks”. In: International Journal of
Artificial Intelligence And Expert Systems 1 (2011-02), pp. 111–122 (cit. on p. 20).

[38] P. Ren et al. A Survey of Deep Active Learning. 2021. arXiv: 2009.00236 [cs.LG]

(cit. on p. 20).

[39] E. Riloff and R. Jones. “Learning Dictionaries for Information Extraction by Multi-

Level Bootstrapping”. In: (1999) (cit. on p. 16).

[40] V. Sanh et al. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and
lighter. 2019. doi: 10.48550/ARXIV.1910.01108. url: https://arxiv.org/abs/19

10.01108 (cit. on p. 26).

[41] D. Santos et al. “Harem: An advanced ner evaluation contest for portuguese”. In:

quot; In Nicoletta Calzolari; Khalid Choukri; Aldo Gangemi; Bente Maegaard; Joseph
Mariani; Jan Odjik; Daniel Tapias (ed) Proceedings of the 5 th International Conference
on Language Resources and Evaluation (LREC’2006)(Genoa Italy 22-28 May 2006).
2006 (cit. on pp. 40, 46).

[42] K. Santos. How DBSCAN works and why should we use it? [Online; accessed 20-

January-2022]. 2017-04. url: https://towardsdatascience.com/how- dbscan-

works-and-why-should-i-use-it-443b4a191c80 (visited on 2017-04-01) (cit. on

p. 14).

62

https://doi.org/10.1075/li.30.1.03nad
https://doi.org/10.1007/11766247_23
https://doi.org/https://doi.org/10.1016/S0020-0255(96)00200-9
https://www.sciencedirect.com/science/article/pii/S0020025596002009
https://www.sciencedirect.com/science/article/pii/S0020025596002009
https://www.nltk.org/api/nltk.tokenize.html
https://www.nltk.org/api/nltk.tokenize.html
https://arxiv.org/abs/2009.00236
https://doi.org/10.48550/ARXIV.1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://towardsdatascience.com/how-dbscan-works-and-why-should-i-use-it-443b4a191c80
https://towardsdatascience.com/how-dbscan-works-and-why-should-i-use-it-443b4a191c80

BIBLIOGRAPHY

[43] Y. Shen et al. “Deep Active Learning for Named Entity Recognition”. In: CoRR
abs/1707.05928 (2017). arXiv: 1707.05928. url: http://arxiv.org/abs/1707.059

28 (cit. on p. 28).

[44] C. Suman et al. “Why pay more? A simple and efficient named entity recognition

system for tweets”. In: Expert Systems with Applications 167 (2021), p. 114101.

issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2020.114101. url:

https://www.sciencedirect.com/science/article/pii/S0957417420308551 (cit.

on p. 26).

[45] S. Tedeschi et al. “WikiNEuRal: Combined Neural and Knowledge-based Silver

Data Creation for Multilingual NER”. In: Findings of the Association for Compu-
tational Linguistics: EMNLP 2021. Punta Cana, Dominican Republic: Association

for Computational Linguistics, 2021-11, pp. 2521–2533. doi: 10.18653/v1/2021

.findings-emnlp.215. url: https://aclanthology.org/2021.findings-emnlp.21

5 (cit. on p. 40).

[46] J. Yang, S. Liang, and Y. Zhang. “Design Challenges and Misconceptions in Neural

Sequence Labeling”. In: CoRR abs/1806.04470 (2018). arXiv: 1806.04470. url:

http://arxiv.org/abs/1806.04470 (cit. on pp. 27, 36).

[47] Z. Yang, R. Salakhutdinov, and W. W. Cohen. “Multi-Task Cross-Lingual Sequence

Tagging from Scratch”. In: CoRR abs/1603.06270 (2016). arXiv: 1603.06270. url:

http://arxiv.org/abs/1603.06270 (cit. on p. 28).

[48] Y. Zhu et al. Aligning Books and Movies: Towards Story-like Visual Explanations by
Watching Movies and Reading Books. 2015. doi: 10.48550/ARXIV.1506.06724. url:

https://arxiv.org/abs/1506.06724 (cit. on p. 36).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.5) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf(cit. on p. 63).

63

https://arxiv.org/abs/1707.05928
http://arxiv.org/abs/1707.05928
http://arxiv.org/abs/1707.05928
https://doi.org/https://doi.org/10.1016/j.eswa.2020.114101
https://www.sciencedirect.com/science/article/pii/S0957417420308551
https://doi.org/10.18653/v1/2021.findings-emnlp.215
https://doi.org/10.18653/v1/2021.findings-emnlp.215
https://aclanthology.org/2021.findings-emnlp.215
https://aclanthology.org/2021.findings-emnlp.215
https://arxiv.org/abs/1806.04470
http://arxiv.org/abs/1806.04470
https://arxiv.org/abs/1603.06270
http://arxiv.org/abs/1603.06270
https://doi.org/10.48550/ARXIV.1506.06724
https://arxiv.org/abs/1506.06724
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

G
on

ça
lo

A
nt

un
es

D
EE

P
TE

ST
TO

TR
A

N
SF

O
RM

ER
S

A
RC

H
IT

EC
TU

RE
IN

N
A

M
ED

EN
TI

T
Y

RE
CO

G
N

IT
IO

N
⟨2

02
2⟩

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives and Contributions
	1.4 Document Structure

	2 Related Work
	2.1 Feature Extraction
	2.1.1 Rule Based
	2.1.2 Gazetteers
	2.1.3 Stemming
	2.1.4 Lemmatization
	2.1.5 Part-of-Speech Tagging
	2.1.6 Bag of Words and Word Embeddings
	2.1.7 Document and corpus features
	2.1.8 TF-IDF
	2.1.9 Extraction of Multi-grams
	2.1.10 Tokenization
	2.1.11 Conclusion

	2.2 Learning methods
	2.2.1 Supervised Learning
	2.2.2 Unsupervised Learning
	2.2.3 Semi-supervised Learning
	2.2.4 Deep learning
	2.2.5 Conclusion

	2.3 Evaluation
	2.3.1 MUC evaluations
	2.3.2 Exact-match evaluation
	2.3.3 Automatic content extraction evaluation

	2.4 State of Art

	3 Implemented solution
	3.1 Pipeline
	3.2 Transformers
	3.3 BERT Fine tuning

	4 Results
	4.1 Datasets
	4.2 Results
	4.2.1 English
	4.2.2 Spanish
	4.2.3 Portuguese
	4.2.4 Swedish
	4.2.5 Twitter
	4.2.6 Species
	4.2.7 Medical

	4.3 Discussion

	5 Conclusion and Future Works
	5.1 Recap
	5.2 Conclusion
	5.3 Future Works

	Bibliography
	Back Matter
	Back Cover
	Spine

