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ABSTRACT 

Deep learning and text mining are involved in the research. This work includes the project I developed 
together with my colleagues at SAS Institute during my internship experience. In this project we had 
to support an Insurance company for the automation of their existing claim processing system. In fact, 
as of today, the procedure of reading the incoming claim requests, selecting the useful information 
and extracting it to a data management software, is done manually for hundreds of claims every day.  
The job required by the insurance company is to substitute the existing procedure with an automated 
one, by implementing an OCR system to read the raw data contained in the documents sent by the 
customers and transform it into clean and useful information to be inserted into the data management 
software. 
This research will show the investigation on how to deal with this problem and the objective is to 
automate the classification of the documents for the company, to provide them a system to prioritize 
the most urgent documents and to execute some technical and administrative checks on the extracted 
information. The automation is shown to be feasible; the completeness and accuracy of the 
information extracted are solid, proving that this specific task in the insurance company sector can be 
realized and help to reduce costs while improving time performance. 
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1. INTRODUCTION 

With the growth of Data Science techniques, the automation and enhancement of companies’ internal 
processes have gained more relevance as a solution to reduce costs and increase efficiency. The 
evaluation of the process performance and the implementation of digitalized solutions are often made 
by other companies specialized in data analytics and information technology consulting, such as SAS 
Institute. I personally had the opportunity to join the Customer Intelligence and Analytics team of this 
company with an internship program. In this report, I will present the project in which I took part during 
my experience at this company. 

1.1. COMPANY OVERVIEW 

SAS Institute is a privately held American software company that specializes in analytics software and 
services. The company was founded in 1976 by Jim Goodnight and John Sall, who were both graduate 
students at North Carolina State University at the time. Originally called Statistical Analysis System, the 
company was renamed to SAS Institute in 1984. Today, SAS corporate headquarters is in Cary, North 
Carolina, and has offices in over 60 countries worldwide with more than 14,000 employees. The 
software is installed at more than 80,000 business, government, university sites, and 90 of the top 100 
companies on the 2016 Fortune Global 500 are SAS customers. 

SAS provides a wide range of analytics software and services to help businesses and organizations 
make data-driven decisions. Their products include data management and preparation tools, advanced 
analytics software, artificial intelligence and machine learning capabilities. SAS also offers consulting 
and training services to help customers get the most out of their analytics investments. Some of the 
industries that SAS serves include finance, healthcare, government, and retail. SAS's solutions are used 
by thousands of organizations worldwide, including many of the world's largest companies. The SAS 
solutions allow efficient cost in both implementation and maintenance, with the possibility to evolve 
gradually to handle the evolution in the requirements of business and new regulations. 

 

Figure 1.1 - SAS Company Infographic 
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Sas Institute aims to help organizations around the world turn data into intelligence. The mission of 
the company is to provide innovative solutions to its customers’ most challenging business problems 
and to guarantee services that enable them to make better decisions faster.  
Since 1976, commitment to employees, communities, education and the environment has been rooted 
in its DNA. It drives the innovation provided to the customers. 

1.2. COMPANY SERVICES 

SAS offers a range of services to help organizations implement, manage, and optimize their analytics 
programs. These services include: 

- Consulting Services: SAS offers consulting services to help organizations define their analytics 
strategy, identify data sources, and develop customized analytics solutions. This service also 
includes the implementation of data management systems, data cleaning and data 
integration. 

- Training: SAS offers training services for individuals and organizations looking to optimize their 
analytical skills. The company provides instructor-led courses online, onsite, or virtually 
focusing on programming, data management, and analytics solutions. 

- Managed Services: SAS offers a wide range of managed services to help companies optimize 
their analytics program and scale up their analytic capabilities. It includes data management 
services, cloud services, and analytical modeling. 

- Technical support: SAS provides technical support services to its clients to assist them in 
troubleshooting problems with software, issues with data management, and best practices for 
using SAS software. 

- Innovation Lab: SAS has an innovation lab where data scientists, customer service, and product 
developers work together to develop new cutting-edge analytics solutions. 

1.3. PROJECT OVERVIEW 

The focus of this project will be the solution that SAS implemented for an insurance company to 
automate one of its internal processes. 

The insurance company receives hundreds of documents and communications related to claims that 
occurred and for which the customers that took out an insurance policy with them are asking for 
compensation or legal assistance. The increase in the incoming number of claims and mandatory 
bureaucratic steps requires an increasing amount of manual work in inspecting documents, collecting 
the important part of information and evaluating if the request of the customer fulfils the policy 
contract. With the existing technology, this procedure can be automated with an OCR system and 
reduce the efforts to the key aspects of claim management. 

The mission of the working group I took part in is to implement such a system to automate the process 
of management and archiving of communications regarding claims, retrieving all the relevant 
information." 
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2. LITERATURE REVIEW 

Nowadays, OCR systems are widely used in various industries and applications. The main use of this 
OCR technology is for the digitization of documents, in fact, it is designed to recognize and extract 
text from images or scanned documents, allowing computers to interpret and process the textual 
information. This is particularly useful for archiving, data entry, and document management systems. 
In the case of the insurance sector, many companies are implementing this technology firstly to 
enhance operational efficiency and secondly to improve accuracy in document processing. Regarding 
the latter, some language and text interpretation models are applied to the text extracted from the 
documents to classify the information. 

2.1.  OCR SYSTEMS 

Optical Character Recognition (OCR) is a technology that allows printed or handwritten text to be 
digitized and converted into a machine-readable format. These systems employ sophisticated 
algorithms and image processing techniques to extract text information from document images, 
enabling efficient digitization, text analysis, and information retrieval. 

OCR systems have evolved significantly since their inception; with the rise of digital documents and 
the advent of mobile devices, they have become even more prevalent in the new century. The 
challenge of emulating humans in recognizing written text was already studied by Rice, Nagy and 
Nartker (1999) by illustrating and explaining actual OCR errors. The pictures and analysis of their 
research provided insights into the strengths and weaknesses of OCR systems of that time, outlining 
a road map to future progress. This work inspired many researchers, for instance in the identification 
of documents containing handwritten text (Hiremath et al., 2010) which requires more advanced 
techniques in recognizing characters due to the absence of a known pattern beforehand likewise 
computer-printed characters. Another direction of the evolution of the OCR systems involves relating 
word recognition to the context of the document; for instance, instead of operating on single words 
or characters, exploit the context through models such nearest neighbor algorithm to improve the 
accuracy of text recognition (Sankar et. al., 2010). 

The availability of huge datasets in different languages allowed this technology to grow horizontally, 
including many alphabets and signs. The real-life data is fuzzy though and there is always a degree of 
impreciseness present in it. The book of Chaudhuri, Mandaviya, Ghoshand Badelia (2017) presents 
the common OCR techniques of preprocessing, character segmentation, feature extraction and 
classification; later, they compare them with some soft-computing techniques and assess their 
performance for multiple languages, showing how this approach outperforms the common method. 

Although the reading capabilities gap between humans and machines will eventually shrink with the 
evolution of OCR systems, there is still a fascinating topic of research which is the area of CAPTCHA 
(Completely Automated Public Turing test to tell Computers and Humans Apart). This widely 
employed test is to some degree a valuable tool in identifying the characteristics that OCR systems 
struggle to comprehend. (Rusu et al., 2004; 2009). 
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2.1.1. Tesseract 

In this project we used Google's OCR system, Tesseract. It is an open-source OCR engine based on the 
Tesseract OCR engine, which uses deep learning-based methods to achieve high accuracy rates on a 
wide range of OCR tasks. Tesseract is designed to be easy to use and integrate into other software 
applications. It supports multiple languages and can handle a wide range of image formats, including 
TIFF, JPEG, and PNG. Tesseract also provides options for controlling the OCR engine, such as adjusting 
the page segmentation mode or specifying the OCR engine mode. 

One of the key advantages of Tesseract is its open-source nature. This means that the code is freely 
available for anyone to use and modify. This has led to a large and active community of developers 
who have contributed to the improvement of Tesseract. For this reason, we chose it among others. 

The architecture of Tesseract assumes that the input is a binary image. Therefore, the image has to 
be preprocessed to benefit the most from it. In figure 2.1 below, we show some basic preprocessing 
operations that are grayscale, binarization and deskew. The first one means turning the RGB channel 
to a single grayscale channel of pixel values from 0 to 255. The binarization is then setting a threshold 
in this scale to differentiate values into two binary options, namely black and white. Finally, the last 
step of deskewing is done to correct a possibly inclined image (Ma et al., 2021).  

 

Figure 2.1 – Illustrative preprocessing steps, from the left: original image, grayscale, binarization and 
deskewing 

Once the image is ready, the information extraction follows a step-by-step pipeline. The first step is a 
connected component analysis in which the outlines of the components are stored. By inspecting the 
nesting of outlines, and the number of child and grandchild outlines, it is simple to detect inverse 
text and recognize it as easily as black-on-white text. At this stage, outlines are gathered together, 
purely by nesting, into blobs. Blobs are organized into text lines, and the lines and regions are 
analyzed for fixed pitch or proportional text. Text lines are broken into words differently according to 
the kind of character spacing. Fixed pitch text is chopped immediately by character cells. 
Proportional text is broken into words using definite spaces and fuzzy spaces. Recognition then 
proceeds as a two-pass process. In the first pass, an attempt is made to recognize each word in turn. 
Each word that is satisfactory is passed to an adaptive classifier as training data. The adaptive 
classifier then gets a chance to recognize more accurately the rest of the text in the page. Since the 
adaptive classifier may have learned some patterns at the end of the first run, a second pass is run 
over the page, in which words that were not recognized well enough are recognized again. The final 
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phase resolves fuzzy spaces and checks alternative hypotheses for the x-height to locate text with 
different caps or fonts (Smith, 2007). 

 

Figure 2.2 - Example of Tesseract OCR text recognition 

Beyond text detection there are some other major challenges faced by layout analysis, namely 
detecting text columns and table regions. When a text is split into columns it is essential to detect 
the edges of the layout since the OCR has a fixed orientation, commonly horizontal. This can be done 
with an algorithm for tab-stop detection (Smith, 2009). Table detection is also a hard problem since 
tables have a large variation in their layouts. This challenge can be decomposed into two steps that 
are: finding the boundaries of a table in an image page and recognizing the structure of rows and 
columns (Shafait et al., 2010). 

As we mentioned before, in order to cope with the vast diversity of book content and typefaces, it is 
important for OCR systems to leverage the strong consistency within a book but adapt to variations 
across books. Lee and Smith (2012) propose a system that adapts to shapes and vocabularies within a 
book using the Tesseract engine as a baseline. 

2.2. LANGUAGE AND TEXT INTERPRETATION TO EXTRACT INFORMATION AND BUILD CLUSTERS 

The digitization of documents is the first part of claim automation processing. After the information 
is extracted from the text it must be interpreted and categorized for business purposes. The text 
contains concepts with different degrees of complexity, from simple 1-word codes with fixed 
structure to complex sentences. 

2.2.1. SAS Visual Studio Analytics 

To implement these text analytics tasks, we will use the SAS Visual Text Analytics tool (SAS Institute 
Inc., 2019). This tool allows us to build a pipeline (figure 2.3), which is a process flow diagram that 
can be used to represent a sequence of nodes each performing analytical tasks such as processing 
the raw text, extracting the information and creating categories.  
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Figure 2.3 – Example of a pipeline in SAS Visual Studio Analytics 

Nodes that will be involved in this project are the text parsing node, concepts node and categories 
nodes.  

The Text Parsing node enables the user to view and explore the terms that are present in the 
document collection. During the parsing process, terms are either kept or dropped based on their 
importance. For example, terms that have the role of preposition or conjunction often provide 
minimal value, therefore they are dropped during text parsing. To gain a better understanding of 
how terms are related to each other, it is possible to generate a term map or similarity scores for a 
selected term to explore its relationship with other terms in your document collection. An example is 
shown below in figure 2.4. 

 

Figure 2.4 - Example of a text parsing node 

The Concepts node enables the user to work with semantic attributes, entity types, facts, or 
relationships and extracts pieces of the text using rules written in the language interpretation for 
textual information (LITI) syntax. An example is shown below in figure 2.5. 
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Figure 2.5 – Example of a concept node 

Finally, a category identifies a group of documents that share a common characteristic. The 
Categories node enables the user to create categories in an almost identical way to the Concepts 
node.  
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3. METHODOLOGY 

3.1. PROCESS AS-IS AND PROCESS TO-BE 

As of today, the insurance company receives the majority of the documents via email which, besides 
the head and body of the mail, may contain also attachments as supporting documents to the 
communication, in the form of digital documents, scans and photos. All this data is converted to a 
pdf file identified by a unique key associated with the email. From this point, the procedure is 
manual: an operator reads the document and categorizes it depending on whether it is associated 
with an existing claim practice or if is a new request. Hence, he does the following: 

- If it is an existing claim, all the new information must be added to the existing one in their 
data management software 

- In case of a new claim request, the operator must do some administrative checks (for 
example check if the insurance policy is still valid when the accident happened) and create a 
new claim instance in the data management software with all the relevant data contained in 
the document 

In the first meetings with the operators, several points of improvement in the streamline were 
identified. The main goal is to reduce the processing time of this job without a loss in the accuracy of 
the information extraction. Therefore, ideally, all the work of extracting the information and 
arranging it in categories will be done by the machine. To be more specific all the following tasks will 
be carried out: 

- Extraction of any useful information from the documents 
- Integration with all the supplementary information already existing in the database 
- Calculation of the prioritization of the claims 
- Check for technical and administrative coverage 

3.1.1. Information extraction and additional data 

In response to the first two points of the task list above, a table containing such information is 
created. This table will be defined throughout the chapter as the “cover” of the claim. It is filled 
mostly with data obtained through a textual analysis algorithm from the documents and the rest of 
the information is retrieved from the existing database through web service requests. In fact, for 
instance, if we know the policy identifier it is possible to retrieve all the information about the 
insured person and its policy contract. In table 3.1 it is reported a summary of all the features and a 
brief explanation of their type and meaning 

Table 3.1 - List of features in the cover 

Feature 
ID 

Feature name 
Expected 
answer 

Explanation 
Source of 

the retrieved 
information 

1 Date of occurrence DD/MM/YYYY 
Specific date when the fact 

occurred 
Textual 
analysis 
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2 Date of reporting DD/MM/YYYY 
First date when the insured 

person reported the fact 
Textual 
analysis 

3 Count of unpaid invoices 
Integer 
number 

Amount of unpaid invoices that 
the customer is reporting 

Textual 
analysis 

4 Date of unpaid invoices DD/MM/YYYY 
Date of each unpaid invoice that 

the customer is reporting 
Textual 
analysis 

5 List of unpaid invoices 

List of 
alphanumeric 
ids separated 

by pipe 
character 

Id of each of the unpaid invoices 
Textual 
analysis 

6 Policy ID 
Alphanumeric 

code 

Unique identifier for the policy 
contract between customer and 

company 

Textual 
analysis 

7 
Other policies of the 

insured person 

Alphanumeric 
codes 

separated by 
pipe character 

List of other policies id that the 
customer may have 

Web Service 
request 

8 Retroactivity 
Yes/No and 
years if Yes 

Years of retroactivity of the policy 
Web Service 

request 

9 Motor & Debt Yes/No 
Whether the claim belongs to 
road accident or unpaid debt 

categories 

Textual 
analysis 

10 License plate String License plate code of the vehicle 
Textual 
analysis 

11 
Cause of damage/Type of 

dispute 

Class of a 
categorical 

variable 

Label to define the nature of the 
dispute 

Textual 
analysis 

12 Risk type under warranty Yes/No 
Whether the claim is covered by 

the policy contract or not 
Web Service 

request 

13 Counterparty String Other parts involved in the fact 
Textual 
analysis 

14 
Real estate address (in case 

of real estate dispute) 
String 

Address of the building if the 
claim is about a real estate 

dispute 

Textual 
analysis 

15 Judicial/extrajudicial phase 
“Judicial” or 

“Extrajudicial” 

Whether the claim involves 
violations of the penal code or 

not 

Textual 
analysis 

16 
Number of 

Judicial/extrajudicial cases 
Integer 
number 

Maximum number of claims that 
can be refunded in a contract 

Web Service 
request 

17 
Number of dispute cases 

already used by the insured 
person 

Integer 
number 

Referred to the previous, number 
of claims already refunded in a 

contract  

Web Service 
request 

18 
Value of the 

damage/argument in object 
Number with 
euro format 

Total amount of money that are 
object of the dispute 

Textual 
analysis 
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19 
Presence of legal 
representation 

Yes/No and 
name if Yes 

Whether there is a lawyer 
representing the insured person 

and in case its name 

Textual 
analysis 

20 Sender role 
Class of a 

categorical 
variable 

Role of the person reporting the 
fact in the first mail (insured 
person, mediator, lawyer…) 

Textual 
analysis 

21 
Invoice directly assigned to 

the insurance company 
Yes/No 

Whether the unpaid invoice has 
to be paid directly by the 

insurance company 

Textual 
analysis 

22 New claim or follow-up 
“New claim” 

or “Follow-up” 

Whether the document belongs 
to a new claim or is a follow-up of 

an existing claim 

Textual 
analysis 

23 Priority1 
Integer 
number 

Number representing the 
hierarchy of the document in the 

queue 

Textual 
analysis 

24 Product code 
Alphanumeric 

code 

Code of the contract type 
between customer and insurance 

company 

Web Service 
request 

25 Regularity Yes/No 

Whether the date of occurrence 
and type of dispute are congruent 

with the covered period and 
damages in the contract 

Web Service 
request 

26 Completeness score 

Decimal 
number 

between 0 
and 1 

Index representing the 
proportion of features extracted 

from the document 

Calculated 
index 

 

3.1.2. Calculation of the prioritization of the claims 

The general rule to process the queue of documents is FIFO (First In First Out) which is to comply 
with the chronological order of arrival. But sometimes the queue grows and some of the practices 
can be postponed to prioritize more urgent documents. Therefore, the company defined some rules 
that establish a hierarchy among the documentation. These are enumerated from 1 to 6 and are as 
follows: 

Priority 1: Top-class insurance policies that the company took out with reinsurance companies 
(reinsurance company is a type of insurance company that provides insurance coverage to other 
insurance companies. It is a practice in this sector to share risk and minimize the impact of large loss 
events. Reinsurance companies typically specialize in certain types of insurance coverage, such as life 
insurance, property and casualty insurance, or health insurance) 

Priority 2: Other insurance policies that the company took out with reinsurance companies  

Priority 3: Documents with keywords such as “urgent”, “reminder”, “complaint”, “contract 
cancellation/termination” and documents that mention the “Institute for the Supervision of 

 
1 This is explained in-depth in paragraph 3.1.2. 
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Insurance” which is an independent authority responsible for supervising and regulating all insurance 
business. 

Priority 4: Claims without the presence of legal representation 

Priority 5: Claims of some specific legal spheres (opposition to administrative sanctions, civil 
mediations and others) 

Priority 6: Any other document 

Of course, if a document fulfils two or more different rules, the priority assigned is the highest one 
(the lowest in number) 

3.1.3. Check for technical and administrative coverage 

The process As-is includes some checks that can be easily automated. In particular, before any 
monetary refund is approved by the company, it is necessary to verify if the customer paid off the 
insurance premium. Secondly, it must be verified whether the insurance policy is still valid, hence if 
the date of occurrence of the claim is between the date the contract started and the expiration date. 
Furthermore, the type of dispute must comply with the contract conditions, hence for the sake of the 
argument, a car crash can not be refunded if the customer was insured for its household. This kind of 
check can be automated with a web service request to the database. 

The feature “regularity” was created in the cover to get these checks through a web service request. 
Hence, the claim is regular if the date of occurrence and type of dispute meet the requirements of 
the contract. 

3.2. DATA COLLECTION AND STORAGE 

A data management software is used to store, organize and manage the customer’s data. The 
operator can fill in the important information collected from the documents through an interface. 
The database behind contains the documents, which are the elementary unit defined by a unique 
identifier associated with the email, and all the related features. The other important key besides the 
email identifier is the claim identifier, which is shared with all the documents related to a single 
claim. 

Also the task of filling in the information can be automated, since from the cover an xml file is 
generated and sent to the company. The xml file format is suitable to be loaded on the data 
management system without compatibility issues. 

However, every time a piece of information is needed, the operator can run a query to extract all the 
documents or set of values that match the request. 

3.3. PROCESS FLOW 

The structure of the process flow starts from the raw zip archives, which contain emails and 
attachments in several pdfs. The desired output of the pipeline is the cover table that reads the zip 
identifiers on the rows and the information extracted organized on the columns. Firstly, the input 
files need to be unzipped, and then transform all the contained information in the text. Once the text 
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is extracted and cleaned, it is interpreted by a model that gets the information according to the 
features that are reported in table 3.1 and it returns the cover with the processed data. 

3.3.1. Text extraction 

For the first part of the process, we worked with Python and Pytesseract, which is the Tesseract OCR 
free tool made for Python. The reasons were that it was easier to handle raw files and to test many 
techniques locally, transforming image and text data. Moreover, these tools were open source and 
efficient enough for the first phase of the project. 

The Sas program reported in Appendix A2. Proc python, includes the operations of ZIP archive 
download and pdf file extraction. Each pdf is opened with the PyMuPDF library; the metadata 
information, such as the number of pages, file name, author, etc. is collected in a separate csv file 
and the pdfs are processed to extract the text. 

In the first phase of the project, we experimented with many solutions to transform the pdf files into 
text files. Even though the task is essentially trivial, the scan part turned out to be the most 
expensive operation in time and computational resources. Therefore, we evaluated to use it only 
when strictly necessary. For this reason, in a second moment, we worked to optimize the 
performance workflow. Indeed, this brought a great improvement in time performance and 
accuracy. 

The content of the pdfs is miscellaneous and stored in many formats. This is due to the fact that the 
customers are of any sort: private citizens, lawyers, agents or even other companies. They are asked 
to comply with some guidelines when sending communications, but these are not mandatory. As a 
result, the variety in language and structure of the documents is very large. For this reason, we spent 
a great effort inspecting a sample of documents to figure out the most frequent ones. Studying the 
patterns of the most common documents gave us some insights to develop the workflow. 

The scan of the documents is built up from each page, so here is a list of observations that we noted 
while looking at the single pages of the documents:  

 All the text parts can be extracted without scanning the page. Direct text extraction takes an 
insignificant amount of time and the accuracy is perfect since the output equals the input.  

 Most of the images are not optimal to be scanned by the OCR and need to be preprocessed 
first. In fact, they may come noisy, blurry, rotated, with incorrect brightness.  

 When images are found, it occurs that the small ones do not bring relevant information, such 
as logos and signatures. Hence filtering those images out would prevent from spending time 
with the OCR extraction. 

 If there is only one large image, we can run the OCR over that one instead of generating a 
scan of the entire page, this will save up time  

 When there are many images, it occurs that all the relevant information is brought from the 
largest ones. Indeed, in this case, it is usually faster to generate a page scan and run the OCR 
once instead of repeating the task for each image.  

These considerations were translated into Python code, which is reported in Appendix A below. In 
particular, the text_image_page_scanner function contains the core of those operations. 
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In the following Figure 3.1 we summarize the logical flow we draw to structure the code 

 

Figure 3.1 – conceptual flow to extract the pdf files and transform them into Txt files 

Even though the majority of the documents is being scanned correctly, some exceptions need to be 
faced in a further part of the code. In fact, there are few documents that may have no text and only 
images, among which for some reason one large white image as background and several small 
images with png format containing text and a transparent background layer. Hence, the algorithm 
that we designed filters out the images with text because of their size and reads the white large 
background only. As a result, the OCR scan is blank although it is clear that there is information in the 
page. Therefore, we added one more step for those images that are white (detected by selecting 
only those with an average rgb channel larger than 254) and with a blank extraction: a scan of the 
entire image is generated so that all the visible can be extracted. 

This type of phenomenon was discovered in a further stage of the pipeline since some covers were 
being generated with no piece of information while the pdf documents had plenty of text. So, with 
the development of the project, there will be room to include eventual exceptions. 

The first part shown in Figure 3.1, from the zip archive to the pdf was dealt with a Python procedure 
in Sas language. Hence it was possible to wrap the text_image_page_scanner python function within 
the rest of Sas code.  

One additional consideration we made was about the position of the text in the document. Since the 
order of the information may be important, we generated a tag string in a Txt file at the beginning 
and the end of each page. Then for each page, we append text first and subsequently the image scan. 
Obviously, if a full-page scan is run then all the information contained fills one page in the txt file. 
Later on, we realized that this part could be improved for a future phase of the project by generating 
further tag strings as labels indicating either the position of the text in the page or the content of the 
text (i.e. “top-right corner, customer address”). In chapter 5, we will discuss this improvement and 
other possible ones. 

The outcome of this step is then a text file for each document. 
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3.3.2. Visual Text Analytics 

In this part of the flow, we built the model to interpret the information from the text and create the 
features that will fill the cover of each document.  

Once the Txt files are collected and available, they are appended to a table with a unique identifier 
connected to each claim. 

This data frame is then processed in the SAS Viya Visual Text Analytics (VTA). This tool can scale the 
human act of reading, organizing, and extracting useful information from huge volumes of textual 
data. In the following Figure 3.2 it is represented the structure of the flow to score the text files in 
concepts and categories. 

 

Figure 3.2 - Pipeline used for the project 

In the first place, the whole text is parsed: all the non-important stop words are removed and part-
of-speech filtering is applied. 

Then we build the concept nodes, organized in dedicated areas of the features: general cover 
concepts, legal concepts, priority concepts and sender concepts. The reason was to work with slim 
parts of the flow separately. For each node we have several primary and supporting concepts 
containing all the rules written using LITI (language interpretation for textual information) syntax. 
Concept rules exploit semantic attributes, entity types, distance relationships and text order to 
recognize items in context so that you can extract only the pieces of the document that match the 
rule. The set of matches for each concept is then associated with the identifier of the original data 
frame. 

The last step of the pipeline is the category node. In short, the categorical variables in the cover are 
made on top of some concept rules, so once a specific rule has found some matches in the text, one 
categorical label will be assigned to all the documents that contain those matches. For instance, the 
concept “Presence of legal representation” matches any lawyer name or law firm denomination; 
hence in the categorical node we assign the label “lawyer yes” to all those documents that contain 
such matches and “lawyer no” otherwise.  
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The training of the model was done side by side with the employees of the company who are 
currently doing this operation manually. Several meetings were needed to acknowledge the meaning 
of each concept and discuss how to match the correct information in practice. Hence, for example, 
we learnt that the policy number can be either a sequence of 10 digits or an alphanumeric sequence 
of 13 characters (5 digits + 3 letters + 5 digits). So, the first step is to search in the documents for 
such sequences through a regex. Of course, the matches may contain wrong information (i.e. mobile 
number of 10 digits), so we need a more detailed rule to match only the right sequences. Therefore, 
we combine this rule in a concept rule, where the result of such a regex must be matched only if it is 
near the keywords “policy number”, or “policy nr.”, et al.  

The rule-tuning then is a step where we train the model to imitate the human process. This 
procedure requires a significant amount of time; rules also need to be updated over time to be 
consistent. 

Around 150 concepts and 50 categories were created among the nodes. 

3.3.3. Cover generation 

This step of the flow concerns the creation of the cover starting from the model trained in Sas VTA. 
This part was done in Sas language and essentially, after a data postprocessing stage, the cover is 
filled with those features that can be obtained with web service requests to the company’s database. 
Hence, the cover is generated and all the features are stored in an xml file which is delivered to the 
company to add it to their database. The following Figure 3.3 represents the logical flow from the 
analysis of the text files to the generation of the cover and the xml output. 

 

Figure 3.3 - conceptual flow to elaborate data in the txt files, create the cover and the xml file 

3.3.4. Performance Dashboard 

The whole process is being monitored in terms of time performance and statistics of the processed 
data. That is done through a performance dashboard where we report the main KPIs highlighting the 
amount of information processed, namely the number of ZIP archives, documents and pages 
processed. To assess the work progress, a completeness score and accuracy score are provided for 
the entire data. Further features are represented through bar charts and pie charts that can interact 
with each other. In addition, the processing time is being analyzed to assess the performance of the 
entire end-to-end flow. In the following figures 3.4 and 3.5 the two main dashboard tabs are shown. 
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Figure 3.4 - Key performance indicators in the dashboard 

 

Figure 3.5 - End-to-end process performance section of the dashboard 
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4. RESULTS AND DISCUSSION 

4.1. COMPLETENESS AND ACCURACY 

For the purpose of the project, we had to make sure that the piece of information that is extracted 
from each document is appropriately complete and accurate.  

4.1.1. Completeness index 

The completeness index is a feature that is included in the cover and it is calculated as the amount of 
extracted features over the total number of features.  

𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸𝑁𝐸𝑆𝑆 =
𝑁° 𝐸𝑋𝑇𝑅𝐴𝐶𝑇𝐸𝐷 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆

𝑇𝑂𝑇 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆
 

Indeed, not all the documents may have enough information to fill all the features, it may be that 
some of them are missing because they are not needed, or because they are not coherent with the 
type of claim (i.e., a list of unpaid invoices is not available for a road accident claim and license plate 
is not available for credit recovery claim). Therefore, if the claim type is recognized then the 
corresponding incoherent features are subtracted from the index in the following way: 

𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸𝑁𝐸𝑆𝑆 =
𝑁° 𝐸𝑋𝑇𝑅𝐴𝐶𝑇𝐸𝐷 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆 − 𝐼𝑁𝐶𝑂𝐻𝐸𝑅𝐸𝑁𝑇 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆

𝑇𝑂𝑇 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆 − 𝐼𝑁𝐶𝑂𝐻𝐸𝑅𝐸𝑁𝑇 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆
 

As the process will be implemented, a threshold for minimum completeness will be set in order to 
isolate those documents whose covers are too poor of data and analyze them manually. 

4.1.2. Accuracy index 

The accuracy index, on the other hand, is calculated in comparison to the true data. This means that 
to set up this index an operator is needed to check the same documents that are processed by the 
OCR system in order to compare their outcome. This was done over a period of 2 months to verify 
whether there was an improvement in accuracy while updating some parts of the process, especially 
the text analysis part. Since not all the features are mandatory when opening a new claim, the 
insurance company required to calculate it over 14 features, which are: Date of occurrence, Date of 
reporting, Policy ID, Contractor, Motor & Debt, Cause of damage/Type of dispute, Number of 
Judicial/extrajudicial cases, Number of dispute cases already used by the insured person, Presence of 
legal representation, Invoice directly assigned to the insurance company, New claim or follow-up, 
Regularity, Completeness score. Hence it is calculated as follows 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =
𝑁° 𝐶𝑂𝑅𝑅𝐸𝐶𝑇 𝑀𝐴𝑁𝐷𝐴𝑇𝑂𝑅𝑌 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆

𝑇𝑂𝑇 𝑀𝐴𝑁𝐷𝐴𝑇𝑂𝑅𝑌 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆
 

Note that if mandatory information is not in the document, the empty extraction from the OCR 
system will be considered as a correct answer by the operator. 

4.2. TIME PERFORMANCE 

The time execution of the process was also monitored to certify the improvement obtained with 
automation instead of manual processing. Indeed, an operator can process on average 4 to 8 emails 
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per hour, depending on the amount of content and attachments. In Figure 4.1 we represent the 
hourly flow of emails in the inbox of the company grouped by weekday and averaged over two 
months. Note that all the emails are forwarded to the operators only in between 7 am and 8 pm 
every day, Sunday excluded. This means that if a customer sends an email outside these time slots, it 
can be automatically postponed to the first available moment of the following time slot (i.e., if the 
company receives an email after 8 pm they do not read it before 7 am of the following day). 

 

Figure 4.1 - hourly flow of emails grouped by weekday and averaged over two months 

As it is now, on average for a claim the process takes on average 1 minute and 11 seconds to convert 
all the documentation through the OCR into a text file and process it with the concept and categories 
rules. When running the entire flow end-to-end there are also roughly 25 seconds of execution that 
are necessary steps of the pipeline (such as the creation of an execution log, creation of cas cloud 
session, creation of the ftps connection, check for the presence of zip files in the queue, creation of 
metadata of the execution, update of the existing tables, termination of the session).  

We wanted to minimize the delay which is the time elapsed between the arriving time of the email 
and the upload time of the cover to the company. Assuming that as soon as the email is received it is 
in the queue to be processed, we can also define the delay as: 

𝐷𝐸𝐿𝐴𝑌 = 𝑄𝑈𝐸𝑈𝐸𝐼𝑁𝐺 𝑇𝐼𝑀𝐸 + 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝐼𝑁𝐺 𝑇𝐼𝑀𝐸 

Considering that: 

- Even though it is possible to have overlapping executions (hence more than one execution per 
time) we wanted to avoid an overload of the machine CPU since its computational power is 
limited. 

- An execution of a batch of claims was preferable to execute them singularly since we wanted to 
produce a restrained number of logs and metadata files 

- The company set for the delay an indicative maximum threshold of 45 minutes 
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We scheduled an execution of a batch of 5 claims every 10 minutes for a processing rate of 30 claims 
per hour. The average processing time of such a schedule is 5 minutes and 36 seconds which is 
abundantly less than the scheduled interval of 10 minutes; this way there is also a margin for 
executions that take longer than the average processing time. 

Looking again at figure Figure 4.4.1, there are still some time spans in which the arrival rate is higher 
than the processing rate of 30 claims per hour. Those may happen between Monday and Friday and 
especially in the morning (9 pm-12 pm) and in the middle of the afternoon (16 pm). So we set up a 
specific schedule for this time spans with a scheduled execution of a batch of 5 claims every 6 
minutes. For a processing rate of 50 claims per hour. This way the average processing time is still 
lower than the scheduled interval of 6 minutes and even though there is less margin for executions 
that take longer than the average processing time the queue will not explode because the processing 
rate is higher than the arrival rate. 

4.3. COMPARISON WITH SOME KPIS 

Although it is not possible to measure precisely the performance of a human operation due to the 
variability of the documentation and the abstraction of the dynamics of this task, we would like to 
report a comparison of the performances of the human-driven process and the machine-driven 
process to point out the improvement that this project brought to the company. 

In the following table 4.1 we report the comparison of the key performance indicators of the two 
processes. 

Table 4.1 - Performance overview, manual vs. automated process 

 Manual process 
(per operator) 

Automated 
process 

range of claims 
processed per hour 4 to 8 30 to 50 

Average accuracy 95%2 81% 

Average completeness 90% 86% 

 

Certainly, the efficiency of the process has largely improved since the automated process can handle 
the entire load of incoming claims while there was a need for multiple operators to elaborate the 
same load. This led to a great achievement for the company since many resources are saved or 
employed in other tasks. Therefore, we can confirm that the objective of automating the reading, 
comprehension and extraction of all the information to the data management software was 
successful; the project is currently employed by the insurance company. However, the accuracy and 
completeness are still not as good as the ones produced by the operators, so there is still one 
operator checking the correctness of the covers and filling with data some blank features that are 
supposed to contain information. Some of the reasons were already mentioned throughout this 

 
2 Also in the human-driven process some mistakes are made, an estimation of 5% of errors is made by the 

company for a first manual elaboration which is eventually corrected by other employees in a second moment 
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report; considering the type of data and the limitations of the solution implemented in this project 
the results are good, even slightly better than expected. After a reflection, we agreed that further 
improvement would come from a change in the input data or the technology implemented. We will 
discuss the limitations of the automated process and suggest some recommendations for future 
work in the following chapter. 
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5. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS 

The research conducted in this project has provided a valuable solution for the automation of claims 
processing. However, like all research, it is not without its limitations and areas for improvement. It is 
important to acknowledge these limitations and provide recommendations for the future. This 
section will discuss the limitations of the present study and suggestions for future research. 

5.1. LIMITATIONS 

Although OCR technology carries out diligent work, it has some limitations in the effectiveness of 
reading the documents. Some of the lack of accuracy is due to its nature because of some intrinsic 
limitations of the technology. These are mainly low-quality images and handwritten text. 

As a matter of fact, OCR relies on the quality of the image, meaning that if an image is not clear or 
has a low resolution, the OCR system may not be able to recognize the text accurately. The extent to 
which the image can be preprocessed sometimes it is not sufficient or it cannot be generalized for 
the flow a priori. In fact, similarly to other parts of the process, we established a sequence of 
preprocessing functions to have an optimal result for the heterogeneous pool of images that are 
contained in the documents while taking into consideration the trade-off with the execution time. To 
put it simply, it is in not worth it to spend too much time preprocessing an image that may bring 
anyways a bad text extraction because of its low quality. 

Furthermore, OCR is still not perfect at recognizing handwritten text, especially the Tesseract engine 
involved in this project, so documents that contain a significant amount of handwriting need to be 
manually processed. Another limitation of OCR technology is in its ability to recognize non-textual 
elements, such as images or diagrams, making them difficult to filter and extract automatically. 
Finally, OCR usually handles all the text information uniformly; however, when the text is composed 
of mixed structures, including headers, body, and tables, and features such as font, size, and 
orientation, there may be a higher probability of information loss when translated to a formatted 
text. 

For what concerns the text interpretation part, there is no empirical rule that can fully identify the 
correct information and isolate it from the rest of the text. In the approach implemented in this 
project, several rules were set up and their combination brought to a discrete accuracy. However, 
this method has a saturation threshold, meaning that after a certain amount of rules, the insertion of 
a new one may bring an improvement for a few instances but at the same time have a worse impact 
on the rest of the instances. Hence, we considered the combination of rules that brought the optimal 
accuracy for the given set of instances.  

A further limitation of this part was related to the OCR and its weakness in detecting the structure of 
information, namely tables, font size, and position. Having a loss in the text structure means the 
interpretation is not as good, since for instance it is harder to relate the meaning of a date or number 
in a flat text when it was originally connected to its position in the document. The example 
documented in Figure 5.1 shows that the table information is extracted as flat text, thus it is not 
possible to exploit the knowledge contained in the vertical position of the column labels if the text is 
being examined horizontally. 
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Figure 5.1- example of weak table extraction from OCR 

5.2. RECOMMENDATIONS 

To address the lack of accuracy caused by OCR limitations, it is crucial to update the communication 
system between customers that file insurance claims and the company. According to many authors in 
the literature, the accuracy of OCR systems directly depends upon the quality of input (Rice et al., 
1999; Chaudhuri et al., 2017). Currently, customers send emails and documents in various formats 
that may lead to information loss at some stage of the process. This can be resolved by implementing 
a standardized claim filing module, which could simplify the interpretation of information. If the 
essential information is required to be sent in a uniform format, it would ease the processing of data. 
Since this solution might not be implemented rapidly, it might be considered also a replacement of 
the Tesseract engine with another OCR which can better detect non-structured text and handwritten 
text. 

Another recommendation concerns the strategy implemented to extract information from the text. 
Currently, the OCR engine extracts all text information from the documents. These texts are 
unstructured and, as we explained previously, the structure of the text sometimes has a role in its 
interpretation. Hence, incorporating meta-labels to differentiate the various sections of the 
document, or employing an alternative tool to extract structured data like tables, would facilitate the 
process of rule tuning. Also preprocessing the text to evaluate the meaning of its content and assign 
a label would help improve the interpretation of the text when dealing with concepts and categories. 
For instance, we had some issues excluding documents containing a scan of the insurance contract: 
in fact, these documents contain data that is already known by the company and have no useful 
information for the cover; at the same time, they are usually long and plenty of keywords that could 
bring some noise in the design phase of concept rules. Knowing that the document contains only a 
scan of the insurance contract would bring us to exclude it from the process. 
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6. CONCLUSION 

As part of my internship at SAS Institute, this research was conducted for a project aimed at developing 
an automated system to handle the inbound claims of an insurance company. Currently, these claims 
are processed manually. Some literature was presented to introduce the existing technology and 
knowledge related to this problem and, after that, an extended explanation was given for the 
methodology used in practice for this project. In particular, the tasks made in the process as-is and the 
plan for the process to-be. The product delivered to the company is a “cover” summing up all the 
extracted information, the prioritization policy of the claims and a check for technical and 
administrative coverage. Afterward, we went through storing data and the implementation of the 
process flow. For this last one, we provided a detailed description of the text extraction and 
interpretation. 
Along with the methodology, we analyzed some statistics and discussed the results of the new 
automated system. There is evidence for a great improvement in efficiency and reduction of spending 
of resources for the insurance company. Although the automation is feasible, the completeness and 
accuracy of the new process are still not optimal; this is due to some limitations of the OCR technology 
itself and the variety of the type of documents contained in the claims. To address a solution to such 
limitations and improve the outcomes, some recommendations for future works were given, such as 
considering the modernization of the current system in which the customers send the documentation 
to the insurance company, which may help a lot the automation process, or facilitating the 
interpretation of the text by adding meta-labels to the text files. 
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APPENDIX 

A. CODE TO BUILD THE OCR 

A1. Python functions 

## Import libraries 
import cv2 
import os 
import pytesseract 
from skimage import * 
from deskew import determine_skew 
import re 
import numpy as np 
import logging 
import time 
from PIL import Image 
 
## Set Tesseract directory 
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' 
 
## Define functions 
def noise_removal_and_smoothening(img): 
    img_u=img.astype(np.uint8) 
    filtered = cv2.adaptiveThreshold(img_u, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 41,3) 
    kernel = np.ones((1, 1), np.uint8) 
    opening = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel) 
    closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel) 
    #image smoothening 
    ret1, th1 = cv2.threshold(img_u, 180, 255, cv2.THRESH_BINARY) 
    ret2, th2 = cv2.threshold(th1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) 
    blur = cv2.GaussianBlur(th2, (1, 1), 0) 
    ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) 
    or_image = cv2.bitwise_or(th3, closing) 
    return or_image 
 
def adjust_contrast(img, clipLimit, tileGridSize, brightness, contrast): 
    try: 
        lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB) 
        l_channel, a, b = cv2.split(lab) 
        clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize) 
        cl = clahe.apply(l_channel) 
        limg = cv2.merge((cl,a,b)) 
        enhanced_img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR) 
    except: 
        img = np.int16(img) 
        img = img * (contrast/127+1) - contrast + brightness 
        img = np.clip(img, 0, 255) 
        img = np.uint8(img) 
        enhanced_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) 
    return enhanced_img 
 
def deskew(image, dimension_limit): 
    ''' 
    Rotate the image automatically to increase the OCR precision. If the image is too big, 
    the function will interrupt the process and the original image is returned 
    ''' 
    if image.shape[0] > dimension_limit: 
        print('The image has not been processed because over the dimension_limit') 
        return image.astype(np.uint8) 
    else: 
        angle = determine_skew(image) 
        if angle == None: 
            rotated = rotate(image, 0, resize=True, preserve_range=False) * 255 
            print('angle was not calculated by the function. Rotation is se to angle = 0') 
        else: 
            _t_start = time.time() 
            rotated = rotate(image, angle, resize=True, preserve_range=False) * 255 
            _t_end = time.time() 
            print('Image rotated, angle = {a}'.format(a=angle)) 
            print('Deskew execution time {b}'.format(b=round(_t_end-_t_start, 2))) 
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        return rotated.astype(np.uint8) 
 
def process_image_for_ocr(im, _noise_removal=True, _contrast=True, _deskew=True): 
    im_arr = np.asarray(im) 
    im_arr_g = cv2.cvtColor(im_arr, cv2.COLOR_RGB2GRAY) 
    if _noise_removal: 
        im_arr_g = noise_removal_and_smoothening(im_arr_g) 
        print('Noise and Smoothness adjustments completed') 
    if _contrast: 
        im_arr_g = adjust_contrast(im_arr_g, 1.5, (4,4), 50, 30, False, (1400, 900), False) 
        print('Contrast and Brightness adjustment completed') 
    if _deskew: 
        im_arr_g = deskew(im_arr_g, 4000) 
        print('Image rotation adjustment completed') 
    return im_arr_g 
 
def ocr_text_extracion(img, prefix, suffix, lang): 
    ''' 
    The function perform OCR image_to_string(). 
    The user could add a prefix and a suffix to the generated string. 
    ''' 
    _t_start = time.time() 
    __temp_string = pytesseract.image_to_string(img, lang=lang) 
    _t_end = time.time() 
    print('OCR process completed in {a} seconds'.format(a=round(_t_end-_t_start, 2))) 
    return prefix + ' ' + __temp_string + ' ' + suffix 
     
## scan document page for image generation and OCR 
def text_image_page_scanner(page, doc, doc_name, num_chars, width_size, height_size, path_to_img, 
image_preprocessing=True): 
    ''' 
    - The function returns the text content of a PDF page imported using PyMuPDF. 
    - The num_chars parameter controls the min lenght of characters to skip the OCR 
    and extract the text directly. if there are less characters than this parameter 
    the function returns the image(s) in the page. Also, if the text contains strange 
    characters (bytes like), the entire page will be scanned and the OCR will be run. 
    - The images are filtered according to their dimentions: (width_size, height_size) 
    if the page contains 1 image, then the runs over the only image in the page. 
    if the page contains >1 images larger than the 'width and height' filter, 
    the function scans the entire page and returns a png of the page.  
    ''' 
    _num_page = page.number 
    _page_text = page.get_text() 
    _doc_page_tag_string = ' - (document: {a}, page {b})'.format(a=doc_name, b=_num_page) 
    prefix='OCR extraction start:' 
    suffix='OCR extraction end' 
    if len(_page_text) > num_chars: 
        print('Text extraction returns more than {a} characters'.format(a=num_chars)) 
        print('for page {b}. OCR procedure is not necessary'.format(b=_num_page)) 
         
        if _page_text.find('\x01') + _page_text.find('\x02') + _page_text.find('\x03') > 0: 
            print('The string contains unknown characters. The entire page will be scanned') 
            _page_scan = page.get_pixmap(alpha=False, dpi=300, colorspace='rgb') 
            img = Image.frombytes('RGB', [_page_scan.width, _page_scan.height], _page_scan.samples) 
             
            if image_preprocessing: 
                img_postprocess = process_image_for_ocr(img) 
            else: 
                img_postprocess = img 
             
            _text_from_img = ocr_text_extracion(img_postprocess, prefix, suffix, 'ita') 
            _tag_string ='Page OCR scan' + _doc_page_tag_string 
            return _tag_string + ' - ' + _text_from_img + ' - ' + _tag_string 
        else: 
            _tag_string = 'Direct text extraction' + _doc_page_tag_string 
            return _tag_string + ' START - ' + _page_text + ' - END ' + _tag_string 
    else: 
        print('The page {a} does not contain text. OCR procedure is initialized'.format(a=_num_page)) 
        imgpage = page.get_image_info(xrefs=True) 
        print('{a} image(s) found in page {b}.'.format(a=len(imgpage), b=_num_page)) 
        _cleaned_images = [k for k in imgpage if (k['width'] > width_size) and (k['height'] > 
height_size)] 
 
        if len(_cleaned_images) == 0: 
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            print('No images found in page {a}. page scan using pixmap will start'.format(a=_num_page)) 
            _page_scan = page.get_pixmap(alpha=False, dpi=300, colorspace='rgb') 
            img = Image.frombytes('RGB', [_page_scan.width, _page_scan.height], _page_scan.samples) 
 
        elif len(_cleaned_images) == 1: 
            print('One image found in page {a}. Image extraction using PyMuPDF'.format(a=_num_page)) 
            __img = _cleaned_images[0] 
            _img_xref, _img_wdh, _img_hgt = __img['xref'], __img['width'], __img['height'] 
            print('Analyzing image with xref = {b}'.format(b=_img_xref)) 
            print('Image xref {c} resolution = {a}'.format(a=(_img_wdh, _img_hgt), c=_img_xref)) 
            _image_dict = doc.extract_image(_img_xref) 
            _img_ext = _image_dict.get('ext') 
            _path_to_image = path_to_img + '/' + doc_name + '_img_xref{z}_{p}.{a}'.format(a=_img_ext, 
p=page.number, z=_img_xref) 
            img = open(_path_to_image, "wb") 
            img.write(_image_dict.get('image')) 
            img.close() 
            print('Image created. Path to the image is {a}'.format(a=_path_to_image)) 
            img = cv2.imread(_path_to_image) 
            print('Image reimported') 
            os.remove(_path_to_image) 
            print('Image deleted') 
 
        elif len(_cleaned_images) > 1: 
            print('{c} image(s) found at the'.format(c=len(_cleaned_images))) 
            print('page {a}. page scan using pixmap will start'.format(a=_num_page)) 
            _page_scan = page.get_pixmap(alpha=False, dpi=300, colorspace='rgb') 
            img = Image.frombytes('RGB', [_page_scan.width, _page_scan.height], _page_scan.samples) 
 
        if image_preprocessing: 
            img_postprocess = process_image_for_ocr(img) 
        else: 
            img_postprocess = img 
         
        if img_postprocess.shape[0] < 4000: 
            _text_from_img = ocr_text_extracion(img_postprocess, prefix, suffix, 'ita') 
        else: 
            return 'Memory limit reached ' + _doc_page_tag_string + ' START - END' 
 
        ''' 
        This further step is for some rare cases in which the text extraction from images is 
        empty and the image is almost completely white (images with rgb>254). This is the case 
        of some pdfs with no written text, one white image as a background and several images 
        with some actual text but smaller than the size filter of (500px X 500px). 
        The solution is an entire page scan 
        ''' 
        if len(_text_from_img)-(len(prefix)+len(suffix))<=0 and img_postprocess.mean()>254: 
            print('image {c} text extraction is empty.'.format(c=len(_cleaned_images))) 
            print('The entire page {a} will be scanned using the pixmap'.format(a=_num_page)) 
            _page_scan = page.get_pixmap(alpha=False, dpi=300, colorspace='rgb') 
            img = Image.frombytes('RGB', [_page_scan.width, _page_scan.height], _page_scan.samples) 
            if image_preprocessing: 
                img_postprocess = process_image_for_ocr(img) 
            else: 
                img_postprocess = img 
            if img_postprocess.shape[0] <4000: 
                _text_from_img = ocr_text_extracion(img_postprocess, prefix, suffix, 'ita') 
            else: 
                return 'Memory limit reached ' + _doc_page_tag_string + ' START - END' 
 
        _tag_string = 'OCR extraction ' + _doc_page_tag_string 
        return _tag_string + ' - ' + _text_from_img + ' - ' + _tag_string 
 
def txt_cleaner(txt, basic_operation=True): 
    regex = r'\\r|\\n|\r|\r\n' 
    regex2 = r' +' 
    regex3 = r'\n \n' 
    if basic_operation: 
        txt = re.sub(regex, '\n', txt) 
        txt = re.sub(regex2, ' ', txt) 
        txt = re.sub(regex3, '\n\n', txt) 
        print('Text cleaned according to specified operation(s)') 
    else: 
        txt = txt 
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        print('Function returned the original text') 
    return txt 

 

A2. Proc python 

/* -- PROC PYTHON: PDF file OCR and elaborations -- */ 
filename pyfunc "/mnt/nfs/viya/python_functions/ocr_image_txt_processing_functions.py"; 
proc python infile=pyfunc restart; 
submit; 
 
## import libraries 
import time 
import os 
import logging 
import pandas as pd 
import fitz 
import shutil 
 
## bring paths into python 
path_to_sin_folders = SAS.symget('path_to_sin_folders') 
path_to_temp_data = SAS.symget('path_to_temp_data') 
path_to_metadata_out = SAS.symget('path_to_metadata_out') 
path_to_sin_folders_out = SAS.symget('path_to_sin_folders_out') 
path_to_log = SAS.symget('path_to_log') 
path_to_sin_move = SAS.symget('path_to_sin_move') 
timestamp_macro = SAS.symget('timestamp') 
 
## log configuration 
log_file = os.path.join(path_to_log, 'ocr_{a}.log'.format(a=timestamp_macro)) 
logging.basicConfig(filename=log_file, 
                    filemode='w',  
                    level=logging.DEBUG, 
                    format='%(asctime)s [%(levelname)s] - %(message)s') 
 
## PDF reading 
list_folder_file = os.listdir(path_to_sin_folders) 
list_folder = [k for k in list_folder_file if os.path.isdir(path_to_sin_folders+'/'+k)] 
 
start_time_all = time.time() 
for _dir in list_folder: 
    start_time_dir = time.time() 
    logging.debug('Working on Folder {a}'.format(a=_dir)) 
    _new_folder_output = os.path.join(path_to_sin_folders_out, _dir) 
    if os.path.isdir(_new_folder_output): 
        logging.debug('The output folder {a} already exists. Files will be 
overwrited'.format(a=_dir)) 
        pass 
    else: 
        os.mkdir(_new_folder_output) 
        logging.debug('Output folder {a} created'.format(a=_dir)) 
    _get_files = os.listdir(path_to_sin_folders+'/'+_dir) 
    _get_files = [k for k in _get_files if k.lower().endswith('.pdf')] 
    _text_file = [] 
    _medatada_file = [] 
    for _file in _get_files: 
        start_time_file = time.time() 
        _path_to_file = path_to_sin_folders+'/'+_dir+'/'+_file 
        logging.debug('Working on file {a}'.format(a=_file)) 
        doc = fitz.open(_path_to_file) 
        metadata = pd.DataFrame(doc.metadata, index=[_file]) 
        metadata['page_num'] = len(doc) 
        metadata['fileName'] = _file.split('.')[0] 
        metadata['FolderName'] = _dir 
        _medatada_file.append(metadata) 
        __text_page = [] 
        for page in doc: 
            logging.debug('Working on page {a} of the file {b}'.format(a=page.number, 
b=_file)) 
            doc_name_list =_file.split('.')[:-1] 
            doc_name= ("".join(doc_name_list)) 
            try: 
                text = text_image_page_scanner(page, doc, doc_name, 50, 500, 500, 
path_to_temp_data, image_preprocessing=True) 
                text = '#### Complete extraction: -> ' + text + ' ####' 
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                logging.debug('Text extraction completed in file {a}, page 
{b}'.format(a=_file, b=page.number)) 
            except: 
                logging.debug('Text extraction FAILED in file {a}, page {b}'.format(a=_file, 
b=page.number)) 
                text = '' 
                text = '#### Empty extraction: -> ' + text + ' ####' 
                continue 
            __text_page.append(text) 
        _text_file = '\n\n'.join([k for k in __text_page]) 
        logging.debug('Concatenation of all pages of file {a} completed'.format(a=_file)) 
        logging.debug('Execution on file {a} completed in {b} seconds'.format(a=_file, 
b=round((time.time() - start_time_file), 2))) 
        with open(_new_folder_output+'/{a}.txt'.format(a=doc_name),'w',encoding='utf-8') as f: 
            txt = txt_cleaner(_text_file, basic_operation=True) 
            f.write(txt) 
            f.close() 
            logging.debug('{a}.txt file created'.format(a=_file)) 
    logging.debug('Execution on folder {a} completed in {b} seconds'.format(a=_dir, 
b=round((time.time() - start_time_dir), 2))) 
    shutil.move(os.path.join(path_to_sin_folders, _dir), os.path.join(path_to_sin_move, _dir)) 
    logging.debug('Folder {a} moved to path {b}\n\n'.format(a=_dir, b=path_to_sin_move)) 
    df_metadata_all = pd.concat(_medatada_file, axis=0) 
    df_metadata_all.to_csv(path_to_metadata_out+'/metadata_{a}.csv'.format(a=_dir)) 
logging.debug("Execution time all SIN: {a} seconds\n".format(a=round((time.time() - 
start_time_all), 2))) 
 
endsubmit; 
quit; 
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