

Master’s degree Program in
Data Science and Advanced Analytics

CLAIMS PROCESSING AUTOMATION
Modernization of an insurance company internal process

Nicola Andreatta

Internship Report

 presented as partial requirement for obtaining the Master’s Degree Program in Data Science and Advanced Analytics

NOVA Information Management School
Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

CLAIMS PROCESSING AUTOMATION

by

Nicola Andreatta

Internship report presented as partial requirement for obtaining the Master’s degree in Data Science
and Advanced Analytics, with a Specialization in Data Science

Supervisor: Mauro Castelli

 July 2023

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used
plagiarism or any form of undue use of information or falsification of results along the process leading
to its elaboration. I further declare that I have fully acknowledged the Rules of Conduct and Code of
Honor from the NOVA Information Management School.

iii

ABSTRACT

Deep learning and text mining are involved in the research. This work includes the project I developed
together with my colleagues at SAS Institute during my internship experience. In this project we had
to support an Insurance company for the automation of their existing claim processing system. In fact,
as of today, the procedure of reading the incoming claim requests, selecting the useful information
and extracting it to a data management software, is done manually for hundreds of claims every day.
The job required by the insurance company is to substitute the existing procedure with an automated
one, by implementing an OCR system to read the raw data contained in the documents sent by the
customers and transform it into clean and useful information to be inserted into the data management
software.
This research will show the investigation on how to deal with this problem and the objective is to
automate the classification of the documents for the company, to provide them a system to prioritize
the most urgent documents and to execute some technical and administrative checks on the extracted
information. The automation is shown to be feasible; the completeness and accuracy of the
information extracted are solid, proving that this specific task in the insurance company sector can be
realized and help to reduce costs while improving time performance.

KEYWORDS

Claim processing; Automation; Optical Character Recognition; SAS; Text interpretation

iv

INDEX

1. Introduction .. 1

1.1. Company overview .. 1

1.2. Company services .. 2

1.3. Project overview .. 2

2. Literature review .. 3

2.1. OCR systems .. 3

2.1.1. Tesseract ... 4

2.2. Language and text interpretation to extract information and build clusters 5

2.2.1. SAS Visual Studio Analytics ... 5

3. Methodology .. 8

3.1. Process as-is and process to-be ... 8

3.1.1. Information extraction and additional data ... 8

3.1.2. Calculation of the prioritization of the claims .. 10

3.1.3. Check for technical and administrative coverage .. 11

3.2. Data collection and storage ... 11

3.3. Process Flow .. 11

3.3.1. Text extraction .. 12

3.3.2. Visual Text Analytics ... 14

3.3.3. Cover generation .. 15

3.3.4. Performance Dashboard .. 15

4. Results and discussion .. 17

4.1. Completeness and accuracy .. 17

4.1.1. Completeness index ... 17

4.1.2. Accuracy index .. 17

4.2. Time performance ... 17

4.3. Comparison with some KPIs .. 19

5. Limitations and recommendations for future works ... 21

5.1. Limitations ... 21

5.2. Recommendations ... 22

6. Conclusion .. 23

7. References .. 24

Appendix.. 26

v

A. Code to build the ocr ... 26

A1. Python functions .. 26

A2. Proc python ... 29

vi

LIST OF FIGURES

Figure 2.1 – Illustrative preprocessing steps, from the left: original image, grayscale,

binarization and deskewing ... 4

Figure 2.2 - Example of Tesseract OCR text recognition .. 5

Figure 2.3 – Example of a pipeline in SAS Visual Studio Analytics ... 6

Figure 2.4 - Example of a text parsing node ... 6

Figure 2.5 – Example of a concept node .. 7

Figure 3.1 – conceptual flow to extract the pdf files and transform them into Txt files 13

Figure 3.2 - Pipeline used for the project ... 14

Figure 3.3 - conceptual flow to elaborate data in the txt files, create the cover and the xml file

 .. 15

Figure 3.4 - Key performance indicators in the dashboard ... 16

Figure 3.5 - End-to-end process performance section of the dashboard 16

Figure 4.1 - hourly flow of emails grouped by weekday and averaged over two months 18

Figure 5.1- example of weak table extraction from OCR ... 22

vii

LIST OF TABLES

Table 3.1 - List of features in the cover .. 8

Table 4.1 - Performance overview, manual vs. automated process .. 19

viii

LIST OF ABBREVIATIONS AND ACRONYMS

OCR Optical Character Recognition

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart

VTA Visual Text Analytics

LITI Language Interpretation and Text Interpretation

FIFO First in first out

KPI Key Performance Indicator

1

1. INTRODUCTION

With the growth of Data Science techniques, the automation and enhancement of companies’ internal
processes have gained more relevance as a solution to reduce costs and increase efficiency. The
evaluation of the process performance and the implementation of digitalized solutions are often made
by other companies specialized in data analytics and information technology consulting, such as SAS
Institute. I personally had the opportunity to join the Customer Intelligence and Analytics team of this
company with an internship program. In this report, I will present the project in which I took part during
my experience at this company.

1.1. COMPANY OVERVIEW

SAS Institute is a privately held American software company that specializes in analytics software and
services. The company was founded in 1976 by Jim Goodnight and John Sall, who were both graduate
students at North Carolina State University at the time. Originally called Statistical Analysis System, the
company was renamed to SAS Institute in 1984. Today, SAS corporate headquarters is in Cary, North
Carolina, and has offices in over 60 countries worldwide with more than 14,000 employees. The
software is installed at more than 80,000 business, government, university sites, and 90 of the top 100
companies on the 2016 Fortune Global 500 are SAS customers.

SAS provides a wide range of analytics software and services to help businesses and organizations
make data-driven decisions. Their products include data management and preparation tools, advanced
analytics software, artificial intelligence and machine learning capabilities. SAS also offers consulting
and training services to help customers get the most out of their analytics investments. Some of the
industries that SAS serves include finance, healthcare, government, and retail. SAS's solutions are used
by thousands of organizations worldwide, including many of the world's largest companies. The SAS
solutions allow efficient cost in both implementation and maintenance, with the possibility to evolve
gradually to handle the evolution in the requirements of business and new regulations.

Figure 1.1 - SAS Company Infographic

2

Sas Institute aims to help organizations around the world turn data into intelligence. The mission of
the company is to provide innovative solutions to its customers’ most challenging business problems
and to guarantee services that enable them to make better decisions faster.
Since 1976, commitment to employees, communities, education and the environment has been rooted
in its DNA. It drives the innovation provided to the customers.

1.2. COMPANY SERVICES

SAS offers a range of services to help organizations implement, manage, and optimize their analytics
programs. These services include:

- Consulting Services: SAS offers consulting services to help organizations define their analytics
strategy, identify data sources, and develop customized analytics solutions. This service also
includes the implementation of data management systems, data cleaning and data
integration.

- Training: SAS offers training services for individuals and organizations looking to optimize their
analytical skills. The company provides instructor-led courses online, onsite, or virtually
focusing on programming, data management, and analytics solutions.

- Managed Services: SAS offers a wide range of managed services to help companies optimize
their analytics program and scale up their analytic capabilities. It includes data management
services, cloud services, and analytical modeling.

- Technical support: SAS provides technical support services to its clients to assist them in
troubleshooting problems with software, issues with data management, and best practices for
using SAS software.

- Innovation Lab: SAS has an innovation lab where data scientists, customer service, and product
developers work together to develop new cutting-edge analytics solutions.

1.3. PROJECT OVERVIEW

The focus of this project will be the solution that SAS implemented for an insurance company to
automate one of its internal processes.

The insurance company receives hundreds of documents and communications related to claims that
occurred and for which the customers that took out an insurance policy with them are asking for
compensation or legal assistance. The increase in the incoming number of claims and mandatory
bureaucratic steps requires an increasing amount of manual work in inspecting documents, collecting
the important part of information and evaluating if the request of the customer fulfils the policy
contract. With the existing technology, this procedure can be automated with an OCR system and
reduce the efforts to the key aspects of claim management.

The mission of the working group I took part in is to implement such a system to automate the process
of management and archiving of communications regarding claims, retrieving all the relevant
information."

3

2. LITERATURE REVIEW

Nowadays, OCR systems are widely used in various industries and applications. The main use of this
OCR technology is for the digitization of documents, in fact, it is designed to recognize and extract
text from images or scanned documents, allowing computers to interpret and process the textual
information. This is particularly useful for archiving, data entry, and document management systems.
In the case of the insurance sector, many companies are implementing this technology firstly to
enhance operational efficiency and secondly to improve accuracy in document processing. Regarding
the latter, some language and text interpretation models are applied to the text extracted from the
documents to classify the information.

2.1. OCR SYSTEMS

Optical Character Recognition (OCR) is a technology that allows printed or handwritten text to be
digitized and converted into a machine-readable format. These systems employ sophisticated
algorithms and image processing techniques to extract text information from document images,
enabling efficient digitization, text analysis, and information retrieval.

OCR systems have evolved significantly since their inception; with the rise of digital documents and
the advent of mobile devices, they have become even more prevalent in the new century. The
challenge of emulating humans in recognizing written text was already studied by Rice, Nagy and
Nartker (1999) by illustrating and explaining actual OCR errors. The pictures and analysis of their
research provided insights into the strengths and weaknesses of OCR systems of that time, outlining
a road map to future progress. This work inspired many researchers, for instance in the identification
of documents containing handwritten text (Hiremath et al., 2010) which requires more advanced
techniques in recognizing characters due to the absence of a known pattern beforehand likewise
computer-printed characters. Another direction of the evolution of the OCR systems involves relating
word recognition to the context of the document; for instance, instead of operating on single words
or characters, exploit the context through models such nearest neighbor algorithm to improve the
accuracy of text recognition (Sankar et. al., 2010).

The availability of huge datasets in different languages allowed this technology to grow horizontally,
including many alphabets and signs. The real-life data is fuzzy though and there is always a degree of
impreciseness present in it. The book of Chaudhuri, Mandaviya, Ghoshand Badelia (2017) presents
the common OCR techniques of preprocessing, character segmentation, feature extraction and
classification; later, they compare them with some soft-computing techniques and assess their
performance for multiple languages, showing how this approach outperforms the common method.

Although the reading capabilities gap between humans and machines will eventually shrink with the
evolution of OCR systems, there is still a fascinating topic of research which is the area of CAPTCHA
(Completely Automated Public Turing test to tell Computers and Humans Apart). This widely
employed test is to some degree a valuable tool in identifying the characteristics that OCR systems
struggle to comprehend. (Rusu et al., 2004; 2009).

4

2.1.1. Tesseract

In this project we used Google's OCR system, Tesseract. It is an open-source OCR engine based on the
Tesseract OCR engine, which uses deep learning-based methods to achieve high accuracy rates on a
wide range of OCR tasks. Tesseract is designed to be easy to use and integrate into other software
applications. It supports multiple languages and can handle a wide range of image formats, including
TIFF, JPEG, and PNG. Tesseract also provides options for controlling the OCR engine, such as adjusting
the page segmentation mode or specifying the OCR engine mode.

One of the key advantages of Tesseract is its open-source nature. This means that the code is freely
available for anyone to use and modify. This has led to a large and active community of developers
who have contributed to the improvement of Tesseract. For this reason, we chose it among others.

The architecture of Tesseract assumes that the input is a binary image. Therefore, the image has to
be preprocessed to benefit the most from it. In figure 2.1 below, we show some basic preprocessing
operations that are grayscale, binarization and deskew. The first one means turning the RGB channel
to a single grayscale channel of pixel values from 0 to 255. The binarization is then setting a threshold
in this scale to differentiate values into two binary options, namely black and white. Finally, the last
step of deskewing is done to correct a possibly inclined image (Ma et al., 2021).

Figure 2.1 – Illustrative preprocessing steps, from the left: original image, grayscale, binarization and
deskewing

Once the image is ready, the information extraction follows a step-by-step pipeline. The first step is a
connected component analysis in which the outlines of the components are stored. By inspecting the
nesting of outlines, and the number of child and grandchild outlines, it is simple to detect inverse
text and recognize it as easily as black-on-white text. At this stage, outlines are gathered together,
purely by nesting, into blobs. Blobs are organized into text lines, and the lines and regions are
analyzed for fixed pitch or proportional text. Text lines are broken into words differently according to
the kind of character spacing. Fixed pitch text is chopped immediately by character cells.
Proportional text is broken into words using definite spaces and fuzzy spaces. Recognition then
proceeds as a two-pass process. In the first pass, an attempt is made to recognize each word in turn.
Each word that is satisfactory is passed to an adaptive classifier as training data. The adaptive
classifier then gets a chance to recognize more accurately the rest of the text in the page. Since the
adaptive classifier may have learned some patterns at the end of the first run, a second pass is run
over the page, in which words that were not recognized well enough are recognized again. The final

5

phase resolves fuzzy spaces and checks alternative hypotheses for the x-height to locate text with
different caps or fonts (Smith, 2007).

Figure 2.2 - Example of Tesseract OCR text recognition

Beyond text detection there are some other major challenges faced by layout analysis, namely
detecting text columns and table regions. When a text is split into columns it is essential to detect
the edges of the layout since the OCR has a fixed orientation, commonly horizontal. This can be done
with an algorithm for tab-stop detection (Smith, 2009). Table detection is also a hard problem since
tables have a large variation in their layouts. This challenge can be decomposed into two steps that
are: finding the boundaries of a table in an image page and recognizing the structure of rows and
columns (Shafait et al., 2010).

As we mentioned before, in order to cope with the vast diversity of book content and typefaces, it is
important for OCR systems to leverage the strong consistency within a book but adapt to variations
across books. Lee and Smith (2012) propose a system that adapts to shapes and vocabularies within a
book using the Tesseract engine as a baseline.

2.2. LANGUAGE AND TEXT INTERPRETATION TO EXTRACT INFORMATION AND BUILD CLUSTERS

The digitization of documents is the first part of claim automation processing. After the information
is extracted from the text it must be interpreted and categorized for business purposes. The text
contains concepts with different degrees of complexity, from simple 1-word codes with fixed
structure to complex sentences.

2.2.1. SAS Visual Studio Analytics

To implement these text analytics tasks, we will use the SAS Visual Text Analytics tool (SAS Institute
Inc., 2019). This tool allows us to build a pipeline (figure 2.3), which is a process flow diagram that
can be used to represent a sequence of nodes each performing analytical tasks such as processing
the raw text, extracting the information and creating categories.

6

Figure 2.3 – Example of a pipeline in SAS Visual Studio Analytics

Nodes that will be involved in this project are the text parsing node, concepts node and categories
nodes.

The Text Parsing node enables the user to view and explore the terms that are present in the
document collection. During the parsing process, terms are either kept or dropped based on their
importance. For example, terms that have the role of preposition or conjunction often provide
minimal value, therefore they are dropped during text parsing. To gain a better understanding of
how terms are related to each other, it is possible to generate a term map or similarity scores for a
selected term to explore its relationship with other terms in your document collection. An example is
shown below in figure 2.4.

Figure 2.4 - Example of a text parsing node

The Concepts node enables the user to work with semantic attributes, entity types, facts, or
relationships and extracts pieces of the text using rules written in the language interpretation for
textual information (LITI) syntax. An example is shown below in figure 2.5.

7

Figure 2.5 – Example of a concept node

Finally, a category identifies a group of documents that share a common characteristic. The
Categories node enables the user to create categories in an almost identical way to the Concepts
node.

8

3. METHODOLOGY

3.1. PROCESS AS-IS AND PROCESS TO-BE

As of today, the insurance company receives the majority of the documents via email which, besides
the head and body of the mail, may contain also attachments as supporting documents to the
communication, in the form of digital documents, scans and photos. All this data is converted to a
pdf file identified by a unique key associated with the email. From this point, the procedure is
manual: an operator reads the document and categorizes it depending on whether it is associated
with an existing claim practice or if is a new request. Hence, he does the following:

- If it is an existing claim, all the new information must be added to the existing one in their
data management software

- In case of a new claim request, the operator must do some administrative checks (for
example check if the insurance policy is still valid when the accident happened) and create a
new claim instance in the data management software with all the relevant data contained in
the document

In the first meetings with the operators, several points of improvement in the streamline were
identified. The main goal is to reduce the processing time of this job without a loss in the accuracy of
the information extraction. Therefore, ideally, all the work of extracting the information and
arranging it in categories will be done by the machine. To be more specific all the following tasks will
be carried out:

- Extraction of any useful information from the documents
- Integration with all the supplementary information already existing in the database
- Calculation of the prioritization of the claims
- Check for technical and administrative coverage

3.1.1. Information extraction and additional data

In response to the first two points of the task list above, a table containing such information is
created. This table will be defined throughout the chapter as the “cover” of the claim. It is filled
mostly with data obtained through a textual analysis algorithm from the documents and the rest of
the information is retrieved from the existing database through web service requests. In fact, for
instance, if we know the policy identifier it is possible to retrieve all the information about the
insured person and its policy contract. In table 3.1 it is reported a summary of all the features and a
brief explanation of their type and meaning

Table 3.1 - List of features in the cover

Feature
ID

Feature name
Expected
answer

Explanation
Source of

the retrieved
information

1 Date of occurrence DD/MM/YYYY
Specific date when the fact

occurred
Textual
analysis

9

2 Date of reporting DD/MM/YYYY
First date when the insured

person reported the fact
Textual
analysis

3 Count of unpaid invoices
Integer
number

Amount of unpaid invoices that
the customer is reporting

Textual
analysis

4 Date of unpaid invoices DD/MM/YYYY
Date of each unpaid invoice that

the customer is reporting
Textual
analysis

5 List of unpaid invoices

List of
alphanumeric
ids separated

by pipe
character

Id of each of the unpaid invoices
Textual
analysis

6 Policy ID
Alphanumeric

code

Unique identifier for the policy
contract between customer and

company

Textual
analysis

7
Other policies of the

insured person

Alphanumeric
codes

separated by
pipe character

List of other policies id that the
customer may have

Web Service
request

8 Retroactivity
Yes/No and
years if Yes

Years of retroactivity of the policy
Web Service

request

9 Motor & Debt Yes/No
Whether the claim belongs to
road accident or unpaid debt

categories

Textual
analysis

10 License plate String License plate code of the vehicle
Textual
analysis

11
Cause of damage/Type of

dispute

Class of a
categorical

variable

Label to define the nature of the
dispute

Textual
analysis

12 Risk type under warranty Yes/No
Whether the claim is covered by

the policy contract or not
Web Service

request

13 Counterparty String Other parts involved in the fact
Textual
analysis

14
Real estate address (in case

of real estate dispute)
String

Address of the building if the
claim is about a real estate

dispute

Textual
analysis

15 Judicial/extrajudicial phase
“Judicial” or

“Extrajudicial”

Whether the claim involves
violations of the penal code or

not

Textual
analysis

16
Number of

Judicial/extrajudicial cases
Integer
number

Maximum number of claims that
can be refunded in a contract

Web Service
request

17
Number of dispute cases

already used by the insured
person

Integer
number

Referred to the previous, number
of claims already refunded in a

contract

Web Service
request

18
Value of the

damage/argument in object
Number with
euro format

Total amount of money that are
object of the dispute

Textual
analysis

10

19
Presence of legal
representation

Yes/No and
name if Yes

Whether there is a lawyer
representing the insured person

and in case its name

Textual
analysis

20 Sender role
Class of a

categorical
variable

Role of the person reporting the
fact in the first mail (insured
person, mediator, lawyer…)

Textual
analysis

21
Invoice directly assigned to

the insurance company
Yes/No

Whether the unpaid invoice has
to be paid directly by the

insurance company

Textual
analysis

22 New claim or follow-up
“New claim”

or “Follow-up”

Whether the document belongs
to a new claim or is a follow-up of

an existing claim

Textual
analysis

23 Priority1
Integer
number

Number representing the
hierarchy of the document in the

queue

Textual
analysis

24 Product code
Alphanumeric

code

Code of the contract type
between customer and insurance

company

Web Service
request

25 Regularity Yes/No

Whether the date of occurrence
and type of dispute are congruent

with the covered period and
damages in the contract

Web Service
request

26 Completeness score

Decimal
number

between 0
and 1

Index representing the
proportion of features extracted

from the document

Calculated
index

3.1.2. Calculation of the prioritization of the claims

The general rule to process the queue of documents is FIFO (First In First Out) which is to comply
with the chronological order of arrival. But sometimes the queue grows and some of the practices
can be postponed to prioritize more urgent documents. Therefore, the company defined some rules
that establish a hierarchy among the documentation. These are enumerated from 1 to 6 and are as
follows:

Priority 1: Top-class insurance policies that the company took out with reinsurance companies
(reinsurance company is a type of insurance company that provides insurance coverage to other
insurance companies. It is a practice in this sector to share risk and minimize the impact of large loss
events. Reinsurance companies typically specialize in certain types of insurance coverage, such as life
insurance, property and casualty insurance, or health insurance)

Priority 2: Other insurance policies that the company took out with reinsurance companies

Priority 3: Documents with keywords such as “urgent”, “reminder”, “complaint”, “contract
cancellation/termination” and documents that mention the “Institute for the Supervision of

1 This is explained in-depth in paragraph 3.1.2.

11

Insurance” which is an independent authority responsible for supervising and regulating all insurance
business.

Priority 4: Claims without the presence of legal representation

Priority 5: Claims of some specific legal spheres (opposition to administrative sanctions, civil
mediations and others)

Priority 6: Any other document

Of course, if a document fulfils two or more different rules, the priority assigned is the highest one
(the lowest in number)

3.1.3. Check for technical and administrative coverage

The process As-is includes some checks that can be easily automated. In particular, before any
monetary refund is approved by the company, it is necessary to verify if the customer paid off the
insurance premium. Secondly, it must be verified whether the insurance policy is still valid, hence if
the date of occurrence of the claim is between the date the contract started and the expiration date.
Furthermore, the type of dispute must comply with the contract conditions, hence for the sake of the
argument, a car crash can not be refunded if the customer was insured for its household. This kind of
check can be automated with a web service request to the database.

The feature “regularity” was created in the cover to get these checks through a web service request.
Hence, the claim is regular if the date of occurrence and type of dispute meet the requirements of
the contract.

3.2. DATA COLLECTION AND STORAGE

A data management software is used to store, organize and manage the customer’s data. The
operator can fill in the important information collected from the documents through an interface.
The database behind contains the documents, which are the elementary unit defined by a unique
identifier associated with the email, and all the related features. The other important key besides the
email identifier is the claim identifier, which is shared with all the documents related to a single
claim.

Also the task of filling in the information can be automated, since from the cover an xml file is
generated and sent to the company. The xml file format is suitable to be loaded on the data
management system without compatibility issues.

However, every time a piece of information is needed, the operator can run a query to extract all the
documents or set of values that match the request.

3.3. PROCESS FLOW

The structure of the process flow starts from the raw zip archives, which contain emails and
attachments in several pdfs. The desired output of the pipeline is the cover table that reads the zip
identifiers on the rows and the information extracted organized on the columns. Firstly, the input
files need to be unzipped, and then transform all the contained information in the text. Once the text

12

is extracted and cleaned, it is interpreted by a model that gets the information according to the
features that are reported in table 3.1 and it returns the cover with the processed data.

3.3.1. Text extraction

For the first part of the process, we worked with Python and Pytesseract, which is the Tesseract OCR
free tool made for Python. The reasons were that it was easier to handle raw files and to test many
techniques locally, transforming image and text data. Moreover, these tools were open source and
efficient enough for the first phase of the project.

The Sas program reported in Appendix A2. Proc python, includes the operations of ZIP archive
download and pdf file extraction. Each pdf is opened with the PyMuPDF library; the metadata
information, such as the number of pages, file name, author, etc. is collected in a separate csv file
and the pdfs are processed to extract the text.

In the first phase of the project, we experimented with many solutions to transform the pdf files into
text files. Even though the task is essentially trivial, the scan part turned out to be the most
expensive operation in time and computational resources. Therefore, we evaluated to use it only
when strictly necessary. For this reason, in a second moment, we worked to optimize the
performance workflow. Indeed, this brought a great improvement in time performance and
accuracy.

The content of the pdfs is miscellaneous and stored in many formats. This is due to the fact that the
customers are of any sort: private citizens, lawyers, agents or even other companies. They are asked
to comply with some guidelines when sending communications, but these are not mandatory. As a
result, the variety in language and structure of the documents is very large. For this reason, we spent
a great effort inspecting a sample of documents to figure out the most frequent ones. Studying the
patterns of the most common documents gave us some insights to develop the workflow.

The scan of the documents is built up from each page, so here is a list of observations that we noted
while looking at the single pages of the documents:

 All the text parts can be extracted without scanning the page. Direct text extraction takes an
insignificant amount of time and the accuracy is perfect since the output equals the input.

 Most of the images are not optimal to be scanned by the OCR and need to be preprocessed
first. In fact, they may come noisy, blurry, rotated, with incorrect brightness.

 When images are found, it occurs that the small ones do not bring relevant information, such
as logos and signatures. Hence filtering those images out would prevent from spending time
with the OCR extraction.

 If there is only one large image, we can run the OCR over that one instead of generating a
scan of the entire page, this will save up time

 When there are many images, it occurs that all the relevant information is brought from the
largest ones. Indeed, in this case, it is usually faster to generate a page scan and run the OCR
once instead of repeating the task for each image.

These considerations were translated into Python code, which is reported in Appendix A below. In
particular, the text_image_page_scanner function contains the core of those operations.

13

In the following Figure 3.1 we summarize the logical flow we draw to structure the code

Figure 3.1 – conceptual flow to extract the pdf files and transform them into Txt files

Even though the majority of the documents is being scanned correctly, some exceptions need to be
faced in a further part of the code. In fact, there are few documents that may have no text and only
images, among which for some reason one large white image as background and several small
images with png format containing text and a transparent background layer. Hence, the algorithm
that we designed filters out the images with text because of their size and reads the white large
background only. As a result, the OCR scan is blank although it is clear that there is information in the
page. Therefore, we added one more step for those images that are white (detected by selecting
only those with an average rgb channel larger than 254) and with a blank extraction: a scan of the
entire image is generated so that all the visible can be extracted.

This type of phenomenon was discovered in a further stage of the pipeline since some covers were
being generated with no piece of information while the pdf documents had plenty of text. So, with
the development of the project, there will be room to include eventual exceptions.

The first part shown in Figure 3.1, from the zip archive to the pdf was dealt with a Python procedure
in Sas language. Hence it was possible to wrap the text_image_page_scanner python function within
the rest of Sas code.

One additional consideration we made was about the position of the text in the document. Since the
order of the information may be important, we generated a tag string in a Txt file at the beginning
and the end of each page. Then for each page, we append text first and subsequently the image scan.
Obviously, if a full-page scan is run then all the information contained fills one page in the txt file.
Later on, we realized that this part could be improved for a future phase of the project by generating
further tag strings as labels indicating either the position of the text in the page or the content of the
text (i.e. “top-right corner, customer address”). In chapter 5, we will discuss this improvement and
other possible ones.

The outcome of this step is then a text file for each document.

14

3.3.2. Visual Text Analytics

In this part of the flow, we built the model to interpret the information from the text and create the
features that will fill the cover of each document.

Once the Txt files are collected and available, they are appended to a table with a unique identifier
connected to each claim.

This data frame is then processed in the SAS Viya Visual Text Analytics (VTA). This tool can scale the
human act of reading, organizing, and extracting useful information from huge volumes of textual
data. In the following Figure 3.2 it is represented the structure of the flow to score the text files in
concepts and categories.

Figure 3.2 - Pipeline used for the project

In the first place, the whole text is parsed: all the non-important stop words are removed and part-
of-speech filtering is applied.

Then we build the concept nodes, organized in dedicated areas of the features: general cover
concepts, legal concepts, priority concepts and sender concepts. The reason was to work with slim
parts of the flow separately. For each node we have several primary and supporting concepts
containing all the rules written using LITI (language interpretation for textual information) syntax.
Concept rules exploit semantic attributes, entity types, distance relationships and text order to
recognize items in context so that you can extract only the pieces of the document that match the
rule. The set of matches for each concept is then associated with the identifier of the original data
frame.

The last step of the pipeline is the category node. In short, the categorical variables in the cover are
made on top of some concept rules, so once a specific rule has found some matches in the text, one
categorical label will be assigned to all the documents that contain those matches. For instance, the
concept “Presence of legal representation” matches any lawyer name or law firm denomination;
hence in the categorical node we assign the label “lawyer yes” to all those documents that contain
such matches and “lawyer no” otherwise.

15

The training of the model was done side by side with the employees of the company who are
currently doing this operation manually. Several meetings were needed to acknowledge the meaning
of each concept and discuss how to match the correct information in practice. Hence, for example,
we learnt that the policy number can be either a sequence of 10 digits or an alphanumeric sequence
of 13 characters (5 digits + 3 letters + 5 digits). So, the first step is to search in the documents for
such sequences through a regex. Of course, the matches may contain wrong information (i.e. mobile
number of 10 digits), so we need a more detailed rule to match only the right sequences. Therefore,
we combine this rule in a concept rule, where the result of such a regex must be matched only if it is
near the keywords “policy number”, or “policy nr.”, et al.

The rule-tuning then is a step where we train the model to imitate the human process. This
procedure requires a significant amount of time; rules also need to be updated over time to be
consistent.

Around 150 concepts and 50 categories were created among the nodes.

3.3.3. Cover generation

This step of the flow concerns the creation of the cover starting from the model trained in Sas VTA.
This part was done in Sas language and essentially, after a data postprocessing stage, the cover is
filled with those features that can be obtained with web service requests to the company’s database.
Hence, the cover is generated and all the features are stored in an xml file which is delivered to the
company to add it to their database. The following Figure 3.3 represents the logical flow from the
analysis of the text files to the generation of the cover and the xml output.

Figure 3.3 - conceptual flow to elaborate data in the txt files, create the cover and the xml file

3.3.4. Performance Dashboard

The whole process is being monitored in terms of time performance and statistics of the processed
data. That is done through a performance dashboard where we report the main KPIs highlighting the
amount of information processed, namely the number of ZIP archives, documents and pages
processed. To assess the work progress, a completeness score and accuracy score are provided for
the entire data. Further features are represented through bar charts and pie charts that can interact
with each other. In addition, the processing time is being analyzed to assess the performance of the
entire end-to-end flow. In the following figures 3.4 and 3.5 the two main dashboard tabs are shown.

16

Figure 3.4 - Key performance indicators in the dashboard

Figure 3.5 - End-to-end process performance section of the dashboard

17

4. RESULTS AND DISCUSSION

4.1. COMPLETENESS AND ACCURACY

For the purpose of the project, we had to make sure that the piece of information that is extracted
from each document is appropriately complete and accurate.

4.1.1. Completeness index

The completeness index is a feature that is included in the cover and it is calculated as the amount of
extracted features over the total number of features.

𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸𝑁𝐸𝑆𝑆 =
𝑁° 𝐸𝑋𝑇𝑅𝐴𝐶𝑇𝐸𝐷 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆

𝑇𝑂𝑇 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆

Indeed, not all the documents may have enough information to fill all the features, it may be that
some of them are missing because they are not needed, or because they are not coherent with the
type of claim (i.e., a list of unpaid invoices is not available for a road accident claim and license plate
is not available for credit recovery claim). Therefore, if the claim type is recognized then the
corresponding incoherent features are subtracted from the index in the following way:

𝐶𝑂𝑀𝑃𝐿𝐸𝑇𝐸𝑁𝐸𝑆𝑆 =
𝑁° 𝐸𝑋𝑇𝑅𝐴𝐶𝑇𝐸𝐷 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆 − 𝐼𝑁𝐶𝑂𝐻𝐸𝑅𝐸𝑁𝑇 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆

𝑇𝑂𝑇 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆 − 𝐼𝑁𝐶𝑂𝐻𝐸𝑅𝐸𝑁𝑇 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆

As the process will be implemented, a threshold for minimum completeness will be set in order to
isolate those documents whose covers are too poor of data and analyze them manually.

4.1.2. Accuracy index

The accuracy index, on the other hand, is calculated in comparison to the true data. This means that
to set up this index an operator is needed to check the same documents that are processed by the
OCR system in order to compare their outcome. This was done over a period of 2 months to verify
whether there was an improvement in accuracy while updating some parts of the process, especially
the text analysis part. Since not all the features are mandatory when opening a new claim, the
insurance company required to calculate it over 14 features, which are: Date of occurrence, Date of
reporting, Policy ID, Contractor, Motor & Debt, Cause of damage/Type of dispute, Number of
Judicial/extrajudicial cases, Number of dispute cases already used by the insured person, Presence of
legal representation, Invoice directly assigned to the insurance company, New claim or follow-up,
Regularity, Completeness score. Hence it is calculated as follows

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =
𝑁° 𝐶𝑂𝑅𝑅𝐸𝐶𝑇 𝑀𝐴𝑁𝐷𝐴𝑇𝑂𝑅𝑌 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆

𝑇𝑂𝑇 𝑀𝐴𝑁𝐷𝐴𝑇𝑂𝑅𝑌 𝐹𝐸𝐴𝑇𝑈𝑅𝐸𝑆

Note that if mandatory information is not in the document, the empty extraction from the OCR
system will be considered as a correct answer by the operator.

4.2. TIME PERFORMANCE

The time execution of the process was also monitored to certify the improvement obtained with
automation instead of manual processing. Indeed, an operator can process on average 4 to 8 emails

18

per hour, depending on the amount of content and attachments. In Figure 4.1 we represent the
hourly flow of emails in the inbox of the company grouped by weekday and averaged over two
months. Note that all the emails are forwarded to the operators only in between 7 am and 8 pm
every day, Sunday excluded. This means that if a customer sends an email outside these time slots, it
can be automatically postponed to the first available moment of the following time slot (i.e., if the
company receives an email after 8 pm they do not read it before 7 am of the following day).

Figure 4.1 - hourly flow of emails grouped by weekday and averaged over two months

As it is now, on average for a claim the process takes on average 1 minute and 11 seconds to convert
all the documentation through the OCR into a text file and process it with the concept and categories
rules. When running the entire flow end-to-end there are also roughly 25 seconds of execution that
are necessary steps of the pipeline (such as the creation of an execution log, creation of cas cloud
session, creation of the ftps connection, check for the presence of zip files in the queue, creation of
metadata of the execution, update of the existing tables, termination of the session).

We wanted to minimize the delay which is the time elapsed between the arriving time of the email
and the upload time of the cover to the company. Assuming that as soon as the email is received it is
in the queue to be processed, we can also define the delay as:

𝐷𝐸𝐿𝐴𝑌 = 𝑄𝑈𝐸𝑈𝐸𝐼𝑁𝐺 𝑇𝐼𝑀𝐸 + 𝑃𝑅𝑂𝐶𝐸𝑆𝑆𝐼𝑁𝐺 𝑇𝐼𝑀𝐸

Considering that:

- Even though it is possible to have overlapping executions (hence more than one execution per
time) we wanted to avoid an overload of the machine CPU since its computational power is
limited.

- An execution of a batch of claims was preferable to execute them singularly since we wanted to
produce a restrained number of logs and metadata files

- The company set for the delay an indicative maximum threshold of 45 minutes

19

We scheduled an execution of a batch of 5 claims every 10 minutes for a processing rate of 30 claims
per hour. The average processing time of such a schedule is 5 minutes and 36 seconds which is
abundantly less than the scheduled interval of 10 minutes; this way there is also a margin for
executions that take longer than the average processing time.

Looking again at figure Figure 4.4.1, there are still some time spans in which the arrival rate is higher
than the processing rate of 30 claims per hour. Those may happen between Monday and Friday and
especially in the morning (9 pm-12 pm) and in the middle of the afternoon (16 pm). So we set up a
specific schedule for this time spans with a scheduled execution of a batch of 5 claims every 6
minutes. For a processing rate of 50 claims per hour. This way the average processing time is still
lower than the scheduled interval of 6 minutes and even though there is less margin for executions
that take longer than the average processing time the queue will not explode because the processing
rate is higher than the arrival rate.

4.3. COMPARISON WITH SOME KPIS

Although it is not possible to measure precisely the performance of a human operation due to the
variability of the documentation and the abstraction of the dynamics of this task, we would like to
report a comparison of the performances of the human-driven process and the machine-driven
process to point out the improvement that this project brought to the company.

In the following table 4.1 we report the comparison of the key performance indicators of the two
processes.

Table 4.1 - Performance overview, manual vs. automated process

 Manual process
(per operator)

Automated
process

range of claims
processed per hour 4 to 8 30 to 50

Average accuracy 95%2 81%

Average completeness 90% 86%

Certainly, the efficiency of the process has largely improved since the automated process can handle
the entire load of incoming claims while there was a need for multiple operators to elaborate the
same load. This led to a great achievement for the company since many resources are saved or
employed in other tasks. Therefore, we can confirm that the objective of automating the reading,
comprehension and extraction of all the information to the data management software was
successful; the project is currently employed by the insurance company. However, the accuracy and
completeness are still not as good as the ones produced by the operators, so there is still one
operator checking the correctness of the covers and filling with data some blank features that are
supposed to contain information. Some of the reasons were already mentioned throughout this

2 Also in the human-driven process some mistakes are made, an estimation of 5% of errors is made by the

company for a first manual elaboration which is eventually corrected by other employees in a second moment

20

report; considering the type of data and the limitations of the solution implemented in this project
the results are good, even slightly better than expected. After a reflection, we agreed that further
improvement would come from a change in the input data or the technology implemented. We will
discuss the limitations of the automated process and suggest some recommendations for future
work in the following chapter.

21

5. LIMITATIONS AND RECOMMENDATIONS FOR FUTURE WORKS

The research conducted in this project has provided a valuable solution for the automation of claims
processing. However, like all research, it is not without its limitations and areas for improvement. It is
important to acknowledge these limitations and provide recommendations for the future. This
section will discuss the limitations of the present study and suggestions for future research.

5.1. LIMITATIONS

Although OCR technology carries out diligent work, it has some limitations in the effectiveness of
reading the documents. Some of the lack of accuracy is due to its nature because of some intrinsic
limitations of the technology. These are mainly low-quality images and handwritten text.

As a matter of fact, OCR relies on the quality of the image, meaning that if an image is not clear or
has a low resolution, the OCR system may not be able to recognize the text accurately. The extent to
which the image can be preprocessed sometimes it is not sufficient or it cannot be generalized for
the flow a priori. In fact, similarly to other parts of the process, we established a sequence of
preprocessing functions to have an optimal result for the heterogeneous pool of images that are
contained in the documents while taking into consideration the trade-off with the execution time. To
put it simply, it is in not worth it to spend too much time preprocessing an image that may bring
anyways a bad text extraction because of its low quality.

Furthermore, OCR is still not perfect at recognizing handwritten text, especially the Tesseract engine
involved in this project, so documents that contain a significant amount of handwriting need to be
manually processed. Another limitation of OCR technology is in its ability to recognize non-textual
elements, such as images or diagrams, making them difficult to filter and extract automatically.
Finally, OCR usually handles all the text information uniformly; however, when the text is composed
of mixed structures, including headers, body, and tables, and features such as font, size, and
orientation, there may be a higher probability of information loss when translated to a formatted
text.

For what concerns the text interpretation part, there is no empirical rule that can fully identify the
correct information and isolate it from the rest of the text. In the approach implemented in this
project, several rules were set up and their combination brought to a discrete accuracy. However,
this method has a saturation threshold, meaning that after a certain amount of rules, the insertion of
a new one may bring an improvement for a few instances but at the same time have a worse impact
on the rest of the instances. Hence, we considered the combination of rules that brought the optimal
accuracy for the given set of instances.

A further limitation of this part was related to the OCR and its weakness in detecting the structure of
information, namely tables, font size, and position. Having a loss in the text structure means the
interpretation is not as good, since for instance it is harder to relate the meaning of a date or number
in a flat text when it was originally connected to its position in the document. The example
documented in Figure 5.1 shows that the table information is extracted as flat text, thus it is not
possible to exploit the knowledge contained in the vertical position of the column labels if the text is
being examined horizontally.

22

Figure 5.1- example of weak table extraction from OCR

5.2. RECOMMENDATIONS

To address the lack of accuracy caused by OCR limitations, it is crucial to update the communication
system between customers that file insurance claims and the company. According to many authors in
the literature, the accuracy of OCR systems directly depends upon the quality of input (Rice et al.,
1999; Chaudhuri et al., 2017). Currently, customers send emails and documents in various formats
that may lead to information loss at some stage of the process. This can be resolved by implementing
a standardized claim filing module, which could simplify the interpretation of information. If the
essential information is required to be sent in a uniform format, it would ease the processing of data.
Since this solution might not be implemented rapidly, it might be considered also a replacement of
the Tesseract engine with another OCR which can better detect non-structured text and handwritten
text.

Another recommendation concerns the strategy implemented to extract information from the text.
Currently, the OCR engine extracts all text information from the documents. These texts are
unstructured and, as we explained previously, the structure of the text sometimes has a role in its
interpretation. Hence, incorporating meta-labels to differentiate the various sections of the
document, or employing an alternative tool to extract structured data like tables, would facilitate the
process of rule tuning. Also preprocessing the text to evaluate the meaning of its content and assign
a label would help improve the interpretation of the text when dealing with concepts and categories.
For instance, we had some issues excluding documents containing a scan of the insurance contract:
in fact, these documents contain data that is already known by the company and have no useful
information for the cover; at the same time, they are usually long and plenty of keywords that could
bring some noise in the design phase of concept rules. Knowing that the document contains only a
scan of the insurance contract would bring us to exclude it from the process.

23

6. CONCLUSION

As part of my internship at SAS Institute, this research was conducted for a project aimed at developing
an automated system to handle the inbound claims of an insurance company. Currently, these claims
are processed manually. Some literature was presented to introduce the existing technology and
knowledge related to this problem and, after that, an extended explanation was given for the
methodology used in practice for this project. In particular, the tasks made in the process as-is and the
plan for the process to-be. The product delivered to the company is a “cover” summing up all the
extracted information, the prioritization policy of the claims and a check for technical and
administrative coverage. Afterward, we went through storing data and the implementation of the
process flow. For this last one, we provided a detailed description of the text extraction and
interpretation.
Along with the methodology, we analyzed some statistics and discussed the results of the new
automated system. There is evidence for a great improvement in efficiency and reduction of spending
of resources for the insurance company. Although the automation is feasible, the completeness and
accuracy of the new process are still not optimal; this is due to some limitations of the OCR technology
itself and the variety of the type of documents contained in the claims. To address a solution to such
limitations and improve the outcomes, some recommendations for future works were given, such as
considering the modernization of the current system in which the customers send the documentation
to the insurance company, which may help a lot the automation process, or facilitating the
interpretation of the text by adding meta-labels to the text files.

24

7. REFERENCES

Tesseract guide: https://tesseract-ocr.github.io/tessdoc/

Chaudhuri, A., Mandaviya, K., Ghosh, S. K., & Badelia, P. (2017). Optical Character Recognition
Systems for Different Languages with Soft Computing. In Studies in fuzziness and soft
computing. Springer Nature. https://doi.org/10.1007/978-3-319-50252-6

Lee, D., & Smith, R. F. (2012). Improving Book OCR by Adaptive Language and Image Models.
https://doi.org/10.1109/das.2012.45

Lopresti, D. P. (2009). Optical character recognition errors and their effects on natural language
processing. International Journal on Document Analysis and Recognition, 12(3), 141–151.
https://doi.org/10.1007/s10032-009-0094-8

Ma, T., Yue, M., Yuan, C., & Yuan, H. (2021). File Text Recognition and Management System Based on
Tesseract-OCR. In 2021 3rd International Conference on Applied Machine Learning (ICAML), 1-
4. https://doi.org/10.1109/icaml54311.2021.00057

Miner, G. D., Elder, J. P., Hill, T. C. J., Nisbet, R. A., Delen, D., & Fast, A. S. (2012). Practical Text Mining
and Statistical Analysis for Non-structured Text Data Applications. In Elsevier eBooks, pp.
1007–1016. https://doi.org/10.1016/c2010-0-66188-8

P. S. Hiremath, J. D. Pujari, S. Shivashankar and V. Mouneswara, (2010). "Script identification in a
handwritten document image using texture features," IEEE 2nd International Advance
Computing Conference (IACC), Patiala, India, 2010, pp. 110-114,
https://doi.org/10.1109/IADCC.2010.5423028.

Rice, S., Nagy, G., & Nartker, T. A. (1999). Optical Character Recognition: An Illustrated Guide to the
Frontier. In Springer eBooks. https://doi.org/10.1007/978-1-4615-5021-1

Rusu, A., & Govindaraju, V. (2004). Handwritten CAPTCHA: Using the Difference in the Abilities of
Humans and Machines in Reading Handwritten Words. https://doi.org/10.1109/iwfhr.2004.54

Rusu, A., Thomas, A. W., & Govindaraju, V. (2009). Generation and use of handwritten CAPTCHAs.
International Journal on Document Analysis and Recognition, 13(1), 49–64.
https://doi.org/10.1007/s10032-009-0102-z

Sankar, K. P., Jawahar, C. V., & Manmatha, R. (2010). Nearest neighbor based collection OCR.
https://doi.org/10.1145/1815330.1815357

SAS Institute Inc. (2019). SAS® Visual Text Analytics 8.4: User’s Guide. Cary, NC: SAS Institute Inc., 1-
172.

Shafait, F., & Smith, R. F. (2010). Table detection in heterogeneous documents, 1-9.
https://doi.org/10.1145/1815330.1815339

25

Smith, R. J. E. (2007). An Overview of the Tesseract OCR Engine, 1-5.
https://doi.org/10.1109/icdar.2007.4376991

Smith, R. F. (2009). Hybrid Page Layout Analysis via Tab-Stop Detection.
https://doi.org/10.1109/icdar.2009.257

26

APPENDIX

A. CODE TO BUILD THE OCR

A1. Python functions

Import libraries
import cv2
import os
import pytesseract
from skimage import *
from deskew import determine_skew
import re
import numpy as np
import logging
import time
from PIL import Image

Set Tesseract directory
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'

Define functions
def noise_removal_and_smoothening(img):
 img_u=img.astype(np.uint8)
 filtered = cv2.adaptiveThreshold(img_u, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 41,3)
 kernel = np.ones((1, 1), np.uint8)
 opening = cv2.morphologyEx(filtered, cv2.MORPH_OPEN, kernel)
 closing = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel)
 #image smoothening
 ret1, th1 = cv2.threshold(img_u, 180, 255, cv2.THRESH_BINARY)
 ret2, th2 = cv2.threshold(th1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
 blur = cv2.GaussianBlur(th2, (1, 1), 0)
 ret3, th3 = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
 or_image = cv2.bitwise_or(th3, closing)
 return or_image

def adjust_contrast(img, clipLimit, tileGridSize, brightness, contrast):
 try:
 lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
 l_channel, a, b = cv2.split(lab)
 clahe = cv2.createCLAHE(clipLimit=clipLimit, tileGridSize=tileGridSize)
 cl = clahe.apply(l_channel)
 limg = cv2.merge((cl,a,b))
 enhanced_img = cv2.cvtColor(limg, cv2.COLOR_LAB2BGR)
 except:
 img = np.int16(img)
 img = img * (contrast/127+1) - contrast + brightness
 img = np.clip(img, 0, 255)
 img = np.uint8(img)
 enhanced_img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
 return enhanced_img

def deskew(image, dimension_limit):
 '''
 Rotate the image automatically to increase the OCR precision. If the image is too big,
 the function will interrupt the process and the original image is returned
 '''
 if image.shape[0] > dimension_limit:
 print('The image has not been processed because over the dimension_limit')
 return image.astype(np.uint8)
 else:
 angle = determine_skew(image)
 if angle == None:
 rotated = rotate(image, 0, resize=True, preserve_range=False) * 255
 print('angle was not calculated by the function. Rotation is se to angle = 0')
 else:
 _t_start = time.time()
 rotated = rotate(image, angle, resize=True, preserve_range=False) * 255
 _t_end = time.time()
 print('Image rotated, angle = {a}'.format(a=angle))
 print('Deskew execution time {b}'.format(b=round(_t_end-_t_start, 2)))

27

 return rotated.astype(np.uint8)

def process_image_for_ocr(im, _noise_removal=True, _contrast=True, _deskew=True):
 im_arr = np.asarray(im)
 im_arr_g = cv2.cvtColor(im_arr, cv2.COLOR_RGB2GRAY)
 if _noise_removal:
 im_arr_g = noise_removal_and_smoothening(im_arr_g)
 print('Noise and Smoothness adjustments completed')
 if _contrast:
 im_arr_g = adjust_contrast(im_arr_g, 1.5, (4,4), 50, 30, False, (1400, 900), False)
 print('Contrast and Brightness adjustment completed')
 if _deskew:
 im_arr_g = deskew(im_arr_g, 4000)
 print('Image rotation adjustment completed')
 return im_arr_g

def ocr_text_extracion(img, prefix, suffix, lang):
 '''
 The function perform OCR image_to_string().
 The user could add a prefix and a suffix to the generated string.
 '''
 _t_start = time.time()
 __temp_string = pytesseract.image_to_string(img, lang=lang)
 _t_end = time.time()
 print('OCR process completed in {a} seconds'.format(a=round(_t_end-_t_start, 2)))
 return prefix + ' ' + __temp_string + ' ' + suffix

scan document page for image generation and OCR
def text_image_page_scanner(page, doc, doc_name, num_chars, width_size, height_size, path_to_img,
image_preprocessing=True):
 '''
 - The function returns the text content of a PDF page imported using PyMuPDF.
 - The num_chars parameter controls the min lenght of characters to skip the OCR
 and extract the text directly. if there are less characters than this parameter
 the function returns the image(s) in the page. Also, if the text contains strange
 characters (bytes like), the entire page will be scanned and the OCR will be run.
 - The images are filtered according to their dimentions: (width_size, height_size)
 if the page contains 1 image, then the runs over the only image in the page.
 if the page contains >1 images larger than the 'width and height' filter,
 the function scans the entire page and returns a png of the page.
 '''
 _num_page = page.number
 _page_text = page.get_text()
 _doc_page_tag_string = ' - (document: {a}, page {b})'.format(a=doc_name, b=_num_page)
 prefix='OCR extraction start:'
 suffix='OCR extraction end'
 if len(_page_text) > num_chars:
 print('Text extraction returns more than {a} characters'.format(a=num_chars))
 print('for page {b}. OCR procedure is not necessary'.format(b=_num_page))

 if _page_text.find('\x01') + _page_text.find('\x02') + _page_text.find('\x03') > 0:
 print('The string contains unknown characters. The entire page will be scanned')
 _page_scan = page.get_pixmap(alpha=False, dpi=300, colorspace='rgb')
 img = Image.frombytes('RGB', [_page_scan.width, _page_scan.height], _page_scan.samples)

 if image_preprocessing:
 img_postprocess = process_image_for_ocr(img)
 else:
 img_postprocess = img

 _text_from_img = ocr_text_extracion(img_postprocess, prefix, suffix, 'ita')
 _tag_string ='Page OCR scan' + _doc_page_tag_string
 return _tag_string + ' - ' + _text_from_img + ' - ' + _tag_string
 else:
 _tag_string = 'Direct text extraction' + _doc_page_tag_string
 return _tag_string + ' START - ' + _page_text + ' - END ' + _tag_string
 else:
 print('The page {a} does not contain text. OCR procedure is initialized'.format(a=_num_page))
 imgpage = page.get_image_info(xrefs=True)
 print('{a} image(s) found in page {b}.'.format(a=len(imgpage), b=_num_page))
 _cleaned_images = [k for k in imgpage if (k['width'] > width_size) and (k['height'] >
height_size)]

 if len(_cleaned_images) == 0:

28

 print('No images found in page {a}. page scan using pixmap will start'.format(a=_num_page))
 _page_scan = page.get_pixmap(alpha=False, dpi=300, colorspace='rgb')
 img = Image.frombytes('RGB', [_page_scan.width, _page_scan.height], _page_scan.samples)

 elif len(_cleaned_images) == 1:
 print('One image found in page {a}. Image extraction using PyMuPDF'.format(a=_num_page))
 __img = _cleaned_images[0]
 _img_xref, _img_wdh, _img_hgt = __img['xref'], __img['width'], __img['height']
 print('Analyzing image with xref = {b}'.format(b=_img_xref))
 print('Image xref {c} resolution = {a}'.format(a=(_img_wdh, _img_hgt), c=_img_xref))
 _image_dict = doc.extract_image(_img_xref)
 _img_ext = _image_dict.get('ext')
 _path_to_image = path_to_img + '/' + doc_name + '_img_xref{z}_{p}.{a}'.format(a=_img_ext,
p=page.number, z=_img_xref)
 img = open(_path_to_image, "wb")
 img.write(_image_dict.get('image'))
 img.close()
 print('Image created. Path to the image is {a}'.format(a=_path_to_image))
 img = cv2.imread(_path_to_image)
 print('Image reimported')
 os.remove(_path_to_image)
 print('Image deleted')

 elif len(_cleaned_images) > 1:
 print('{c} image(s) found at the'.format(c=len(_cleaned_images)))
 print('page {a}. page scan using pixmap will start'.format(a=_num_page))
 _page_scan = page.get_pixmap(alpha=False, dpi=300, colorspace='rgb')
 img = Image.frombytes('RGB', [_page_scan.width, _page_scan.height], _page_scan.samples)

 if image_preprocessing:
 img_postprocess = process_image_for_ocr(img)
 else:
 img_postprocess = img

 if img_postprocess.shape[0] < 4000:
 _text_from_img = ocr_text_extracion(img_postprocess, prefix, suffix, 'ita')
 else:
 return 'Memory limit reached ' + _doc_page_tag_string + ' START - END'

 '''
 This further step is for some rare cases in which the text extraction from images is
 empty and the image is almost completely white (images with rgb>254). This is the case
 of some pdfs with no written text, one white image as a background and several images
 with some actual text but smaller than the size filter of (500px X 500px).
 The solution is an entire page scan
 '''
 if len(_text_from_img)-(len(prefix)+len(suffix))<=0 and img_postprocess.mean()>254:
 print('image {c} text extraction is empty.'.format(c=len(_cleaned_images)))
 print('The entire page {a} will be scanned using the pixmap'.format(a=_num_page))
 _page_scan = page.get_pixmap(alpha=False, dpi=300, colorspace='rgb')
 img = Image.frombytes('RGB', [_page_scan.width, _page_scan.height], _page_scan.samples)
 if image_preprocessing:
 img_postprocess = process_image_for_ocr(img)
 else:
 img_postprocess = img
 if img_postprocess.shape[0] <4000:
 _text_from_img = ocr_text_extracion(img_postprocess, prefix, suffix, 'ita')
 else:
 return 'Memory limit reached ' + _doc_page_tag_string + ' START - END'

 _tag_string = 'OCR extraction ' + _doc_page_tag_string
 return _tag_string + ' - ' + _text_from_img + ' - ' + _tag_string

def txt_cleaner(txt, basic_operation=True):
 regex = r'\\r|\\n|\r|\r\n'
 regex2 = r' +'
 regex3 = r'\n \n'
 if basic_operation:
 txt = re.sub(regex, '\n', txt)
 txt = re.sub(regex2, ' ', txt)
 txt = re.sub(regex3, '\n\n', txt)
 print('Text cleaned according to specified operation(s)')
 else:
 txt = txt

29

 print('Function returned the original text')
 return txt

A2. Proc python

/* -- PROC PYTHON: PDF file OCR and elaborations -- */
filename pyfunc "/mnt/nfs/viya/python_functions/ocr_image_txt_processing_functions.py";
proc python infile=pyfunc restart;
submit;

import libraries
import time
import os
import logging
import pandas as pd
import fitz
import shutil

bring paths into python
path_to_sin_folders = SAS.symget('path_to_sin_folders')
path_to_temp_data = SAS.symget('path_to_temp_data')
path_to_metadata_out = SAS.symget('path_to_metadata_out')
path_to_sin_folders_out = SAS.symget('path_to_sin_folders_out')
path_to_log = SAS.symget('path_to_log')
path_to_sin_move = SAS.symget('path_to_sin_move')
timestamp_macro = SAS.symget('timestamp')

log configuration
log_file = os.path.join(path_to_log, 'ocr_{a}.log'.format(a=timestamp_macro))
logging.basicConfig(filename=log_file,
 filemode='w',
 level=logging.DEBUG,
 format='%(asctime)s [%(levelname)s] - %(message)s')

PDF reading
list_folder_file = os.listdir(path_to_sin_folders)
list_folder = [k for k in list_folder_file if os.path.isdir(path_to_sin_folders+'/'+k)]

start_time_all = time.time()
for _dir in list_folder:
 start_time_dir = time.time()
 logging.debug('Working on Folder {a}'.format(a=_dir))
 _new_folder_output = os.path.join(path_to_sin_folders_out, _dir)
 if os.path.isdir(_new_folder_output):
 logging.debug('The output folder {a} already exists. Files will be
overwrited'.format(a=_dir))
 pass
 else:
 os.mkdir(_new_folder_output)
 logging.debug('Output folder {a} created'.format(a=_dir))
 _get_files = os.listdir(path_to_sin_folders+'/'+_dir)
 _get_files = [k for k in _get_files if k.lower().endswith('.pdf')]
 _text_file = []
 _medatada_file = []
 for _file in _get_files:
 start_time_file = time.time()
 _path_to_file = path_to_sin_folders+'/'+_dir+'/'+_file
 logging.debug('Working on file {a}'.format(a=_file))
 doc = fitz.open(_path_to_file)
 metadata = pd.DataFrame(doc.metadata, index=[_file])
 metadata['page_num'] = len(doc)
 metadata['fileName'] = _file.split('.')[0]
 metadata['FolderName'] = _dir
 _medatada_file.append(metadata)
 __text_page = []
 for page in doc:
 logging.debug('Working on page {a} of the file {b}'.format(a=page.number,
b=_file))
 doc_name_list =_file.split('.')[:-1]
 doc_name= ("".join(doc_name_list))
 try:
 text = text_image_page_scanner(page, doc, doc_name, 50, 500, 500,
path_to_temp_data, image_preprocessing=True)
 text = '#### Complete extraction: -> ' + text + ' ####'

30

 logging.debug('Text extraction completed in file {a}, page
{b}'.format(a=_file, b=page.number))
 except:
 logging.debug('Text extraction FAILED in file {a}, page {b}'.format(a=_file,
b=page.number))
 text = ''
 text = '#### Empty extraction: -> ' + text + ' ####'
 continue
 __text_page.append(text)
 _text_file = '\n\n'.join([k for k in __text_page])
 logging.debug('Concatenation of all pages of file {a} completed'.format(a=_file))
 logging.debug('Execution on file {a} completed in {b} seconds'.format(a=_file,
b=round((time.time() - start_time_file), 2)))
 with open(_new_folder_output+'/{a}.txt'.format(a=doc_name),'w',encoding='utf-8') as f:
 txt = txt_cleaner(_text_file, basic_operation=True)
 f.write(txt)
 f.close()
 logging.debug('{a}.txt file created'.format(a=_file))
 logging.debug('Execution on folder {a} completed in {b} seconds'.format(a=_dir,
b=round((time.time() - start_time_dir), 2)))
 shutil.move(os.path.join(path_to_sin_folders, _dir), os.path.join(path_to_sin_move, _dir))
 logging.debug('Folder {a} moved to path {b}\n\n'.format(a=_dir, b=path_to_sin_move))
 df_metadata_all = pd.concat(_medatada_file, axis=0)
 df_metadata_all.to_csv(path_to_metadata_out+'/metadata_{a}.csv'.format(a=_dir))
logging.debug("Execution time all SIN: {a} seconds\n".format(a=round((time.time() -
start_time_all), 2)))

endsubmit;
quit;

1

