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ABSTRACT

Replicated systems cannot maintain both availability and (strong) consistency when ex-
posed to network partitions. Strong consistency requires every read to return the last
written value, which can lead clients to experience high latency or even timeout errors.
Replicated applications usually rely on weak consistency, since clients can perform opera-
tions contacting a single replica, leading to decreased latency and increased availability.

Causal consistency is a weak consistency model, however, it is the strongest one for
highly available systems. Many applications are switching to this particular consistency
model, since it ensures users never observe data items before they observe the ones that
influenced their creation.

Verifying if applications satisfy the consistency they claim to provide is no easy task.
In this dissertation, we propose an algorithm to verify causal consistency in RESTful
applications. Our approach adopts a black box testing, where multiple concurrent clients
execute operations in a service and records the log of interactions. This log of interactions
is then processed to verify if the results respect causal consistency. The key challenge
is to infer causal dependencies among operations executed in different clients without
adding any additional metadata to the data maintained by the service. When considering
a particular operation, the algorithm builds a new dependency graph that considers one
of the possible justifications the operation might have, but if this justification results in
failure further ahead in the processing, it is necessary to build another graph considering
another justification of that same operation. The algorithm relies on recursion in order to
achieve this backtracking behaviour. If the algorithm is able to build a graph containing
every operation present in the log, where the chosen justifications remain valid until the
end of the processing, it outputs that the execution corresponding to that log satisfies
causal consistency. The evaluation confirms that the algorithm is able to detect violations
when feeding either small or large logs representing executions of RESTful applications
that do not satisfy causal consistency.

Keywords: Distributed Systems, RESTful Applications, Causal Consistency, Vector Clocks,
Jepsen, JepREST
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REsumMo

Os sistemas replicados ndo podem manter a disponibilidade e a consisténcia (forte) quando
expostos a parti¢cdes de rede. A consisténcia forte exige que cada leitura retorne o altimo
valor escrito, o que pode levar os clientes a experienciar alta laténcia ou até mesmo erros
de tempo limite. As aplica¢bes replicados geralmente usam consisténcia fraca, pois os
clientes podem realizar operagdes contactando uma tnica réplica, levando a laténcias
baixas e maior disponibilidade.

A consisténcia causal é um modelo de consisténcia fraco, mas é o mais forte para
sistemas altamente disponiveis. Muitas aplica¢des usam este modelo, pois garante que os
clientes nunca observem dados antes de observar os que influenciaram a sua criagao.

Verificar se as aplica¢des satisfazem a consisténcia que alegam fornecer ndo é facil.
Nesta dissertacdo, propomos um algoritmo para verificar a consisténcia causal em apli-
cagoes RESTful. A nossa abordagem adota um teste de caixa negra, onde varios clientes
concurrentes executam operagdes num servico, onde as interagdes sio documentadas num
ficheiro. Este ficheiro é processado para verificar se os resultados respeitam a consisténcia
causal. O principal desafio é inferir as dependéncias causais entre as operagdes executa-
das em diferentes clientes sem adicionar metadados adicionais aos dados mantidos pelo
servico. Ao considerar uma determinada operacao, o algoritmo constréi um novo grafo
de dependéncias que considera uma das possiveis justificacdes que a operagdo possa
ter, mas se esta justificagdo resultar em erro mais tarde no processamento, é necessario
construir outro grafo considerando outra justificacdo dessa mesma operacado. O algoritmo
é recursivo de modo a alcancar esse comportamento de retrocesso. Se o algoritmo con-
seguir construir um grafo que contém todas as operagdes presentes no ficheiro, onde as
justificacdes escolhidas permanecem validas até o final do processamento, indica que a
execugdo correspondente a este ficheiro satisfaz a consisténcia causal. A avaliagdo confirma
que o algoritmo é capaz de detectar violagdes ao fornecer ficheiros pequenos ou grandes
representando execucdes de aplicagdes RESTful que ndo satisfazem a consisténcia causal.

Palavras-chave: Sistemas Distribuidos, Aplicagdes RESTful, Consisténcia Causal, Rel6gios
Vetoriais, Jepsen, JepREST
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1

INTRODUCTION

This chapter starts by introducing the context of this dissertation, its motivations, the
problem it tries to solve. Finally, the proposed solution is presented and the structure of
the document is outlined.

1.1 Context

In recent years, developers have relied on developing web and mobile distributed appli-
cations to provide services to their clients. A distributed application consists of a set of
components connected through a network, which perform computations and communi-
cate with each other to achieve that goal.

Online services are distributed applications used across the world through the Internet.
These are usually replicated for providing both dependability and good performance [24],
specially for low latency access. Cloud plays a big part in deploying these systems, since it
is all about redundancy and fault-tolerance, where it is crucial not to affect the availability
of an entire system when some of its components fail [35].

According to the CAP theorem [17], detailed in section 2.3.1, a replicated distributed
system cannot hold both availability and (strong) consistency in environments subject
to network partitions. As it is impossible to preclude network partitions in a large scale
distributed system, a system must choose between availability and consistency, given its
requirements.

Stronger consistency models, e.g, linearizability, cause high latency due to blocking
cross-replica synchronisation [29], which guarantees that most of clusters hold the most
recent updates. Weak consistency provides low latency due to its high availability, since
operations can execute contacting a single replica, where there is little synchronisation
among replicas [61].

Developers tend to rely on weaker forms of consistency, because they want to provide
services with as low latency as possible. It is common for replicated systems to offer weak
consistency, since it not feasible to update every single replica spread across the globe
before returning to the client. Regarding weak consistency models, eventual consistency

1



CHAPTER 1. INTRODUCTION

is the weakest of them all, whereas causal consistency is the strongest one that is available

in the presence of partitions [47].

1.2 Motivation

The components of a system can fail due to software errors and server wrong configuration,
and can be exposed to failures, such as server crashes and network partitions [23]. In fact,
an issue can imply another, e.g., a software bug can lead to a server crash. If the system
does not handle these faults, they lead to consistency anomalies in services or, even worse,
catastrophic situations like service unavailability. Detecting these anomalies is not easy,
and many times, consistency anomalies are only detected in production after some time.
Some of them can be detected using a unique server to probe the service issuing a simple
sequence of read and write operations, but in other cases it is necessary to interact with
several servers to probe the service.

Designing and developing a distributed system is complex, due to concurrency and the
possibility of partial system failures, where some components continue working correctly
while others have failed. The greater the complexity of a distributed system, the greater
the chance of not handling situations that may end up violating the correctness of the
system.

Replicated systems not always provide the consistency guarantees they claim to
provide. This fact is supported by Jepsen [36], which has detected consistency issues in
more than two dozens of distributed systems, such as: distributed databases, queues, and
consensus systems.

Thus, it is necessary to verify and test distributed systems that are replicated and can
provide different consistencies.

1.3 Problem

There are solutions that verify the specification of systems using static analysis, which
is important. Moreover, it is also crucial to verify their implementation and execution in
concurrent environments.

As mentioned earlier, distributed applications can adopt different consistencies. This
dissertation tries to address the challenge of verifying whether executions of replicated
RESTful applications, following the CRUD pattern [64], respect causal consistency, whose
concept is detailed in section 2.3.5.

It is not obvious that verifying causality is simpler than verifying linearizability. From
an abstract point of view, we can verify linearizability by generating every order of
operations performed on a system, and for each order, checking whether it satisfies the
results of the operations [40]. At the end, there will be at most one order that satisfies
linearizability. As for causality, there may be more than one possible order for the sequence
of operations, since every replica has its own order. Different replicas can return different

2



1.4. PROPOSED SOLUTION

values, however, as long as the operations do not share a causal relationship, we are
dealing with a valid configuration of the system. Therefore, there may be an exponential
number of configurations of the given system.

Verifying causality in RESTful applications seems to be more complex than verifying it
in databases. Let us consider a RESTful application that manages students, where each one
is identified by an id. Write operations of this application require an additional implicit
read before performing the actual write, e.g., an operation that updates a student (PUT)
requires that the student with the given id exists. In databases, this does not happen, the
write is performed without any additional verification. In this particular case, even if the
student with the given id did not exist in the database, the update would create an entity
with that id.

1.4 Proposed Solution

In this dissertation, we propose an algorithm that analyses histories of CRUD operations
corresponding to executions of RESTful applications, classifying them as causal or not,
that is, whether or not they satisfy causal consistency. Besides, this algorithm can also
detect some violation patterns of a variation of the causal consistency model - causal+
consistency [43] - for the same histories of operations.

The histories of operations fed to the algorithm follow the pattern of histories generated
by Jepsen [36] and JepREST [58] after performing a workload of operations over a RESTful
application. Every single REST operation in the history file is divided into two points in
time: request and response. This means that the operation can take place at any point
between those two moments. The request part of an operation contains all the metadata
of the request that the client submitted to the application and the same happens with the
response part, that is, it contains all the response’s metadata retrieved by the application.

The algorithm processes the history file, which converts those metadata structures
into one of three types of (processed) operations: write, implicit read and explicit read. A
(processed) write corresponds to the actual value writing, i.e., assigns that value to the
given entity identifier. An implicit read indicates whether an entity, identified by some
field (e.g., an id), must exist or not for the corresponding write to take place. If a write
operation comprises a POST method, then the implicit read holds the information that the
given entity must not exist. However, if we were dealing with a PUT or DELETE methods,
the implicit read stores the information that the given must exist. Finally, regarding explicit
reads, they correspond to read operations (GET method), storing the entity identifier and
the value read.

The vector clock [44] structure is the structure that allows this algorithm to work.
Every value that has been either written or read is assigned a vector clock that indicates
its version. Every client stores a vector clock, representing its state, and more complex
structures that also rely on vector clocks.
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The algorithm follows a recursive approach, which goes through each of those pro-
cessed operations, following the order of their original metadata elements. In the case of
implicit or explicit reads, the algorithm tries to justify them either by the corresponding
client’s knowledge or writes from other clients. In order to get the writes of other clients
that might justify the operation of the given client, vector clocks checks must be performed.

If the algorithm is handling an operation that has no justifications or if all justifications
of a given operation resulted in failure further ahead, the algorithm backtracks. Once the
algorithm backtracks all the way to the first operation whose justifications did not work
further ahead, then it classifies the execution corresponding to the history of operations as
not causal consistent. If the algorithm was able to create a graph where every justification
chosen resulted in success further ahead, i.e., the algorithm was able to treat every
operation, then it classifies the history of operations as causal. The graph represents
a possible configuration of the RESTful application when considering the execution
corresponding to the history of operations.

1.5 Contributions

The project developed contributes to the extension of the JepREST [58] tool. This tool
tests and analyses RESTful applications in order to verify whether or not they respect
linearizability. Our project took advantage of JepREST and its semantics to verify whether
or not replicated RESTful applications satisfy causal consistency. The contributions of this
dissertation are the following;:

¢ A detailed definition and explanation of the algorithm that verifies causal consistency
in RESTful applications.

¢ A processing mechanism that converts the data in the history of operations into the
data the algorithm consumes.

¢ An overview of the JepREST’s implementation and a detailed explanation of imple-

mentation of our algorithm.

* An in-depth experimental evaluation of a prototype of the algorithm that follows
the implementation semantics. Its behaviour was assessed through histories written
by us and others that have been generated by JepREST after performing workloads
on a real RESTful application. The scalability of this prototype was also measured.

1.6 Document Structure
The skeleton of the rest of the document is the following;:

* Chapter 2 - Related Work: Starts by discussing approaches proposed to test applica-
tions and proceeds with a presentation of the specific verification techniques. Then,

4



1.6. DOCUMENT STRUCTURE

it introduces consistency models for distributed applications followed by techniques
proposed to verify such consistency guarantees. Then, it presents an overview of
tools used for testing distributed applications. Finally, it provides a brief conclusion
of the chapter.

Chapter 3 - Solution Design: Compares the difficulties of verifying causal con-
sistency between databases and RESTful applications executions and presents in
detail the behaviour of the algorithm that verifies causal consistency in RESTful
applications. The algorithm’s characteristics and the way it processes and manages
data are explained through several examples of histories of operations. At the end,

its pseudocode is presented.

Chapter 4 - Implementation: Briefly presents the implementation of JepREST’s

components and describes in detail the implementation of our algorithm.

Chapter 5 - Experiments and Results: Features an in-depth assessment of a prototype
of the algorithm that checks the intermediate and final results when feeding histories
of operations representing custom executions and executions of a real RESTful

application. At the end, it presents the scalability of the prototype.

Chapter 6 - Conclusion: Summarizes what was accomplished in this dissertation

and discusses future work.



2

RELATED WORK

This chapter introduces work related with the topic of this dissertation. We start by
discussing approaches proposed to test applications and proceed with a presentation of
the specific verification techniques. As the goal of this dissertation is to test distributed
applications, we then introduce consistency models for distributed applications followed
by techniques proposed to verify such consistency guarantees. Then, we present an
overview of tools used for testing distributed applications. Finally, we provide a brief
conclusion of the chapter.

2.1 Verification of Correctness

The challenge of verifying the correctness of systems is complex. Correctness is based
on properties that are either maintained (e.g., system invariants or safety properties) or
established during execution (e.g., liveness properties) [1]. This section presents high-level

techniques for verifying the correctness of a system.

2.1.1 Knowledge of the Application

Depending on the tester’s knowledge of the system, there are two types of tests that can
be performed: white-box and black-box.

2.1.1.1 White-Box Testing

White-box testing [52] is often used for verification (i.e., are we building the software
right?), where software testers have access to the code, internal structure and design of
the system subject to test. This technique is concerned with the internal mechanism of the
system, so tests are designed based on the information derived from the source code and
internal design, as they mainly focus on control and data flows of a program.

Most often, this approach is adopted only by the developers who built the application
because they know how the code is structured, what it is supposed to do and how the
components relate between themselves. Some white-box techniques are presented below.
However, one will not resort to these techniques. Usually, they reveal to be very inefficient

6



2.1. VERIFICATION OF CORRECTNESS

since one would need to analyse every piece of code of each component, which would be

a slow and costly process.

Branch Testing [38] This technique aims to write test cases given that each possible
possible outcome from conditions, i.e., either true of false outputs from IF-THEN-ELSE
statements, must be tested at least once. This is done on every control statement, which

also includes situations where a decision depends upon previous decisions.

Basis Path Testing [38] Software testers start by drawing an appropriate control flow
graph from the source code, which demonstrates the sequence of the different instructions
executed. Then, it is necessary to calculate the cyclomatic complexity of it, which defines
the number of independent paths and indicates an upper bound for the number of tests
required to coverage all program statements. A graph path is considered independent
if introduces at least one new set of processing statements or a new condition, which is
basically a path with an edge that is not present in any other path. Finally, test cases are
designed to force the execution of these independent paths. When executing all test cases,
the software tester ensures that all statements in the program have been executed at least

once. Therefore, it has the advantage of detecting and reducing redundant tests.

Data Flow Testing [38] This approach looks at how data moves throughout the program
and tries to understand how the values assigned to variables can affect its execution. A
control flow graph is designed in order to observe how the program variables are defined
and used [26].

Tests are designed in a way to pick paths which assure that every data object has been

initialized prior to its use, and that all defined objects have been used at least once.

2.1.1.2 Black-Box Testing

Contrary to white-box testing, black-box testing [52] is a testing strategy for examining
a system’s behaviour, where tests are designed exclusively according to the system’s
specifications, and so this strategy is often used for validation (i.e., are we building the
right software?).

In this strategy, given a system that one wants to test, software testers have no access
to its source code, neither any knowledge about its internal structure. Software testers are
only aware about the possible inputs that the system is able to consume and the outputs
that it should produce given those inputs. Some black-box techniques are presented below:

Random Testing [3] This technique is one the most fundamental and most popular
testing method, as well as one of the easiest to implement. In this strategy, the domain
input is partitioned across multiple groups (partitions), where each partition holds a
single piece of the domain input. Also, what defines the inputs of test is the content of
its assigned partition. what each partition holds is what the inputs to a given test will be.
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The assignment of partitions to each test is done randomly, usually based on a uniform
distribution or according to the operational profile [19].

If the specifications of the system are incomplete, then this may be the only feasible
technique that one could rely. Otherwise, it is advantageous to use it as the system would

be subject to repeated tests.

Adaptive Random Testing [3] The development of this approach came due to the lack
of failure detecting when relying on pure Random Testing over a system. This is because
the chances of hitting these failure pattern, i.e., selecting failure-causing inputs as test
cases, depends only on the magnitude of the failure rate [19].

Empirical studies have shown that failure-causing inputs tend to form contiguous
failure regions. Consequently, non-failure-causing should form continuous non-failure
region. Given this, it is important that new test cases should be far away from already
executed non-failure-causing test cases. The idea of this technique is to evenly spread test
cases across the input domain. Forcing this to happen will enhance the failure detection
effectiveness of Random Testing. This makes developers to have more knowledge about
the system, since the portions of input domain that were missing in Random Testing will

be now taken into account.

2.1.2 Application Running

Depending if we need the system to be running or not, we can analyse it in two ways:

static and dynamic.

2.1.2.1 Static

Static analysis [32] consists in analysing software without having it up and running. This
analysis is mostly performed on some version of the source code. Usually, this term is
applied to the analysis performed by an automated software tool, but there also needs to be
some human analysis over the code. Theoretically, static analysis tools can examine either
a program’s source code or a compiled form of the program to equal benefit, although the
problem of decoding the latter can be difficult [20].

The fact that this approach is independent of code execution, if it proves that the system
satisfies a particular property, then every code execution will also satisfy that property.

Even though reviewing an application’s code can be done in any phase of the software
development, the best option is to do it at an early stage, because detecting and correcting
bugs and vulnerabilities late in the software development process can be quite risky and
costly.

Tools that statically operate over a system can produce two types of conclusions: false
negatives and false positives. False negatives happen when the program contains bugs
which the tool does not report, and false positives happen when the tool reports bugs

that the program does not contain. While false positives may lead to a long time process
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until the developer realizes that there is no error after all, false negatives are much more
dangerous because they lead to a false sense of security. To this end, a good tool for static
analysis is one that, although sometimes shows a false positive, never lets a false negative
pass [20].

Tools that statically analyse systems with a single component are precise and efficient.
However, that is not case in the context of a large scale system as it would be necessary
for developers to write all specifications of the system. This writing process is very
complex and time consuming as developers would need to reason about every possible
state. Consequently, it is very likely that some possible states are missing, resulting
in incomplete specifications about the system, so the correctness of the system is not
guaranteed.

Even if one had the complete specifications of the multiple components of a system,
with no false positives and, specially, no false negatives, it is not sufficient to do a static
analysis over those multiple components to ensure the correctness of global system, since
the combination of multiple correct units does not guarantee the correctness of the global
environment, as will be seen with more detail in section 2.2.2.

2.1.2.2 Dynamic

Contrary to the static analysis, dynamic analysis [32] is performed by executing programs
on a real or virtual processor. Having the system up and running, it is subject to a set
of tests that try to verify if properties are satisfied by the system. In order to boost the
confidence on the system’s correctness, it is necessary that these tests should verify as
much properties of the system as possible. This is specially important since one can
identify possible inconsistencies of the given results, and eventually resolve them.

This type of analysis seems to be more efficient than the static analysis as it does not
include the downsides that static analysis introduce. Still, the disadvantage of dynamic
analysis is that the results produced are not generalized for future executions, and although
dynamic analysis checks the functional properties of a system’s software, static analysis
can decrease the amount of testing and debugging necessary for the software to be deemed

ready.

2.1.3 Properties of the Application to Analyse

Properties of a system can be either functional or non-functional. The process of analysing

each type is different.

2.1.3.1 Functional

One must assert that the system’s functional properties, such as behaviour, outputs and
flows, are maintained and established during every execution of it.
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Although, a distributed system is a rather complex application, which makes its
behaviour analysis a quite complex process. For that case, this task is often divided into 3

different steps:

Unit testing [52] The first step is to design and execute unit tests, which aim to verify each
unit/component correctness, in isolation, for the sake of asserting that each component
provides what it is supposed to provide. Usually, developers rely on this approach for
testing small units of code.

Given a complex distributed system, one must test each component separately. To
this end, given a particular system’s component, a set of unit tests that represent several
scenarios is defined to test multiple combinations of inputs that result not only in success,
but also in failure. Also, these tests can simulate concurrent based scenarios, which are
very common and sometimes very hard to handle in distributed systems.

However, there are many situations where one cannot test a component in isolation, as
ithas dependencies on other component(s). To solve this, unit tests take advantage of mock-
ups to prove intrasystem dependencies and verify interactions of various components
[50]. Mocking-up a component is essentially replacing it with an object that simulates the
execution of the real component. A very common example is when one wants to test a data
repository, which is database dependent. This situation requires mocking the database
into an object that does simpler computation and storage processes.

Usually, specially in industries, this type of testing is executed under a dynamic
environment, but it can also be performed using techniques that verify the system in a

static way.

Integration testing [52] The next step is designing and executing integration tests,
which aim to validate that two or more units/components work together properly. This
step is considered more complex than the previous one as many more scenarios need
to be considered. However, these tests are much closer to the reality of a distributed
system, because components communicate with real components, not mock-ups. Besides,
integration tests can reuse these same tests without the mock-ups to verify that they
run correctly in an actual environment [50]. This way, one can check if the components’
functionalities are provided in all combinations of interaction among the integrated
components.

As in unit testing, this approach is not only supported by dynamic techniques through
the execution of tests, but also supported by static analysis techniques. However, resort to
static techniques may not be the best option because new specifications need to be created,

since more possible states of the system are taken into account.

Functional testing [52] The last step is designing and executing functional tests to verify
every system’s components when these interact with each other. In other words, this
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step is performed over the final system, where one checks if components provide their
functionalities when they communicate with each other.

When writing functional tests, one must take into account as much scenarios as we
can think of that result in interactions between the system’s components, not only when
no failures occur but also when in their presence. The complexity of this step is higher
when compared to the previous one because all interactions between all components of
the system are considered, which results in the introduction of even more scenarios.

As in both previous types of testing, functional testing is supported by both types of

analysis techniques: dynamic and static.

2.1.3.2 Non-Functional

Validating software actions is not enough. During the execution of a system, it is necessary
to assess its non-functional properties, which are constraints on the manner in which the
system implements and delivers its functionality [18].

Non-functional properties are equally important as the functional ones, since they
affect client satisfaction and experience [30]. To evaluate these properties, a sequence of
experiments is performed to resolve meaningful discrete values and patterns. Typically,
the most interesting non-functional properties about a distributed system are:

Latency It is essentially the time interval between sending a request and receiving the
respective response. In other words, given a pair of a client and an application
server, latency is defined by the time for the request to travel from the client to
the application server, plus the time that the application server takes to execute
the request and generate a response, plus the time of the response to travel from
the application server back to the client. To assess this property, it is conducted a
sequence of experiences, increasing the number of clients between each experience

until the latency starts to increase considerably.

Performance Verifying the performance of a system implies to determine how many
requests an application server can execute per unit of time. A very common technique
for doing this assessment is called load testing [37]. Load refers to the rate of the
incoming requests to the system. Briefly speaking, this technique refers to the
practice of accessing the system behaviour under load [13]. In practice, a sequence of
experiences is performed, increasing the number of clients between each experience

until the number of requests processed by the server stops increasing.

Scalability Verifying the scalability of a system implies to determine the increase in the
number of requests the system can execute when the number of servers increases
as well. In practice, a sequence of experiences is executed, where one increases the
number of clients between each experience until the number requests processed
by the server(s) stops increasing. Each experience must be repeated increasing the
number of servers in order to resolve the value described in the beginning.
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It is evident that this approach, contrary to the functional one, can only be performed
using dynamic techniques, since measuring those metrics described above requires the

system to be up and running.

2.2 Verification Techniques

This section presents low-level techniques for verifying a system, which can include

properties from multiple high-level techniques seen in section 2.1.

2.21 Model Checking

Model checking [21, 50] is a formal verification technique that determines if a given system
is provably correct using state-space exploration systematically in order to enumerate
paths for a given system. This technique is performed without having the system up and

running and its execution is shown in Figure 2.1.

Given a tool that is based on model checking, it receives a model, which represents
the system’s requirements or design, and a property that the system is expected to satisfy,
called specification. Once the given model satisfies the given specification, the tool
outputs a yes, otherwise it generates a counterexample that violates the specification. By
ensuring that the model satisfies enough system properties, our confidence regarding the

correctness of the model increases [2].

Answer

Yes: if model satisfies
specification

Model
checking
tool

Model
(system requirements)

Counter-example: if model
does not satisfy specification

Specification
(system property)

Figure 2.1: Functioning of the model checking technique

Supposing that the system has a finite number of states, then this exhaustive analysis
can be performed. However, the system in test is usually complex, such as real-life
industrial systems. The combinations of inputs, states and failure modes the system can
experience cause running a much more time and resource consuming analysis, since the

model checker may not finish the verification task.

An approach for this inconvenience is based on restricting the number of states that
can be explored by a given threshold. Although, incomplete models will be generated,
meaning that eventual bugs over that threshold of states will not be detected [63].
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2.2.2 Composition

Composition is a technique that systematically assembles a system from subsystems and
components, where tools aim to systematically assembly behaviour models for complex
systems from behaviour models for simpler systems and components [10].

The idea behind this technique is based on having provably correct components
composed with one another to create provably correct systems. However, this is not
the case [50]. Usually, components are tested under different failure modules, and
consequently these do not compose. This implies creating a new correctness specification
and rerunning the tests to prove that the resulting system is provably correct.

Nevertheless, one would need to create a specification for each combination of compo-
nents, which does not scale well, specially in microservice based architectures that have
recently become popular. A system that relies on a microservice architecture consists
of many (from tens to thousands) distinct services, which makes writing correctness

specification at this scale not reasonable.

2.2.3 Monitoring

Monitoring [51] is a strategy that gathers metrics from several services or machines that
are up and running. These metrics are subject to processing and aggregating, resulting in
more valuable metrics, specially regarding their percentiles, which can be visualized into
easy to understand dashboards, e.g., plots and histograms, so the user can have a more
intuitive idea about how the system has behaved over time. Useful alerts based on these
metrics can be set, and are often intended to inform users about an unusual or disruptive
event (e.g., peak load) that occurred within the system, which can cause serious problems.

The default or most used metrics if one wants to test a system over time are: service
is up or down, requests per second, number of successful and failed requests, cpu load,
memory usage, garbage collection, heap size, among others.

When it comes to running any successful service and debugging failures, monitoring
the system and detecting errors through it is extremely important. However, this is
considered a wholly reactive approach for validating distributed systems, as bugs can
be found only once the code has made it into production and thus, clients are affected.
Monitoring tools provide visibility into how the system is currently behaving versus how
it has behaved in the past. Therefore, monitoring allows us only to observe and should
not be the sole means of verifying a distributed system [50].

2.2.4 Canaries

Canarying [50] is another verification technique that requires the application to be up and
running and the way it works is shown in Figure 2.2.

Supposing the situation that we have a production cluster running code that is "stable"
or "correct" (primary), as far as we know, and came up with a new version of the code
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(candidate), which we think it will optimize some operations, we want to verify the
correctness of this new code. Instead of replacing all nodes (physical or virtual machines)
with the candidate code, this approach uses a deployment pattern in which the candidate
code is introduced into production clusters, where a few nodes are upgraded with it. The
output and metrics from the candidate nodes compared with the primary nodes are the
sources of information that one must take into account to decide if more nodes can be
upgraded or not. If the candidate nodes prove to behave either equivalent or better than
the primary ones, then more nodes are upgraded with the candidate code. Otherwise, if
there are significant differences on the behaviour or failures are introduced, canary nodes

are rolled back to run the primary code.

Production Cluster

Candidate) (Candidate,

Production Cluster Production Cluster Promising
Candidate
Candidate 4

@ @ @ @ Production Cluster
Erroneous
Candidate

Figure 2.2: Functioning of the canarying technique

Even though this technique limits the risk of deploying new code to live clusters, the
guarantees it can provide are limited. The only guarantee we have if a canary test passes
is that the candidate code performs at least as well as the primary code at a given moment
in time. Besides, if the system is not under peak load or a network partition does not
occur during the canary test, then no information is obtained regarding the performance
of both types of node given these scenarios and thus, we do not know which one handles
these situations better.

While canary tests are indeed valuable if one wants to validate whether the candidate
code behaves as expected in the common case, it is not enough to verify the system’s
correctness, specially fault tolerance and redundancy.

2.2.5 Fault-injection

Testing an application through fault-injection [50] consists in causing or introducing faults
in the system. These faults can be dropped messages, network partitions, or even the loss
of an entire data center. By forcing the injection of faults, engineers are able to observe
and measure how the system under test behaves. If no failures are simulated using tools

that rely on fault-injection testing, it is not guaranteed that the system is correct because
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the entire space of failures has not been exercised. Unfortunately, the task of searching the
whole space of distinct fault combinations that an infrastructure can test is intractable [1].
This testing technique reveals to be very powerful and useful. A fault-injection test
does not necessarily need to be too complex to achieve interesting conclusions about
a system. An example that supports this fact happened in October 2014, where Stripe
detected a bug in Redis. The basic fault-injection test of running "kill -9" on the primary
node of the Redis cluster was enough to cause the loss of all data in that cluster [50].
Fault-injection is becoming very popular and is an area of ongoing research. One of
the most interesting current topics regarding this research is lineage-driven fault injection
[50]. A lineage-driven fault injector, instead of exhaustively exploring the whole failure
space as a model checker would, reasons about successful outcomes and what types of
failure could occur that would change these. This is extremely useful since it significantly

reduces the state space of failures that must be tested to prove the system’s correctness.

2.2.6 Chaos Engineering

Pioneered by Netflix, chaos engineering [12, 56] is a discipline that performs a set of
experiments to uncover weaknesses of a complex distributed system, which might be
compromising its availability and security. In other words, it is based on experimenting a
system to build confidence in the system’s capability (resiliency) to withstand turbulent
conditions in production [54].

A key aspect of chaos engineering, as slightly mention in its definition, is that it relies
only on experimentation, rather than testing. Both concepts fall under the quality assurance
environment, however, they try to obtain different information about a system.

Testing requires that an engineer writing the test(s) knows particular properties about
the system that one is looking for. However, humans are not capable of understanding
every potential side effect from all interactions of a complex system’s components. Running
a test holding an assertion, based on existing knowledge, will judge that assertion, usually
into either true or false. This means that tests are simply statements about known properties
of the system, which do not create new knowledge. While experimentation is based in
an exploration of the unknown. It starts by introducing an hypothesis about the system,
and if it is refuted, then a new property is discovered, otherwise confidence grows in that
hypothesis. Thus, experimentation creates new knowledge, which is the focus of chaos
based methods.

In order to properly apply chaos engineering experiments, the experimentation process
is based in the following principles [56, 54]:

Build a hypothesis around steady state behaviour: It focus on the way the system is
expected to behave, and captures that in a measurement. Interesting metrics that represent
this steady state behaviour can be: the overall system’s throughput, error rates, latency
percentiles, among others. In the context of Netflix services, one of the metrics that
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they use is based on how many users start streaming a video each second, called SPS,
which stands for stream starts per second [12]. Netflix engineers use SPS as their primary
indicator of the overall health of the system. Even though the term "chaos" refers to a
sense of unpredictability, one of the key assumptions of chaos engineering is that complex
systems exhibit behaviours that are regular enough that they can be predicted. SPS is also
a very good example of a metric that characterizes the steady state behaviour.

Thus, these systemic behaviour patterns during experiments allow chaos to verify that
the system does work, rather than trying to validate how it works.

Vary real-world event: The variables in experiments should reflect real-world events,
where they must be prioritized by potential impact and estimated frequency. One should
consider events that correspond to failures on hardware (e.g., servers dying), on software
(e.g., malformed responses), and also non-failure events (e.g., a spike in traffic) as well.
Regarding Netflix services, some examples of inputs that they use in their experiments
are [12]: terminate virtual machine instances, inject latency into requests between services,
fail an internal service, make an entire Amazon region unavailable, etc.

There are some cases that one needs to simulate that an event occurred instead of
simply inject it. For example, Netflix does not actually take an entire Amazon region offline.
Instead, they generate actions that try to simulate the occurrence, i.e., client requests are
redirected to other Amazon regions, and effects are carefully analysed.

These aspects indicate that any event capable of disrupting the steady state behaviour
of a system is a good candidate variable for a chaos experiment.

Run experiments in production: If one is executing experiments on a given environment,
then confidence is built in that environment. Usually, a system behaves differently
depending on the environment and traffic patterns. Given that the behaviour of utilization
can change any time, often in ways that humans cannot predict, experimenting must take
place in Production, since sampling real traffic is the only way to reliably capture the
request path. More precisely, given a test context (e.g., Staging), it is never possible to
fully reproduce all aspects of the system within that context, because there will always be
significant differences such as how synthetic clients behave compared to real clients, or
DNS configuration issues [12].

Chaos strongly prefers to experiment directly on Production, but there are situations
that make sense to start on Staging, and gradually move over to Production.

Automate experiments to run continuously: This principle focuses on the practical
implications of working on complex distributed systems. First, it is crucial that a larger
set of experiments must be covered compared to what humans can cover manually. In
fact, the conditions that could possibly contribute to incidents are so many that they
cannot even be planned for. Thus, running experiments manually is labor-intensive and

unsustainable. Second, complex systems changes continuously over time. Engineering
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teams constantly alter the behaviour of existing services, add new services, and change
runtime configuration parameters, where any of these modifications can potentially
contribute to a new vulnerability, e.g., service interruption [12].

To resolve the first issue, automation provides a means of scale out the search in the
solution space of potential vulnerabilities for the ones that could contribute to undesirable
systemic outcomes. Regarding the second issue, it is necessary to leverage automation
so that one can maintain confidence in results over time [12], since complex systems will

change.

Minimize blast radius: As mentioned in the third principle, chaos experiments are
executed in Production. If there is not any orchestrated control over these experiments,
they have the potential to cause unnecessary effects on the client side. In fact, there must
be an allowance for some short-term negative impact because of the unavoidable turbulent
conditions. Indeed, it is necessary to reduce the risk to Production traffic by engineering
safer ways to run experiments, where the fallout from experiments must be minimized

and contained.

Applying these principles over a chaos engineering experiment is extremely important
because not only the confidence in the system’s increases (hypothesis proves to be true),
but also new knowledge about the system is obtained (given a refuted hypothesis). This
new knowledge is the new starting point to generate new hypothesis, which is beneficial
because confidence is strongly correlated to the number of hypothesis that reveal to be
true. Thus, performing chaos engineering experiments that follow the principles above
allow engineering teams to innovate quickly at massive scales [54].

2.3 Consistency Models

The term consistency refers to the rules, properties and guarantees that a system holds
regarding data management (storage and replication). Once performing some write
operations, the consistency is what dictates the characteristics of the possible outcomes
for a given read operation.

For a large scale back-end infrastructure to maintain both dependability and good
performance, it usually takes advantage of geo-replication [24]. Dependability obligates
the system to hold multiple replicas with replicated data, since systems are exposed to
catastrophic failures, which need to be tolerated. As for performance gains, they come
from the fact that clients are redirected to nearby copies of the data they want to access
[29]. Depending on how the data is stored and replicated among the replicas is what will
tell which consistency type one is dealing with, i.e., the guarantees for operations upon
the system.

This section presents the motivation for having two high-level types of consistency,
where each one’s overall specification and guarantees are described. Then, multiple
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consistency models and properties are characterized.

2.3.1 Strong vs Weak

CAP theorem [17] dictates that a replicated storage system needs to choose between either
(strong) consistency or availability during failures that partition the network connecting
the storage nodes. In other words, an application with replicated storage faces a trade-off
between stronger forms of consistency and higher performance properties [46]. There are
two high-level types of consistency: strong and weak [29, 46].

If a system provides a strong access to its services, then it is necessary to ensure
constant coordination among replicas at different sites. This requires heavier-weight im-
plementations, which leads to increased latency and/or decreased throughput for request
execution. However, this prevents most of the anomalies, i.e., unexpected behaviour that
is confusing to users. The stronger the consistency, the lower the occurrence of anomalies.
The other advantage is that the programming model is simplified.

The motivation for having weaker forms of consistency comes from the fact that many
systems must provide low latency and high throughput. Weakly consistent systems
provide both of these, as well as high-availability and high-scalability. These advantages
arise from the ability to allow read and write operations to be executed with little, or
even no, synchronisation among replicas [61], since operations can execute contacting a
single replica. Unfortunately, weaker forms of consistency have two primary drawbacks.
One is that they allow executions with user-visible anomalies. A common example of
this is out-of-order comments on a social network post. Considering three users (Alice,
Bob and Charlie) of this application, Alice is the first one to comment on the post, then
Bob comments on the same post, after seeing Alice comment, and in the end, Charlie
sees Bob’s comment appear before Alice’s. Furthermore, inconsistencies can occur when
only a single user or application is making data modifications [61]. For example, a user
could issue a write at one replica, and later issue a read at a different replica. If the
two replicas had not synchronised with one another between the two operations, then
the user would see inconsistent results. The other drawback is that weaker consistencies
increase programming complexity, since developers must reason about and handle all
these complex cases.

Regarding non-transactional consistency models, if one makes some tweaks and
minor changes to default ones, e.g., linearizability and eventual consistency, where their
constraints are either reinforced or relaxed, new models can be generated. In fact, if we
keep doing this, then more than fifty different consistency models can be created [62].

2.3.2 Linearizability

Linearizability [34, 46] is the strongest consistency model when it comes to non-transactional
systems. Intuitively, linearizability ensures that each operation appears to take effect in-

stantaneously at some point between when the client sends the request and receives the
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response. This requires blocking user requests waiting for cross-replica synchronisation
[29], since every replica must be updated with the requested data modifications before
returning to the user.

This model dictates that there exists a total order over all operations in the system,
which is consistent with the real-time order of operations. For example, if operation A
completes before operation B, then A will be ordered before B. A total order anomaly
would occur if the opposite had happened, i.e., B was ordered before A, as it is not
concordant with the real-time order. Thus, anomalies are avoided by ensuring that writes
take effect in some sequential order that agrees with real time, and that reads always see
the results of the most recently completed write. Since this model is very easy to reason
about, it also decreases the programming complexity.

As already mentioned, the main problem of this model is the increased latency and

decreased throughput, which is why developers are avoiding stronger consistency models.

2.3.3 Serializability

Serializability [14, 57] is a strong consistency model, which is transactional, i.e., its
operations (called transactions) can involve multiple primitive sub-operations performed
in order.

Under this model, transactions appear to have occurred in some total order. In other
words, this model guarantees that the execution of a set of transactions over multiple
data objects is equivalent to some serial execution (arbitrary total ordering) of the transac-
tions [42]. It guarantees that operations take place atomically, since sub-operations of a
transaction do not appear to interleave with sub-operations from other transactions.

Serializability differs from linearizability in three properties [42]. The first two are
related to the fact that serialization is transactional, so instead of having a single-operation
and single-object ethic, it does multi-operation and multi-object executions. The last
one is that serializability does not impose any real-time constraints on the order of
transactions. Actually, it does not imply any deterministic order, as it simply requires that
some equivalent total order exists.

To achieve serializability’s total order of transactional multi-object operations and

linearizability’s real-time constraints, then one must rely on strict serializability [34, 59].

2.3.4 Session Guarantees

A session is an abstraction for the sequence of read and write operations performed during
the execution of an application. Its intent is to present individual users or applications
with a view of the system that is consistent with their own actions, even if they read and
write from several potentially inconsistent servers. The goal is for results of operations
performed in a session to be consistent with the model of a single centralized server,
possibly being read and updated concurrently by multiple clients. To this end, there are
4 guarantees that can be applied independently to the operations belonging to a session.
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For simplicity, it is assumed that read operations return the entire sequence of writes. The

session guarantees, as defined in [61, 29], are the following:

Read Your Writes: This guarantee is motivated by the fact that users or applications
find it confusing if they update the state and then immediately read only to discover that
the update appears to be missing [61]. So, this guarantee requires that a read observes
all writes previously executed by the same session (client). More formally, being W the
set of writes operations made by a client c at a given instant, and S the sequence of write
operations returned in a subsequent read operation of ¢, a Read Your Writes anomaly occurs
if: IxeW:x¢S.

Monotonic Writes: It requires that writes issued by the same client are observed in the
order in which they were issued. This implies that a write is only incorporated into a
replica if the replica contains all previous session writes [61]. More formally, being W the
set of writes operations made by a client ¢ up to a given instant, and S the sequence of
effects of write operations returned in a read operation by any client, a Monotonic Writes
anomaly occurs if the following property holds, where W(x) < W(y) denotes x precedes
yinsequence W: 3x,y e W: W(x) < W(y) Ay € SA(x ¢ SV S(y) < 5(x)).

Monotonic Reads: This requires that every write reflected in a read must be also reflected
in all subsequent reads issued by the same client. It ensures that reads are made only
to replicas that include all writes that were seen by previous reads within the session
[61]. More formally, a Monotonic Reads anomaly occurs if a client c issues two read
operations that return sequences S; and S, (in that order) and the following property
holds: 3x € S1: x ¢ S».

Writes Follow Reads: This requires that a write seen in a read by a given client always
precede the subsequent writes that the same client performs. This avoids the strange
situation where a client reacts to a write issued by itself or some other client by issuing
another write (e.g., after seeing a post, the client adds a comment to it), and subsequently
some client observes the second write without observing the first one. More formally,
being S; a sequence returned by a read invoked by a client ¢, w a write issued by c after
observing S1, and S, a sequence returned by a read issued by any client in the system, a
Writes Follow Reads anomaly happens if: w € S AJx € S1: x ¢ So.

These guarantees can easily be layered on top of a weakly-consistent replicated data
system. However, requesting a guarantee can have an adverse impact on availability,
because enforcement of guarantees restricts the set of servers that may be used within a
session. Indeed, to make sure that guarantees are met, the servers at which an operation
can be executed must be restricted to a subset of available servers that are sufficiently up-
to-date. Thus, applications must take a trade-off between availability and the consistency
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(number of session guarantees applied). For this reason, guarantees can be requested

individually on a per-session basis.

2.3.5 Causal Consistency

Causal consistency [11] is considered a weak consistency model, however, it is the strongest
one for highly available systems [47]. Briefly speaking, under causal consistency, the
system’s users can never observe data items before they can observe items that influenced
their creation. Suppose the following scenario on a social networking site: Sally cannot
find her son Billy, so she posts an update S to her friends: "I think Billy is missing!"; After
Sally posts S, Billy calls his mother to let her know that he is at a friend’s house, so Sally
edits S, resulting in S*: "False alarm! Billy went out to play!"; Sally’s friend James observes
S* and posts status | in response: "What a relief!". If causality is not respected, another
user, Henry, could observe effects before their causes, i.e., if Henry observes S and | but
not 5%, he might think that James is pleased to hear that Billy’s is missing. If the system
had respected causality, he could not have seen | without 5*.

Causal consistency comprises Lamport’s happens-before relationship [41] (denoted —),
which is defined as follows:

¢ If g and b are in the same process, and a comes before b, thena — b

* If a is the sending of a message by one process and b is the receipt of it by another
process, thena — b

e ifa > bandb — ¢,thena — ¢

e Ifa +» band b -» 4, then they are said to be concurrent,ie., a || b.

In fact, the four session guarantees derive from the properties of this relationship. Thus,
causal consistency consists of the four session guarantees, which are referred to as causality
semantics. None of these should be violated if a system relies on causal consistency.

2.3.6 Eventual Consistency

Eventual consistency [46] is the weakest consistency models that one can ask for. Each read
or write operation is performed at a single server, and the writes are propagated to other
servers in a lazy fashion [61]. Hence, replicas can respond immediately to read operations
using their current version of the data, while writes are asynchronously propagated.
However, when replicas are not yet synchronised, different replicas may return different
results for reads. In other words, a write might not be seen by reads within time t after it
committed, which is not allowed in linearizable systems. Thus, this model requires that
replicas "eventually" synchronise and agree on a value of an object, i.e., when they all have
received the same set of writes, they will have the same value. Indeed, this convergence
guarantee is a liveness property, however, it is not a safety guarantee, since a system
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cannot "violate" eventual consistency at any fixed point in time, and there is always the
possibility that it becomes consistent later [11]. At any given time, clients may see a wide
range of consistency anomalies, i.e., any subset of the actual writes.

Given its properties, this model is able to provide high availability with low latency
and high throughput. However, the programmer will have to deal with strange and

complex cases, which leads to increased programming complexity.

2.4 Verification of Consistency

This section presents an overview of what strategies have been done to verify different
types of consistency the systems offer and consequently what anomalies they allow, taking
into account the multiple consistency models and semantics presented in section 2.3.

2.4.1 Verifying Causal Consistency

Bouajjani et al. [16] introduced a theoretical approach for the problem of checking if
a single execution of read-write abstractions, e.g., replicated key-value stores, satisfies
causality. This approach detects violations of causal consistency through the occurrence
of bad patterns.

Three different variations of causal consistency (with respect to its implementation)
have been considered: causal consistency (CC), causal memory (CM) and causal conver-
gence (CCv). CM and CCu are strictly stronger than CC. If a site "changes its mind"
about the order of operations, then (CM) is violated. CCv implies that all sites eventually
converge to the same state with respect to the operations that are not causally related.

An example of a bad pattern is called ThinAirRead, where a client observes a value
of an entity, however, no client has written that value to that entity before. This is a bad
pattern of every criteria (CC, CM and CM).

They proved that detecting these bad patterns on single executions of read-write
abstractions, i.e, verify if they are causally consistent, is NP-complete. Zennou et al. [65]
implemented this approach reducing the problem of detecting the existence of those bad
patterns to the problem of solving Datalog queries on two different distributed databases.
Regarding the results of CC and CCv, they show that the implementation is more efficient
in the case of verifying CC and CCv compared to the CM case.

2.4.2 Verifying Session Guarantees

In order to understand the consistency levels of online service APIs, Freitas et al. [29]
propose two black box tests that probe a given system (through its API) in search of
occurrences of anomalies that either violate any of the four session guarantees, or introduce
content or order divergence. Moreover, regarding the latter ones, it calculates for how
long it takes for the system to recover from the divergence, i.e., converge back to a single
coherent state.
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The sequence of events for the first test is shown in Figure 2.3. In this test, each
agent performs two consecutive writes and continuously issues reads in the background.
Agents have sequential ids and the first write by agent i is performed when it observes
the last write of agent i — 1. For every operation, its invocation and response times, and
their output are logged. With this information, it is possible to detect the anomalies that
violate any of the four session guarantees. For example, if any agent observes the effects of
a message M and in a subsequent read by the same agent the effects of M are no longer

observed, then a Monotonic Reads violation occurs.

StartTest : StartTest : ! ! StartTest :

3 O StartRead O StartRead O StartRead
Write(m1) : : :
Write(m2)
Observed(m2) !
Write(m3)
Write(m4)
® Observed(m4) :
Write(m5)
Write(m6)
Q StopRead Q StopRead Q StopRead
EndTest : EndTest : EndTest :

Figure 2.3: Timeline for test 1 with three agents

As for the second test, its timeline is depicted in Figure 2.4. It aims to uncover
divergence among the view that different agents have of the system. All agents issue a
single write (roughly) simultaneously, and continuously issuing reads in the background.
This simultaneity is interesting, becuase it may increase the chances of different writes
arriving at different replicas in a different order, and therefore trigger the divergence factor,

e.g., if an agent only sees M1, and another agent only sees only M2.

StartTest : StartTest : StartTest

) (ID StartRead ) (.3 StartRead ) (I) StartRead
Write(m1) R Write(m2) H Write(m3) |
O stopRead O stopRead O StopRead

EndTest 1 EndTest ' EndTest

Figure 2.4: Timeline for test 2 with three agents

If a single reader is used, especially when running in the same datacenter as the writer,
or even worse, running on the same machine, it is unlikely to discover staleness [15].
Distributed systems usually use some kind of load balancing mechanism. Depending on
the intelligence of load balancers, it is likely that all requests from the same IP range are
forwarded to the same replica or that there is even a caching layer in between. Therefore,

23



CHAPTER 2. RELATED WORK

clients must be deployed on different geographically distant locations.

Another relevant study in this context was conducted by Bermbach and Tai [15], where
they focused on the consistency guarantees of Amazon S3 under a heavy load of concurrent
writes. What differs both strategies is that the former study focuses on understanding
the consistency properties offered by service APIs, while the latter one verifies these
properties on the storage layer.

Freitas et al. performed this measurement study on three popular platforms: Facebook
(Facebook Feed and Facebook Group), Google+, and Blogger. Using three agents, overall
results show that all types of anomalies were seen in both Google+ and Facebook Feed,
whereas in Facebook Group no violations of Read Your Writes and Order Divergence were
seen. This indicates that engineers chose performance over stronger consistency models
for these services. As for Blogger, no anomalies of any type were detected. Thus, Blogger
appears to be offering a form of strong consistency.

2.4.3 Causality Semantics

In order to automatically measure the consistency levels and help developers the harmful
degree, Tang et al. propose a testing framework called CausalTester [60]. This framework
measures the consistency of replicated services via causality semantics based on the
responses produced. The end-users perspective is that responses from replicated services
follow the four session guarantees: Read Your Writes (RYW), Monotonic Reads (MR),
Monotonic Writes (MW), and Writes Follow Reads (WFR). Indeed, quantifying the
consistency with them is a good metric since the harmfulness of violating causality
semantics is obvious and easy to explain.

Figure 2.5 shows an overview of this framework’s workflow. A replicated data service
has N replicas hosted on a cloud datacenter. It is remotely invoked by the upper-layer web
applications for end-users that are simulated by the benchmark services. End-users access
these web applications and observe the behaviour of back-end replicated services. The
CausalTester adopts twelve test cases as the workloads and the corresponding benchmark
services to obtain the responses of replicated services.

Client 5 Web Server - Replicated Services

‘ 12 Real Test Cases ‘ k ’[ (O RESTful service ]FH

Replicas

‘ Causality Violation ‘ 5 . :
“ *[ O RESTHful service ]‘ i
; : iy
Browser 5 enchmark services ’ Crash Injection ‘

Figure 2.5: The workflow of the testing framework ([60])

The test cases were based on browsing the main pages of three platforms: Twitter,
Flickr and Amazon. By analysing the HTML pages, it was perceptible which causality
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relationships existed on each platform. For example, on Twitter, they observed that a
"tweet" and its "comments" shared that type of relationship. They found four typical test
cases from each platform (twelve in total) for RYW, MR, MW, WER, respectively. Thus,
these twelve test cases can simulate end-user behaviours during browsing the web pages.
These were implemented with sequences of HTTP requests, which are forwarded to the
corresponding benchmark services in the web server and then transferred as read and
write operations to back-end replicated services. The corresponding benchmark services
were developed and deployed as RESTful services.

The REST workload of Yahoo! Cloud Service Benchmark (YCSB) was extended to
include and launch the test cases requests and remotely invoke the corresponding RESTful
benchmark services. When detecting the causality violations, response messages can be
of three types: normal, time-out and interruption messages. The normal ones return some
specific values of the reads requests. When a crash happens, the responses may include
exceptions like time-out after a long wait, or interruption exceptions. Crash faults were
simulated by running "kill -9" to terminate the processes of replica nodes, and restart the
processes for crash-recovery.

The framework relies on a particular requesting pattern depending on the causality
semantic, which may involve crashes. For example, without considering crashes, when a
client performs a write operation on one replica, and tries to read (in the same session)
from another replica, if the read returns a version that does not include the effects of its
write, then this framework concludes that RYW is violated.

To evaluate this testing framework, three distributed databases were tested: Cassan-
dra (weak consistency), HBase (strong consistency) and Redis (in-memory). For each
replicated system, the test cases were executed 100.000 times (with and without crashes
on master and replica nodes) and one counted the number of consistency violations for
each of the causality semantics. Overall results show that there were detected consistency
violations of every causality semantic in every distributed database. Thus, this framework
is indeed effective to detect consistency violations for weak consistency and helpful to

find consistency-related bugs if the strong consistency is violated.

2.4.4 Principled and Practical Consistency Analysis

Without an understanding of the consistency benefits of intermediate and strong con-
sistency, it is difficult to fully evaluate how they compare to weaker models, and each
other. Lu et al. took the first step towards quantifying those benefits by measuring and
analysing requests to the social graph at Facebook [46]. Facebook’s replicated storage for
its social graph is a combination of a two-level cache and a sharded single-master-shard
database. A cluster is composed by a group of caches, and within each cluster, per-object
sequential and read-after-write consistency are provided. Across the entire system, eventual
consistency is provided. They performed two types of analysis: principled analysis and

practical analysis of the consistency.
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The principled analysis identifies when the results of the system differ from what
is allowed by stronger consistency models, i.e., what anomalies occur in the eventually
consistency production system. First, a small random sample of the social graph is
logged. Then, offline anomaly checkers run on those logs. An anomaly checker is the tool
that returns those results that are disallowed by stronger consistency models. A set of
checkers were designed to identify anomalies for three consistency models: linearizability,
per-object sequential consistency, and read-after-write consistency. Consistency models provide
guarantees by restricting the set of possible executions. These checkers identify when
a traced execution violates these restrictions. Each checker does this by maintaining a
directed graph, whose vertices represent the state of an object, and whose edges represent
the constraints on the ordering between them. They check for anomalies by checking if
the state transition order observed by reads is consistent with these constraints. Indeed,
running this in real-time would be equivalent to implementing a system with stronger
consistency guarantees and running it in parallel with the eventually consistent system.
This overhead is avoided by only processing requests well after they have occurred, which
allows the storage for the principled analysis trace to be eventually consistent, and provides
plenty of time for log entries to arrive.

In contrast, practical analysis is used as a light-weight real-time monitoring tool. As
a consequence, it does not trace all operations on a given object, so it does not give
insights into how often principled consistency models are violated. Instead, it uses
injected reads to track metrics that are designed to mirror the health of the different
parts of the replicated storage. It uses the metric ¢(P)-consistency, where P represents a
set of replicas, which dictates the frequency that injected reads for the same data to all
p € P receive the same response from each p. The usefulness of this metric derives from
how it quickly approximates how convergent/divergent different parts of the system are.
Increases in network delay, replication delay, misconfiguration, or failures cause a drop
in ¢(P)-consistency. Furthermore, an increase in the write rate of the system will also
decrease it, because there will be more writes in flight at any given time. This metric is
composed by two major ones: ¢(G)-consistency and ¢(R;)-consistency. The former serves
for tracking the health of the overall system, which corresponds to the global set G of all
replicas, i.e., all leaf and root cache clusters at Facebook. The latter is for the set of all
cache clusters in region R;. A similar metric is I (gamma) [31], which not only captures
the frequency of client-observed consistency anomalies, but also determine their severity.

One major finding was that Facebook’s social graph is highly consistent, where 99.99%
of reads to vertices returned results allowed under all the previous described consistency
models. However, there were anomalies under all of those consistency models. Even
though these anomalies are rare, this demonstrates that deploying them is beneficial.

2.5 Tools

This section presents popular tools for verifying and analysing systems.
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2,51 Load Testing Tools

Load testing an application is useful, since we can measure functional and non-functional
properties of the system by simulating the way real clients submit requests to the applica-
tion. Popular tools for load testing are: Artillery [9] and Apache JMeter [6].

For example, in Artillery, a testis characterized by running scenarios containing specific
types of requests, where we can assign weights (frequencies) to those scenarios, define the
number of requests per second and how they should ramp up, among other configurations.
The developer must provide these properties through a YAML script. Artillery gathers
the metrics and results it obtained during the execution of the test, with the option of
displaying them through plots for better understanding.

2.5.2 EvoMaster

Evomaster [7, 8, 48] is a white-box testing tool for RESTful web APIs. This tool generates
system-level test cases by exploiting the source code of the system under test. More
specifically, it integrates a search-based technique, where test cases are evolved and
evaluated independently, and only at the end of the search, a test suite is constructed
by choosing the combination of test cases that maximizes code coverage (source code
statements) and HTTP status codes. Each test case contains a sequence of at least one
HTTP call.

The tool consists of two main components: the core, and a controller library. The
core addresses the generation and evolutions of test cases. The controller library is
responsible for obtaining metrics from the system under test, e.g., code coverage, and
starting /stopping/resetting the system, e.g., it starts the system before running the
generated test suite.

2.5.3 Netflix Simian Army

Since Netflix moved its services to the cloud, they have been focusing on ways to improve
availability and reliability over its services. To this end, they have relied on a set of
experiments that are based on a combination of chaos engineering and fault-injection
techniques.

Netflix’s solution is called Netflix Simian Army [35] which consists of a set (army) of
tools, called simians, that are responsible for introducing different types of failures and
monitoring the cloud environment. These simians are the following;:

Chaos Monkey was the first simian produced by Netflix. This tool randomly disables
instances in production, so that one can test the system ability to survive this common type
of failure and make sure that customers are not affected. The success and effectiveness of
this tool inspired Netflix to create more simians.

Latency Monkey introduces artificial delays or network lags in order to simulate
service degradation so one can check if upstream services are able to respond appropriately.
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Furthermore, by introducing very large delays, one can simulate a downtime of a node or

even of an entire service, i.e., service unavailability.

Conformity Monkey is responsible for finding instances that are not in compliance
with best-practices, shutting these down. An example of this is that when it finds an
instance that do not belong to an auto-scaling group, eventually, it will end up in trouble.
These type of instances are shut down, so the owner is given the opportunity to re-launch
them properly.

Doctor Monkey relies on running health checks operations and monitoring other
external signs of health (e.g., CPU load, and other metrics that have been mentioned in
section 2.2.3) on each instance in order to detect the unhealthy ones. When detecting
an unhealthy instance, it is removed from service. Eventually, it is terminated once the

service owners root-cause the problem.

Janitor Monkey searches for unused resources in the cloud environment and disposes

them. This way, it is ensured that it is running without any clutter or waste.

Security Monkey extends Conformity Monkey, focusing on security. It terminates ev-
ery instance that contain any type of security violation or vulnerabilities, like inappropriate

configurations in cloud security groups.

10-18 Monkey is used to detect configuration and run time issues in instances that
provide its services to customers in multiple geographic regions, using different languages

and character sets.

Chaos Gorilla has the same philosophy as the Chaos Monkey, but it has bigger
ambitions. This simian simulates an outage of an entire cloud availability zone (i.e.,
data center). During this brutal situation, one wants to verify that services are able to
automatically re-balance to the functional availability zones without manual intervention
or user-visible impact.

This tool has revealed to be very useful for Netflix because it tests the resilience of
its systems when subject to multiple failures injected by the simians. This increases the
confidence over the ability of the systems to handle failures that will, eventually, happen in
production environments and to minimize their impact to its customers. This confidence
is directly proportional to the number of executed simians that did not result in any impact

on systems or customers.

2.54 Jepsen

Jepsen [36] is an open source library that aims to improve the safety of distributed
databases, queues, consensus systems, etc. It resorts to fault-injection and black-box
testing techniques in order to explore whether the system lives up to its documentation’s
claims, report new bugs, and suggest recommendations for vendors. In other words, it
tries to detect executions where properties claimed by the system are violated. The first
step is to obtain the system’s invariants, i.e., the properties that the system claims it holds,
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which is achieved by carrying out a rigorous study of the system’s documentation. Then,
to verify if these invariants hold during its execution, Jepsen tests are designed.

Figure 2.6 illustrates the test process of Jepsen on a distributed database system, in a
Docker environment [53]. By default, a cluster with six containers is built, one of which is
the control node and the other five are database nodes. As soon as a test starts, the control
node will create a group of worker threads to access the database nodes simultaneously
via the SSH protocol, where each worker thread contains its own client. The generator
tell the client what operations it should perform against the system. The nemesis tells the
client what fault it should inject to the system. The programmer needs to specify some
Jepsen configurations such as: the operations to be performed, the failure types to inject,
among others.

Control Node Distributed System

Figure 2.6: Jepsen test process ([53])

For each test performed, a history [22] is generated. A history is a collection operations
performed, including their concurrent structure. Jepsen splits each operation in two: its
invocation and its completion. For each of these, it stores the following: the worker thread
that performed it, the indication whether it was invoked or completed, its type (read or
write), its timestamp, and their parameters and return values.

Having the history of a Jepsen test, it will be analysed by the checker which will tell
if these concurrent operations represent a valid execution, given the system’s invariants.
Jepsen includes two checkers: Knossos and Elle. It also allows developers to define their
own custom checkers.

Knossos [40] is the default checker of Jepsen and verifies the linearizability of experi-
mentally accessible histories. Given an history of operations, and a model that describes
the behaviour of the system when requesting specific operations, Knossos determines
whether the history is linearizable or not. We have already seen what a linearizable exe-
cution is in section 2.3.2. Knossos tests multiple orders of the same history of operations,
until finding one that is indeed linearizable. Otherwise, an error is returned.

Elle [39] is a transactional consistency checker for black-box databases. This checker
aims to detect transactional anomalies through client-observed transactions, such as dirty
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updates, where a transaction commits a version based on some uncommitted state, and
garbage reads, where a read observes a value which was never written, among many others.
This implies that a history is now a collection of transactions, instead of single operations.
Elle looks for a sequence of events in a history which could not possibly have happened
in that order, and uses that inference to prove that the history cannot be consistent [27].
It is necessary to build a dependency graph among the different transactions. However,
to capture these dependencies, one must resort to histories that satisfy both traceability
and recoverability. These properties require that reads of an object return its entire version
history, and there is a unique mapping between versions and transactions. Thus, read
operations must return every written value so far (ordered), and write operations produce
unique values. We could not analyse a history composed of counter operations, where a
write is an increment, and a read returns the version history like (0, 1,2, ...), because, we
might not tell which increment produced a particular version, which violates recoverability.
The only data type that hold both of those properties is the ordered list, which is the one Elle
uses. This dependency graph is actually a sub-graph of every possible history compatible
with that observation. Imagining that the database had internally the true history (it has
not), i.e., the complete graph, Elle reconstructs a sub-graph of it. Consequently, one might
not observe all of the edges.

Elle is more advantageous than Knossos regarding output and performance, due to
its cycle detection mechanism. Knossos simply indicates whether a history is linearizable,
whereas Elle provides a human-readable explanation for the cycle and why it implies a
contradiction. Knossos is often limited to a few hundred operations per history, while
Elle can handle hundreds of thousands of operations easily, which is due to the fact that
when increasing the history length, Knossos’s execution is mildly super-linear, whereas
Elle’s is linear [27]. Furthermore, when increasing concurrency, Knossos’s execution is

exponential, whereas Elle’s is constant [27].

2.6 Conclusion

This section presents a small conclusion about the related work through Table 2.1, which
includes an overview of the main characteristics of each of the tools studied previously.
For each tool, it is indicated its verification type, which techniques it is based on, what
properties of the system are analysed to determine if the system is correct or not, and how
the results are validated to infer the correctness of the system.

Artillery and Apache JMeter are very similar to each other, regarding these properties.
Being load testing tools, they rely on dynamic verification, perform black-box tests and
analyse the executions of the system. The developers must evaluate the results to determine
the system’s correctness.

EvoMaster also relies on dynamic verification, since it executes a generated test suite.

It performs white-box tests, because it constructs the test cases based on the analysis of
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Table 2.1: Properties of the tools studied

Verification Techniques  What it Results
Tools C
type used analyses validation
Artillery Dynamic BBT Executions Developer
Apache JMeter = Dynamic BBT Executions Developer
EvoMaster Dynamic WBT Executions Automatic
Netflix SA Dynamic CE and FI - Developer
Jepsen Dynamic BBT and FI Executions Automatic (LN or SR)

WBT: White-Box Testing, BBT: Black-Box Testing, CE: Chaos Engineering, FI: Fault-injection,

LN: Linearizability, SR: Serializability

the system’s source code. In the end, it automatically determines the correctness of the

system based on its executions against the test cases.

Netflix Simian Army also relies on dynamic verification, and is based on chaos engi-

neering and fault-injection techniques to expose the system to very turbulent conditions.

Despite the power of this tool, it does not analyse any properties of the system, as devel-

opers must analyse its behaviour, e.g., through monitoring, and determine its correctness.

Jepsen also relies on dynamic verification, and performs black-box tests with the

possibility of injecting faults. It analyses the system’s executions against the tests and

faults injected. Based on them, it automatically determines the system’s correctness,

verifying whether they are linearizable/serializable, depending on the checker, or not.
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3

SoLuTIiON DESIGN

This chapter starts by comparing the differences between verifying causality in databases
and RESTful applications. Then, it presents the design of the algorithm that verifies
causal consistency in RESTful applications, explaining the processing mechanism and the
algorithm’s behaviour. Finally, the pseudocode is presented and analysed.

3.1 Causality Violations Overview

This section presents an overview about the reasoning of detecting causality violations
when dealing with simple database operations (reads and writes), and REST operations,
pointing their main differences and difficulties.

Regardless the system (database or RESTful application) we aim to test, every single
operation has an invocation step and a termination step, which correspond to two different
points in time. The invocation step happens when the client issues the operation to the
system, and the termination step happens when the client receives an acknowledgment
(response) from the system. Thus, the operation can take effect in the system at any point

in time in between the invocation and termination points, inclusively.

3.1.1 Simple Database Operations

Suppose a simple database that stores objects identified by an id with an integer associated
to it. It supports the basic operations of write and read to manage these entities. Figure 3.1
illustrates the timeline of a history of operations for that database, where the left end and
right end sides of each box denote the invocation and termination points in time for the
current operation. It starts with Client O performing a write operation, which assigns the
value 1 to x. Right after, Client 1 issues a read of x, which retrieves the value Client 0
wrote (1). Finally, Client 0 issues the same read, which retrieves the information that the
entity identified by x does not exist. This history contains a Read Your Writes violation,
defined in Section 2.3.4, because Client 0 is not able to read what itself wrote, when no
other client wrote to this entity meanwhile. The only way to make this history causally
consistent would be for the Client to be able to read the entity x with the value of 1.
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Write Read
id: x id: x
value: 1 Nonexistent
Client 0 o
Read
id: x
value: 1
Client 1 o

Figure 3.1: Read Your Writes violation of a history of simple database operations

Figure 3.2 shows the timeline of another history of operations. Client 0 performs two
write operations consecutively, with the values 1 and 2, respectively. After this, Client
1 issues two read operations consecutively. This history contains a Monotonic Writes
violation, defined in Section 2.3.4, since Client 1 observed the writes of Client 1 on a
forbidden order, i.e., not the order they were issued. Since the first read of Client 1 reflects
the second write operation of Client 0, the subsequent reads of Client 1 must reflect, at least,
the value 2. There are several possibilities for the values reflected in the read operation
of Client 1 to make this history causally consistent. Considering that the pair of values
correspond to the values of the first and second read operations of Client 1, respectively,
the possibilities are:

Write Write
id: x id: x
value: 1 value: 2
Client 0 :
Read Read
id: x id: x
value: 2 value: 1
Client 1 —»

Figure 3.2: Monotonic Writes violation of a history of simple database operations

e Nonexistent and nonexistent

e Nonexistent and 1

e Nonexistent and 2
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e land 1
e land 2

e 2and?2

Thus, as far as these simple database operations are concerned, it seems that the read
operations are the only points we need to stop and validate if we can justify the value read,
i.e., search for the possible dependencies, through write operations whose value written
is the same and that the invocation point happened before the termination point of the

current read operation.

3.1.2 REST Operations

Now let us consider a simple RESTful application that manages entities equivalent to the
ones seen before, i.e., they are identified by an id and have an integer value associated. The
operations available are creation (POST), read (GET), update (PUT) and delete (DELETE).

Figure 3.3 shows the timeline of a history of REST operations of that RESTful application.
Client 0 creates two entities consecutively, where they have the values of 1 and 5, and the
ids assigned by the application to them are x and y, respectively. After that, Client 1 reads
entity y, which retrieves the value of 5, and then creates a new entity x with the value of 2.

POST POST
id: x id:y
value: 1 value: 5

Client 0 >
GET POST
id:y id: x

value: 5 value: 2
Client 1 »

Figure 3.3: Monotonic Reads and Monotonic Writes violations of a history of REST
operations

At first sight it seems this history is valid regarding causality. If we ignored the
REST semantics, i.e., the POST operations would be simple write operations and the GET
operation would be a simple read operation, the only operation we had to validate would
be the read. However, since Client 1 is reading an entity that Client 0 previously wrote,
there are no violations.

Thatis not the case when considering these REST operations, because of their semantics.
Whenever a client issues a POST operation, the application must ensure that the generated
id does not exist among the entities that the client is able to observe, before assigning
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the new value to it. The opposite would happen when dealing with PUT and DELETE
operations, where the application must ensure that the entity with the given id exists.
The two POST operations of Client 0 are valid, since there were no entities with those ids.
However, since Client 1 observes the second operation of Client 0, this client must be able
to observe the existence of x as well. Thus, if the POST operation of Client 1 is successful,
Monotonic Reads is being violated.

Therefore, it seems that verifying causal consistency in a history of REST operations
is more difficult than in a history of simple write and read operations. Everything that
is checked on the latter one must also be checked in the former one. However, in REST
write operations, there is this additional concept of implicit read operations. Before
performing the actual write, these operations are responsible for verifying the existence
or nonexistence of the given id, depending on the write HTTP method, always taking into
account what the client is able to observe at the moment.

3.2 Processing an History of Operations

In this dissertation, we have developed an algorithm that verifies if executions of RESTful
applications satisfy causality (causal consistency) or not, based on histories of operations.
The project was built on top of JepREST [58], detailed in section 4.1, so that histories
of operations executed in RESTful applications could be logged and analysed.
Let us assume a very simple RESTful application that manages objects, which are
identified by an id and their value consist of the id and a char. The JSON structure of how

these objects are managed on the application is shown in Listing 3.1, where an arbitrary

object is depicted.
{
"id " "X“,
"ehar®: "A"

}

Listing 3.1: J[SON representation of the objects managed by the simple RESTful application

Our algorithm assumes that applications include standard REST operation with the
normal semantics, as shown in Table 3.1. Users can create an object by sending a JSON
object like the one specified in Listing 3.1, without the id property, with the id being
generated by the application. The response body of this operation contains the object with
the generated id. In addition, they can read, update and delete an object, where the id of
the entity is specified through the URI of the correspondent endpoint. However, if the id
specified does not correspond to any object stored, the operation in context fails with the
code 404. This will be the RESTful application that this chapter will use to present our
solution.

After executing a workload of operations, which is composed by multiple concurrent
clients, JepREST generates the file that contains the history of operations performed. A
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Table 3.1: REST operations over the objects of the simple RESTful simple application

. HTTP Request HTTP Response
Operation Method URI Body Status Body (on success)
Create POST / {“char”: {char}} 201 {“id”: {id}, “char”: {char}}
Read GET /{id} - 200/404 {“id”: {id}, “char”: {char}}
Update PUT /id}  {“char”: {char}} 200/404 {“id”: {id}, “char”: {char}}
Delete DELETE /{id} - 200/404 -

crucial characteristic of the workload that JepREST /Jepsen executes is that clients perform
operations in a sequential way, i.e., a client can only perform a new operation when the
response of the previous one has been received and reported. The original history file is
converted to a JSON file. Each operation is recorded as a pair of history entries: request and
response. This file records the order of the operations performed by the clients. Whenever
a client sends the request to the application, the request’s history entry is appended to
the file, and the same happens when the response is received. Each possible field of these

history entries is specified as follows:

* type - Indicates if the current entity corresponds to the request (invoke), or response
(ok).

* f - Represents the HTTP method for the current operation.
* value - Consists of metadata about the actual request/response:

— input - Consists of information about the request.

* json - Contains the body of the request.

* typeOp - Consists of the Clojure method name of JepREST that submitted

the request.

* path - Consists of the id property of the object in context, which is not

applicable to creation operations.
- output - Consists of information about the response.

* status - Corresponds to the HTTP status code.
* body - Contains the body of the response.

¢ process - Indicates the client that performed the operation.
¢ index - Indicates the index of the current element in the history file.

* opposite-index - Indicates the index of the opposite element in the history file. If the
current element comprises the request’s history entry, this field indicates the index

of the corresponding response’s history entry, and vice versa.
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Not every history entry consists of all of these fields. If the current history entry
represents the request (fype field is inv), then the value field should not contain the output
field, since this information is only known once the response is retrieved. When we are
dealing with a response’s history entry, the value have both the input and output fields. In
addition, depending on the type of operation we are dealing with (f field), the json and
path fields might not occur. If the operation represents a creation, then the history entries
will not contain the path field, since the id of the object is unknown at the request stage.
However, for a read operation, the path field is needed to specify the id, but the json field
is discarded, since the request’s body remains empty.

Figure 3.4 illustrates the timeline of an example of a history of operations. Client 0
starts by creating an object with the char field set to “A”, where the application assigns
this entity to the id “x”. Then, it updates it to have the char “B”. Then Client 1 issues two
consecutive reads of that object, where it first sees the value with the char set to “B” and set
to “A” afterwards. The execution corresponding to this history is not causally consistent,
because Monotonic Writes, defined in Section 2.3.4, is being violated and the reason for
that is the same as in the Figure 3.2, as the second read of Client 1 must reflect at least the
char B.

POST-INV | | POST- 0K PUT - INV PUT - OK
Client 0 @ /‘\ @ @ :

GET - INV GET-0K GET - INV GET - OK
Client 1 © © © . X

Figure 3.4: Timeline of a history of operations

We can classify an operation as a read or write operation. Operations that ask for the
retrieving an object (GET) are considered read operations. Operations that create (POST),
update (PUT) or delete (DELETE) an entity are considered write operations. As stated
already, every operation starts from a request stage and ends with a response stage, and
the history in the operations file includes both.

Depending on the operation type, they are converted into different processed opera-
tions, which are the ones that the algorithm operates on. Every processed operation has,
at least, to maintain the following data:

¢ index - Index of the current processed operation
¢ client - Client that performed the operation

¢ id - Id of the object associated to the operation
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¢ value - Value of the object that was read /written

Next, the mechanism of converting the operations into the processed ones is presented.

3.2.1 Explicit Read operations

As far as read operations are concerned, the only history entry that matters is the response
one, as this is the moment when we receive the actual information of the object with
the given id, and the request’s history entry adds nothing to our knowledge. Thus,
the invocation of this operation (request’s history entry) is discarded and the processed
operation will take place at the position of the response’s history entry.

The algorithm stores this type of operations as explicit read operations, because the
value of the object read is a concrete piece of information, which is assigned to the value
field of this processed operation. In the case that the read operation resulted in a 404
(nonexistent entity), the value field will hold null.

3.2.2 Write and Implicit Read operations

Regarding write operations, we need to take into account the REST semantics. The creation
(POST) of an object with a given id can only happen if this id is not associated to any other
object, based on what the client can observe. As for an update (PUT) or a delete (DELETE)
of an entity with a given id, it is necessary for the client to observe the entity with that id.

It is necessary to convert this type of operations into separate processed operations: a
(processed) write operation and an implicit read operation.

A (processed) write operation represents the act of the client writing something. It
stores in the value field the value that the client assigned to the given id. In case of a
delete operation, the field value will hold null. This processed operation type has two
additional fields: method and dependents. The method field holds the REST method of the
write operation (POST, PUT or DELETE). The dependents field consists of a list that keeps
track of the processed operations that depend on this one. This last field will be explained
in more detailed in the following sections.

An implicit read operation is responsible for checking for the existence or nonexistence
of an id. It stores the type of existence check in a boolean field called nonNullableValue. If the
entity must not exist for the write to take place (POST), the field will hold false, otherwise
true (PUT and DELETE). The value field of implicit reads is simply discarded, since there
is no concrete value to look up.

When the processing mechanism finds a request’s history entry in the history of
operations file, it can easily access the corresponding response’s history entry through
the opposite-index of the former one (and vice versa), which indicates the index of the
response’s history entry. This is specially useful when dealing with write operations in
order to check if they resulted in success (201 or 200) or not (404). If it resulted in failure
(404), it is necessary to verify if the given id does not really exist. Thus, this pair of history
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entries will be processed as a single explicit read operation, whose value property will
hold null.

When dealing with successful write operations (201 or 200), at first sight, it makes
sense to check for the existence or nonexistence of the given id before actually performing
the writing of the value, which is, indeed, the behaviour of RESTful applications. In
other words, the implicit read operation would take place at the position of the request’s
history entry and the (processed) write operation would take place at the position of the
response’s history entry.

Figure 3.5 demonstrates the timeline of an example of a history of operations without
applying the processing mechanism yet. Client 0 issues the creation of a new entity (POST)
with the char “A”, where the application assigned x as its id. In between the invocation
and termination of that write operation of Client 0, Client 1 issued a read operation (GET)
of that same id, where the response retrieved exactly what Client 0 wrote.

POST - INV POST - OK

id: x

value: {"char": "A"} value: {"id": "x", "char": "A"}

; i\ (R .
Client 0 .\./ \./ »
GET - INV GET - OK
id: x id: x
: value: {"id": "x", "char": "A"}
; Y i\ .
Client 1 ,\9/ \,/ >

Figure 3.5: Timeline of a history of operations without applying the processing mechanism

In reality, any REST write operation can take place, i.e., it can be successfully written in
the RESTful application, at any point in time in between the invocation and termination,
inclusively. However, the client only acknowledges that when the response arrives.

Client 0’s operation could have happened at any point in time in between its invocation
and termination. However, the only write operation that justifies Client 1’s read operation
is Client 0’s. This means that the moment when the write was “established” in the RESTful
application was between the invocation of Client 0’s write operation and the termination
of Client 1’s read operation. This property is what makes this history valid, as far as
causality is concerned.

Figure 3.6 illustrates the same timeline of the history of operations, however, the
processing has been applied following the characteristics discussed above (history entries
and processed operations correspondence). Since the operation performed by Client 0
consists of a POST method, the correspondent implicit read operation needs to ensure
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that this client cannot see an existing entity with that id, which is why the nonNullableValue
property of it holds false. The corresponding (processed) write operation represents the
moment in time when Client 0 performed the value writing. In between these processed
operations, the read operation of Client 1 was processed into a explicit read operation,

whose value holds what Client 0 wrote.

Implicit Read Write
id: id: x
; method: POST
nonNullableValue: false value: {lridlr: IIXII, "ehar": IIA'I}
I /—\ !/-_\\ -
Client 0 .\,/. Q »
Explicit Read
id: x

value: {"id": "x", "char": "A"}

i /—\ L
Client 1 Q/ »

Figure 3.6: Timeline of processed operations assuming the request’s history entry is
associated to the implicit read operation and the response’s history entry is associated to
the (processed) write operation

From the algorithm point of view, the point in time when other clients are able to
observe the write takes place at the (processed) write operation, which is after the explicit
read of Client 1. However, no client is supposed to observe that an entity has some
value, when no one has even created that entity before. This is why the processing
mechanism must associate the request’s history entry to the (processed) write operation
and the response’s history entry to the implicit read operation, instead. This way, the
algorithm makes the write visible to other clients starting from its invocation point. Even
though the write can be seen from the moment that the (processed) write operation takes
place, it will only be “established” by the implicit read operation after checking for the
existence/nonexistence of the id. Obviously, the check cannot take into account this write.
This behaviour will be studied in more detail further ahead.

RESTful applications might return different information on their responses. In the
case of the application we have been dealing with, whenever clients perform POST or
PUT operations that end up in success, the responses contain an entity. The most common
behaviour is for the response’s entity to be concordant with what the client requested, i.e.,
if the client requested to update the entity with a given id to have the char to be “Z”, the

response’s body would contain what is depicted in Listing 3.2.

When the response of a write operation returns the created/updated entity, after
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"id " nXu’
"char": "Z"

Listing 3.2: Body of the response after a client updated the char to be “Z” of the RESTful
application

building the (processed) write and implicit read operations, it is useful to also build an
explicit read operation with the value holding the current write operation response’s body:.
When dealing with a successful delete operation, the final explicit read will contain null
as its value.

Figure 3.7 illustrates the same timeline of the history of operations, with the processing
mechanism executed completely. This is the real data the algorithm will analyse in order
to check if the RESTful application satisfies causality. These operations are executed by
the algorithm following the timeline order. In this case, the first operation executed would
be the write of Client 0, then the explicit read of Client 1, then the implicit read of Client
0, and finally the explicit read of Client 0.

Write Implicit Read Explicit Read
id: x : .
i id: x id: x
value F?ﬁ;?ﬂg’.. P"SI? ;;.. STy nonNullableValue: false value: {"id": "x", "char": "A"}
" I\ 7\ I\ .
Client 0 \./ Q \./ »
Explicit Read
id: x
value: {"id": "x", "char": "A"}
" I\ .
Client 1 \./ »

Figure 3.7: Timeline of a history of operations after applying the correct processing
mechanism

In the following sections, this additional explicit read operation will not be considered
when processing the histories of operations for the sake of space, and because it would

not make a difference on the analysis of the histories presented.

3.3 Algorithm

The algorithm tries to determine dependencies among read and write operations that
justify the results observed, as far as causal consistency is concerned. Since the algorithm
is not aware of the (number of) replicas of the RESTful application, the dependencies have
to be inferred from the operations performed by the clients.
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3.3.1 Vector Clocks

Having the history of operations file processed, the algorithm is based on going through
the processed operations in order, associating vector clocks [49] to multiple pieces of data.
In the context of this project, a vector clock consists of a simple array of integers whose size
corresponds to the number of clients present in the history of operations. Each position
of these vector clocks is associated to a different client and summarizes the operation
executed by each client that should be observed - e.g. if position i of the vector has value
n, it means that the state observed must reflect the first n operations of client i.

3.3.2 Clients’ data knowledge

While processing the operations, the algorithm will maintain for each client two main
properties that define its knowledge about the data, which include the vector clock data

structure: state and idProperties.

A vector clock is used to represent the state of each client. Suppose we are dealing
with a history of operations that contains three clients and at a given moment in time their
statesare [1 0 0], [1 0 O] and [1 O 1], respectively. Regarding the state of the first client,
the only position that contains a non-zero value is the one that represents itself, which
means it has performed a write. The state of the second client has a non-zero value at the
tirst position, which corresponds to the first client, meaning that it has read the write of
the first client. The same happens for the third client, however, it has performed a write
itself (third position) that the other clients have not read it (yet).

The idProperties property is a more complex data structure. It consists of a map
that stores for each id present in the history of operations a list of special objects, called
ValueProperties, that maintain a value and a vector clock. The value property corresponds to
an entity that the given client has written, or read (explicitly), or might be able to observe
further ahead, for the correspondent id. The vector clock property corresponds to the state
of the last client that has either written or read (explicitly) that particular entity, which
basically denotes the version of the value for the respective id. These lists are designed
in a way that there are only concurrent ValueProperties (vector clock property) for each of
the ids. Two vector clocks are concurrent if one is neither greater than nor less than the
other when doing an element-by-element comparison [44]. Let us suppose we had three
ValueProperties with the vector clocks of [1 1 0], [0 1 0] and [0 O 2]. The first vector clock
is more recent that the second one, which means the second one can be discarded. The
remaining ones are concurrent, which means the list in context would only contain the
first and last ValueProperties objects.

Figure 3.8 illustrates an example of the idProperties structure of a client. Regarding
x, its list of ValueProperties contains two elements, having the vector clocks [1 0 0] and
[0 1 0] and values A and B, respectively. Both lists of ValueProperties of the ids y and z

contain a single element.
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Figure 3.8: Example of the idProperties structure of a client

3.3.3 Dependencies and Merge Process

Let us consider only the cases when there are no explicit or implicit read operations
between a write and corresponding implicit read of another client that might justify those
read operations.

The algorithm tries to validate a read operation (either explicit or implicit) by checking
if the client’s own knowledge or the writes of other clients can justify it. This is why clients
must report not only their knowledge of the data at the moment they are about to perform
an operation, but also when their writes get established, which take place at the implicit
read operations after checking for the existence/nonexistence of the given id, considering
what the client might be able to observe.

For the case when a client performs an explicit read, the algorithm first attempts
to justify by considering the idProperties of the client itself. If the list of ValueProperties
that corresponds to the id of the operation contains an element whose value coincides
with the entity read, then the client itself is able justify it. Otherwise, it tries to justify it
through writes executed by other clients. For each other client, it iterates their established
writes, from the most recent to the oldest. If the state of the client performing the read
is more recent or equal than the one the other client had when establishing the write,
then the algorithm stops the iteration for this other client, because it means that the client
performing the read already has that knowledge. When that is not the case, the established
write justifies the read if both the id and the entity of the write coincide with the id and
the entity of the read.

For the case when a client performs an implicit read operation, the algorithm’s be-
haviour is very similar. The difference is that we do not have a concrete entity to search
for. If the nonNullableValue field is false, the client itself (through its current idProperties) or
the other clients (through their valid established writes) can justify it if they contain NULL
entities. However, if the nonNullableValue field is true, they can justify it if they contain any
entities that are different from NULL.

Whenever an explicit or implicit read could be justified through the client itself, the
state of it will remain the same. For the case of an explicit read, the ValueProperties list of
the respective id will only contain a single element, whose value corresponds to the value
read and the vector clock coincides with the new state of the client. As for an implicit
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read, the ValueProperties list of the respective id will only keep the elements that satisfy
the implicit rule (nonNullableValue), i.e., the ones that do not satisfy the rule are removed
from the list.

Whenever an explicit or implicit read could be justified through an established write
of other client, the resulting state of the client is a merge of its current state and the state
of the other client at the moment of establishing the write. The merge process consists
of building a new vector clock and assigning to each position the most recent version
of both vector clocks at that particular position. If the client had the state [1 1 0] and
the other client had the state [3 0 2] when establishing the write, the resulting state for
the former client would be [3 1 2]. Both the idProperties of the clients are also merged
respecting the semantics of the ValueProperties semantic. In the case of an explicit read,
the list correspondent to the given id will contain a single element, whose value coincides
with the value read and the vector clock is the same as the client’s merged state. As for an
implicit read, all lists are treated equally.

Regarding implicit read operations, when the merge process is over, it is responsible
for establishing the write for the given client. The state of the client is incremented at the
position associated to itself, and the list of ValueProperties associated to the id that was
written an entity to will contain a single element, whose value is the entity written and the
vector clock is equal to the new client’s state. This new client’s knowledge of the data is
recorded as an established write.

Figure 3.9 represents a portion of the timeline of a history of operations and shows
the clients” data knowledge at each operation. Considering each processed operation, the
blue box above it represents the state of the client, and the box under it represents the
client’s idProperties, which result from execution of that operation. For the sake of space,
the value of the elements of the ValueProperties list corresponds to the entity’s char field.
The established writes are represented as the knowledge at the implicit read operations.
Let us assume Client 1 had the knowledge specified before executing the explicit read
and also that Client 1’s explicit read can only be justified by the Client 0’s established
write. The merge process starts by merging the state of Client 1 and the state Client 0
had when establishing that write, resulting in [2 1]. Finally, the merge of the idProperties
is performed. The list of ValueProperties of x (the id read) will only contain the element
whose value is what Client 1 read (A) and vector clock is also [2 1]. Regarding the list of
y, since the version [1 0] is more recent than the one Client 0 has ([0 0]), the former one is
kept. The opposite happens for z, since the version at Client 1 is more recent than Client
0’s.

3.3.4 Trace and Backtracking

At any point in time, the algorithm is representing a dependency graph that consists of
the operations performed until that time, where the dependencies are related to how the
read operations are being justified.
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Implicit Read

id: x
nonNullableValue: true
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Figure 3.9: Merging process example over the timeline of a portion of a history of operations

Given the processed operations of a history of REST operations, if there is one graph
that manages to justify every single explicit and implicit read operation, then the algorithm

classifies the history of REST operations as causally consistent.

The algorithm follows a recursive approach, which is based on backtracking. The
algorithm may backtrack for two reasons: no justifications available or every justification
result in failure further ahead. Whenever a read operation happens to have at least one
justification, the algorithm chooses to go forward with one of them (new edge). However,
if the next read operation cannot be justified, the algorithm backtracks to the previous
one selecting a different dependency (remove old edge, and add a new one), i.e., other
possible justification, if there are more of them. The algorithm also keeps track of a global
state of the current graph, which includes the clients” data knowledge and a complex
data structure that maintains for each id of the history of operations a map that records
the vector clock that clients assigned to entities they either read or wrote. This way, if a
client assigned a particular value of a given id to a vector clock, and this global state’s
structure has that same vector clock pointing to a different value of that same id, then the
justification chosen for the current operation will not work, and it is necessary to choose

another justification, if there are more. This is specially important for the algorithm to
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ensure that clients converge to the same value given an id. Next, all this behaviour is
explained in more detail with the help of some examples.

In the beginning, every client starts with the same state and id Properties. The state is
simply a vector clock full of zeros. Regarding the idProperties, for every id present in the
operations, it is assigned to it a list containing a single element whose value is NULL and
the vector clock is equal to the client’s initial state.

Figure 3.10 illustrates the algorithm execution over the processed operations of the
history of operations in Figure 3.4. The first implicit read of Client 0 can only be justified
by the client itself, since its list of ValueProperties of x contains an element that satisfies the
operation’s property, making it possible to establish its first write. The second implicit
read of Client 0 can only be justified by itself as well, so its second write is also established.
Regarding the first explicit read of Client 1, the client itself cannot justify it, but the second
established write of Client 0 can, since the id and entity read correspond to what Client
0 wrote there. This way, both the state and idProperties of Client 0 are merged with the
knowledge Client 0 had when establishing the write. Finally, the second explicit read
of Client 1 cannot be justified neither by itself or Client 1’s established writes. The first
established write of Client 0 seems to justify, however, the current state of Client 1 is more
recent than the one that Client 0 had when establishing the write. Thus, the Client 1’s
second explicit read has no justifications, meaning that the algorithm backtracks to the
previous operation in the timeline, which is the first explicit read of the same client. The
algorithm needs to choose another justification for the first explicit read of Client 1, since
the second established write of Client 0 resulted in failure, however, there is no more
justifications, implying that the algorithm backtracks again to the previous operation in
the timeline. The backtrack will eventually reach the beginning of the timeline, because
every (implicit and explicit) read operation had only one justification, which resulted in
failure, because of recursion. The furthest operation that the algorithm could reach was
the second explicit read of Client 1, which is the one that it outputs as the reason the
history of operations is not causally consistent.

Figure 3.11 shows a possible execution of the algorithm when iterating through a
history of operations. Clients 0 and 2 start by performing concurrent writes, whose
implicit reads can only be justified by the clients themselves, respectively, and both writes
can be successfully established. Then, Client 2 attempts to update the entity identified
by x, whose implicit read can be justified by either itself or Client 0’s established write,
since both pieces of knowledge contain an entity different than NULL. The algorithm
chooses to justify through the client itself, and this second write can also be established.
After this, Client 1 issues an explicit read which can be justified by either the Client 0’s
first established write or Client 2’s second established write. For the sake of this specific
example, let us assume the algorithm chooses to justify it first through the Client 2’s second
established write. Finally, the only justification for second explicit read of Client 1 would
be Client 2’s first established write, however, the current state of Client 1 is more recent
than the one when Client 2 established that write. Therefore, the algorithm backtracks to
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Figure 3.10: Monotonic Writes violation of the timeline of a history of operations consid-
ering the algorithm’s execution

the previous operation and chooses to justify the value read with the other option available
(Client O’s first established write), where Figure 3.12 shows that situation. This way; it is
now possible to justify Client 1’s last explicit read, and since there are no more operations

to go through, the algorithm finishes and classifies this history as causally consistent.

Figure 3.13 shows the situation when the algorithm could justify every read operation,
however, the same vector clocks was assigned to two different entities of the same id. Both
clients start by performing writes whose implicit reads can only be justified by the clients
themselves, respectively, and both writes are successfully established. The explicit read of
Client 0 can only be justified by Client 1’s established write, where the vector clock [1 1]is
assigned to the value with the char equal to B. Finally, the explicit read of Client 1 can only
be justified by Client 0’s established write, resulting in the same vector clock. However,
since the value read is different from the one stored at that vector clock, the algorithm
needs to backtrack. Every previous read operation had a single option for justification, i.e.,
it is not possible to create new branches to the graph, therefore the algorithm goes back
to the start point and classifies the execution corresponding to this history as not causally
consistent. In fact, this execution satisfies causal consistency, however, it does not satisfy
causal+ consistency [43]. Causal+ consistency has all the rules that causal consistency
maintains with the addition of the convergence rule, where clients must converge to the

same value given an entity. In this case, clients are not converging to the same value of x.

Thus, if the algorithm classifies a history of operations as not causally consistent,
it is because the corresponding execution violates either causal consistency or causal+

consistency.
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Figure 3.11: Not causally consistent execution of the algorithm over the timeline of a
history of operations

3.3.5 Additional Write Vector Clock

There are still certain situations that are not being detected by the algorithm. Figure 3.14
illustrates the algorithm execution over the timeline of operations, which is considered
one of those situations. Client 0 performs two consecutive writes over x, assigning to the
char field the values A and C, respectively. Client 1 issues a write also over x, assigning
B to its char. Client 1 reads the value of x which is justified only by the first established
write of Client 0. Then, it creates the entity y assigning Z to its char. Finally, Client 0 reads
y, which is justified only by the Client 1’s last established write. This history is causally
consistent and the algorithm classifies it that way. However, let us assume that Client 0
had issued another reading of x, which returned a value with the char set to A. In that case,
the history would not be causally consistent, because Read Your Writes would be violated,
given that Client 0 wrote C after writing A. However, the algorithm would consider the
history causally consistent, where that read operation could be justified by the client itself,
since the list of ValueProperties of x contains an element whose value (char field) is A, which
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Figure 3.12: Causally consistent execution of the algorithm over the timeline of a history
of operations

is pointed out with the red circle.

This situation was created, because Client 1 performed a write operation before reading
x, which influenced the vector clock of A. If no write was performed, its vector clock
would be [1 0], which would be discarded in the merging process of the last read of Client
0, since [2 0] is more recent than [1 0]. Therefore, not only it is necessary to merge the
idProperties by the vector clocks that we have been studying, but also by the write vector
clocks. This new vector clock reflects the version when the client established the write
for that value. This way, the merging process merges the elements by the usual vector
clock and write vector clock (regardless of whether the former ones are concurrent). A
new write vector clock only arises upon the establishing of writes, which coincides with

the client’s state.

Figure 3.15 shows the algorithm execution using write vector clocks over the same
timeline of operations. The red vector clock of each ValueProperties element represents
the new write vector clock. The ValueProperties element of x with the value A and usual
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Figure 3.13: Same vector clock pointing to different values of the same id violation of the
timeline of a history of operations

and write vector clocks [1 1] and [1 0], i.e., the element pointed out with the red
circle, is discarded at the read operation of Client 0, because the write vector clock of
the ValueProperties element of x with the value C is more recent than this element’s, even
though the usual vector clocks are concurrent. So, it is guaranteed that Client 0 cannot
justify by itself the reading of x with the char of A.

3.3.6 Pending Writes

So far, we have been analysing only timelines of operations, whose operations are justified
by established writes, i.e, given an implicit or explicit read operation, these use another
client’s write as justification whose corresponding implicit read has been justified, making
it possible for that client to establish the write. For instance, we have not yet considered
the algorithm’s behaviour of the timeline in Figure 3.7. Client 1’s explicit read depends
on Client 0’s write that has not been established yet, since the corresponding implicit read
operation happens after Client 1’s read, meaning that the establishment knowledge of
that write has not been created yet. These situations are very common among histories,
which result from the concurrency among clients.

Although, it might happen that (implicit and explicit) read operations depend on
writes that have not been established yet, i.e, given the write the read operation depends
on, this read operation happened before the implicit read of that write, where these read
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Figure 3.14: Timeline of a history of operations that demonstrates the need to use an
additional write vector clock

operations do not have access to the establishment knowledge of the write, since it has

not been created yet.

Whenever the algorithm executes a (processed) write operation, this write enters the
state of pending until reaching the correspondent implicit read operation. The pending
state means that the client responsible for this write has not established it yet, however,
it might be visible for the rest of the clients. If the algorithm tries to justify an operation
through a write that is in this state, then this operation can only be performed, when the

pending write exits this state and becomes established.

An explicit read can be justified by a pending write if the ids and values coincide. As
for an implicit read to be justified by a pending write, not only the ids need to be the same,
but also the HTTP methods of the writes in context must be taken into consideration. If the
implicit read corresponds to a write that performed a PUT or a DELETE, the only pending
writes that might justify the existence of the id are the ones that comprise a POST, because
something had to create it for it to exist. However, if the implicit read corresponds to a
write that performed a POST, the only pending writes that might justify the nonexistence
of it are the ones that have performed a DELETE, and the reason is the exact opposite of

the previous one, since something needs to delete an id for it not to exist.

Figure 3.16 shows a simple example of this type of situations, which illustrats the
execution of the algorithm until the Client 1’s explicit read. In this example, an explicit
read depends on a pending write. In order for the explicit read to take place, it is necessary
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Figure 3.15: Timeline of a history of operations that uses the additional write vector clock

that the write becomes established first. The algorithm sets the state of Client 1’s explicit
read to be onStandBy and associates it as a dependency of the pending write, so when it
gets established (at the implicit read operation), it can be possible for the explicit read to
merge the Client 1’s data knowledge with the new established write knowledge. The only
justification for the implicit read of Client 0 is the client itself, since its list of ValueProperties
of x contains an element whose value has the char A. Figure 3.17 illustrates the final
knowledge of both clients after treating the implicit read operation and establishing the

corresponding write.

Figure 3.18 illustrates a more complex example of this type of situations, showing the
final knowledge of the three clients, i.e, considering the full execution of the algorithm.
Client O issues a write that comprises a POST operation, Client 1 also issues a write, but
comprising a PUT operation, and Client 2 reads x, which coincides with the value written
by Client 1. Both writes of Clients 0 and 1 are in the pending state when the algorithm
tries to go through the explicit read of Client 2. The only justification for this read is the
pending write of Client 1, and this way the algorithm points the read as a dependent of
that write. In turn, the implicit read of Client 1 can only be justified by the pending write
of Client 0, becoming a dependent of it. Finally, the only justification for the implicit read
of Client 0 is the client itself, since its list of ValueProperties of x contains an element whose
value is NULL. Thus, Client 0's write can be established, and its dependent (Client 1’s
implicit read) can access that knowledge, merging it and establishing its write. In turn,
the dependent of Client 1’s write (Client 3’s explicit read) can access its establishment
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Figure 3.16: Timeline of a history of operations with an explicit read that is justified
by a pending write, considering the algorithm’s execution until Client 1’s explicit read
operation

knowledge and merge it.

Whenever a write is established, its dependencies (if they exist), which are explicit reads
orimplicit reads, must be treated. If a dependency is an implicit read whose corresponding
write also contains dependencies, they mustalso be treated after it establishes the respective
write, and so on. The algorithm relies on depth first search to handle this.

Assuming the current operation is an implicit read that depends on a pending write
and the next operation to be executed is from that same client, both operations will remain
in the state of onStandBy. The former one is on that state, because it can only be treated
after the pending write transforms into an established write. The latter one might be able to
store the knowledge of the justification, however, it can only be merged when the previous
operation (implicit read) gets treated. From now on, whenever the depth first search
process is mentioned, we are referring to this process of providing the dependencies of a
pending write its establishment knowledge, when it gets established, and trying to treat as
most onStandBy operations as possible. This behaviour will be explained in more detail in
the next chapter.

3.3.7 DPseudocode

The algorithm sets up its initial global state consisting of no pending writes and clients
having an initial state (array full of zeros), and for each id present in the history they store a
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Figure 3.17: Timeline of a history of operations with an explicit read that is justified by a
pending write, considering both clients’ final knowledge

list of ValueProperties containing a single element whose vector clock is equal to the client’s
initial state and value set to NULL.

The pseudocode of the main recursive function, named check, is shown in Algorithm 1.
It all starts by calling this function with the parameters 0 and the initial global state
described above. This function handles the (processed) operation identified by its opera-
tionIndex with the context of the given globalState. Lines 2-3 depict the base case, which
happens when the operationIndex is equal to the size of the list of operations, meaning that
the algorithm have successfully found a graph over these operations that respect causality.
Depending on the type of operation (write, implicit read or explicit read), a different func-
tion is called to handle the given operation, and lines 4-12 demonstrate that. Any of these
functions receive the following parameters: the index of the operation (operationlndex),
the operation itself, the client that performed the operation and the current global state
(globalState). Whenever the algorithm chooses a justification for the current operation,
these functions will call check again with the next operation (operationIndex + 1) and a new
globalState that considers that justification.

The handleWrite function handles write operations and its pseudocode is shown in
Algorithm 2. The given write enters in the pending state (lines 2-3) and the client records
this operation as an onStandBy write (line 4). When calling the recursive function, check,

the globalState sent contains all this new information (line 5).

The handlelmplicitRead function handles implicit read operations and its pseudocode
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is shown in Algorithm 3. Since an implicit read has a corresponding write operation, the
function makes this write to exit the pending state (line 2) and tries to justify the implicit
property, which depends on the HTTP method of the write. Whenever the algorithm
chooses a justification to apply, it creates a copy of the global state, so that the original
global state remains the same in case the justification it chose results in an non causal
execution (backtracking). Thus, another justification can be applied starting with the same
original global state and not the one that suffered changes from other justification. The
algorithm can try to justify the implicit property through the client itself, valid pending
writes and valid established writes. First, it tries to justify through the client itself (lines
4-8). When calling the function completeWriteWithSameClient, if the client has onStandBy
operations prior to the correspondent onStandBy write, it will remain in the same state until
the client’s previous operations get treated, returning true and an empty map structure,

since no new pairs of values and vector clocks have been assigned to any ids. Otherwise,
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Algorithm 1: Pseudocode of the recursive function

1 Function check (operationIndex, globalState):

2 if operatationIndex == operations.size() then
3 ‘ return true
4 else
5 operation « operations.get(operationIndex)
6 client < globalState.getClient(operation.getClient())
7 if isWrite(operation) then
8 return handleWrite(operationIndex, operation, client, globalState)
9 else if isImplicitRead(operation) then
10 return handleImplicitRead(operationIndex, operation, client,
globalState)
11 else
12 return handleExplicitRead(operationIndex, operation, client,
globalState)
13 end
14 end

Algorithm 2: Pseudocode of the function that handles write operations

1 Function handleWrite (operationlndex, operation, client, globalState):
2 | pending < globalState.getPending|()

3 pending.put(client.getIndex(), operation)

4 client.addWrite(operation)

5 return check(operationIndex + 1, globalState)

it immediately checks if the client is able to justify it. If the client is not able to justify it,
or if the depth first search process (after the establishing the write) results in treating any
onStandBy operation that was supposed to be justified by its client, however, it could not,
the first output is retrieved as false, otherwise as true. The second output consists of the
new pairs of values and vector clocks by ids that this operation and respective depth first
search process generated. It can only proceed to the next operation, once the first output
is true and the second one is valid, i.e., for a given id, if the global state contains a vector
clock that has been generated by this operation, they must point to the same value. If
any of these two conditions is not valid or if the recursive call fails, then the algorithm
will find the pending writes that might justify the implicit property (line 9). For each
of these possible justifications (lines 10-16), the algorithm will associate this operation’s
corresponding write as a dependency of the given pending write, proceeding to the next
operation. When that pending write gets established, this operation’s corresponding write
is provided with that establishment knowledge through the depth first search process,
and it can be treated immediately if there are no previous onStandBy operations. The
recursive function gets called to treat the next operation. If that results in failure for every
valid pending write, the algorithm finds the valid established writes for this particular
implicit read (line 17). For each of these possible justifications (lines 18-24), the algorithm
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will feed it immediately to client, however, it can only be merged once the client has no

previous onStandBy operations. This behaviour and both outputs represent the same ones

as when trying to validate through the client itself. It proceeds to the next operation, once

the outputs are valid. If any of them is not valid or if the recursive call resulted in failure

for every valid established write, then the algorithm has no option but to backtrack (line

25), i.e., inform the previous operation that this one could not be justified, and thus it is

necessary to choose another justification for that previous operation, if there are more.

Algorithm 3: Pseudocode of the function that handles implicit read operations

1 Function handleImplicitRead(operationlndex, operation, client, globalState):

2
3
4
5

10
11
12

13
14
15
16
17

18
19
20

21

22
23
24
25

writeOperation < globalState.getPending().remove(client.getIndex())

method < writeOperations.getMethod()

globalStateCopy « copy(globalState)

valid, valuesAndVectorClocksByld « globalState-
Copy.getClient(client.getIndex()).completeWriteWithSameClient(writeOperation,
globalStateCopy)

if valid & isValid(valuesAndVectorClocksByld, globalStateCopy) &
check(operationIndex + 1, globalStateCopy) then
| return true

end

clientsWithValidPendingWrites <
getClientsWithValidPendingWrites(operation.getld(), method, globalState)

foreach otherClientIndex it clientsWithValidPendingWrites do

globalStateCopy « copy(globalState)

globalStateCopy.getPending().get(otherClientIndex)
.addDependent(writeOperation)

if check(operationIndex + 1, globalStateCopy) then
‘ return true

end

end

validEstablishedWrites «— getValidEstablishedWrites(operation, client,
globalState)

foreach establishedWrite it validEstablishedWrites do

globalStateCopy < copy(globalState)

valid, valuesAnd VectorClocksByld «
globalStateCopy.getClient(client.getIndex())
.completeWriteWithEstablished Write(writeOperation, establishedWrite,
globalStateCopy)

if valid & isValid(valuesAndVectorClocksByld, globalStateCopy) &
check(operationIndex + 1, globalStateCopy) then
‘ return true

end

end
return false

The handleExplicitRead function handles explicit read operations and its pseudocode

is shown in Algorithm 4. This function has a similar behaviour to the previous one.
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In this case, the algorithm does not search for justifications that satisfy the existence or
nonexistence of the corresponding id, but justifications that comprise the value read from
the given id. When considering the client itself (lines 4-8) or established writes (lines
17-24) as justifications, if there are no previous onStandBy operations at the given client,
then this operation can get treated immediately (merged), otherwise it is created a new
OnStandByOperation object wrapping this explicit read operation, where the justification
is stored and only gets treated once all previous onStandBy operations get treated. When
considering pending writes (lines 9-16) as justifications, regardless if the are previous
onStandBy operations at the given client or not, it is always created an OnStandByOperation
object wrapping this explicit read operation and gets treated once the pending write gets
established and when all the previous onStandBy operations get treated. Similarly to the
previous function, if all the justifications result in failure, the algorithm backtracks (line
25).

3.3.8 Limitations

We found two patterns of histories of operations the algorithm does not classify correctly,
which we consider them as the limitations of this algorithm.

Figure 3.19 shows a timeline of a history of operations that violates causality, however,
the algorithm cannot detect it. Both clients start by creating two objects - x and y - where
Client 0 assigns the values A and D, respectively, and Client 1 assigns the values B and
C, respectively. Next, Client 0 creates Z with the value K. Finally, Client 1 executes three
sequential reads. Since, the value C won (against D) for y, Client 0 must only be able to
observe the value B for x, however, the algorithms considers valid that the user observes
A for x.
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Figure 3.19: Timeline pattern that the algorithm does not verify correctly
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Algorithm 4: Pseudocode of the function that handles explicit read operations

1 Function handleExplicitRead (operationlndex, operation, client, globalState):

2
3
4
5

10
11
12

13

14
15
16
17

18
19
20

21

22
23
24
25

id < operation.getId()

value « operation.getValue()

globalStateCopy « copy(globalState)

valid, valuesAndVectorClocksByld « globalState-
Copy.getClient(client.getIndex()).addExplicitRead WithSameClient(operation,
globalStateCopy)

if valid & isValid(valuesAndVectorClocksByld, globalStateCopy) &
check(operationIndex + 1, globalStateCopy) then
‘ return true

end

clientsWithValidPendingWrites < getClientsWithValidPendingWrites(id,
value, globalState)

foreach otherClientIndex in clientsWithValidPendingWrites do

globalStateCopy « copy(globalState)

valid, valuesAndVectorClocksByld «
globalStateCopy.getPending().get(otherClientIndex)
.addExplicitReadWithPendingWrite(operation, globalStateCopy)

if valid & isValid(valuesAndVectorClocksByld, globalStateCopy) &
check(operationIndex + 1, globalStateCopy) then
‘ return true

end

end

validEstablishedWrites «— getValidEstablishedWrites(operation, client,
globalState)

foreach establishedWrite in validEstablishedWrites do

globalStateCopy « copy(globalState)

valid, valuesAnd VectorClocksByld «
globalStateCopy.getClient(client.getIndex())
.addExplicitReadWithEstablished Write(operation, established Write,
globalStateCopy)

if valid & isValid(valuesAndVectorClocksByld, globalStateCopy) &
check(operationIndex + 1, globalStateCopy) then
‘ return true

end

end
return false

As the vector clocks associated to the object x did not change when the y’s ones changed,

the algorithm considers this behaviour to be valid.

Figure 3.20 shows another timeline of a history of operations that contains a convergence

violation (causal+ consistency), but the algorithm is not able to detect it. The three clients

start by creating a new entity x, where each assigns a different char to it - Client 0 wrote

A, Client 1 wrote B and Client 2 wrote C. Then, Clients 1 and 2 create another entity y,

assigning the chars I and J. After that, Clients 0 and 1 read y having the value with the char
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set to I. Finally, Client 0 reads y again, but this time the value has the char set to J. This

last operation is the cause of the convergence violation, since regarding y, Client 0 sees I
and then J, but Client 2 wrote | and then read I.
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Figure 3.20: Timeline pattern that the algorithm does not verify correctly

The algorithm would detect this violation if the (version) vector clock of the ValueProp-

erties element of y at Client 0’s last explicit read was equal to the (version) vector clock of

ValueProperties element of y at Client 2’s last explicit read, since the same (version) vector

clock would be pointing to different values (J and I).

We leave both of these corner cases to be handled in future work.
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This chapter starts by briefly presenting the implementation of the components of JepREST.
Finally, it presents in detail the implementation of the algorithm that verifies causal
consistency in RESTful applications regarding initial processing, global state and clients.

4.1 JepREST

This section presents an overview of the tool that was extended by this dissertation’s
project.

JepREST [58] is a tool that intends to simplify the testing process of distributed
applications with REST interfaces, based only on their API description (the application
itself is seen as a black-box system). This tool is responsible for verifying the correctness
of a REST application while being subject to functional tests, where multiple clients are
concurrently performing requests with the possibility of occurring failures in the system’s
components. A system is said to have a correct behaviour if its executions are linearizable
[34]. This tool was developed on top of Jepsen [36], which does not support the testing of
REST applications. JepREST consists of four components:

1. Specification of the application’s API and semantics that the developer wants to test
2. Specification of the workloads to be performed on the application
3. Execution of the workloads using Jepsen library

4. Analysis of the results, verifying if the execution corresponds to a correct behaviour

Next, each component is described in more detail.

41.1 Application’s API and Semantics Specification

JepREST needs to have prior knowledge about the API that the developer wants to test.
This knowledge includes information of every resource, and every operation that can be

performed on them. The developer needs to provide these information through three
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types of Java files: a base document, interface document(s) and object document(s). These
need to include annotations from OpenAPI, JAX-RS, javax.validation.constraints and some
custom ones from JepREST.

The base document is an interface that defines the base URI of every service’s resource.
This interface needs to extend the interface document(s) referring to those resources. An
interface document is an interface of a service’s resource, which contains information of
the operations that can be performed on the resource. An object document is a class that
represents an object to be created, where the annotations contained define how its data
can be generated. Object documents are used by the interface documents to define the
parameters, and body of requests and responses of operations.

JepREST relies on methods and data structures provided by Jepsen in order to verify
these REST services. However, Jepsen library is written in Clojure, whereas the documents
described previously that hold the specification of the API are written in Java. Therefore,
a code generated was developed, written in Java, that processes these documents and
generate Clojure methods that will be executed by the Jepsen library.

Jepsen’s "Client" data structure only supports clients that submit simple read and write
requests. Thus, it was necessary to create a new client, "ClientREST", which can submit
any REST request, namely POST, GET, PUT, PATCH and DELETE.

Figure 4.1 illustrates the workflow when a "ClientREST" executes a request. A
"ClientREST" calls the Clojure method of the respective operation, which will invoke
the REST API with the request. Then, the API will respond back to the Clojure method,
which in turn will recreate the response in the Jepsen’s response format. Finally, this new
response is sent back to the "ClientREST" that submitted the request.

REST
API

invocations ~ resPonses

ClientREST ——requests—> Generated <
Code

1 |

respon

Figure 4.1: "ClientREST" workflow

4.1.2 Workloads Specification

This component complements the previous one, since it defines what workloads the clients
can submit to the REST API. Before describing this component, it is important to note
that for each operation defined in the documents, the code generator will generate a
corresponding Clojure method, which will be called whenever a client needs to submit a
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request corresponding to a operation. Thus, it is necessary to establish a way of choosing
the operations parameters, and how to create new [SON objects.

Regarding parameters choosing, JepREST will detect every dependency between
operations. An operation is dependent on another if it needs to send some parameter
that was obtained in the other operation. A list is created for every dependency, where
the independent operation appends values to the list, and the dependent will use one of
them. If the list is empty, then the dependent one will need to use a random parameter,
otherwise a random value from the list is selected to be sent as the parameter. Regarding
the creation of JSON objects, JepREST will process the object documents in order to check
what constraints each field holds. To generate them, two libraries are used: Faker [28] and
PETIT [55]. However, JepREST relies mostly on Faker.

Having those methods generated, then this component can execute. The developer
needs to provide the workloads through a YAML script. This script contains one or more
test scenarios that will be executed on the REST application. A test scenario is composed
by a name, a weight, and a sequence of operations. The name represents the scenario’s
context, whereas the weight dictates its execution frequency. The sequence of operations
is defined by using the generated methods names. Listing 4.1 shows an example of this
YAML script.

scenarios:
— name: ’Students Management API’

weight: 100

flow :
— createStudentData
— getStudentData
— updateStudentData
— deleteStudentData

Listing 4.1: Example of a YAML script provided to JepREST that specifies the scenarios to
be executed on a REST API

4.1.3 Workloads Execution

Given the YAML script, this component is responsible for informing the "ClientRest"s
which requests they must execute. This process is depicted in Figure 4.2. First, a random
number is generated, which determines which test scenario will be submitted, based on
the weights, in that instant. Then, the sequence of operations of the chosen scenario
is sent to the Jepsen’s operations generator. This generator, in turn, sends each of the
Clojure methods to a "ClientREST" that will submit the request of that method to the REST
API. Thus, requests will be submitted by different clients concurrently. This workflow
is executed multiple times during the time established for the test process, where, after
submitting a scenario, there will be a waiting time before invoking the new chosen
scenario.

JepREST supports testing on APIs running on standalone servers and Kubernetes.
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Figure 4.2: Process of informing clients of the requests they must submit

4.1.4 Execution Results Assessment

This component is responsible for verifying the correctness of a REST API. During a
test, JepREST generates a file that contains the history of operations, i.e., every submitted
request by "ClientREST"s and the responses to these requests. For each operation, this file
stores the request type (invocation or a response as "ok" or "fail"), operation type (post,
get, put, patch or delete), timestamp, process/client identifier, index (position in history),
and additional request/response information (parameters and body).

The history of operations is analysed by this component in order to determine if the
execution of the REST API corresponds to a correct behaviour. To this end, one resorts
to a Jepsen checker, called Knossos, which defines that the history represents a correct
behaviour of the APT if it is considered linearizable, given the model defined. The model
represents the API state, which expresses the way it is changed given the occurrence of
REST operations. Thus, it verifies if it is possible to have a linearization of the operations
in which the state of the model matches the responses obtained from the API. If the
operations responses are indeed consistency, then Knossos informs the developer that the
history is linearizable. Otherwise, it returns an inconsistency problem.

Knossos executes until detecting the first potential linearizability issue. When detecting
it, Knossos terminates its history analysis process and returns to the developer information
related to the operation that it was not able to linearize.

JepREST created a new model that implements the interface "Model" offered by
Knossos. This was necessary simply because Knossos’s models can only represent database
states that contain simple elements, such as registers. This implies that they cannot
represent the state of REST applications, where rather complex elements need to be stored,
such as JSON objects. Therefore, the developed model aims to define the state of a REST
system, managing the multiple JSON objects that are used during the system’s executions.

4.2 Algorithm

This section presents how the main parts of the algorithm were implemented.
JepREST’s checker, Knossos [40], verifies linearizability in RESTful applications, while
our algorithm is a brand new checker that verifies causal consistency in those same
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applications. Our algorithm simply takes advantages of the (Jepsen) semantics and syntax
history files generated by JepREST. Thus, these checkers have no correlation with each

other whatsoever. Figure 4.3 shows exactly this behaviour.

Workload of | Generates History of
operations operations file (.edn)

A A

Analyses Analyses

| Knossos Our algorithm
| (linearizability |— (causal consistency
\ checker) checker)

AN / ;

Figure 4.3: How our algorithm takes advantage of JepREST

The algorithm itself was written in Java. However, it was necessary to do an initial

processing of the Jepsen history, which was written in a simple Clojure script.

4.2.1 From Jepsen History to JSON History

The file from Jepsen that consists of the history of operations performed on the workload
is provided as an EDN file. Listing 4.2 illustrates a portion of an example of this file.
Instead of directly feeding this file to the Java implementation of the algorithm, we found
it advantageous to extract some information out of it and convert this file to a JSON file
for better compatibility with the Java implementation of the algorithm, and scaling of the

whole project.

{:type :invoke, :f :post, :value {:input {:json {:char "A"}, :typeOp "createObject"}}, :
time 1662461060, :process 0, :index 0}

{:type :o0k, :f :post, :value {:input {:json {:char "A"}, :typeOp "createObject"}, :
output {:status 201, :body {:id "x", :char "A"}}}, :time 1662461062, :process 0, :
index 1}

Listing 4.2: Portion of an example of the Jepsen file (EDN) that contains the history of
operations performed by the workload

As mentioned in Section 3.2.2, the processing mechanism of transforming the history
entries of this file needs to know where the corresponding response’s history entry of a
given request’s history entry sits in order to be efficient. A simple Clojure project was
created to extract this information and store it in the opposite-index field in order to avoid
this additional overhead on the Java implementation, and also transform the final data
into a J[SON file, which is the one read by the Java implementation. Listing 4.3 shows the
JSON portion of the history corresponding to the previously seen EDN file portion.
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{
"type": "invoke",
"f": "post",
"value": {
"input": {
"json": |
"char": "A"
}
"
}
b
"process": 0,
"index": 0,
"opposite—index": 1

ypeOp": "createObject"

"type": "ok",
"f": "post",
"value": {
"input": {
"json": |
"char": "A"
b
"typeOp": "createObject"
"output": {
"status": 201,
"body": {
"id " "x",
"char": "A"
}
}
,
"process": 0,
"index": 1,
"opposite—index": 0
}
|

Listing 4.3: Portion of the [SON file that corresponds to the history portion in Listing 4.2

4.2.2 From Raw Operations to Processed Operations

Having access to the new JSON file of the history of operations, it is necessary to read its
content, which we call raw operations, and convert it to the processed operations syntax

our algorithm relies on, i.e., write, implicit read and explicit read operations.

Listing 4.4 shows the function that converts raw operations to the corresponding
processed operations. First, it obtains the list of raw operations (line 2), where the Gson [33]
library was used to deserialize them to Java classes. All the processed operations will be
stored in the processedOperations list (line 3), and all the operations’ ids will be stored in the
ids set (line 5). Clients have sequential identifiers, starting at zero, and the variable clients
(line 4) will hold the largest of them all, where the total number of clients is clients + 1.

Next, we iterate through the raw operations in order to convert them into processed
operations (lines 7-27). If the raw operation’s type is invoke, then it is necessary to perform
some checks (lines 8-20). If this invoke raw operation resulted in failure (lines 12-15), i.e.,
the correspondent ok raw operation’s status is equal to 404, then the HTTP method (f field)
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of both raw operations is set to GET, regardless of the original one. This is to ensure that
the ok raw operation is converted into an explicit read operation further ahead. After this,
if the invoke operation’s HTTP method is GET (lines 17-19), this raw operation is discarded

and we proceed to the next one.

public Operationsinfo processRawOperations () {
List <RawOperation> rawOperations = getRawOperations ();
List <Operation> processedOperations = new ArrayList <>(rawOperations.size ());
int clients = -1;
Set<String> ids = new HashSet<>();

for (RawOperation rawOperation : rawOperations) {
if (rawOperation.getType (). equals (INVOKE)) {

RawOperation rawResponseOperation = rawOperations. get (
rawOperation. getOppositelndex ());

int status = rawResponseOperation.getData (). getOutput (). getStatus ();

if (status == 404) { // Set method to be GET
rawOperation . setMethod (GET) ;
rawResponseOperation . setMethod (GET) ;

}

if (!rawOperation.isWriteOperation ()) { // Skip invocations of GET operations
continue;
}
}

List <Operation> operations = buildOperation(rawOperation, rawOperations);
processedOperations.addAll(operations);
Operation operation = operations.get(0);
clients = Math.max(clients , operation.getClient());
ids.add(operation. getld ());

}

return new OperationsInfo(processedOperations, clients + 1, ids);

Listing 4.4: Convert raw (Jepsen) operations to processed operations

The buildOperation function (line 22) receives the raw operation to be converted and
the full list of raw operations, and retrieves a list with the new processed operations
corresponding to the raw operation. Depending on the type and HTTP method (f field) of

the raw operation, the function’s behaviour is the following;:

¢ invoke POST and invoke PUT - Write operation whose value holds what the client
wrote.

¢ invoke DELETE - Write operation whose value holds NULL.

¢ 0k POST - Implicit read operation whose nonNullableValue field is set to false and an
explicit read operation whose value holds what the client wrote.

* ok GET - Explicit read operation whose value holds what the client read.

* ok PUT - Implicit read operation whose nonNullableValue field is set to true and an
explicit read operation whose value holds what the client wrote.
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¢ ok DELETE - Implicit read operation whose nonNullableValue field is set to true and

an explicit read operation whose value holds NULL.

The new processed operations are added to the processed Operations list (line 23). Next,
the largest client’s identifier so far is obtained (line 25), and the id of these processed
operations is added to the ids set (line 26).

Once iterating through every raw operation, this function returns a structure that
contains all the new processed operations, and the number of clients and all the ids in the

history of operations (line 29).

4.2.3 Global State

The global state manages all the information from a given graph (when choosing specific
justifications). That information consists of the properties and current knowledge of each
client, every values and vector clocks that have been assigned to the id and the pending
writes.

Listing 4.5 shows the initial part of the Java class that represents the global state. The
client objects are stored in a List. A map structure stores for every id another map that
associates a value that has been either written or read to corresponding vector clock. The
pending writes are associated to an integer that represents the corresponding client’s id

also using a map structure.

public class GlobalState {

private final List<Client> clients;
private final Map<String , Map<String , Object>> valueByVectorClockByld;
private final Map<Integer, WriteOperation> pending;

Listing 4.5: Initial part of the Java class that represents the global state

Whenever the algorithm chooses to advance with a particular justification for either
an implicit or explicit read, it is necessary to copy the global state and only apply the
justification on this copy, otherwise we would lose the original global state, and therefore
when other justifications of the same operation were considered, it would not be the
original state that was being copied, but the one that considered the previous justification,
leading to a invalid behaviour. The new copy of the global state, which includes the chosen
justification, is the one that is sent to the recursive function call.

In fact, the copy that the implementation performs is characterized as a deep copy,
because the copy should not change the references that the original contains. The new
global state object (copy) contains the exact same properties, however, they must have
different references. This behaviour was achieved through the usage of Gson [33]. The
deep copy process consists of serializing the whole global state object to a JSON string
and then deserialize it to a new global state object. Thus, it is guaranteed that the original
object and the copy do not share any references (both as objects and their properties).
Figure 4.4 shows this copy process.
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Figure 4.4: Process of copying the global state

424 Clients

Clients are one of the most important and complex structures of the implementation. A
client object stores its index, its established writes, its state, its id Properties and its operations
that are onStandBy.

Listing 4.6 shows the initial part of the Java class that represents a client. The index
is an integer that identifies the client and its established writes are stored in a list of
EstablishedWrite objects, where each contains the state and the idProperties of this client
after it established the given write that was in the pending state. The client state is
represented through a vector clock object, which acts as a simple array of integers. Its
idProperties are stored in a map structure, where a list of ValueProperties, with at least one
element, is assigned to each id present in the history of operations. A ValueProperties object
stores the object/value (any type) that has been either written or read, and two vector clock
objects (version and write). Finally, the client also stores a list with its onStandByOperations,
and these elements contain the actual operation, a boolean that indicates if it is supposed
to be justified by the client itself, and if not, it is ready to store an EstablishedWrite object.

public class Client {

private final int index;

private final List<EstablishedWrite> establishedWrites;
private final VectorClock state;

private final Map<String , List<ValueProperties>> idProperties;
private List<OnStandByOperation> onStandByOperations;

Listing 4.6: Initial part of the Java class that represents a client

Before executing the algorithm itself, it is necessary to setup these clients’ state and
idProperties. The state will consists of an array whose size is equal to the number of clients
in the history of operations. Regarding the idProperties, for each id present in the history
of operations, the corresponding ValueProperties list will contain a single ValueProperties
object whose value is NULL, and both vector clocks correspond to the client’s initial state.

Whenever the current operation is a write, it is stored not only in the pending structure of
the global state, but also as an OnStandByOperation object in the client’s onStandByOperations
list.

Whenever the current operation is an explicit read, the behaviour of the implementation
follows the diagram in Figure 4.5. If its client’s onStandByOperations list is empty, then
this operation can be treated immediately. If it is supposed to be justified by the client
itself, this condition gets checked. In the case the client cannot justify it, this information
is propagated, and it is necessary to check for another justification of this operation.
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Otherwise, this explicit read gets treated, and the idProperties are updated. In the case that
the justification was an established write, then the merge process happens and both the
client’s state and idProperties are updated. In the case a pending write is the justification,
this explicit read is converted to an OnStandByOperation that gets inserted to the client’s
onStandByOperations, whose EstablishedWrite property remains NULL until the pending
write gets established. In the case the client’s onStandByOperations list is not empty, then
this operation will be converted to an OnStandByOperation, storing the justification in it
and can only get treated once all the previous ones get treated. However, if the justification
is a pending write, not only it needs to wait for every previous onStandBy operation to
get treated, but also wait for the pending write that it depends on to transform into an
established write, before getting treated.

Update client's
idProperties

Doesthe .  No Trv another
< client > cat
. justify it / justification
™, '
™, s
F s
N Try client itself
/DO the
es
N
Explicit Read —» /" clienthaveany o N Try established write _| Update client's state
. onStandBy - N and idProperties
operations?
N 7
A Try pending write

h 4

Convert to
OnStandByOperation

Figure 4.5: Process of treating an explicit read operation on the client side

Whenever the current operation is an implicit read operation, the behaviour of the
implementation follows the diagram in Figure 4.6. The corresponding write exits the
pending state, by removing the entry in the pending structure of the global state. As
mentioned before, this write is stored in the onStandByOperations list of the client. If the
client has no onStandByOperations (prior to the one corresponding to this write), it follows
an initial behaviour similar to the one when dealing with an explicit read, where the
difference is that, in the case of using a pending write as a justification, it is not created a
new OnStandByOperation, because the write is already in the onStandByOperations list. After
updating the properties of the client when either the client itself or an established write
justifies the implicit property, the write is established, which will trigger the depth first
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search process. This process will provide the new EstablishedWrite object to the onStandBy
operations that depend on that write. In the case these dependent operations are the first
ones of their corresponding onStandByOperations list, every OnStandByOperation between
this one (inclusive) and the first one that is still waiting for a pending write to be established
(exclusive) get treated and exit this list. In short, the depth first search process triggers
the onStandByOperations cleanup, which may also lead to write establishments, triggering
the depth first search process again (dependencies), and so on. If the client has onStandBy
operations prior to the one representing the write, the justification simply gets stored
on that write OnStandByOperation and only gets treated once all previous onStandBy
operations get treated. However, if the justification is a pending write, it can only get
treated once all the previous onStandBy operations get treated and also when the pending
write that it depends on transforms into an established write.
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Figure 4.6: Process of treating an implicit read operation on the client side
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EXPERIMENTS AND RESULTS

This chapter presents an evaluation of the proposed algorithm. The evaluation starts by
verifying that the algorithm is able to find causality violations in a set of custom histories
designed to illustrate different scenarios of violation. Then, we have experimented with
logs from a running server and conclude our experiment with an evaluation of the

scalability of the implemented prototype.

5.1 Custom Histories of Operations

This section aims to evaluate the behaviour of the algorithm, not only at the final result
(causally consistent or not), but also at specific intermediate results, running our pro-
totype over simple histories of operations created by us. Some of these histories, and
corresponding timeline of processed operations, have already been studied conceptually
in Chapter 3. For the sake of space, the additional explicit read studied in Section 3.2.2
will not be considered in the timelines we will analyse next.

5.1.1 Read Your Writes

Figure 5.1 illustrates the algorithm execution over a timeline of processed operations. The
history comprised by this timeline violates the Read Your Writes guarantee. Client 0
performed a write and Client 1 happened to read it. Finally, Client 0 issues a read on
the entity that it created, however, it resulted in a 404. Client 0’s explicit read is the only
operation that has no justifications. The output is shown in Listing 5.1. It indicates that
the corresponding history of operations is not causally consistent, specifying the furthest
operation that could not be justified. It is detecting this violation correctly, since after
the Client 0’s write gets established, Client 0 needs to observe the written value unless
there was some operation in some other client that would delete x, which is not the case.
As far as the timeline is concerned, the index of this operation should be 3, however, the
prototype creates an additional explicit read after each successful write operation, which
is why its index is 4. This situation must be taken into account for the next examples.
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Figure 5.1: Timeline of operations that violates Read Your Writes

(oo

Client 1

NOT CAUSAL — Furthest operation that could not be justified was:

index: 4

type: explicit_read
client: 0

id: x

value: null

Listing 5.1: Output when feeding the history corresponding to the timeline in Figure 5.1

We also studied the need to use the write vector clock in Section 3.3.5. Figure 3.14
shows the algorithm execution, without write vector clocks, over a timeline that could lead
to a Read Your Writes violation if Client 0 had an additional explicit read operation that
made it observe x with the char set to A. Figure 3.15 shows the algorithm execution using
write vector clocks over the same timeline, which will not consider the ValueProperties
element of x with the char set to A at Client 0’s last explicit read, allowing the algorithm to
detect a Read Your Writes violation in the case Client 0 had the additional explicit read
described above.

The prototype outputs the established writes and final knowledge of each client
when classifying a history of operations as causally consistent. Given that, Client 0’s
final knowledge output must match the knowledge indicated in Figure 3.15 at Client 0’s
explicit read. Listing 5.2 shows this portion of the output, which validates the previous

requirement.
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Client 0
state: [2, 2]
idProperties: {

x=[Vector clock: [2, 0] | Write Vector Clock [2, 0] | Value: {char=C}],
y=[Vector clock: [2, 2] | Write Vector Clock [1, 2] | Value: {char=Z}]
}

Listing 5.2: Portion of the output that corresponds to the final knowledge of Client 0 when
feeding the history corresponding to the timeline in Figure 3.15

5.1.2 Monotonic Writes

We have already studied the history of operations of Figure 3.4, which contains a Monotonic
Writes violation. The way the algorithm detects the violation is shown in Figure 3.10.
When feeding this history to the prototype, we get the output in the Listing 5.3. The
prototype is also detecting this violation correctly, since the furthest processed operation

it could not justify corresponds to the one we pointed out as not having any justifications.

NOT CAUSAL - Furthest operation that could not be justified was:

index: 7

type: explicit_read
client: 1

id: x

value: {char=A}

Listing 5.3: Output when feeding the history corresponding to the timeline in Figure 3.10

5.1.3 Monotonic Reads

Figure 5.2 shows the algorithm execution over a timeline of operations that represents a
history with a Monotonic Reads violation. Client 0 performs a write and Client 1 reads
it. After that, Client 1 performs another read that reads a previous value, which has no
justification. As expected, our prototype outputs this operation as the reason the execution
corresponding to this history is not causally consistent, i.e., the furthest operation the
prototype was able to reach, and Listing 5.4 shows exactly that.

NOT CAUSAL - Furthest operation that could not be justified was:

index: 4

type: explicit_read
client: 1

id: x

value: null

Listing 5.4: Output when feeding the history corresponding to the timeline in Figure 5.2
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value: {"id": "x", "char": "A"} value: NULL
- 7\ /A >
Client 1 \,j \’/ >

Figure 5.2: Timeline of operations that violates Monotonic Reads

5.1.4 Writes Follow Reads

Figure 5.3 shows the algorithm execution over a timeline of processed operations. The
correspondent history contains a Writes Follow Reads violation. Client 0 creates a new
entity, x, assigning the char A to it. Then, Client 1 reads this value and updates its char to
be B. Finally, Client 2 performs two consecutive reads of x, observing the chars B and A,
respectively. Client 2’s last explicit read violates the Writes Follow Reads, as every replica
must apply the write from Client 1 after the write from Client 0, as Client 1 has read the
write from Client 0. Given this, Client 2, after reading the write from Client 1 can no
longer read the write from client 0. Listing 5.5 shows the output over this specific history,
and the furthest operation the prototype was able to justify corresponds to Client 2’s last
explicit read.

NOT CAUSAL - Furthest operation that could not be justified was:

index: 8

type: explicit_read
client: 2

id: x

value: {char=A}

Listing 5.5: Output when feeding the history corresponding to the timeline in Figure 5.3
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Write Implicit Read

id:x id: x
method: POST nonNullableValue: false
value: {"char": "A"}

Client 0 @ @
x:NULL x:NULL x:A

»

1
1
0

Explicit Read Write Implicit Read
. id:x .
id:x id: x
value: {"id": "x", "char": "A"} va::::';;i;g'rs”} nonNullableValue: true
o
Client 1 @ . >

® ®
x:NULL x:A x:A x:B

LR

Explicit Read Explicit Read
id: x id: x
value: {"id": "x", "char": "B"} value: {"id": "x", "char": "A"}
Client 2 @ @ >

x:NULL x:B

Figure 5.3: Timeline of operations that violates Writes Follow Reads

5.1.5 Multiple Branches Exploration

So far, we have only been submitting to the prototype histories of operations that consist of
asingle graph, i.e., each processed read operation has at most one justification. In that case,
if the prototype has no justifications for a given operation, it will backtrack and consider
all possible alternative justifications (dependencies) of each read - if no alternative can

justify all operations, the history is classified as violating causal consistency.

We have studied the timeline of operations in Figure 3.11, where it represents a possible
set of dependencies that the algorithm created. Client 1’s explicit read has two possible
justifications, which are the last established writes of Clients 0 and 2. If the algorithm
chooses the last established write of Client 2, it will not be able to justify the last explicit
read of Client 1, and therefore it needs to backtrack to the previous explicit read of Client
1. If the algorithm chooses the established write of Client 0 (either being the first choice
or after backtracking), the last explicit read of Client 1 can now be justified by Client 2’s
last established write and therefore the history is classified as causally consistent.

Regardless of the prototype behaviour at this situation, the graph that classifies the
execution corresponding to this history as causally consistent is the one represented in
Figure 3.12. Thus, the output portion that corresponds to the final knowledge of Client
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1 must match the knowledge after executing its last explicit read. Listing 5.6 shows that

output portion, which indeed validates the requirement above.

Client 1
state: [1, 0, 1]
idProperties: {

x=[Vector clock: [1, 0, 1] | Write Vector Clock [0, 0, 1] | Value: {char=A}]
}

Listing 5.6: Portion of the output that corresponds to the final knowledge of Client 1 when
feeding the history of operations that corresponds to the timeline of in Figure 3.12

5.1.6 Pending Writes

Figure 3.18 illustrates an execution of the algorithm over a history of operations containing
multiple operations that can be justified by pending writes. The operation of Client 0 can
only be executed when Client 1 establishes its write. However, Client 1 can only do it once
Client 0 establishes its write. The knowledge at the last operation of Client 1 and Client
2 could only be obtained - because the algorithm run depth first search, starting at the
moment Client 0 established its write.

Listing 5.7 shows the portion of the output that corresponds to the final knowledge of

all clients, which matches the knowledge of clients at their last operation.

Client 0
state: [1, 0, 0]
idProperties: {
x=[Vector clock: [1, 0, 0] | Write Vector Clock [1, 0, 0] | Value: {char=A}]
}

Client 1
state: [1, 1, 0]
idProperties: {
x=[Vector clock: [1, 1, 0] | Write Vector Clock [1, 1, 0] | Value: {char=B}]
}

Client 2
state: [1, 1, 0]
idProperties: {
x=[Vector clock: [1, 1, 0] | Write Vector Clock [1, 1, 0] | Value: {char=B}]
}

Listing 5.7: Portion of the output that corresponds to the final knowledge of all clients
when feeding the history of operations that corresponds to the timeline of in Figure 3.18

5.2 Real RESTful Application

So far, we have been assessing the behaviour of the prototype using histories of operations
written by ourselves. However, it is crucial to do it using histories of real RESTful
applications that claim either to satisfy causal consistency or not. To this end, a RESTful
application was developed, which uses AntidoteDB [5] database.
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AntidoteDB claims to ensure causal consistency using vector clocks [4]. Each operation
returns a vector clock indicating the time after it has been performed. When executing
an operation in Antidote, clients can provide that previous received vector clock to
force a minimum time for the snapshot used in the request. This means that if clients
always provide these vector clocks, causal consistency is maintained along the application,
otherwise it gets jeopardized.

The RESTful application was developed in Java using the Jersey REST framework [25].
In order to access an AntidoteDB cluster, the Java Client 0.3.5 [4] of Antidote was used.
This application manages students and maintains the following information about each
one: id, first name, last name, email, age and phone. The id is the only field generated by
the application. The REST operations supported by this application are shown in Table 5.1.

Table 5.1: REST operations of the real RESTful application

. HTTP Request HTTP Response
Operation Method URI Body Status Body (on success)
Create POST /  JSON with info 201 JSON with id and info
Read GET /{id} - 200/404 JSON with id and info
Update PUT /{id} JSON with info 200/404 JSON with id and info
Delete DELETE /{id} - 200/404 -

Figure 5.4 illustrates the deployment configuration of this application. It offers two
different replicas, where each one is connected to a different Antidote cluster. These

clusters are synchronized with each other so that they can replicate data.

- I

Antidote 1 < L Antidote 2

" | 5

Replication

Figure 5.4: Deployment configuration of a real RESTful application using AntidoteDB

With this application built and deployed with the given configuration, we want to
assess if it really provides causal executions when clients send the vector clock they
received in the previous operation. Likewise, when they do not provide the vector clocks,
we expect that some executions do not satisfy causal consistency.

We relied on JepREST to perform workloads of REST operations on this application.
We had to adapt JepREST clients based on our requirements. These clients must access
replicas randomly, so that they do not always execute requests to the same one, which
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happens in real applications. The resulting histories of operations will be then analysed
by our prototype.

JepREST was used to run several workloads with a different number of REST operations,
where the tool’s clients neither store or send the data Antidote retrieves when submitting
an operation (Antidote’s vector clock data). Our prototype classified most of the executions
corresponding to these histories as not causally consistent. This result confirms the fact
that causal consistency is indeed jeopardized when clients do not provide the Antidote’s
vector clock data retrieved in their previous operation.

Figure 5.5 illustrates a portion of the timeline of a history of operations that resulted
from this assessment, and it shows the initial operations of it. Client O creates the entity
9d95 and Client 1 issues a read of the uafz that resulted in a 404. Then, Client 0 performs
two reads of the entity it created, observing the value it assigned to it and that it does not
exist, respectively. Meanwhile, Client 1 attempts to update the value of 9495. For the sake
of space, the value written by Client 0 at 9495 is represented by the green ball.

The algorithm cannot find any justification for the last explicit read of Client 0 and
since every other read operations have a single justification, it will backtrack all the way to
the start and classify the execution corresponding to this history as not causally consistent.
Listing 5.8 shows that the reason for it is the last explicit read operation of Client 0.

NOT CAUSAL - Furthest operation that could not be justified was:

index: 5

type: explicit_read
client: 0

id: 9d95

value: null

Listing 5.8: Output when feeding the history corresponding to the timeline in Figure 5.5

JepREST also performed workloads with a different number of REST operations,
where the tool’s clients store the data Antidote retrieves when submitting an operation
(Antidote’s vector clock data) and send it whenever performing a new operation. All
executions corresponding to the histories generated by this experiment were classified as
causally consistent by our prototype. This does not prove that this RESTful application
(the layer above Antidote) is correct as far as causal consistency is concerned. No violations
were detected in these specific histories, however, this does not mean that violations may
occur on different histories, where clients also take advantage of these vector clocks. We

can only conclude that what Antidote claims was verified on our specific tests.

5.2.1 Inserting Violations Inside Generated Histories

We have already validated that the prototype correctly classifies the most simple histories
that contain violations. Let us suppose JepREST generated a much larger history of
operations of this particular application, which the prototype classified it as causally
consistent. If we happen to insert one of those simple not causally consistent histories in
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Write Explicit Read
id: 9d95 id: 9d95 *
method: POST

value:

value: — {"id": "9d95", ..
{"firstName": "Grover", Implicit Read "firstName": "Grover", Explicit Read
"lastName": "Shields", "lastName": "Shields",
"email": "carter.reilly@raynor.info", id: 9d95 "email"; "carter.reilly @ raynor.info", id: 9d95
"age": 115, nonNullableValue: false "age": 115, value: NULL
"phone: "(747)247-4929"} . "phone: "(747)247-4929"}
Client 0 @ @ ® >

@
9d95: @
uafz: NULL

1
9des: NULL 9d95: NULL 9d95: ]
uafz: NULL uafz: NU'LL uafz: NULL

Write
id: 9d95

method: PUT
value:

Explicit Read {"firstName": "Donald",
"lastName": "Little",

id: uafz "email": "karine.willms@yahoo.com",
value: NULL "age": 25,

"phone: "1-806-081-6537"}

Client 1

Y

®
—
. NULL

odss: B o Nuu
uafz: NULL uafz: NULL
.

Figure 5.5: Portion of the timeline of an history that was generated by JepREST, where
clients neither stored or sent the Antidote’s vector clock data retrieved in their previous
operation

the middle of this larger causally consistent history, we expect the prototype to still detect

the violation correctly.

A JepREST workload of over 100 REST operations was performed on the students
management application. This means that a history of operations with over 100 invocation
and over 100 termination elements was generated. The history whose timeline is illustrated
in Figure 3.4 violates Monotonic Writes, and the prototype’s behaviour over it has been

studied in Section 5.1.2. It was inserted somewhere in the middle of the generated history.

The prototype processed the resulting history file, which contained over 260 processed
operations. The output from this experiment is shown in Listing 5.9. The furthest operation
reached corresponds to the one that is the reason why the execution corresponding to the
smaller history is not causally consistent, which is depicted in the timeline of Figure 3.10.
Its index (133) shows that this processed operation lies somewhere in the middle of the list
of processed operations.
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NOT CAUSAL - Furthest operation that could not be justified was:

index: 133

type: explicit_read
client: 1

id: x

value: {char=A}

Listing 5.9: Output when feeding a large history that contains a violation somewhere in
the middle

5.3 Scalability

The scalability of our prototype correlates the number of REST operations to the time it
takes the algorithm to validate an history with that number of operations.

The size of histories that violate causality are not a good metric for this type of
measurement, because the moment when causality is violated can vary a lot, implying
in major execution time differences among different histories with the same number of
operations. Considering two histories that happen to violate causal consistency, in one of
them the violation might be detected at the very beginning and the violation of the other
one might be found only at the end of it. Therefore, the histories of operations for this
assessment must not contain any causality violations.

The scalability was measured feeding causally consistent histories, generated in Sec-
tion 5.2 (student management REST application), to the prototype, taking into account
their number of REST operations and the execution time. These histories comprise exe-
cutions of all four operations provided by the application. In fact, two different histories
with the same number of operations that respect causality may have a different number of
justifications at each operation, and depending on how and when the algorithm backtracks,
their execution times might be slightly different. For this reason, for the same number of
operations, different histories were submitted to the algorithm and the final measurement
is an average of the execution times of the different histories. These executions were per-
formed on a machine with 32 GB of RAM and two Intel Xeon E5-2609 v4 CPU. Figure 5.6
illustrates the curve that represents the prototype’s scalability. It tends to be exponential
and we believe the size of the global state and its constant copying are the reasons for this.

The size of the global state depends on the number of different ids present in the history
and also on the number of established writes. The larger the number of REST operations,
the larger these two properties tend to be. The prototype will be copying global states
that might be already large from the beginning (multiple ids), and will likely get even
larger due to successive write establishments. The global state copying increases a lot
because of two factors: the number of REST operations and the number of justifications
each operation has. The fact is that the larger the number of REST operations, the higher
the probability of having a larger number of justifications at each operation, specially
at implicit reads. The algorithm may backtrack several times and since there are more

branches to explore, more graphs are being created, meaning that the global state is being
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copied a lot of times.

Algorithm performance when no violations occur

30

25 A

20 A

15

Execution time

10 1

T T T T T T
25 50 75 100 125 150 175 200
Number of REST operations

Figure 5.6: Scalability of the algorithm considering only histories of operations without
violations
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CONCLUSION

This chapter presents the final considerations of this work, as well as the possible improve-
ments that can be applied to it.

6.1 Final Considerations

Many replicated applications rely on weak consistency models to provide their clients
low latency and high availability. Many of these applications choose causal consistency as
their consistency model, since it is guaranteed that clients observe operations that respect
causal relations.

In this dissertation, we have developed an algorithm that verifies whether executions
of RESTful applications satisfy causal consistency. These executions are registered in a
file, which we call history of operations. This history indicates the order of the requests
and responses of the REST operations performed, as well as the data associated to them.
JepREST, with the help of Jepsen, performs a workload in the given RESTful application
and outputs the corresponding execution history file. This file is then analysed and
processed by the proposed algorithm.

The key idea of the algorithm is to try to find a graph of dependencies among operations
thatjustify the results observed. One initial challenge in the processing of REST operations
is that besides read and write operations, some operations (e.g., the POST) can be seen an
the combination of two other operations (e.g., a write followed by an implicit read).

The algorithm follows a recursive approach, which goes through the operations,
following their execution order. At each read operation (either explicit or implicit), it
chooses one possible dependency /justification at a time. If the algorithm cannot justify
a certain read operation, then it backtracks to the last read operation, choosing another
possible justification. If the algorithm backtracks all the way to the beginning, the
algorithm classifies the execution corresponding to the history of operations analysed and
process as not causal consistent.

The proposed algorithm’s is able to verify causal consistency correctly, however, re-
garding causal+ consistency, there are some histories of operations that the algorithm is
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not able to verify correctly. Thus, its limitation is that the causal+ consistency verification
is not very stable.

Two types of evaluation were performed on the algorithm’s prototype. The first
one consisted of feeding to the prototype our own histories of operations that included
violations of causal consistency, and verify that the prototype was able to detect them
correctly. The second one consisted of testing a real distributed RESTful application, which
relies on a database that claims to be causally consistent only when clients provide the
information retrieved in their last operation. The result of these experiments was the
expected - when running the application in a way that respect causality, no violation
was found; when not following the rules for respecting causality, our algorithm was able
to find causal violations. Regarding the scalability of our prototype, its execution time
increases exponentially when increasing the size of histories of operations, which is due

to the fact that huge global state structures are copied a lot of times.

6.2 Future Work

We believe there are some interesting functionalities that the algorithm could implement
in order to make it as comprehensive and intuitive as possible. These enhancements are

the following:

¢ Handle the corner case patterns that violate causal consistency and causal+ consis-

tency, in which the algorithm does not detect correctly, described in Section 3.3.8.

¢ Support PATCH operations. This HTTP method is similar to PUT, but the client is
able to partially update an entity. The algorithm would need to consider an approach

that managed portions of entities and merge them when possible.

* Support operations that retrieve a list of entities (GET all). In the case of the student
management RESTful application, detailed in Section 5.2, there could be a GET
operation that retrieved all clients. We believe this behaviour could be achieved by
considering all combinations of justifications of each operation, instead of just trying

each justification in isolation.

¢ Support write operations that resulted in the 409 HTTP status code (conflict). In the
case of the student management RESTful application, the POST (creation) operation
could retrieve this status code if the new generated id already exists. The algorithm
could convert that operation into a single implicit read operation (with no write
association), storing the information that this id must exist from the given client’s

point of view.

¢ Support write operations that resulted in the 500 HTTP status code (internal server
error). It seems that the algorithm need to consider the two possible outcomes of
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this situation: the case that the write was performed on the application and the case

that it was not performed.
Improve the algorithm’s scalability / performance, since exponential time is not ideal

Have the algorithm’s prototype to output a visual timeline of the processed opera-
tions of the history of operations analysed, including the client’s knowledge after
performing each processed operation, e.g., Figure 5.5. This way, it would possible to
check for intermediate results without having to debug the prototype, making this

information more intuitive and easier to access.

85



BIBLIOGRAPHY

[1] P. Alvaro and S. Tymon. “Abstracting the Geniuses away from failure testing”. In:
Communications of the ACM 61.1 (2018). 1ssn: 15577317. por: 10.1145/3152483
(cit. on pp. 6, 15).

[2] Anintroduction to model checking. urRL: https://www.embedded.com/an-introduction-
to-model-checking/. (accessed: 15.12.2021) (cit. on p. 12).

[3] S.Anand etal. “An orchestrated survey of methodologies for automated software
test case generation”. In: Journal of Systems and Software 86.8 (2013). 1ssn: 01641212.
por: 10.1016/j.jss.2013.02.061 (cit. on pp. 7, 8).

[4] Antidote Java Client 0.35 API Documentation. UrRL: https://www.javadoc.io/doc/eu.
antidotedb/antidote-java-client/latest/index.html. (accessed: 27.08.2022)
(cit. on p. 78).

[5] AntidoteDB - A planet scale, highly available, transactional database. URL: https://www.
antidotedb.eu/. (accessed: 27.08.2022) (cit. on p. 77).

[6] Apache JMeter. UrL: https://jmeter.apache.org. (accessed: 16.02.2022) (cit. on
p- 27).
[7] A. Arcuri. “EvoMaster: Evolutionary Multi-context Automated System Test Gener-

ation”. In: Proceedings - 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation, ICST 2018. 2018. por1: 10.1109/ICST.2018.00046 (cit. on

p- 27).
[8] A. Arcuri. “RESTful API automated test case generation”. In: Proceedings - 2017

IEEE International Conference on Software Quality, Reliability and Security, QRS 2017.
2017. por: 10.1109/QRS.2017.11 (cit. on p. 27).

[9] Artillery. urL: https://www.artillery.io. (accessed: 16.02.2022) (cit. on p. 27).

[10] M. A. Austin and ]. Johnson. “Compositional approach to distributed system
behavior modeling and formal validation of infrastructure operations with finite
state automata: Application to viewpoint-driven verification of functionality in

86


https://doi.org/10.1145/3152483
https://www.embedded.com/an-introduction-to-model-checking/
https://www.embedded.com/an-introduction-to-model-checking/
https://doi.org/10.1016/j.jss.2013.02.061
https://www.javadoc.io/doc/eu.antidotedb/antidote-java-client/latest/index.html
https://www.javadoc.io/doc/eu.antidotedb/antidote-java-client/latest/index.html
https://www.antidotedb.eu/
https://www.antidotedb.eu/
https://jmeter.apache.org
https://doi.org/10.1109/ICST.2018.00046
https://doi.org/10.1109/QRS.2017.11
https://www.artillery.io

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

waterways”. In: Systems 6.1 (2018). 1ssn: 20798954. por: 10.3390/systems6010002
(cit. on p. 13).

P. Bailis et al. “Bolt-on causal consistency”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. 2013. por1: 10.1145/2463676.24652
79 (cit. on pp. 21, 22).

A. Basiri et al. “Chaos Engineering”. In: IEEE Software 33.3 (2016). 1ssn: 07407459.
por: 10.1109/MS.2016.60 (cit. on pp. 15-17).

B. Beizer. Software System Testing and Quality Assurance. Van Nostrand Reinhold,
March 1984 (cit. on p. 11).

H. Berenson et al. “A Critique of ANSI SQL Isolation Levels”. In: ACM SIGMOD
Record 24.2 (1995). 1ssn: N/A. por1: 10.1145/568271.223785 (cit. on p. 19).

D. Bermbach and S. Tai. “Eventual consistency: How soon is eventual? An eval-
uation of Amazon S3’s consistency behavior”. In: Proceedings of the 6th Workshop
on Middleware for Service Oriented Computing, MW4SOC 2011 - Co-located with the
ACM/IFIP/USENIX 12th International Middleware Conference, Middleware 2011. 2011.
por: 10.1145/2093185.2093186 (cit. on pp. 23, 24).

A. Bouajjani et al. “On verifying causal consistency”. In: ACM SIGPLAN Notices
52.1 (2017). 1ssN: 15232867. por: 10.1145/3009837.3009888 (cit. on p. 22).

E. A. Brewer. “Towards robust distributed systems (abstract)”. In: 2000. por:
10.1145/343477.343502 (cit. on pp. 1, 18).

Chapter 12. Designing for Non-Functional Properties. URL: https://www.oreilly.
com/library/view/software-architecture- foundations/9780470167748/chl
2.html. (accessed: 22.12.2022) (cit. on p. 11).

T. Y. Chen, H. Leung, and I. K. Mak. “Adaptive random testing”. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 3321 (2004). 1ssN: 16113349. por: 10.1007/978-3-540-305
02-6{\_}23 (cit. on p. 8).

B. Chess and G. Mcgraw. Static analysis for security. 2004. por: 10.1109/MSP. 2004
.111 (cit. on pp. 8, 9).

E. M. Clarke, E. A. Emerson, and J. Sifakis. “Model checking: Algorithmic verifica-
tion and debugging”. In: Communications of the ACM 52.11 (2009). 1ssn: 00010782.
por: 10.1145/1592761.1592781 (cit. on p. 12).

Consistency Models. uUrL: https://jepsen.io/consistency. (accessed: 01.02.2022)
(cit. on p. 29).

J. Cray. “WHY DO COMPUTERS STOP AND WHAT CAN BE DONE ABOUT IT?”
In: Proceedings - Symposium on Reliability in Distributed Software and Database Systems.
1986 (cit. on p. 2).

87


https://doi.org/10.3390/systems6010002
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1109/MS.2016.60
https://doi.org/10.1145/568271.223785
https://doi.org/10.1145/2093185.2093186
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/343477.343502
https://www.oreilly.com/library/view/software-architecture-foundations/9780470167748/ch12.html
https://www.oreilly.com/library/view/software-architecture-foundations/9780470167748/ch12.html
https://www.oreilly.com/library/view/software-architecture-foundations/9780470167748/ch12.html
https://doi.org/10.1007/978-3-540-30502-6{\_}23
https://doi.org/10.1007/978-3-540-30502-6{\_}23
https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1145/1592761.1592781
https://jepsen.io/consistency

BIBLIOGRAPHY

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

G. DeCandia et al. “Dynamo: Amazon’s highly available key-value store”. In:
SOSP’07 - Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles.
2007 (cit. on pp. 1, 17).

Eclipse Jersey. urL: https://eclipse-ee4j.github.io/jersey/. (accessed:
27.08.2022) (cit. on p. 78).

M. Ehmer and F. Khan. “A Comparative Study of White Box, Black Box and Grey
Box Testing Techniques”. In: International Journal of Advanced Computer Science and
Applications 3.6 (2012). 1ssn: 2158107X. por1: 10.14569/ijacsa.2012.030603 (cit.
onp.7).

Elle. urL: https://github.com/jepsen-io/elle. (accessed: 01.02.2022) (cit. on
p- 30).

Faker Documentation. urL: https://faker.readthedocs.io/en/master. (accessed:
07.02.2022) (cit. on p. 63).

F. Freitas et al. “Characterizing the consistency of online services (Practical expe-
rience report)”. In: Proceedings - 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2016. 2016. por: 10.1109/DSN. 2016. 64
(cit. on pp. 1, 1720, 22, 24).

Functional Testing Vs Non-Functional Testing: What's the Difference? UrL: https :
//www.guru99. com/ functional - testing-vs-non- functional - testing.html.
(accessed: 22.12.2022) (cit. on p. 11).

W. Golab et al. “Client-centric benchmarking of eventual consistency for cloud
storage systems”. In: Proceedings - International Conference on Distributed Computing
Systems. 2014. por: 10.1109/ICDCS.2014.57 (cit. on p. 26).

I. Gomes et al. “An overview on the Static Code Analysis approach in Software
Development”. In: Faculdade de Engenharia da Universidade do Porto, Portugal (2009)
(cit. on pp. 8, 9).

Gson - A Java serialization/deserialization library to convert Java Objects into [SON and
back. urL: https://github.com/google/gson. (accessed: 06.09.2022) (cit. on pp. 66,
68).

M. P. Herlihy and ]. M. Wing. “Linearizability: A Correctness Condition for Concur-
rent Objects”. In: ACM Transactions on Programming Languages and Systems (TOPLAS)
12.3 (1990). 1ssN: 15584593. por: 10.1145/78969.78972 (cit. on pp. 18, 19, 61).

Y. Izrailevsky and A. Tseitlin. “The netflix simian army”. In: The Netflix Tech Blog
(2011) (cit. on pp. 1, 27).

Jepsen. URL: https://jepsen.io/. (accessed: 01.02.2022) (cit. on pp. 2, 3, 28, 61).

Z. M. Jiang et al. “Automatic identification of load testing problems”. In: IEEE
International Conference on Software Maintenance, ICSM. 2008. por1: 10.1109/ICSM.2
008.4658079 (cit. on p. 11).

88


https://eclipse-ee4j.github.io/jersey/
https://doi.org/10.14569/ijacsa.2012.030603
https://github.com/jepsen-io/elle
https://faker.readthedocs.io/en/master
https://doi.org/10.1109/DSN.2016.64
https://www.guru99.com/functional-testing-vs-non-functional-testing.html
https://www.guru99.com/functional-testing-vs-non-functional-testing.html
https://doi.org/10.1109/ICDCS.2014.57
https://github.com/google/gson
https://doi.org/10.1145/78969.78972
https://jepsen.io/
https://doi.org/10.1109/ICSM.2008.4658079
https://doi.org/10.1109/ICSM.2008.4658079

BIBLIOGRAPHY

[38] M.E.Khan. “Different approaches to white box testing technique for finding errors”.
In: International Journal of Software Engineering and its Applications 5.3 (2011). 1ssN:
17389984. por: 10.5121/ijsea.2011.2404 (cit. on p. 7).

[39] K. Kingsbury and P. Alvaro. “Elle: Inferring isolation anomalies from experimental
observations”. In: Proceedings of the VLDB Endowment 14.3 (2020). 1ssn: 21508097.
por: 10.14778/3430915.3430918 (cit. on p- 29).

[40] Knossos. urL: https://github.com/jepsen-io/knossos. (accessed: 01.02.2022)
(cit. on pp. 2, 29, 64).

[41] L.Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”.
In: Communications of the ACM 21.7 (1978). 1ssN: 15577317. por: 10.1145/359545.3
59563 (cit. on p. 21).

[42] Linearizability versus Serializability. urL: http://www.bailis.org/blog/linearizability-
versus-serializability. (accessed: 20.01.2022) (cit. on p. 19).

[43] W. Lloyd et al. “Don’t settle for eventual”. In: Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles - SOSP ‘11. New York, New York, USA:
ACM Press, 2011, p. 401. 1sBN: 9781450309776. por: 10.1145/2043556.2043593.
URL: http://dl.acm.org/citation.cfm?doid=2043556.2043593 (cit. on pp. 3,
47).

[44] Logical clocks - Causality and concurrency. urL: https://people.cs.rutgers.edu/
~pxk/417/notes/logical-clocks.html. (accessed: 25.08.2022) (cit. on pp. 3, 42).

[45] J. M. Lourengo. The NOVAthesis ETgX Template User’s Manual. NOVA University
Lisbon. 2021. urL: https://github. com/joaomlourenco/novathesis/raw/
master/template.pdf (cit. on p. ii).

[46] H. Lu et al. “Existential consistency: Measuring and understanding consistency at
Facebook”. In: SOSP 2015 - Proceedings of the 25th ACM Symposium on Operating
Systems Principles. 2015. por: 10.1145/2815400.2815426 (cit. on pp. 18, 21, 25).

[47] P.Mahajan, L. Alvisi, and M. Dahlin. “Consistency, availability, and convergence”.
In: University of Texas at Austin TR-11-22 (May) TR-11-22 (2011) (cit. on pp. 2, 21).

[48] A.Martin-Lopez et al. “Black-Box and White-Box Test Case Generation for RESTful
APIs: Enemies or Allies?” In: 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE). IEEE. 2021, pp. 231-241 (cit. on p. 27).

[49] F. Mattern. “Virtual Time and Global States of Distributed Systems”. In: Event
London pages (1989). 1ssn: 10980121 (cit. on p. 42).

[50] C.McCaffrey. “The verification of a distributed system”. In: Communications of the
ACM 59.2 (2016). 1ssN: 15577317. por: 10.1145/2844108 (cit. on pp. 10, 12-15).

[51] Monitoring Observability in Distributed Systems. URL: https://www.linkedin.com/
pulse/monitoring-observability-distributed-systems-hossein-samarrokhi.
(accessed: 16.12.2021) (cit. on p. 13).

89


https://doi.org/10.5121/ijsea.2011.2404
https://doi.org/10.14778/3430915.3430918
https://github.com/jepsen-io/knossos
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
http://www.bailis.org/blog/linearizability-versus-serializability
http://www.bailis.org/blog/linearizability-versus-serializability
https://doi.org/10.1145/2043556.2043593
http://dl.acm.org/citation.cfm?doid=2043556.2043593
https://people.cs.rutgers.edu/~pxk/417/notes/logical-clocks.html
https://people.cs.rutgers.edu/~pxk/417/notes/logical-clocks.html
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://doi.org/10.1145/2815400.2815426
https://doi.org/10.1145/2844108
https://www.linkedin.com/pulse/monitoring-observability-distributed-systems-hossein-samarrokhi
https://www.linkedin.com/pulse/monitoring-observability-distributed-systems-hossein-samarrokhi

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

S. Nidhra. “Black Box and White Box Testing Techniques - A Literature Review”.
In: International Journal of Embedded Systems and Applications 2.2 (2012). por: 10.512
1/ijesa.2012.2204 (cit. on pp. 6, 7, 10).

Practice Jepsen Test Framework in Nebula Graph. urL: https://nebula- graph.
io/posts/practice- jepsen- test - framework - in-nebula- graph. (accessed:
01.02.2022) (cit. on p. 29).

Principles of chaos engineering. urL: https://principlesofchaos.org. (accessed:
12.01.2022) (cit. on pp. 15,17).

A. Ribeiro. “Invariant-Driven Automated Testing”. MA thesis. Universidade Nova
de Lisboa, 2021 (cit. on p. 63).

C. Rosenthal and N. Jones. Chaos Engineering: System Resiliency in Practice. O'Reilly
Media, 2020. Chap. 3 (cit. on p. 15).

Serializability. urL: https://jepsen.io/consistency/models/serializable.
(accessed: 20.01.2022) (cit. on p. 19).

S. Simdes. “JepREST: Sistema para teste funcional de aplicagdes REST distribuidas”.
MA thesis. Universidade Nova de Lisboa, 2021 (cit. on pp. 3, 4, 35, 61).

Strict Serializability. urL: https://jepsen.io/consistency/models/strict-
serializable. (accessed: 20.01.2022) (cit. on p. 19).

Y. Tang et al. “CausalTester: Measuring the Consistency of Replicated Services
via Causality Semantics”. In: 2021 IEEE 30th Asian Test Symposium (ATS). 2021,
pp- 49-54. por: 10.1109/ATS52891.2021.00021 (cit. on p. 24).

D. B. Terry et al. “Session guarantees for weakly consistent replicated data”. In:
Parallel and Distributed Information Systems - Proceedings of the International Conference.
1994. por1: 10.1109/pdis.1994.331722 (cit. on pp. 1, 18, 20, 21).

P. Viotti and M. Vukoli¢. “Consistency in non-transactional distributed storage
systems”. In: ACM Computing Surveys 49.1 (2016). 1ssn: 15577341. por: 10.1145/2
926965 (cit. on p. 18).

K. Vorobyov and P. Krishna. “177 Comparing Model Checking and Static Program
Analysis: A Case Study in Error Detection Approaches”. In: Proc. SSV (2010) (cit. on
p-12).

What is CRUD? uryL: https://www.codecademy.com/article/what-1is- crud.
(accessed: 29.12.2022) (cit. on p. 2).

R. Zennou et al. “Checking causal consistency of distributed databases”. In:
Computing (2021). 1ssN: 14365057. por1: 10.1007/s00607-021-00911-3 (cit. on
p- 22).

90


https://doi.org/10.5121/ijesa.2012.2204
https://doi.org/10.5121/ijesa.2012.2204
https://nebula-graph.io/posts/practice-jepsen-test-framework-in-nebula-graph
https://nebula-graph.io/posts/practice-jepsen-test-framework-in-nebula-graph
https://principlesofchaos.org
https://jepsen.io/consistency/models/serializable
https://jepsen.io/consistency/models/strict-serializable
https://jepsen.io/consistency/models/strict-serializable
https://doi.org/10.1109/ATS52891.2021.00021
https://doi.org/10.1109/pdis.1994.331722
https://doi.org/10.1145/2926965
https://doi.org/10.1145/2926965
https://www.codecademy.com/article/what-is-crud
https://doi.org/10.1007/s00607-021-00911-3
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf




VA

‘N

san3lupoy 03nH

SW)SAG |NJISY Ul UOIEIYIISA ADUD3SISUOD) |Besne))

€a0e



	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings

	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Problem
	1.4 Proposed Solution
	1.5 Contributions
	1.6 Document Structure

	2 Related Work
	2.1 Verification of Correctness
	2.1.1 Knowledge of the Application
	2.1.2 Application Running
	2.1.3 Properties of the Application to Analyse

	2.2 Verification Techniques
	2.2.1 Model Checking
	2.2.2 Composition
	2.2.3 Monitoring
	2.2.4 Canaries
	2.2.5 Fault-injection
	2.2.6 Chaos Engineering

	2.3 Consistency Models
	2.3.1 Strong vs Weak
	2.3.2 Linearizability
	2.3.3 Serializability
	2.3.4 Session Guarantees
	2.3.5 Causal Consistency
	2.3.6 Eventual Consistency

	2.4 Verification of Consistency
	2.4.1 Verifying Causal Consistency
	2.4.2 Verifying Session Guarantees
	2.4.3 Causality Semantics
	2.4.4 Principled and Practical Consistency Analysis

	2.5 Tools
	2.5.1 Load Testing Tools
	2.5.2 EvoMaster
	2.5.3 Netflix Simian Army
	2.5.4 Jepsen

	2.6 Conclusion

	3 Solution Design
	3.1 Causality Violations Overview
	3.1.1 Simple Database Operations
	3.1.2 REST Operations

	3.2 Processing an History of Operations
	3.2.1 Explicit Read operations
	3.2.2 Write and Implicit Read operations

	3.3 Algorithm
	3.3.1 Vector Clocks
	3.3.2 Clients' data knowledge
	3.3.3 Dependencies and Merge Process
	3.3.4 Trace and Backtracking
	3.3.5 Additional Write Vector Clock
	3.3.6 Pending Writes
	3.3.7 Pseudocode
	3.3.8 Limitations


	4 Implementation
	4.1 JepREST
	4.1.1 Application's API and Semantics Specification
	4.1.2 Workloads Specification
	4.1.3 Workloads Execution
	4.1.4 Execution Results Assessment

	4.2 Algorithm
	4.2.1 From Jepsen History to JSON History
	4.2.2 From Raw Operations to Processed Operations
	4.2.3 Global State
	4.2.4 Clients


	5 Experiments and Results
	5.1 Custom Histories of Operations
	5.1.1 Read Your Writes
	5.1.2 Monotonic Writes
	5.1.3 Monotonic Reads
	5.1.4 Writes Follow Reads
	5.1.5 Multiple Branches Exploration
	5.1.6 Pending Writes

	5.2 Real RESTful Application
	5.2.1 Inserting Violations Inside Generated Histories

	5.3 Scalability

	6 Conclusion
	6.1 Final Considerations
	6.2 Future Work

	Bibliography
	Back Matter
	Back Cover
	Spine


