
DEPARTMENT OF
COMPUTER SCIENCE

JOSÉ MIGUEL GONÇALVES DUARTE

Bachelor in Computer Science

RETROFITTING TYPESTATES INTO RUST

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
July, 2021

DEPARTMENT OF
COMPUTER SCIENCE

RETROFITTING TYPESTATES INTO RUST

JOSÉ MIGUEL GONÇALVES DUARTE

Bachelor in Computer Science

Adviser: António Ravara
Associate Professor, NOVA University Lisbon

Examination Committee:

Chair: Henrique João Lopes Domingos
Associate Professor, NOVA University Lisbon

Rapporteur: Rumyana Neykova
Lecturer, Brunel University London

Adviser: António Ravara
Associate Professor, NOVA University Lisbon

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
July, 2021

Retrofitting Typestates into Rust

Copyright © José Miguel Gonçalves Duarte, NOVA School of Science and Technology,

NOVA University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

To my grandparents, Amélia, Olga and José.

Acknowledgements

This work is partially supported by NOVA LINCS (UIDB/04516/2020) with the financial

support of FCT.IP.

The present work is the culmination of several years of effort. As one does not live in

a bubble, several people have provided their help and support and I want to thank them.

I thank the NOVA organization and everyone that directly or indirectly contributed

to my education.

I thank everyone that helped me revise my academic work, or has contributed with

improvements to this thesis; to that end I thank Antoine Martin, Bernardo Toninho,

Daniel Henry-Mantilla, João Mota, Katherine Flavel, Mathias Jakobsen, Ornela Dardha,

Philip Munksgaard, Sabrina Jewson, Simon Fowler and Wen Kokke.

I would like to thank my advisor, António Ravara, I could not have asked for someone

better to guide me through the thesis, being always available to provide any necessary

assistance I required; this thesis would have not been possible without him.

I thank my parents Cristina and José, my brother Pedro and my grandparents Amélia,

Olga and José, for their unconditional support.

Along with my family, I must thank my friends which have also supported me through

thick and thin, despite all the obstacles that our friendship has faced. My friends André

Rodrigues, Diogo Pereira, João Antão, João Teixeira, Li Zixiang, Pedro Feiteira and Tiago

Ventura, which have been there since the first days and provided me with great memories

both inside and outside college. My friends Adriano Batista, Bruno Anjos, Diogo Cebola,

Gonçalo Lopes, João Carvalho, Marco Monteiro, Miguel Carrega and Ricardo Leitão,

which I made along the way and have helped me throughout college both posing questions

and solving many of mine. Last, but not least, all the friends I met outside of college

which have played an equally important role in my life, staying by my side and not

letting anything get in the way of our friendship, Catarina Guerreiro, Génesis Conceição,

Joana Godinho, Jorge Catarino, Margarida Gama, Miguel Braz and Tomás Alagoa.

I am proud to carry with me all the memories and lessons learned from each one of

you; I would not be the person I am today without you, and I will be forever in debt

with you.

v

“... my motto was to know that the most powerful force is to be
interested in something. (...) whatever it is, if you are

interested enough to study and deepen it, then you are not in
danger. If you stick to something (...) that is bigger than

yourself, you are not in danger. The terrible thing is when
people cling to nothing, to the void.” — George Steiner

Abstract

As software becomes more prevalent in our lives, bugs are able to cause significant dis-

ruption. Thus, preventing them becomes a priority when trying to develop dependable

systems. While reducing their occurrence possibility to zero is infeasible, existing ap-

proaches are able to eliminate certain subsets of bugs.

Rust is a systems programming language that addresses memory-related bugs by

design, eliminating bugs like use-after-free. To achieve this, Rust leverages the type system

along with information about object lifetimes, allowing the compiler to keep track of

objects throughout the program and checking for memory misusage. While preventing

memory-related bugs goes a long way in software security, other categories of bugs remain

in Rust. One of which would be Application Programming Interface (API) misusage,

where the developer does not respect constraints put in place by an API, thus resulting

in the program crashing.

Typestates elevate state to the type level, allowing for the enforcement of API con-

straints at compile-time, relieving the developer from the burden that is keeping track

of the possible computation states at runtime, and preventing possible API misusage

during development. While Rust does not support typestates by design, the type system

is powerful enough to express and validate typestates.

I propose a new macro-based approach to deal with typestates in Rust; this approach

provides an embedded Domain-Specific Language (DSL) which allows developers to

express typestates using only existing Rust syntax. Furthermore, Rust’s macro system is

leveraged to extract a state machine out of the typestate specification and then perform

compile-time checks over the specification. Afterwards we leverage Rust’s type system to

check protocol-compliance. The DSL avoids workflow-bloat by requiring nothing but a

Rust compiler and the library itself.

Keywords: Behavioral types, typestates, meta-programming, macros, Rust

vii

Resumo

À medida que as nossas vidas estão cada vez mais dependentes de software, os erros do

mesmo têm o potencial de causar problemas significativos. Prevenir estes erros torna-se

uma tarefa prioritária durante o desenvolvimento de sistemas confiáveis. Erradicar erros

por completo é impossível, mas é possível eliminar certos conjuntos.

Rust é uma linguagem de programação de sistemas que, por desenho, endereça erros

de gestão de memória. Para o conseguir, a linguagem inclui no sistema de tipos informa-

ção sobre o tempo de vida dos objetos, permitindo assim que o compilador conheça a

utilização dos mesmos e detecte erros de utilização de memória. Apesar da prevenção

de erros de memória ter um papel importante na segurança de software, existem ainda

outras categorias de erros em Rust, como o uso incorrecto de interfaces de programação,

em que o programador não respeita as restrições impostas pela mesma, o que resulta

numa falha do programa.

Typestates elevam o conceito de estado para o sistema de tipos, permitindo a aplicação

das restrições da interface durante a fase de compilação. Este conceito permite assim

aliviar o programador da responsabilidade que é conceptualizar e manter o estado do

programa em mente durante o desenvolvimento, prevenindo o mau uso das interfaces.

Apesar de Rust não suportar typestates de uma forma natural, o sistema de tipos permite

expressar e validar typestates.
Proponho uma nova abordagem de modo a lidar com typestates em Rust, tal abor-

dagem é baseada numa DSL embebida na linguagem, permitindo assim a descrição de

typestates usando apenas a sintaxe existente. A DSL vai mais além e providencia ainda

verificações estáticas sobre a especificação, tirando proveito do sistema de macros, extrai

uma máquina de estados que é depois verificada, por fim, a verificação de conformidade

é feita pelo compilador, tirando proveito do sistema de tipos. A DSL evita poluição do

ambiente trabalho, requerendo apenas um compilador de Rust e a sua própria biblioteca.

Palavras-chave: Tipos comportamentais, typestates, meta-programação, macros, Rust

viii

Contents

List of Figures xii

List of Tables xiv

List of Listings xv

1 Introduction 1

1.1 Context . 1

1.2 Problem . 2

1.2.1 The Billion-Dollar Mistake . 2

1.2.2 API Misuse . 3

1.3 State of the Art . 4

1.4 Contributions . 5

1.5 Outline . 6

2 Background 7

2.1 Systems Programming Languages . 7

2.1.1 C . 7

2.1.2 C++ . 8

2.1.3 Ada . 9

2.1.4 Go . 9

2.1.5 Summary . 10

2.2 The Rust Language . 10

2.2.1 What makes Rust different? . 10

2.2.2 Ownership . 11

2.2.3 Borrowing . 11

2.2.4 Concurrency . 13

2.2.5 Why Rust instead of Language X? 14

2.3 Behavioral Types . 14

2.3.1 Session Types . 15

ix

CONTENTS

2.3.2 Typestates . 17

3 Related Work 23

3.1 Language Preprocessors . 23

3.1.1 OCaml . 23

3.1.2 Java . 25

3.1.3 Kotlin . 28

3.2 Rust Macros . 29

3.2.1 Declarative Macros . 30

3.2.2 Procedural Macros . 32

3.2.3 Summary . 34

3.3 Approaches to Behavioral Types . 34

3.3.1 Session Types . 35

3.3.2 Typestate . 36

3.3.3 Summary . 38

4 The #[typestate] macro 39

4.1 Typestates: The Hard Way . 39

4.1.1 Future Proofing . 44

4.2 Typestates: The DSL . 44

4.2.1 Syntax & Automaton Extraction 45

4.2.2 Architecture . 50

4.2.3 Advanced Features . 51

4.3 Validation . 55

4.3.1 The Automaton and the Graph 55

4.3.2 Implementing a validation strategy 56

4.4 Visualizing Typestates . 57

4.4.1 Debugging with Visualizations 57

4.4.2 Embedding Visualizations in the Documentation 58

4.5 Summary . 61

5 Case Studies 64

5.1 Ring . 64

5.1.1 Comparison . 65

5.1.2 Summary . 67

5.2 PIN . 67

5.3 Auction Client . 72

5.4 Summary . 74

6 Conclusions & Future Work 79

6.1 Summary . 79

6.2 Future Work . 80

x

CONTENTS

Bibliography 81

xi

List of Figures

2.1 Communication protocol example. The communication establishment step

is omitted for simplicity. In this protocol the client tries to login to a service

by sending a message LOGIN followed by the username and password, both of

type String. The server then replies with either an ACCEPTED or REJECTED, if

the login was successful or not, respectively. 15

2.2 Session type example . 17

2.3 The Scanner typestate automata. 17

3.1 Java’s annotation processor lifecycle. 26

3.2 java.lang.annotation class diagram. 26

3.3 Kotlin compiler plugin architecture stack. 29

3.4 Rust macro’s family tree . 29

4.1 Vending machine automaton. 40

4.2 From DSL specification to Rust code. First the DSL is parsed, an interme-

diate graph representing the automaton in more general terms is extracted

from the AST, from the graph the macro will convert the user can generate

visualizations (for debugging or documentation), this step is optional. . . 50

4.3 The #[typestate] macro visitors, by running order. 51

4.4 The vending machine’s DOT typestate, rendered using the command — dot

-Tsvg VendingMachine.dot. 59

4.5 The vending machine’s PlantUML typestate, rendered using the command —

plantuml -tsvg VendingMachine.uml. 60

4.6 The vending machine API documentation page. Result of Listing 4.32 when

rendered using cargo doc. 62

4.7 The original configuration, the macro depends only on typestate-deps and

does not export any dependency. 62

4.8 The naive attempt, the macro depends on typestate-deps and aquamarine, but

it only tries to export aquamarine, this fails because typestate is a procedural

macro crate. 62

xii

LIST OF FIGURES

4.9 The macro was isolated in its own crate — typestate-proc-macro, which de-

pends on typestate-deps; the typestate crate now depends and exports both

aquamarine and typestate-proc-macro. 63

5.1 The ring example visualization. 64

5.2 The ring participants’ typestates. 71

5.3 The Reader and Card typestates, the green arrows indicate the dependency

relationship between states. 72

5.4 The auction client’s typestate. 77

xiii

List of Tables

3.1 Rust macros properties summary. 34

4.1 Overview of the DSL’s annotations. 49

4.2 Overview of the transition inference rules. 50

4.3 All configuration parameters for the DOT and PlantUML visualization fea-

tures. 59

xiv

List of Listings

1.1 A null reference in Java. 2

1.2 Java’s Scanner misuse example. 3

1.3 Typestated Scanner example. 4

2.1 Example of the move-by-default mechanism to enforce ownership. 11

2.2 Example using borrowing to allow for more than one reader on the same

variable. 12

2.3 Example error while using multiple mutable borrows over the same variable. 13

2.4 Example error while using a mutable borrow in conjunction with immutable

ones. 13

2.5 Application login example, modelled using Rust’s enums. 16

2.6 The Read Java program, which reads two lines from stdin. 19

2.7 The Read program, written in a Java-like typestated fashion. 19

2.8 The File declaration and usage in Plaid. 20

2.9 Obsidian state declaration example. 21

2.10 Correct state usage example in Obsidian. 21

2.11 Invalid state transition example in Obsidian. 21

2.12 Rust example of an unchecked protocol compliance failure. 21

3.1 Example of the three kinds of attributes. 24

3.2 Example code for Java’s annotation declaration. 25

3.3 ExtendJ @any annotation example. 28

3.4 Example macro_rules! usage. 31

3.5 Definition of the using_a macro and usage. 31

3.6 Listing 3.5 line 9’s macro expansion. 31

3.7 The expansion in Listing 3.6 will result in an error during compile-time since

the as in line 2 and 3 are considered to belong to different contexts. 31

3.8 HTML DSL embedded in Rust. 32

3.9 Example usage of #[derive(...)]. 33

3.10 Example usage of a derive macro with helper attributes. 33

xv

LIST OF LISTINGS

3.11 Attribute macros are commonly used in web frameworks to provide an easy

way to declare an endpoint. 34

3.12 Relating a class’s states with the innerSocket states. 37

3.13 Mungo’s Typestate annotation. 38

4.1 The vending machine main struct. 41

4.2 The vending machine’s states, as illustrated in Figure 4.1. 41

4.3 The vending machine’s Waiting implementation. 42

4.4 The implementation of insert_money for the machine’s Waiting state. . . . 42

4.5 Vending machine’s decision node as a Rust enum. 42

4.6 The pick_slot implementation for the vending machine during the HasMoney

state. 43

4.7 Matching CheckFinish in two different ways; lines 2-4 — using a while loop,

lines 5-9 — using common match. 43

4.8 Calling the finish function in the Waiting state. 44

4.9 The error resulting from Listing 4.8. 44

4.10 The implementation of the sealed trait pattern for our vending machine au-

tomaton. 45

4.11 The main elements for the #[typestate] DSL. 46

4.12 The vending machine’s API module, annotated with the #[typestate] macro. 46

4.13 The error issued by the code in Listing 4.12. 46

4.14 Listing 4.12; with an automaton declaration. 46

4.15 Code resulting from Listing 4.14 expansion. 47

4.16 Listing 4.14; with all states declared. 47

4.17 Expansion of the NeedMoney state, declared in Listing 4.16. 48

4.18 The error issued by the code in Listing 4.12. 48

4.19 Declaration of the Waiting state functions. 49

4.20 Fallible operations can be described using enumerations. 52

4.21 Listing 4.20 enumeration with the metadata attribute. 52

4.22 The NeedMoney, extended with the get_message and update_pick functions. 53

4.23 The implementation of NeedMoney’s new functions. 53

4.24 Using the enumerate macro attribute. 54

4.25 The resulting enumeration of the enumerate attribute. 54

4.26 Using the state_constructors macro attribute. 54

4.27 The generated constructor for the NeedMoney state. 54

4.28 Implementation of the From trait for the conversion between IntermediateGraph

and GenericAutomaton. 55

4.29 The Validate trait is generic over the property being validated, but not its

output, hence the Out type being declared as an associated type. 56

4.30 Implementation example of a validation strategy. 57

4.31 Implementation example of the Export trait for the Mermaid format. 58

xvi

LIST OF LISTINGS

4.32 Doc comments resulting for the expansion of the vending machine example

(Figure 4.1). 61

5.1 Rumpsteak’s Ring implementation. 66

5.2 Rumpsteak’s Ring main function. 67

5.3 #[typestate]’s implementation of participant A. 68

5.4 #[typestate]’s implementation of participant B. 69

5.5 The main implementing for #[typestate]’s ring. 70

5.6 macro_rules! to abstract over the thread launching routing for RingB. . . . 70

5.7 The main implementing for #[typestate]’s ring using Listing 5.6. 71

5.8 The Reader typestate specification. 73

5.9 The Card typestate specification. 74

5.10 The auction non-typestated API. 75

5.11 The auction client’s typestate declaration. 76

xvii

1

Introduction

1.1 Context

Bugs permeate our lives as users — whether in an instant messaging application or a

game, they are present. Luckily, since most of these applications are not critical, their

impact is minimal, resulting, at worst, in some unsent messages or texture glitches.

In systems programming, one of the most demanding domains in computer science,

bugs and their respective consequences come at a high cost to both service providers and

consumers. There are reports from several industries where bugs lead to huge monetary

losses and in extreme cases, death. In 2014, the Heartbleed1 bug, caused due to a miss-

ing bound check, compromised the security of any OpenSSL user, enabling the theft of

critical information (e.g. cryptographic keys). In 2018, a bug in Coinbase (a popular

cryptocurrency exchange) allowed for account balance manipulation2. In 2019 and 2020,

after several crashes3, the Boeing 737 Max was grounded to fix existing problems. While

grounded, more software-related issues were found4,5, delaying re-certification. In 2020,

as the number of COVID-19 cases grew, contact tracing apps were deployed as a mitiga-

tion strategy — due to a bug the UK’s National Health Service app failed to ask users to

self-isolate6.

The previous examples are not isolated incidents. The language and nature of the

bugs are different for each case, but to put it simply, there is no silver bullet and the next

best alternative is to try and mitigate them — building tools and abstractions which allow

developers to increase their code’s safety.

1https://heartbleed.com/ (visited in 14/01/2021)
2https://hackerone.com/reports/300748 (visited in 08/06/2021)
3https://tinyurl.com/DCampbell2020 (visited in 08/06/2021)
4https://tinyurl.com/Okane2019 (visited in 06/08/2021)
5https://tinyurl.com/Okane2020 (visited in 08/06/2021)
6https://tinyurl.com/Mageit2020 (visited in 08/06/2021)

1

https://heartbleed.com/
https://hackerone.com/reports/300748
https://tinyurl.com/DCampbell2020
https://tinyurl.com/Okane2019
https://tinyurl.com/Okane2020
https://tinyurl.com/Mageit2020

CHAPTER 1. INTRODUCTION

1 class Main {
2 public static void main(String... args) {
3 Integer a = null;
4 a + 5; // NullPointerException: `a` is `null'
5 }
6 }

Listing 1.1: A null reference in Java.

1.2 Problem

Languages like C/C++ have dominated the systems programming landscape for years

and one of the main problems with both is the lack of memory management. Leaving

such responsibility to the developer has proven to be a less than ideal solution. Memory

management is responsible for 70% of the bugs found in projects like Chromium7 and

Microsoft products8.

To address such problem, several tools and languages have been and continue to be

developed — so far, Rust has been the only one to achieve mainstream status. Rust aims

to provide memory safety without affecting performance or productivity. To achieve

such ambitious goal, Rust validates code with the borrow checker, which then enforces

memory safety rules, targeting the problem at the root.

Addressing memory safety is not enough though. Languages which side-step the

problem of having manual management through the use of a garbage collector (e.g. Java

and Go) still suffer from other kinds of bugs. As discussed in the end of Section 1.1, we can

only mitigate their occurrence, hence we are required to reach out to new mechanisms.

Typestates are an approach to behavioral types which aims to tame stateful compu-

tations; to do so typestates lift the concept of state to the type level, this enables the

compiler to reason about state and provides the developer with information of the ex-

pected computation state at runtime.

1.2.1 The Billion-Dollar Mistake

... This led me to suggest that the null value is a member of every type, and a null
check is required on every use of that reference variable, and it may be perhaps a
billion-dollar mistake. — Tony Hoare9

Consider Listing 1.1; the program compiles but it will crash with a NullPointerException

on line 4. While anyone can see the explicit null attribution the compiler does not is-

sue an error or warning. The original author of the null, Tony Hoare, considers this to

be his “billion-dollar mistake”. Since in complex codebases, this error is hard to track

7https://www.chromium.org/Home/chromium-security/memory-safety (visited in 08/06/2021)
8https://git.io/JLdDc (visited in 08/06/2021)
9https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

(visited in 01/07/2021)

2

https://www.chromium.org/Home/chromium-security/memory-safety
https://git.io/JLdDc
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

1.2. PROBLEM

1 class ScannerMisuse {
2 public static void main(String... args) {
3 Scanner s = new Scanner(System.in); // Open the `Scanner`.
4 s.nextLine(); // Read.
5 s.close(); // Close the `Scanner`.
6 s.nextLine(); // Throws an `IllegalStateException`.
7 }
8 }

Listing 1.2: Java’s Scanner misuse example.

down among all possible states and has supposedly caused more than a billion dollars in

damages.

While in Java it manifests as an exception, in C/C++ tracking them down is usually

more complicated as the only feedback the user receives is the infamous SEGFAULT. Again,

after so many years of programming, developers ought to have better tools, as debugging

errors like these is neither an effective time use nor pleasant.

1.2.2 API Misuse

Consider Java’s Scanner, the API allows the developer to write code like Listing 1.2. Such

code will compile without issuing any errors or warnings (even with the -Xlint:all flag),

however, it will also crash during runtime. Since it is not possible to read from a closed

source, the thrown exception is an IllegalStateException, informing the user that the

attempted operation is illegal for the current object state. Ideally we want such illegal

states to be detected at compile-time.

An example of a similar bug would be Jedis’ issue #174710; while reading a reply

from the server, a client would get a SocketTimeoutException11, the exception then

calls jedis.close(), however, processing of the underlying would (wrongly) keep go-

ing, in some cases, the processing procedure could then heap-allocate a very large or

negative-space array, thus causing the Java Virtual Machine (JVM) to crash with an

OutOfMemoryException12.

As shown in Listing 1.3, using a typestated Java example, the code allows us to trace

the state of the object, but even better, the compiler is now able to tell us there is an error

during compilation. This approach also solves Listing 1.1, as the type is required to be

explicitly nullable. The remaining question is:

How can we avoid API misusages without creating a new full-fledged programming
language?

10https://github.com/redis/jedis/issues/1747 (visited in 14/07/2021)
11https://docs.oracle.com/javase/8/docs/api/java/net/SocketTimeoutException.html

(visited in 14/07/2021)
12https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/memleaks002.html

(visited in 14/07/2021)

3

https://github.com/redis/jedis/issues/1747
https://docs.oracle.com/javase/8/docs/api/java/net/SocketTimeoutException.html
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/memleaks002.html

CHAPTER 1. INTRODUCTION

1 class TypestatedScanner {
2 public static void main(String... args) {
3 Scanner[Open] s = new Scanner(System.in); // open the stream
4 s.nextLine(); // read
5 Scanner[Closed] s = s.close(); // close the stream
6 s.nextLine(); // compile-time error
7 }
8 }

Listing 1.3: Typestated Scanner example. Notice how the compiler is able to detect
the error.

1.3 State of the Art

Behavioral types are types which capture aspects of computation, they are further dis-

cussed in Section 2.3. The current landscape of behavioral types in mainstream languages

is bare. While projects exist, most are academic and of little impact in the way program-

mers write their code. In this document I focus on two approaches to behavioral types —

session types and typestates.

Session types will often refer to endpoints and their messages, capturing aspects of

communication between them [14]. Languages like ATS provide session type features

and further enable the generation of source code in other languages such as Erlang [41].

ATS also serves as research playground for other topics related with session types [40].

There are also tools that plug into existing languages; these may come under the form of

libraries such as session types for Haskell [2, Section 3.3], [12, Chapter 10] and OCaml

[12, Chapter 11] extending the language to provide session types through existing mech-

anisms. In OCaml’s case, this is done without reaching for external tools or language

extensions, relying purely on the existing type system. However, existing session types

research is not only based on functional languages. Session C [2, Section 4.1] makes use

of Scribble [42] to capture an algorithm’s communication pattern, the tool then generates

the required endpoints that guide the design and implementation of the program. Java

has been the target several other research efforts, for example SessionJ [2, Section 2.2.1],

[16], a Java extension which is an implementation of Moose [2, Section 2.1.1]. Another

session type enabling project is Mungo & StMungo [21, 39], also targeting Java. They

define specification languages which check that the code complies with the required prop-

erties. StMungo converts Scribble protocols to Java classes with typestates which are then

checked by Mungo, this enables developers to write effectively session-typed Java. By

itself, Mungo is a typechecker with support for typestates.

Typestates capture the state of the program, allowing the developer to express the state

of objects during runtime, at compile-time [30, 31]. I discuss typestates further in Sec-

tion 2.3.2. Fugue [8] is a protocol checker that achieves similar functionality to typestates.

The tool provides a series of annotations to be used in code which are then processed into

4

1.4. CONTRIBUTIONS

protocols to be checked by Fugue. Using the tool, the authors found several errors which

would inhibit application scaling in a Microsoft internal project. Languages like Plaid

[1] and Obsidian [5, 6] put typestates to use, trying to bridge the gap between academia

and industrial usage. Plaid is an object-oriented language with first class support for

typestates, it is considered to be a “done work” and the authors have moved on to other

projects13. Obsidian is a relatively new language which targets the Hyperledger Fabric

blockchain, in the development phase. The language aims to make writing smart con-

tracts simpler and less error-prone through the addition of linear types and typestate

mechanisms to the language. Coblenz et al. [5] put the effectiveness of the approach to

test, achieving positive results when compared with the Solidity programming language.

The state_machine_future crate14, provides typestated futures in Rust as well as

some state machine related guarantees, such as every state being reachable from the

start, there are no states unable to reach the final state and that all state transitions

are valid. Furthermore, these guarantees are provided at compile-time — for example,

invalid state transitions will fail to compile. The crate, however, revolves around futures,

requiring an asynchronous runtime and thus making it unsuitable for other kinds of

applications. Other crates exist, they focus on finite state machines but are unable to

provide static guarantees.

Like other mainstream programming languages, Rust does not have first class support

for session types. Implementations are rare and rooted in the meta-programming system.

The work done by [18] introduces bidirectional session types to Rust, since then, this

line of work has been expanded by [22], extending it to multiparty session types. While

Rust dropped typestate support during early development (Rust 0.4), that does not mean

Rust is not able to provide them. The type system is able to emulate typestates with

efficiency, the approach however comes at the cost of verbosity. Regardless of the verbosity

typestates are used by the embedded systems development sphere of the Rust community.

1.4 Contributions

In this thesis I present a DSL which enables developers to easily declare typestates in

their Rust code. Its major features are:

Static guarantees. Alongside the guarantees provided by the type system, our macro

leverages the DSL to build an automata model which is then checked for state

usefulness.

Ease of use. The DSL leverages Rust existing syntax rather than expand it. The usage of

macros allows the DSL to tweak the semantics of some language constructs, making

them more flexible for our purposes.

13https://www.cs.cmu.edu/~aldrich/plaid/ (visited in 14/07/2021)
14https://github.com/fitzgen/state_machine_future (visited in 08/06/2021)

5

https://www.cs.cmu.edu/~aldrich/plaid/
https://github.com/fitzgen/state_machine_future

CHAPTER 1. INTRODUCTION

Ease of use (Part II). The DSL does not require any extra tools, declaring the macro as a

dependency is the only required step for the user to start using the DSL.

Enhanced documentation. The DSL is able to render visualizations of the typestates’

automata, these can either be exported or embedded into the final client’s API

documentation.

Published paper. The work presented on this thesis is summed up in the paper Retrofitting
Typestates into Rust, submitted to SBLP’21 [9].

To start using the DSL the user can simply add the following line to the Cargo.toml file.

typestate = "0.9.0-rc2"

1.5 Outline

This document is organized as follows:

Chapter 2 provides a review over existing systems programming languages (Section 2.1),

the Rust programming language (Section 2.2) and behavioral types (Section 2.3).

Chapter 3 describes existing work regarding language preprocessing (Section 3.1), Rust

macros (Section 3.2) and existing approaches to behavioral types (Section 3.3).

Chapter 4 presents the core of the developed work: the #[typestate] macro. It pro-

vides an introduction to typestates in Rust (Section 4.1), a discussion over its DSL

(Section 4.2) along with insights into the validation (Section 4.3) and visualization

processes (Section 4.4).

Chapter 5 presents a three different case studies, developed using the #[typestate]

macro. Each case highlights a different capability of the macro.

Chapter 6 presents a summary and discusses future work.

6

2

Background

In this chapter I briefly discuss the current panorama regarding systems programming

languages and their presence in the ecosystem, justify why Rust was the language of

choice for the current work and provide a general presentation of session types and

typestates. A detailed discussion w.r.t. the latter and its relation with the present work is

done in Chapter 3.

2.1 Systems Programming Languages

The definition of the term systems programming language is not agreed upon, being some-

what flexible and ever-changing due to constant shift in requirements for applications [35].

Before the cloud, in the age of C, a systems programming language would most likely

be a language able to provide an adequate interface between the programmer and the

machine. Nowadays, the definition is more vague, as machines and software grow in

complexity, and the definition of system grows from a single computer to a distributed

system, interfacing with the hardware in a more direct fashion is mostly not required.

Systems programming languages emphasized being able to produce a standalone binary

able to run on a variety of machines without requiring extra software.

The subjects of this analysis have been picked due to their relevance in the area of

systems programming, being present in indices such as TIOBE1, or developer surveys

such as StackOverflow’s2 and JetBrains’3.

2.1.1 C

C is a general-purpose programming language, while it can be considered a high-level

programming language when put besides assembly, it also fits the description of a low-

level level programming language when besides languages like Python. It was originally

1https://www.tiobe.com/tiobe-index/ (visited in 14/07/2021)
2https://insights.stackoverflow.com/survey/2020#most-popular-technologies

(visited in 14/07/2021)
3https://www.jetbrains.com/lp/devecosystem-2020/ (visited in 14/07/2021)

7

https://www.tiobe.com/tiobe-index/
https://insights.stackoverflow.com/survey/2020#most-popular-technologies
https://www.jetbrains.com/lp/devecosystem-2020/

CHAPTER 2. BACKGROUND

designed by Dennis Ritchie for the PDP-11 and has been around since 1972 [29, 4], C is

by no means modern, being older than myself and most likely to outlive me.

Designed in a different time, C’s mental model is also different, the language is simple

and straight forward, the designers had goals to achieve and designed the language with

them in mind. Such mentality is noticeable when using the language, it is simple as the

hardware was and the level of control C provides is unparalleled, being both a major

benefit and a hindrance. An expert programmer is able to take advantage of the language

to produce highly-efficient software, but a novice programmer will often find himself

battling memory and pointer management bugs.

The language influence echoes in the modern languages, whether in the form of syntax

(i.e. the famous C-style syntax) or in the problems it tries to solve. Languages such as Java

take from C their syntax as well as one problem to solve, memory management; other

languages like Julia [3] aim to achieve similar performance.

While not as popular as other languages, C was able to stay relevant in the modern

development landscape, some of the most used software in the world is either written

with or powered by C. The Linux kernel, which powers servers, the world’s most powerful

computers and serves as a base for Android and other mobile devices, git, Redis and nginx
are also software examples which reached the top of their respective fields.

2.1.2 C++

Introduced in 1985 as an extension to C; the author, Bjarne Stroustrup writes:

C++ is based on the idea of providing both:

• direct mappings of built-in operations and types to hardware to provide effi-
cient memory use and efficient low-level operations, and

• affordable and flexible abstraction mechanisms to provide user-defined types
with the same notational support, range of uses, and performance as built-in
types.

— [32, Section 1.2]

The language has since gone on to conquer the programming world, being used in a

wide variety of software and hardware. Currently, companies such as Google, Amazon

and Microsoft have widespread adoption of C++ in their codebases. Industries requir-

ing the best performance as possible of the host, such as scientific computing, financial

software, AAA games and visual effects will most likely be running C++.

Just like C, C++ is far from perfect. The language is enormous, with very complicated

parts (e.g. templates) and compilation for big projects is very slow, the author acknowl-

edges this in [35]. Furthermore, as the language provides a high level of control over

the system, it has manual memory management, suffering from the same problems as C.

8

2.1. SYSTEMS PROGRAMMING LANGUAGES

Even with smart pointers (e.g. unique_ptr) the problem is not considered to be solved, as

they still introduce overhead in the most demanding applications4.

2.1.3 Ada

Ada was developed in 1980, during a standardization effort in the USA’s Department of

Defense, with the goal of unifying projects spanning over 450 programming languages5.

Ada’s main focus was the development of embedded applications, currently the Ada

language is mostly used in the critical domain due to the strong emphasis on safety, some

Ada success stories are the London Metro Victoria Line and the Paris Metro Line6. The

language is also used in several other domains, such as aviation, space vehicles, financial

systems and more7.

In comparison with the other languages in this section, Ada is eclipsed, barely showing

in the GitHub rankings8. However, given that Ada’s compiler requires a paid license to

take full advantage of and their main application market are critical applications, it

makes sense that most Ada code is not open-source. Regardless, when one views the list

of features Ada has, the first arising question is — why is Ada not popular?.

An old article in AdaPower9 provides some possible insight over the question, refer-

ring to the compiler’s price and the Hoare’s harsh critics. From my point of view, the

critics to the compiler and ecosystem pricing still make sense, as access to the full tooling

is limited. The lack of programmers goes on to perpetuate the lack of adoption in the

industry and this cycle ends up limiting Ada’s reach in the market.

2.1.4 Go

The Go programming language (or golang) is a Google project, according to the language

folklore, it was designed by the authors while they waited for their C++ code to compile.

Go tried to address several of the criticisms to C, namely memory management, which

it solved through the usage of a garbage collector. While it has made a name for itself in

the network and distributed systems sector, being the main language behind projects like

Docker and Kubernetes, Go’s categorization as a systems programming language can be

discussed.

When put against its peers in the systems programming language ecosystem, Go’s

performance may be considered lacking, not being enough for certain use cases. This was

Discord’s case, the popular internet voice server company, as demand increased, Go was

not able to meet the expected performance requirements and the company replaced it

4https://www.youtube.com/watch?v=rHIkrotSwcc (visited in 01/07/2021)
5https://tinyurl.com/AdaPL2016 (visited in 08/06/2021)
6https://www.sigada.org/ (visited in 08/06/2021)
7https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html (visited in 08/06/2021)
8https://tjpalmer.github.io/languish/ (visited in 25/01/2021)
9https://tinyurl.com/AdaPower1998 (visited in 08/06/2021)

9

https://www.youtube.com/watch?v=rHIkrotSwcc
https://tinyurl.com/AdaPL2016
https://www.sigada.org/
https://www2.seas.gwu.edu/~mfeldman/ada-project-summary.html
https://tjpalmer.github.io/languish/
https://tinyurl.com/AdaPower1998

CHAPTER 2. BACKGROUND

with Rust10. In [35], one of Go’s authors, Robert Pike, says that he regrets categorizing Go

as a systems programming language, being rather a server programming language that

evolved into a cloud infrastructure language. Regardless of discussion, Go has proven to

be a viable alternative to existing counterparts, compromising extreme performance in

name of safety and simplicity.

2.1.5 Summary

In this section I reviewed four system programming languages, suited for different kinds

of environments, C, C++ and Ada can be considered the traditional system languages

kind, with a strong emphasis on efficiency and support for embedded devices. Go on

the other hand, could be considered a new generation systems programming language,

a language for cloud infrastructure. Among the four, only Ada places strong emphasis

on safety, with several features allowing for more guarantees at compile-time, such as

contract based programming, non-nullable types by default and even some theorem

proving capabilities, being the only one which does not suffer from the “billion dollar
mistake”11.

2.2 The Rust Language

Rust is a fairly recent systems programming language, it started as a side project of

Graydon Hoare and its public history dates back to 201012. In 2012 Mozilla picked

up Rust to help develop the Servo browser engine, the successor to the previous Gecko

engine; as a way to test Rust’s capabilities [19].

2.2.1 What makes Rust different?

In comparison with other languages, one of the first things someone new to Rust ought

to notice is the emphasis put on safety. Being a competitor to C++ and achieving memory

safety while still providing C++-level performance is quite an accomplishment. Rust,

however, also aims to allow users to be productive without sacrificing neither safety nor

performance.

The key to all the promises Rust makes is its ownership system and borrow checker.

The borrow checker is a completely new mechanism when compared with other main-

stream languages. However, it is a product of years of research both in academia and the

industry. This mechanism merits most of Rust’s accomplishments and also its biggest

defect, the learning curve. While Rust has become more accessible over the years, own-

ership and the borrow checker still require some effort on the part of the developer to

10https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
(visited in 08/06/2021)

11https://tinyurl.com/Hoare2009 (visited in 25/01/2021)
12https://git.io/JZ3X7 (visited in 08/06/2021)

10

https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
https://tinyurl.com/Hoare2009
https://git.io/JZ3X7

2.2. THE RUST LANGUAGE

1 fn main() {
2 let x = String::from("Hello"); // ok: `x` is assigned "Hello"
3 let y = x; // ok: `x` is moved into `y`
4 println!("{}", x); // error: `x` was moved in the previous line
5 }

Listing 2.1: Example of the move-by-default mechanism to enforce ownership. In-
teractive example (01/07/2021): https://play.rust-lang.org/?version=stable&
mode=debug&edition=2018&gist=44beb8b69a296943e9a1c72de4d50ac3

learn. I provide a small overview of ownership, the borrow checker and their part in

Rust’s promise of “fearless concurrency”.

2.2.2 Ownership

Ownership is the mechanism used by Rust to ensure no memory block stays allocated

longer than it is required to. Through ownership, the compiler is able to free memory

when required, inserting the respective deallocation procedures in the output program.

Behind ownership, there are three rules:

• Each value in Rust has a variable that’s called the owner.
• There can only be one owner at a time.
• When the owner goes out of scope, the value will be dropped.

— [33, Section 4.1]

To illustrate the rules, consider Listing 2.1, where we have two variables x and y.

First, "Hello" is assigned to x (line 2), thus x now owns "Hello". After, x is assigned to

y (line 3), consider the second rule of ownership, since we can only have one owner, x’s

value ownership is transferred to y. Since we transferred x’s value to y, x is no longer

valid on line 4, consequently, when compiling the code an error will be issued due to x

being moved.

Notice how String::from is used instead of another type, since String type does not

implement Copy it can only be moved. If the used type implemented Copy, the value

would have been implicitly copied instead of moved.

So far, this example illustrates the first two rules. The last rule can be considered

“invisible”, as it happens during compilation and the user will not notice it usually. What

happens is that at the end of the scope, any variable whose owner is in scope, will be freed

(in Rust’s terms, it will be dropped). While the developer is not required to explicitly free

the memory, the compiler will insert the calls for the developer.

2.2.3 Borrowing

If the developer could only copy or move memory the usability of the language would be

severely limited. For example, functions that read a variable and produce a new value,

11

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=44beb8b69a296943e9a1c72de4d50ac3
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=44beb8b69a296943e9a1c72de4d50ac3

CHAPTER 2. BACKGROUND

1 fn main() {
2 let x = String::from("Hello"); // ok: `x` is assigned "Hello"
3 let y = &x; // ok: `x` is borrowed to `y`
4 println!("{}", x); // ok: `x` can be printed since it is still valid
5 }

Listing 2.2: Example using borrowing to allow for more than one
reader on the same variable. Interactive example (01/07/2021): https:
//play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=
129727839135fcaa4651bf764242feda

not requiring the variable to be consumed would be impossible. To cope with this, Rust

allows values to be borrowed, in other words, the owner of the variable allows for it to be

read by others.

To borrow a value, one writes &value, this creates a read-only reference to value.

There can be an unlimited number of read-only references to a value, but only a single

mutable reference. This is discussed in Section 2.2.4. Consider the example Listing 2.2.

In the example, x is now possible to be printed since it was not moved into y. Rather, y

borrowed x through a reference.

Going back to the rules (Section 2.2.2), Rust’s references obey them just like all other

values. The variable containing them has ownership over the reference; it still is a single

owner (if let z = y; was to be added, the reference would be copied instead of moved);

and finally, when the owner goes out of scope the reference is dropped, but not the origi-

nal value.

Mutable Borrows

One last thing to consider are mutable borrows. As previously discussed, in Rust it is pos-

sible to create multiple immutable references but only one mutable reference. Regarding

mutable references there are two cases to consider:

N mutable references, see Listing 2.3. Understanding why only one mutable reference

can exist at a time is trivial, as multiple mutable references to the same object would

allow it to be mutated concurrently, which could lead to inconsistent values.

N immutable references and 1 mutable reference, see Listing 2.4. The reason behind

not allowing a mutable reference to coexist is similar. Consider that each value can be

executed by a different thread, the first two (r1 and r2, on lines 3 & 4) are only read and

the third (r3, on line 5) can be read and written. While there will be no conflicts between

writers, it is possible for the readers to read an inconsistent value, since it can happen

during the write operation.

12

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=129727839135fcaa4651bf764242feda
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=129727839135fcaa4651bf764242feda
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=129727839135fcaa4651bf764242feda

2.2. THE RUST LANGUAGE

1 fn main() {
2 let mut s = String::from("hello");
3 let r1 = &mut s; // ok: first mutable borrow
4 let r2 = &mut s; // error: `s` was mutably borrowed in the previous line
5 }

Listing 2.3: Example error while using multiple mutable borrows over the same vari-
able. Interactive example (01/07/2021): https://play.rust-lang.org/?version=
stable&mode=debug&edition=2018&gist=aeef7b0822bb73037b8f99ee8413d834

1 fn main() {
2 let mut s = String::from("hello");
3 let r1 = &s; // ok: first immutable borrow
4 let r2 = &s; // ok: second immutable borrow
5 let r3 = &mut s; // error: `s` was immutably borrowed in the previous lines
6 }

Listing 2.4: Example error while using a mutable borrow in conjunc-
tion with immutable ones. Interactive example (01/07/2021): https:
//play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=
ea8ff872605239f5916753d32d7145b7

2.2.4 Concurrency

Initially, the Rust team thought that ensuring memory safety and preventing con-
currency problems were two separate challenges to be solved with different methods.
Over time, the team discovered that the ownership and type systems are a powerful
set of tools to help manage memory safety and concurrency problems! By leveraging
ownership and type checking, many concurrency errors are compile-time errors in
Rust rather than runtime errors. — [33, Section 16]

Rust provides several kinds of mechanisms to prevent concurrency related problems.

Mechanisms as message-passing, shared-state and traits13 to enable developers to extend

upon the existing abstractions.

Message-passing

Rust’s message-passing library14 is inspired by Go’s approach to concurrency, prioritizing

message passing over other kinds of concurrent approaches, such as locking.

Do not communicate by sharing memory; instead, share memory by communicat-
ing. — Effective Go15

13For more information on traits, see https://doc.rust-lang.org/rust-by-example/trait.html (vis-
ited in 20/07/2021), https://doc.rust-lang.org/book/ch10-02-traits.html (visited in 20/07/2021) and
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html (visited in 20/07/2021)

14https://doc.rust-lang.org/std/sync/mpsc/ (visited in 01/07/2021)
15https://golang.org/doc/effective_go.html (visited in 08/06/2021)

13

https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=aeef7b0822bb73037b8f99ee8413d834
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=aeef7b0822bb73037b8f99ee8413d834
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=ea8ff872605239f5916753d32d7145b7
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=ea8ff872605239f5916753d32d7145b7
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=ea8ff872605239f5916753d32d7145b7
https://doc.rust-lang.org/rust-by-example/trait.html
https://doc.rust-lang.org/book/ch10-02-traits.html
https://doc.rust-lang.org/book/ch19-03-advanced-traits.html
https://doc.rust-lang.org/std/sync/mpsc/
https://golang.org/doc/effective_go.html

CHAPTER 2. BACKGROUND

Rust defines channels which have two ends, the transmitter and the receiver. The

former can also be seen as the sender, and when is declared with the message type, the

latter is also declared with the message type, they can be the same or distinct.

The ownership system comes in when the transmitter sends a message, when received

the ownership of the message is taken on by the receiver end. This enforces that values

cannot be in both sides of the communication at the same time, preventing concurrent

accesses.

Shared-state

Along with message-passing, Rust allows memory to be shared in a concurrent, safe way.

Just as before, Rust’s ownership system also helps with mutexes’ biggest problem, locking

and unlocking.

In a language like Java, whenever a thread is able to call lock on a mutex, it is required

to call unlock on it, only then can other threads can use it. The problem is that this

approach is subject to human error, forgetting to call unlock or calling unlock in the

wrong place is possible. Making use of the ownership system, Rust is able to know when

the lock reached the end of the scope and should be dropped.

2.2.5 Why Rust instead of Language X?

The main obstacle between typestates and programming languages is the requirement for

aliasing control. In short, typestates are incompatible with aliasing (details are provided

in Section 2.3.2).

So to implement a language from the ground up, it is required that aliasing is handled,

however, instead of building a new one, the goal is to extend an existing one, Rust. As

discussed in Section 2.2.3, Rust’s ownership system allows for aliasing control. Using

moves to enforce the consumption of values, immutable references for pure functions

and mutable ones for limited mutability, it is possible to emulate typestates. This takes

care of aliasing concerns.

When designing on top of another language, two more ingredients are required, a

powerful extension mechanism (i.e. Rust’s macros, discussed in Section 3.2) and a strong

type system, able to provide the necessary abstractions. Rust provides both, the type

systems goes as far as allowing zero-sized types, allowing type-level abstractions to incur

no runtime overhead. This is a key ingredient in our DSL, aiming to minimize possible

runtime overhead while providing an expressive language for typestate specification.

2.3 Behavioral Types

As previously discussed, with the growth in software complexity, developers are required

to develop better tools to tame such complexity. Such tools require a theoretical body of

work to support them, behavioral types are part of such body of work. The theory behind

14

2.3. BEHAVIORAL TYPES

Client

Server

LO
GI
N

u
se

rn
am

e

St
ri
ng

p
as

sw
or

d

St
ri
ng

AC
CE
PT
ED

RE
JE
CT
ED

Choice

Figure 2.1: Communication protocol example. The communication establishment
step is omitted for simplicity. In this protocol the client tries to login to a service
by sending a message LOGIN followed by the username and password, both of type
String. The server then replies with either an ACCEPTED or REJECTED, if the login
was successful or not, respectively.

them encompasses several domains, and they can be applied over a wide range of entities,

from an object to a web service.

The work on behavioral types arose in the context of type systems able to capture

properties of computations [17]. Session types and typestates are part of this field of

study, both capturing distinct property kinds while aiming for a common goal, stronger

type systems and better static assurances.

Roughly speaking, a behavioral type describes a software entity, such as an object,
a communication channel, or a Web Service, in terms of the sequences of operations
that allow for a correct interaction among the involved entities. — [2]

Behavioral types allow developers to model a protocol, define the communication

messages and possible interactions and check that certain requirements are met when

implementing. Consider the protocol from Figure 2.1, where a user tries to authenticate.

A developer can use it as a specification (for simplicity consider the uppercase messages

to be simple strings), using behavioral types the developer could be able to specify the

described interactions and all boilerplate could be generated for them. While using

strings as a payload is not very “interesting”, consider instead that the object in transit

is an encrypted payload, the boilerplate will take care of decryption and deserialization.

Furthermore, consider the constraint that all interactions end with a message from the server.

If the specification has an interaction that is not compliant with such rule, the code should

not compile, raising an error.

2.3.1 Session Types

Session types are a subset of behavioral types, focused on communication, from entities

in a distributed system to threads in a computer. Session types are based on process

calculi and can be thought as “types for protocols” [14, 15]. They elevate communication

to the type level, allowing expressing them as types in a program, in turn this enables the

compiler to reason about the protocol during compile-time [13, 38].

15

CHAPTER 2. BACKGROUND

1 enum Request {
2 Login(String, String), // login with: {username, password}
3 SendMessage(String, String), // send message to a user: {user, message}
4 CheckStatus(String), // check the status of a given user: {user}
5 }
6 enum Reply {
7 AuthOk, // successful login
8 AuthErr, // failed login
9 MessageOk, // successful message
10 UserStatus(String), // user status
11 }
12 fn communicate() {
13 let (tx, rx) = channel<Request, Reply>();
14 tx.send(Request::Login("foo", "bar"));
15 match tx.recv() {
16 // ...
17 }
18 }

Listing 2.5: Application login example, modelled using Rust’s enums (some channel
details were omitted for simplicity). Reusing channels requires the developer to
clump all states in a single enum. Better state management requires the use of more
channels, neither approaches are ideal.

In Rust, a channel is created with let (tx, rx) = channel::<SenderT, ReceiverT>(),

where SenderT and ReceiverT are the types sent and received by the channel. Channels

are well-typed, meaning that if SenderT = String, sending another type over the channel

will result in a type error.

Session types extend on this notion, not only allowing for a single type to be sent or

received, but also model the protocol. Consider Listing 2.5, the example has unnecessary

complexity, as for each receive the developer is required to match all possible replies.

Ideally, we declare the steps and possible outcomes beforehand.

For example, in plain English:

1. Send login credentials.

2. If successful, send a message to user jmgd.

3. Otherwise, exit.

And now using session types (Figure 2.2 with syntax adapted from [38], where the

first four assignments (:=) are simple aliases, to simplify reading):

Consider ! to be sends, ? to be receives, . the sequence operator, & the choice offering
and ⊕ the choice selection. Using session types effectively offloads complexity to the type

system, resulting in more complex types, but simpler implementations, since protocol

compliance can be checked during compilation and boilerplate can be added by the

compiler. No message is matching required, the compiler does it for the developer. Using

session types it is possible to write it in a simpler form, where a type is assigned to each

endpoint. Notice how the server provides more than one operation, but the user does not

call them all.

16

2.3. BEHAVIORAL TYPES

Login := {user : String, password : String}
Message := {user : String, message : String}

Status := {user : String}
SReply := {status : String}
Server = ?Login.⊕⟨!Ok.?Message.⊕⟨Ok.End,Err.End⟩, !Err.End⟩
Client = !Login.&⟨?Ok.&⟨?Status.!SReply, !Message.&⟨Ok.End,Err.End⟩⟩,?Err.End⟩

Figure 2.2: .
Session type example, equivalent to Listing 2.5.

Scanner[Open] Scanner[Closed]close()

open()

nextLine()

Figure 2.3: The Scanner typestate automata, based on Listing 1.3.

2.3.2 Typestates

... traditional strong type checking was enhanced with typestate checking a new
mechanism in which the compiler guarantees that for all execution paths, the se-
quence of operations on each variable obeys a finite state grammar associated with
that variable’s type. — [30]

The first language to make use of typestates was NIL [30], afterwards languages like

Hermes16 and Plaid [1] extended the concept with new techniques.

Automata

A possible question on the reader’s mind is — how are automata and typestates related? This

section tries to address that question and exemplify how automata helps prove typestate’s

properties. It is possible to express typestates as automata, as the reader can observe in

Figure 2.3. Each state is a possible state the object can be in and transitions are done

through methods. Methods can either mutate the object state, such as open and close, or

leave it unchanged, such as nextLine.

Real-world scenario. In production applications, the API is not this simple. In fact, the

Scanner API is not this simple, however it was simplified for the example. Complex APIs

can be designed by a team and implemented by another, specifications can be changed

and during project development some details may be lost. Such details can be costly,

imagine for example that a method call reaches a state, which has no outgoing edges,

but it is not a final state. This is a problem addressed by existing automata algorithms.

16https://researcher.watson.ibm.com/researcher/files/us-bacon/Strom90HermesTutorial.pdf
(visited in 17/07/2021)

17

https://researcher.watson.ibm.com/researcher/files/us-bacon/Strom90HermesTutorial.pdf

CHAPTER 2. BACKGROUND

Representing typestates as automata, extracting all necessary information and applying

such algorithms provides the API with extra safety.

The case for typestates

As discussed in Section 1.1, bugs in systems programming are costly, thus, bugs must

be minimized. Several tools, such as static analyzers, fuzzers, testing frameworks and

others, aid in this purpose, if we have all these external tools, why should we not try and

leverage the programming language itself?

Moving towards better languages. Programming languages allow the programmer to

express a set of actions to be taken by the computer, they are tools which enable us to

achieve a goal. Being essential to our work, better tools enable developers to be more

productive and achieve higher quality work. The remaining question is — why do we
not create better languages? Even when considering languages to be cheap to develop,

the amount of work between a working language to be production ready is not cheap.

Furthermore, while adopting a new language for a hobby project is easy, the same does

not apply for enterprise level projects, requiring several developers to know the ins and

outs of the language.

Static typed languages. The current trend is to move away from dynamically typed

languages, to statically typed ones, or at the very least, add typing support to existing dy-

namic languages. Typescript17, Reason18 and PureScript19 are all examples of languages

built to bridge the gap between static type systems and JavaScript. Python and Ruby, two

popular dynamic languages, have also pushed for type adoption with the addition of type

hint support in recent releases20,21.

Where do typestates fit? Typestates are a complex subject, able to be adopted at several

levels, just like type hints, they can be partially used in some languages, through tools

such as Mungo [39], by contract-style assertions as in Ada2012, Eiffel or pre-0.4 Rust,

or finally by leveraging the existing type system to write typestate enabled code as it is

possible in Rust22. Typestate-related concepts were also used in Singularity OS [2, Section

6], a reliable operating system prototype where programs were written using Sing# — a

C# derived language which supports behavioral typing, specifically, contracts in a similar

capacity to typestates.

Why use typestates? By leveraging the state to the type system, the compiler is able to

aid the programmer during development, a given set of transitions will be impossible by

default, since the types do not implement them. By reducing the need for developers to

17https://www.typescriptlang.org/ (visited in 08/06/2021)
18https://reasonml.github.io/ (visited in 08/06/2021)
19https://www.purescript.org/ (visited in 08/06/2021)
20https://docs.python.org/3/library/typing.html (visited in 08/06/2021)
21https://github.com/ruby/rbs (visited in 08/06/2021)
22https://git.io/JZ3i7 (visited in 08/06/2021)

18

https://www.typescriptlang.org/
https://reasonml.github.io/
https://www.purescript.org/
https://docs.python.org/3/library/typing.html
https://github.com/ruby/rbs
https://git.io/JZ3i7

2.3. BEHAVIORAL TYPES

1 public class Read {
2 public static void main(String[] args) {
3 Scanner s = new Scanner(System.in);
4 s.nextLine();
5 s.close();
6 s.nextLine();
7 }
8 }

Listing 2.6: The Read Java program, which reads two lines from stdin.

1 public class Read {
2 public static void main(String[] args) {
3 Scanner[Open] s = new Scanner(System.in);
4 s.nextLine();
5 Scanner[Closed] s = s.close();
6 s.nextLine(); // compiler error
7 }
8 }

Listing 2.7: The Read program, written in a Java-like typestated fashion.

check for a certain set of conditions through the use of typestates, it becomes possible to

reduce the number of runtime assertions and completely eliminate the need for illegal

state exceptions since illegal transitions are checked at compile-time.

Typestates in action

As a simple example, consider the Java application in Listing 2.6 which simply which

reads two lines from stdin. The application will throw an exception on line 6, since the

programmer closed the Scanner in line 5. In this example, the error is simple to catch,

the program is short and the Scanner can either be open or closed, however, real-world

applications are not that simple.

In the case of typestated programming, the type system will provide the program-

mer with better tools to express state, furthermore, the compiler will then catch errors

regarding state, such as the previous use-after-close.

Listing 2.7 shows the Read program written in a typestated fashion, notice that the

Scanner type is now augmented with state and the compiler is able to catch the misuse of

the Scanner[Closed] interface.

Plaid is a typestate-oriented programming language [1], instead of classes users write

typestates. Each typestate represents a class and possible states, the class methods and

behavior change during runtime as state changes, in contrast with other languages (e.g.

Java) where public methods and fields are always available. In Listing 2.8, the File passes

through states as it is open, read and closed in readClosedFile.

This property allows the type system to enforce certain properties at compile-time,

19

CHAPTER 2. BACKGROUND

1 state File {
2 val filename;
3 }
4 state OpenFile case of File = {
5 val filePtr;
6 method read() { ... }
7 method close() { this <- ClosedFile; }
8 }
9 state ClosedFile case of File {
10 method open() { this <- OpenFile; }
11 }
12 method readClosedFile(f) {
13 f.open();
14 val x = f.read();
15 f.close();
16 x;
17 }

Listing 2.8: The File declaration and usage in Plaid (taken from [25]).

such as certain methods will never be called in a given state since it is not possible by

design (i.e. they are not available in the interface).

Obsidian is a smart-contract language targeting Hyperledger Fabric blockchain23, among

other features it makes use of typestates to reduce the amount of bugs when dealing

with assets.

Coblenz et al. [5] tested and proved Obsidian claims through an empirical study;

when compared with Solidity, the leading blockchain language, users inserted fewer bugs

and were able to start developing safer code faster.

Consider Listing 2.9, in which a light switch is modeled, the same can either be On or

Off, but not both. The brightness field can only be accessed if LightSwitch is in the On

state, however the switchLocation field can be accessed from both states. Furthermore,

consider that upon instantiation, the LightSwitch is set to the Off state. Notice that in

Listing 2.10 the user is able to call turnOn, as the switch is in the Off state, as expected.

However, the user is unable to call turnOff in Listing 2.11, since the switch is already

set to the Off state. The Obsidian compiler is able to notice such invalid transitions and

provide an error during compile-time.

Rust. As discussed in Section 2.2, Rust takes the commitment with safety with serious-

ness, providing the necessary tools to users. While Rust does not support first-class type-

states, it is possible to emulate them using the type system, this is discussed in further

sections of this document.

While the file example does not apply in Rust, since files and other objects are closed

as they leave the scopes, enforcing protocols is important, and an aspect not covered by

23https://www.hyperledger.org/use/fabric (visited in 08/06/2021)

20

https://www.hyperledger.org/use/fabric

2.3. BEHAVIORAL TYPES

1 contract LightSwitch {
2 state On {
3 int brightness;
4 }
5 state Off;
6 int switchLocation available in On, Off;
7 }

Listing 2.9: Obsidian state declaration example.

1 transaction OffToOn() {
2 LightSwitch s = new LightSwitch(); // LightSwitch is in Off upon instantiation
3 s.turnOn();
4 }

Listing 2.10: Correct state usage example in Obsidian.

1 transaction OffToOff() {
2 LightSwitch s = new LightSwitch(); // LightSwitch is in Off upon instantiation
3 s.turnOff(); // error: turnOff() requires that s is On, but here s is Off
4 }

Listing 2.11: Invalid state transition example in Obsidian. Since LightSwitch is
instantiated as Off, calling turnOff is not valid.

the language. Consider Listing 2.12, the example is expected to call first F1, followed by

F2 and finally F3, however such does not happen, and the error is only caught at runtime.

As the next paragraph discusses, this behavior can be prevented using the language’s

type system. However, such utilization requires complex types. Since it is not “part” of

the language, most users will neither use it nor be aware of it.

Embedded Rust. As any systems programming language, Rust penetrated the embedded

development space. Providing features in line with the area’s requirements, along with

community efforts to make Rust viable in embedded systems.

The Embedded Rust Book’s24 Chapter 4 is dedicated to static guarantees, introducing

1 fn main() {
2 let protocol = Protocol::new();
3 protocol.F1();
4 protocol.F3(); // possible crash during runtime
5 protocol.F2();
6 }

Listing 2.12: Rust example of an unchecked protocol compliance failure. The
protocol expected operation order is F1, F2, F3, however, the developer placed the
operations in the wrong order. This mistake is only caught during runtime.

24https://rust-embedded.github.io/book/ (visited in 08/06/2021)

21

https://rust-embedded.github.io/book/

CHAPTER 2. BACKGROUND

programmers to the concepts of typestate in its Section 4.125, and their usage in embedded

systems.

As for real-world usage, typestates are abundantly used in the area (not just discussed

in the book), under the stm32-rs GitHub organization26 one finds several repositories

(suffixed with -hal) which implement typestates (e.g. gpio.rs from stm32h7xx-hal).

25https://docs.rust-embedded.org/book/static-guarantees/typestate-programming.html
(visited in 01/07/2021)

26https://github.com/stm32-rs/ (visited in 08/06/2021)

22

https://github.com/stm32-rs/stm32h7xx-hal/blob/master/src/gpio.rs#L51-L128
https://docs.rust-embedded.org/book/static-guarantees/typestate-programming.html
https://github.com/stm32-rs/

3

Related Work

In this chapter I review the work related to this thesis. I start by reviewing a series of

existing tools designed to help with code preprocessing, the languages considered were

OCaml, Java and Kotlin, given the existing documentation, and academic work over them,

projects like OCaml’s PreProcessor eXtensions (PPX), Java’s JastAdd [10] and Kotlin’s

compiler plugins; followed by a more detailed discussion w.r.t. Rust; finally I review

previous work regarding behavioral types, discussing both session types and typestates.

3.1 Language Preprocessors

Language preprocessors are a mechanism which runs during compilation, some lan-

guages will apply the preprocessor during different compilation stages while others will

only apply the preprocessor in a single stage.

3.1.1 OCaml

The OCaml ecosystem currently uses OCaml PPX, previous to version 4.02, OCaml made

use of Pre-Processor-Pretty-Printer (Camlp4).

Camlp4 is a parsing library providing users with extensible grammars which enable

users to modify and extend OCaml’s syntax, Camlp4 is also able to redefine the core

syntax, OCaml even introduced a revised syntax1 to enable Camlp4.

In a nutshell, the Camlp4 library would allow developers to develop an extension

syntax, the compiler would then pass the source code as text to the preprocessor, which,

in turn would generate valid OCaml source code. The library has been deprecated due

to being confusing to users and tools alike. Users were required to learn the revised

OCaml syntax which complicates the development process. These criticisms are found

throughout documents which discuss Camlp42.

1https://caml.inria.fr/pub/docs/manual-camlp4/manual007.html (visited in 02/07/2021)
2https://tinyurl.com/Whitequark2014 (visited in 08/06/2021)

23

https://caml.inria.fr/pub/docs/manual-camlp4/manual007.html
https://tinyurl.com/Whitequark2014

CHAPTER 3. RELATED WORK

1 let a = 12 [@attr pl]
2 let b = "some string" [@@attr pl]
3 [@@@attr pl]

Listing 3.1: Example of the three kinds of attributes3. The first line attaches to the
12 expression. The second attaches to the whole let binding (i.e let b = "some
string"). Finally, the third line, does not attach to a particular member of the AST.

PPX

In OCaml version 4.02 syntax extensions were introduced, to enable preprocessor exten-

sions. This meta programming mechanism came to replace Camlp4, which was not well

liked by the community given its complexity. The resources on PPX are not as widespread

as the resources for similar mechanisms in other languages (e.g. Rust’s macros). There

are two main entry points to the PPX system, attribute and extension nodes [23, Chapter

8, Sections 12 & 13].

Attribute Nodes are attached to the existing AST nodes, they are not forcefully compiled,

that is, if the compiler is not aware of a matching extension they will be ignored. There

are three kinds of attribute nodes (example in Listing 3.1):

• [@attr payload] - attached with a postfix notation on “algebraic” categories.
• [@@attr payload] - attached to “blocks” such as type declarations, class fields,

etc.
• [@@@attr payload] - not attached to any specific node in the syntax tree.

— [23, Chapter 8, Section 12]

One of the main kinds of PPXs are derivers (see Listing 3.2.2 for the Rust equivalent).

Derivers are mostly used to generate error-prone code where the implementation pattern

is common to a series of situations. Examples include but are not limited to: comparison

functions, pretty printers and serializers3.

Extension Nodes are similar in syntax to the attribute nodes (instead of @ they use %).

Extension nodes are meant to be placeholders in the syntax tree. That means they get

replaced with the expanded code (like attribute macros in Rust Listing 3.2.2). They are

also required to be expanded by a PPX during compile-time, if such does not happen an

Uninterpreted expression error is issued.

• [%attr payload] - used for “algebraic” categories.
• [%%attr payload] - used in structures and signatures, both in the module and

object languages.

— [23, Chapter 8, Section 13]

3https://tarides.com/blog/2019-05-09-an-introduction-to-ocaml-ppx-ecosystem
(visited in 08/06/2021).

24

https://tarides.com/blog/2019-05-09-an-introduction-to-ocaml-ppx-ecosystem

3.1. LANGUAGE PREPROCESSORS

1 @Retention(RetentionPolicy.RUNTIME)
2 @Target(ElementType.ANNOTATION_TYPE)
3 @interface Foo {}

Listing 3.2: Example code for Java’s annotation declaration.

Ecosystem Presence. The current state of affairs regarding the PPX brings up mixed

reactions. From my research, the environment is well maintained, with regular commits

to the main PPX repositories. However, the entry-barrier is high due to the lack of

introductory materials. Despite this, PPX has seen use in the ReasonML community,

more specifically in the ReasonReact framework4, where the Tailwind CSS5 dialect is

supported by PPX to enhance developer ergonomics.

3.1.2 Java

In Java, meta programming takes the form of annotations, these can be processed by user

code during the compilation process or at runtime. Besides annotations, there is another

project able to “extend” Java. The ExtendJ research compiler (formerly JastAddJ) [10]

aims to provide a “hackable” Java compiler for research purposes, such as static analysis

tool development to Java features prototyping.

Java Annotations

Java annotations were first introduced in Java 56, they are a form of metadata which

can be added to Java source code. Annotations can be used in conjunction with several

components of the Java language, such as classes, interfaces, documentation and others.

These are processed by build-time tools or by run-time libraries to achieve new semantic

effects, a popular example of such library would be the compile-time dependency injec-

tion framework Dagger 27. Another popular library using annotations is the Checker

Framework8, besides the classic @NonNull example, the tool provides several other kinds

of annotations. The annotations are then checked by Checker Framework annotation

processor. An example would be the @Tainted/@Untainted annotations, which serve the

purpose of annotating data to indicate whether it can be trusted. This helps avoid poten-

tially harmful code from being executed (e.g. malicious SQL queries).

Implementing an Annotation. To implement an annotation, start by declaring it as in

Listing 3.2. The annotation may contain parameters that allow to add configuration when

the declaration is used. Supported types are:

• Primitive types (e.g. int, long, etc).

4https://reasonml.github.io/reason-react/en/ (visited in 19/07/2021)
5https://tailwindcss.com/ (visited in 19/07/2021)
6https://jcp.org/en/jsr/detail?id=269 (visited in 08/06/2021)
7https://dagger.dev/ (visited in 08/06/2021)
8https://checkerframework.org/ (visited in 02/07/2021)

25

https://reasonml.github.io/reason-react/en/
https://tailwindcss.com/
https://jcp.org/en/jsr/detail?id=269
https://dagger.dev/
https://checkerframework.org/

CHAPTER 3. RELATED WORK

new Processor()

.init(ProcessingEnvironment)

.getSupportedOptions()
.getSupportedSourceVersion()
.getSupportedAnnotationTypes()

.process()

Figure 3.1: Java’s annotation processor lifecycle.

java.lang.annotation

@ Retention @ Target

E RetentionPolicy

• CLASS
• SOURCE
• RUNTIME

E ElementType

• TYPE
• FIELD
• METHOD
• PARAMETER
• CONSTRUCTOR
• LOCAL_VARIABLE
• ANNOTATION_TYPE
• PACKAGE
• TYPE_PARAMETER
• TYPE_USE
• MODULE

value

1

value
*

Figure 3.2: java.lang.annotation class diagram.

26

3.1. LANGUAGE PREPROCESSORS

• String

• Class<T>

• enum types.

• Other annotation types.

• An array of the above.

At this point the annotation is processed by the compiler but does not do anything useful.

To address that, the code needs to either handle the annotation at runtime, through

reflection; or at compile-time, through an annotation processor. Since processing the

annotation at runtime incurs a cost, I will only discuss the annotation processor approach.

Annotation Processor. Putting it simply, is a specific class registered at compile-time

as able to process annotations. The compiler can then make use of the class to process

the new annotations. The class itself will usually extend the AbstractProcessor class,

overriding some methods present in Figure 3.1. The processor will then be called for each

annotation belonging to the package.

Annotation processors are also able to generate code. This is usually done by means

of a library such as JavaPoet9. After generation, the output code is then compiled and

subject to the same treatment as handwritten files. If the generated code, generates more

code, this process repeats itself until no more code is generated.

Ecosystem Presence. Java annotations are ubiquitous. Examples include but are not

limited to the development of REST APIs, Android applications and database tools. As

discussed in Section 3.1.2, annotations are picked up by several tools and serve a plethora

of purposes, from cutting boilerplate to providing an extra layer of security and assurance.

However, being ubiquitous does not imply that resources are widely available. Learn-

ing to develop annotations seems to be an almost exotic topic in Java, with few quality

resources available.

ExtendJ & JastAdd

ExtendJ is an extensible compiler aiming at facilitating the development of Java compiler

tools. The compiler supports Java from version 5 up to 8. The extensions are written

in JastAdd10, a meta-compilation system, upon which ExtendJ is built. It is possible to

extend the compiler during any of the following phases: Scanning, Parsing, Analysis and

Code Generation. Extending the language with new syntax requires the modification of

the Scanner and Parser. The Analysis phase occurs after parsing, when types are checked.

Hence, to extend type analysis, one must modify it in the compiler. Finally, Code Gen-
eration has two possible extension methods in ExtendJ: direct bytecode generation and

desugaring. The latter being the simpler approach and recommended being tried before

the former. Desugaring can be used to prototype new languages constructs, by mapping

them to the respective Java code.

9https://github.com/square/javapoet (visited in 02/07/2021)
10https://jastadd.cs.lth.se/web/ (visited in 08/06/2021)

27

https://github.com/square/javapoet
https://jastadd.cs.lth.se/web/

CHAPTER 3. RELATED WORK

1 @any Animal animals;
2 animals += new Animal("Magali");
3 animals += new Animal("Snow");
4 animals += new Animal("Coal");
5 for (Animal animal : animals) {
6 System.out.println(animal.getName());
7 }

Listing 3.3: The @any annotation allows an object to carry several instances of itself.
In the example, @any Animal is rather a collection of Animal. This extension is
enabled by the ExtendJ compiler.

Ecosystem Presence. While both ExtendJ and JastAdd are powerful tools, they lack of

support for versions after Java 8. Their usage is generally confined to academia being

unsuited for industrial usage. Documentation on getting up and running is also limited,

being mostly based on papers and examples rather than entry-level explanations.

3.1.3 Kotlin

While Kotlin also allows and makes use of Java annotations, it is also possible to write

plugins for the Kotlin compiler. Compiler plugins are much more complex pieces of

software in comparison to annotations, due to the amount of detail required to take into

account. An example of such detail is the amount of Kotlin backends available, not all

targeting the JVM. This is also a motivation to write a compiler plugin, as annotations

may not be compatible with all backends.

Kotlin Compiler Plugins

The Kotlin compiler plugin stack is illustrated in Figure 3.3. From top to bottom, the

first two parts are related to Gradle, the main build system for Kotlin. These parts to not

work on the plugin itself, but rather help the plugin coexist with the rest of the Kotlin

ecosystem.

Plugin. The plugin interacts only in the Gradle segment, it provides an entrypoint from

a build.gradle plugin and allows plugin configuration.

Subplugin. The subplugin acts as the glue between Gradle and Kotlin. It sets up a series

on options for the layer below from the configuration provided in the first layer. It also

defines a plugin ID to avoid name clashing with other plugins and Maven coordinates,

which allow the plugin to be downloaded.

CommandLineProcessor. This layer reads the arguments for kotlinc -Xplugin. The op-

tions from the previous layer are passed through here. Finally, it writes CompilerConfigurationKeys

which will be passed to the layer bellow.

ComponentRegistar. This component just reads the passed keys and registers extensions

to be used by the compiler. It is possible to register several extensions at a time.

28

3.2. RUST MACROS

Plugin

Subplugin

CommandLineProcessor

ComponentRegistar

Extension Extension

G
ra

d
le

K
ot

li
n

Figure 3.3: Kotlin compiler plugin architecture stack12.

Rust Macros

Declarative

Procedural

Function-like

Derive

Atribute

Figure 3.4: Rust macro’s family tree

Extension. The extension is the main part of the plugin. There are multiple types of

extensions able to deal with the input at different levels, from the class level to the code

generation.

Ecosystem Presence. Just like the previous languages, the Kotlin compiler plugins suffer

from the same discoverability problem. While tools depending on compiler plugins are

widely used (e.g. Kotlin serialization11), the resources to learn how to develop such tools

are rare.

3.2 Rust Macros

Just like C and C++, Rust offers macros as part of the language. In essence, Rust macros

are just like other languages macro’s, running during compile-time to generate code. In

Rust, macros refer to a family of features (see Figure 3.4), declarative macros and procedural
macros.

11https://github.com/Kotlin/kotlinx.serialization (visited in 08/06/2021)
12https://tinyurl.com/MostK2018 (visited on 08/06/2021)

29

https://github.com/Kotlin/kotlinx.serialization
https://tinyurl.com/MostK2018

CHAPTER 3. RELATED WORK

3.2.1 Declarative Macros

Declarative macros (also known as macros-by-example) can be declared with macro_rules!

and are called with function syntax (see Listing 3.4).

Each macro by example has a name, and one or more rules. Each rule has two parts:
a matcher, describing the syntax that it matches, and a transcriber, describing
the syntax that will replace a successfully matched invocation. Both the matcher
and the transcriber must be surrounded by delimiters. Macros can expand to ex-
pressions, statements, items (including traits, impls, and foreign items), types, or
patterns. — [34, Section 3.1]

Transcribing. When a macro is invoked, the macro expander loops through the declared

rules, transcribing the first successful match. It transcribes the first successful match;

if this results in an error, then future matches are not tried. An error is thrown if the

compiler cannot determine unambiguously how to parse the macro [34, Section 3.1 -

Transcribing].

Metavariables. To specify a macro a user first declares a pattern which will match a

given form of syntax. Metavariables are used to achieve such goal, they are declared with

“$ name : fragment-specifier” in the macro matcher and can match thirteen different

kinds of syntax fragments [34, Section 3.1 - Metavariables]. In Listing 3.4, the kind of the

n metavariable is literal, which will match literals like ’E’, "Elite" and 420 [34, Section

8.2.1].

Repetitions are indicated by placing the tokens to be repeated inside $(...), followed

by a repetition operator, optionally with a separator token between. This is valid both

for the matcher and the transcriber. Repetition operators are the same as the regular

expression ones:

• * — indicates zero or more repetitions.

• + — indicates at least one repetition.

• ? — indicates zero or one repetition.

Hygiene works by attaching an invisible syntactic context to all identifiers13. Identifiers

are compared over two pieces of information, the textual value and their syntactic context.
The textual value consists of the variables name (e.g. four), the syntactic context is a kind

of scope added to variables declared inside the macro. This is done to keep the macro

declared variables from interfering with existing ones.

When expanding a declarative macro14 variables declared inside the macro belong in

a different scope, consider the macro declared in Listing 3.5 and the respective expansion

in Listing 3.6. As illustrated by Listing 3.6, line 2 is considered to be in a different

13https://veykril.github.io/tlborm (visited in 17/07/2021)
14The same mechanism does not apply to procedural macros since they are not hygienic. Their out-

put will interfere with existing code if precautions are not taken. See https://gist.github.com/Kestrer/
8c05ebd4e0e9347eb05f265dfb7252e1 (visited in 17/07/2021) for more information.

30

https://veykril.github.io/tlborm
https://gist.github.com/Kestrer/8c05ebd4e0e9347eb05f265dfb7252e1
https://gist.github.com/Kestrer/8c05ebd4e0e9347eb05f265dfb7252e1

3.2. RUST MACROS

1 macro_rules! say_hello {
2 ($n:literal) => {
3 for 0..$n {
4 println!("Hello, world!");
5 }
6 }
7 }
8 fn main() {
9 say_hello!(5);
10 }

Listing 3.4: Example macro_rules! usage. When executed, the code above will
print “Hello, world!” five times.

1 macro_rules! using_a {
2 ($e:expr) => {
3 {
4 let a = 42;
5 $e
6 }
7 }
8 }
9 let four = using_a!(a / 10);

Listing 3.5: Definition of the using_a macro and usage. The macro simply declares
a variable a, set to 42 and then writes an expression which was passed in.

1 let four = {
2 let a = 42;
3 a / 10
4 };

Listing 3.6: Listing 3.5 line 9’s macro expansion. Declarations with a blue back-
ground will be placed in a different scope than the others, thus the a for lines 2 and
3 will not be considered the same.

context than the rest of the expanded code. This will rightfully raise an error (shown in

Listing 3.7), since line’s 3 a will not exist due to not being in the same syntactic context

as line 2.

1 error[E0425]: cannot find value `a` in this scope
2 --> src/main.rs:13:21
3 |
4 | let four = using_a!(a / 10);
5 | ^ not found in this scope

Listing 3.7: The expansion in Listing 3.6 will result in an error during compile-time
since the as in line 2 and 3 are considered to belong to different contexts.

31

CHAPTER 3. RELATED WORK

1 html! {
2 h1 { "Hello, world!" }
3 p.intro {
4 "This is an example of the "
5 a href="https://github.com/lambda-fairy/maud" { "Maud" }
6 " template language."
7 }
8 }

Listing 3.8: HTML DSL embedded in Rust.18

3.2.2 Procedural Macros

Rust also has another macro mechanism, procedural macros, these can take three forms:

function-like macros, derive macros and attribute macros. In a nutshell, procedural macros

allow users to run code at compile-time, consuming and producing Rust syntax.

Function-like Macros

Function-like macros and declarative macros are similar regarding invocation, being

indistinguishable from each other, and output, completely replacing the original call.

However, the similarities stop there as their implementation methods are completely

different.

Definition. Function-like macros are defined by a public function with the proc_macro

attribute and a signature of type (TokenStream) -> TokenStream. Everything contained

inside the call delimeters of the macro invocation is input to the function, as previously

referred, the output will completely replace the macro call.

Domain Specific Languages. While the macros discussed next also provide their contri-

bution for domain specific languages in Rust, function-like macros provide the necessary

tools to write an embedded DSL. The Rust ecosystem developers have developed HTML

DSLs15,16 (see the example in Listing 3.8) and the possibility to run Python inside Rust17.

Derive Macros

Derive macros likely are the most common kind of procedural macro in Rust, they are

usually used to derive a trait implementation from a struct (see Listing 3.9). They define

new inputs for the derive attribute, and can also create new items given the token stream

of a struct, enum or union.

Definition. Just like function-like macros, derive macros are defined as a public function

with the proc_macro_derive attribute and a signature of (TokenStream) -> TokenStream.

15https://github.com/lambda-fairy/maud (visited in 08/06/2021)
16https://github.com/bodil/typed-html (visited in 08/06/2021)
17https://github.com/fusion-engineering/inline-python (visited in 08/06/2021)
18https://github.com/lambda-fairy/maud (visited in 08/06/2021)

32

https://github.com/lambda-fairy/maud
https://github.com/bodil/typed-html
https://github.com/fusion-engineering/inline-python
https://github.com/lambda-fairy/maud

3.2. RUST MACROS

1 #[derive(Debug)]
2 struct Coordinate {
3 x: f32,
4 y: f32,
5 x: f32,
6 }

Listing 3.9: Example usage of #[derive(...)], in this case deriving Debug enables
the structure to be printed with “println!("{:?}", coord)”.

1 #[derive(Error)]
2 enum CoordinateError {
3 #[error("Invalid coordinates {0}")]
4 InvalidCoordinates(Coordinates),
5 }

Listing 3.10: Example usage of a derive macro with helper attributes, in this case
the error(...) defines an error message with a Coordinates parameter.

The input is a token stream of the item with the derive attribute, the output is a set of

items that are appended to the module or block where the input token stream is in. In

Listing 3.9 the Debug implementation will be appended to the end of the structure.

Helper Attributes. Derive macros are also able to add additional attributes to the scope

of the current item. Such attributes are called derive macro helper attributes and they are

inert, that is, they are not processed by themselves but rather serve as annotations (see

Listing 3.10).

Attribute Macros

Attribute macros define new outer attributes, in contrast to the attributes discussed in

Listing 3.2.2, attribute macros are processed as independent units and not as an annota-

tion. They can be attached to items (see [34, Section 6]), including items in extern blocks,

inherent and trait implementations, and trait definitions.

Definition. Like the other macros, attribute macros are also declared by a public function

with the proc_macro_attribute, however, their function signature takes two parameters

instead of one, being (TokenStream, TokenStream) -> TokenStream.

The first parameter is the token tree following the attribute name, for example, in

Listing 3.11 it would contain the token tree of ("/hello/<name>/<age>"), in the case the

attribute is written as a bare attribute name (e.g. #[attribute]), the token tree is empty.

The second parameter is the token tree of the item the macro is attached to, the

function output will replace such item with the return item or items.

While attribute macros are able to replace the input stream, they can also leave the

stream unchanged and check for code properties (e.g. if all variables start with a given

prefix).

33

CHAPTER 3. RELATED WORK

1 #[get("/hello/<name>/<age>")]
2 fn hello(name: String, age: u8) -> String {
3 format!("Hello, {} year old named {}!", age, name)
4 }

Listing 3.11: Attribute macros are commonly used in web frameworks to provide
an easy way to declare an endpoint. In this example19 the user declares that GET
requests to hello/ have two path parameters (name and age) and should be handled
by the hello function.

Macro Type Input Processing Output Processing Invocation
Declarative Pattern Matching Replace macro!
Function-like User programmed Replace macro!
Derive User programmed Append #[derive(...)]
Attribute User programmed Replace #[attribute]

Table 3.1: Rust macros properties summary.

3.2.3 Summary

In summary, metaprogramming in Rust is enabled by macros, these can be divided into

two categories, declarative macros and procedural macros. Their main characteristics are

summarized in Table 3.1.

Declarative macros (Section 3.2.1) work mainly through pattern matching, they are

the best tool to avoid code repetition without putting in the effort of writing a token

parsing macro. However, for more complex tasks, declarative macro’s readability quickly

degrades leading to an unpleasant developing experience.

Procedural macros (Section 3.2.2) can be further subdivided into three categories,

being function-like, derive and attribute macros. Function-like macros can be considered

as an alternative to declarative ones, they allow for more functionality and flexibility

being possible for the code behind them to be replaced from one to the other without

changes on the user’s part. In comparison with other procedural macros, function-like

macros allow for the creation of an embedded DSL inside Rust while the others are mainly

annotations. Derive macros are mainly used to extend existing structures with traits that

can be derived automatically (e.g. Debug). Finally, attribute macros can be used to modify

existing code or simply check for code properties (e.g. if an enum fields are sorted).

3.3 Approaches to Behavioral Types

As previously discussed, there are several kinds of approaches to behavioral types, some

aim to bridge modern languages and behavioral types, others build a language from

scratch. Building a new language is a more attractive approach since there is no require-

ment for retrofitting. This approach is more common in the typestate domain, with Vault

19https://rocket.rs/ (visited in 08/06/2021)

34

https://rocket.rs/

3.3. APPROACHES TO BEHAVIORAL TYPES

and Plaid being prime examples. The library approach receives more attention from the

session types domain, where projects aim to implement them in existing languages such

as Java, Go and Rust.

3.3.1 Session Types

As established so far, session types are mostly used for communication protocols, defining

message types and their order in a “conversation”. Session types also share common

ground with typestates as works StMungo [21, 39] and others [13, 37] demonstrate.

StMungo it is a transpiler from Scribble [42] to Java based on session types and typestate.

The transpilation process takes Scribble local protocols as input, generating Mungo type-

state specifications and Java skeleton implementation code. The output is then checked

by Mungo [21, 39]. This process is based on a formal translation of session types into

typestate specifications for channel objects, and extends the translation from binary to

multiparty session types.

A Session Type Provider. The work by Neykova et al. [26] leverages F#’s type providers

to provide developers with practical session types along with refinements. The refine-

ments enable the placement of constraints regarding the protocol’s messages, these are

described using Scribble [42] along with the rest of the protocol; the protocol and its

respective refinements are validated and the .NET platform generates the required code

for the F# APIs.

Furthermore, this approach allows users to still use features like autocomplete (some-

thing that is still being worked on in the Rust ecosystem) and documentation. This

approach also reduces bugs and simplifies several error-prone parts of development.

Session Types for Rust. As far as I am aware, the work on Rust session types was started

by Jespersen et al. [18], such work was limited as it only supported binary session types.

It builds on a Haskell-based approach [27], mirroring the implementation interface.

The type constructs in the original session types formulation have correspondents in

the Rust implementation, this is part of a DSL embedded in the Rust type system. The

library makes use of unsafe to allow for transmutation (i.e. unsafe type casting) and

sending untyped values over the channels.

Finally, the library is able to provide compile-time safety, that is, the code will not

compile if the channel’s protocols do not match.

The sesh crate [20], in contrast to session-types [18], builds on a different theory, pro-

vides much cleaner types and embraces Rust’s affine type system, instead of actively

trying to make it linear. While the crate requires no use of unsafe, it does require a

nightly compiler, unsuited for production environments.

Like session-types, the sesh crate provides the required abstractions to use session

types in Rust, however, the crate’s documentation is limited, possibly being “inaccessible”

35

CHAPTER 3. RELATED WORK

to less experienced users w.r.t. Rust and session types, along with these factors, the crate

is not adequate for production due to the requirement of a nightly compiler.

Multiparty Session Types for Rust. Work on multiparty session types started with La-

gaillardie et al. [22]. This work makes use of the Scribble [42] toolchain, just like StMungo;

and it is a thin wrapper over previous work done by Kokke [20]. Similarly to the previ-

ously presented work [18], this work also takes advantage Rust’s type system to provide

compile-time safety. While using Scribble allows the library to make use of a tried and

tested toolchain, it also implies the usage of an external tool, which in previous works

was not necessary [18, 20].

Rumpsteak [7] is a Rust library targeting asynchronous applications using async/await,

it offers clean session types and its approach relies heavily on macros. The crate works

by defining a global type which is projected into roles, this is done by Scribble which in

turn requires an external toolchain20; from each role an endpoint finite state machine is

extracted and optimized, in the end an API is generated which can then be used to build

each process.

To enforce linear resource usage when build the processes the library makes use of the

type system to enforce the consumption of each “state”; enforcing protocol completion

is done through a closure, which takes the initial session type and returns a terminal End

type, a session is then required to be run until completion otherwise the return type will

not be respected and the type checker will complain.

Like sesh this crate is still in “research mode”, however its documentation is not in-

complete, but rather non-existent. This raises several difficulties when trying to evaluate

the library as the only existing documentation is the paper [7], which does not cover all

the library’s details.

3.3.2 Typestate

In the work of Ancona et al. [2, Section 2.3] several approaches to typestates are enumer-

ated. While most approaches create a new language, approaches like Fugue [8] simply

build on top of existing languages. This kind of approach is extremely valuable as it

bridges the gap between existing programming languages and the theoretical field.

Vault is a programming language with the aim of researching lifetime tracking and

the symbolic state of objects [11]. Vault introduces two new concepts — adoption and

focus, which serve to relax constrains imposed by a linear type system. Since aliasing

can be controlled through the linear type system, Vault is able to check for states, hence

supporting typestate. Vault bridges the best of both worlds by splitting programs into

two groups: the ones able to be checked for protocols (i.e. typestated) and the ones free of

aliasing restrictions and thus unable to verify protocol rules.

20https://github.com/nuscr/nuscr (visited in 08/06/2021)

36

https://github.com/nuscr/nuscr

3.3. APPROACHES TO BEHAVIORAL TYPES

1 [WithProtocol("open", "closed")]
2 class OuterSocket {
3 [InState(”connected”, WhenEnclosingState=”open”),
4 NotAliased(WhenEnclosingState=”open”)]
5 [Unavailable(WhenEnclosingState=”closed”)]
6 private Socket innerSocket;
7 }

Listing 3.12: Relating a class’s states with the innerSocket states. In this example,
the OuterSocket’s open state is related with the connected state of the socket. This
ensures that the OuterSocket is a well-behaved client of innerSocket.

The adoption mechanism works by means of an adopter (i.e. which adopts a linear

reference) and an adoptee (i.e. the adopted reference). Through adoption, the adopted

linear reference is consumed, and thus cannot be directly accessed. Furthermore, the

lifetime of each reference alias is tied to the lifetime of the adopter. When the adopter is

freed, all adopted references recover their linear type.

The focusing mechanism provides a temporarily linear view on a nonlinear object.

The focused object is required to be live and of the same type in the end of the focus

usage. Access to the parent of the focused object is temporarily revoked, disabling alias

access.

Fugue is a software checker that enables interface protocols (i.e. typestates) to be spec-

ified as annotations [8]. It provides two main protocol checking functions, resource pro-
tocols and state-machine protocols. Resource protocols relate to the allocation and release

of resources, since Rust takes care of such concerns through ownership I will not discuss

this feature of Fugue.

State-machine protocols allow the programmer to constrain the sequence of method

calls on an object. This is also known as typestate, as one can only transition between

valid states. In Fugue, the developer adds annotations to the object’s methods and from

them, a state-machine is derived. Fugue also allows for states to relate to one another.

Consider the example in Listing 3.12; by relating the states in the OuterSocket class with

the innerSocket field states Fugue can ensure that OuterSocket is a well-behaved client

of the field’s class.

Plaid is a typestate-oriented language. The idea, proposed in [1], is based on support for

first-class typestates in an object-oriented setting. In Plaid, objects are described by their

state rather than members. While the object is able to have fields common to all states,

there is also the possibility for fields to be exclusive to a given state. For the example

of the File which can be either in the Open state or the closed, the former state would

have an OS file descriptor, while the closed state would not. The path to the file could be

available for both states, since it would allow the file to be re-opened.

In Plaid, methods can make the object transition between states. Building on the file

example, the method open would transition the file from the Closed state to the Open state.

37

CHAPTER 3. RELATED WORK

@Typestate("StateIteratorProtocol")
class StateIterator { /* ... */ }

Listing 3.13: Mungo’s Typestate annotation. Normal Java code ends up ignoring
the annotation. However, Mungo is able to process it and check the class calls
against the specification to ensure typestate compliance. In this case the class
specification is StateIteratorProtocol.

Plaid also introduces a series of aliasing control keywords, unique disallows aliasing on

an object while allowing for state transitions, immutable disallows mutation (i.e. state

transitions), shared makes an object behave like it normally would in Java, allowing

aliasing (since it allows aliasing, it also requires runtime checks over state on sensitive

operations).

Mungo is a static analysis tool [21, 39] for Java programs. It checks typestate proper-

ties and can be divided into two components, a Java-like language to define typestate

specifications and a typechecker, which checks that objects follow the typestate specifi-

cation. Specifications are written as separate files and can then be used in Java classes

through annotations, as demonstrated in Listing 3.13. The annotations enable Mungo to

be unobtrusive in projects since annotations are not required to be processed (as seen in

Section 3.1.2).

If a class has a typestate specification, the Mungo typechecker analyses each object
of that class in the program and extracts the method call behaviour (sequences of
method calls) through the object’s life. Finally, it checks the extracted information
against the sequences of method calls allowed by the typestate specification. — [12,
Chapter 14, Section 1.2]

3.3.3 Summary

In summary, behavioral types is a topic which for now, is still mostly confined to the

academia circles. Despite the efforts put into the development of tools for “business”
languages, the tools were either abandoned (e.g. Fugue) or superseded by other develop-

ments in the field (e.g. the initial work in session types for Rust). Languages developed

for research purposes (e.g. Vault and Plaid) seem to make little to no effect on the outside

world. While adoption of the language itself is not expected, such could be expected for

the mechanisms, though it does not seem to be the case. Possibly, the main factor working

against newer academic ideas is that they are bleeding-edge research, making companies

wary of their application, preferring to keep their old but tested development methods,

instead of investing on newer and untested ones. Finally, in the case of tools (e.g. Scribble

and Mungo), they seem to pick the most traction from academia. The motivation seems

to be based on the possibility of extension and continuous improvement. However, they

seem to suffer the same destiny as others, causing little to no impact in the outside world.

38

4

The #[typestate] macro

This chapter presents the contributions of the present work, the #[typestate] macro. In

Section 4.1, I start by demonstrating how to implement Rust typestates by hand. In Sec-

tion 4.2.2 I discuss the macro high-level architecture, the DSL is discussed in Section 4.2,

followed by the validation process in Section 4.3 and visualization options offered by the

macro in Section 4.4.

4.1 Typestates: The Hard Way

I will start be demonstrating the development process from a state machine specification

to a functional prototype, developing all the required components by hand. The example

will be a vending machine, its automaton is illustrated in Figure 4.1. To simplify the

example, consider the following:

• The machine houses an infinite stock of each of the available snacks.

• Each snack is addressed by its index and the only information available about it is

its price.

• The machine does not make change.

We start by designing our typestated structure, the VendingMachine; to do so, we will

use a State generic type parameter to model the current state.

struct VendingMachine<State>;

The compiler will issue an error since the State type parameter is currently unused;

fixing the error can be done in one of two ways:

• Declaring a PhantomData1 field using State as its type parameter. This approach is

useful if the types used in State do not carry more information other than its type.

struct VendingMachine<State> { state: PhantomData<State> }

• Declaring a field of type State. This approach allows us to use more information

other than its type alone, such as structure fields.

39

CHAPTER 4. THE #[TYPESTATE] MACRO

Waiting

HasMoney HasPickFinish

NeedsMoney

on
off

insert_money pick_slot

pick_slot insert_money

insert_money

enough

!enough

finish

Figure 4.1: Vending machine automaton.

struct VendingMachine<State> { state: State }

The former is useful where all states are simply markers (i.e. do not carry additional

information), however, consider that the vending machine is required to keep track of

both the client’s pick along with the inserted money so far.

Looking back at Figure 4.1, we can infer the following:

• The Waiting and Finish states do not require any fields.

• The HasMoney and HasPick states require their own fields, the money inserted so far

and the slot picked by the client, respectively.

• The NeedMoney state requires both the money and picked slot.

With that in mind, we are required to take the second approach, enabling states to have

inner values.

While our vending machine is now able to deal with the concept of state, it is unable

to sell anything, we need some place to store the items available for sale and all the money

we made. We will use a vector for the items and an unsigned 64-bit integer for monetary

values, see Listing 4.1. These values are available for any state, as they are “part of the

machine” and not specific to a given state.

Another problem resides in the fact that the machine supports states, but does not

have any. To address this we need to declare each state as a structure; each structure can

1PhantomData is a zero-sized type used to “pretend” that it owns a previously-unused type parameter (or
lifetime). This is required since Rust’s compiler will complain in the case that a type parameter is unused. To
know more about PhantomData, please refer to its documentation page — https://doc.rust-lang.org/std/
marker/struct.PhantomData.html (visited 20/07/2021); or to The Rustonomicon — https://doc.rust-lang.
org/nomicon/phantom-data.html (visited 20/07/2021).

40

https://doc.rust-lang.org/std/marker/struct.PhantomData.html
https://doc.rust-lang.org/std/marker/struct.PhantomData.html
https://doc.rust-lang.org/nomicon/phantom-data.html
https://doc.rust-lang.org/nomicon/phantom-data.html

4.1. TYPESTATES: THE HARD WAY

1 struct VendingMachine<State> {
2 /// The money made so far.
3 balance: u64,
4 /// The available item's prices.
5 items: Vec<u64>,
6 /// The current machine state.
7 state: State,
8 }

Listing 4.1: The vending machine main struct.

1 /// The machine is waiting for interaction.
2 struct Waiting;
3 /// The machine has received some amount of money
4 struct HasMoney {
5 /// The insert amount of money
6 money: u64
7 }
8 /// The machine has received a slot pick.
9 struct HasPick {
10 /// The selected slot.
11 picked_slot: usize
12 }
13 /// The machine has received both money and a slot pick,
14 /// but not enough money to complete the purchase.
15 struct NeedMoney {
16 money: u64,
17 picked_slot: usize
18 }
19 /// The purchase is complete.
20 struct Finish;

Listing 4.2: The vending machine’s states, as illustrated in Figure 4.1.

then contain its own fields, only available for that state; listed in Listing 4.2.

Moving on to transitions, we need to ensure that there are no aliases to the current

state; Rust’s borrow checker helps us achieve that goal, we can restrict the usage of the

current state to only be possible in the case self is owned, the borrow checker will then

make sure that is true when time comes to use the method.

To declare a transition, we first open an impl2 block which will contain our transition,

the block will implement a concrete state of the state machine by specifying the generic

type parameter to be one of the declared states, line 1 of Listing 4.3; inside the block, we

declare the transition function, it will take self as a first parameter, consuming the first

state, and return the next state; exemplified in lines 4 & 5 of Listing 4.3.

2The impl keyword is used for implementation blocks, whether it is for inherent or trait implemen-
tations. For further details, refer to The Rust Reference — https://doc.rust-lang.org/reference/items/
implementations.html (visited 20/07/2021).

3Self is a keyword which acts as a type alias to the “current” type, it is native to Rust and works in the
context of traits and their implementations. In Listing 4.3, Self will refer to VendingMachine<Waiting>. For
more information, refer to https://doc.rust-lang.org/std/keyword.SelfTy.html (visited in 20/07/2021).

41

https://doc.rust-lang.org/reference/items/implementations.html
https://doc.rust-lang.org/reference/items/implementations.html
https://doc.rust-lang.org/std/keyword.SelfTy.html

CHAPTER 4. THE #[TYPESTATE] MACRO

1 impl VendingMachine<Waiting> {
2 fn on() -> Self { /* ... */ }
3 fn off(self) { /* ... */ }
4 fn insert_money(self, money: u64) -> VendingMachine<HasMoney> { /* ... */ }
5 fn pick_slot(self, picked_slot: usize) -> VendingMachine<HasPick> { /* ... */ }
6 }

Listing 4.3: The vending machine’s Waiting implementation3.

1 impl VendingMachine<Waiting> {
2 /// The user has inserted some amount of money into the machine.
3 fn insert_money(self, money: u64) -> VendingMachine<HasMoney> {
4 VendingMachine::<HasMoney> {
5 contents: self.contents, // pass the machine's contents
6 state: HasMoney { // new state
7 money // pass the received money
8 }
9 }
10 }
11 // ...
12 }

Listing 4.4: The implementation of insert_money for the machine’s Waiting state.

1 // To simplify naming, we reuse the state's names
2 enum CheckFinish {
3 NeedsMoney(VendingMachine<NeedsMoney>),
4 Finish(VendingMachine<Finish>),
5 }

Listing 4.5: Vending machine’s decision node as a Rust enum.

To better understand what is going on, lets implement the insert_money function;

the function will perform the transition from the Waiting state (declared as the generic

parameter in line 1 of Listing 4.4), to the HasMoney state, declared as the generic parameter

of the VendingMachine return type, line 3 of Listing 4.4.

Before going further, a quick recap over what has been done so far — we have declared

the vending machine, its states and some of its transitions.

I say “some” transitions, because we have not addressed how the diamonds in Fig-

ure 4.1 work. We use the diamonds to represent a decision between N possible paths, I

will refer to them as decision nodes; this representation closely resembles Deterministic

Object Automata (DOA) [36]. To model our decision nodes, we can use Rust’s enumera-

tions, these allow us to declare possible outcomes and force the API client to match them.

We continue our path, following the pick_slot transition from the HasMoney state to a

decision node, we have either the Finish state or the NeedsMoney state; the implementation

of the decision node is described in Listing 4.5.

Using the CheckFinish enumeration, we are now able to properly define HasMoney’s

42

4.1. TYPESTATES: THE HARD WAY

1 impl VendingMachine<HasMoney> {
2 fn pick_slot(self, picked_slot: usize) -> CheckFinish {
3 let money = self.state.money;
4 let price = self.contents[picked_slot]; // get the pick's price
5 // Check if there is enough money
6 if money >= price {
7 // If yes, return the `Finish` state
8 CheckFinish::Finish(
9 VendingMachine::<Finish> {
10 // update the machine's balance
11 balance: self.balance + money,
12 contents: self.contents,
13 state: Finish,
14 }
15)
16 } else {
17 // If not, return the `NeedMoney` state
18 CheckFinish::NeedMoney(
19 VendingMachine::<NeedMoney> {
20 balance: self.balance,
21 contents: self.contents,
22 state: NeedMoney { money, picked_slot },
23 }
24)
25 }
26 }
27 }

Listing 4.6: The pick_slot implementation for the vending machine during the
HasMoney state.

1 let mut vm: CheckFinish = vm.pick_slot(0);
2 while let CheckFinish::NeedMoney(vm_) = vm {
3 vm = vm_.insert_money(1);
4 }
5 match vm {
6 CheckFinish::Finish(vm) => vm.finish().off(),
7 CheckFinish::NeedMoney(_) =>
8 unreachable!("if we left the loop this should be unreachable"),
9 }

Listing 4.7: Matching CheckFinish in two different ways; lines 2-4 — using a while
loop, lines 5-9 — using common match.

pick_slot function; if the user has inserted enough money, a purchase is made (Listing 4.6

— lines 7-15), otherwise, the vending machine asks for more money (Listing 4.6 — lines

17-24), in either case, it returns a variant of the declared enum.

The API client will now be required to match the enumeration, which implies the user

needs to (or at least try to) deal with all possible outcomes; exemplified in Listing 4.7.

This concludes the implementation of the state machine, the states I did not cover

follow the same implementation pattern, as the automaton is “symmetric”, although the

43

CHAPTER 4. THE #[TYPESTATE] MACRO

let vm = VendingMachine::<Waiting>::on() // Start the vending machine
.finish(); // Finish a purchase

Listing 4.8: Calling the finish function in the Waiting state.

no method named `finish` found for struct `VendingMachine<Waiting>`
in the current scope items from traits can only be used if the trait is
implemented and in scope the following trait defines an item `finish`,
perhaps you need to implement it:
candidate #1: `Hasher`

Listing 4.9: The error resulting from Listing 4.8.

functions perform different actions.

To test if our typestates work, we can try to call a function in a state where such

function is unavailable (Listing 4.8); this will not compile, but the compiler will be helpful

enough to issue a very complete error, stating that — finish was not found for the Waiting

state (Listing 4.9).

4.1.1 Future Proofing

Our API seems to be rock-solid, methods cannot be called in state they do not belong to

and the compiler will even provide helpful messages.

However, there is a problem, nothing stops a developer from extending the API by

implementing a “foreign” type (in this context, consider “foreign” to be a type which is

not a state), such as the unit type — (). Disregarding the fact that implementing the unit

type as a vending machine state makes no sense; we need to avoid these situations and to

do so The Rust API Guidelines4 offer an answer!

We can implement the “sealed trait pattern”, which is just a way of stopping down-

stream users from modifying our state hierarchy. Following the guidelines, we need to

first create a public trait which every state will implement (Listing 4.10 — lines 13-23);

we need to further restrict the state set with a private trait (Listing 4.10 — lines 1-11),

also implemented by every state, it is required to be private so downstream users are

unable to access and implement it.

4.2 Typestates: The DSL

Now that we know how to build our own typestates, we want to automate the error-prone

parts of the process. In this section I present the macro’s DSL, I start presenting the DSL’s

syntax and semantics, followed by a dive into its internals, going through the simpler

constructs and how they relate to typestates first, finishing on more advanced features.

4https://rust-lang.github.io/api-guidelines/future-proofing.html#
sealed-traits-protect-against-downstream-implementations-c-sealed (visited in 20/07/2021)

44

https://rust-lang.github.io/api-guidelines/future-proofing.html#sealed-traits-protect-against-downstream-implementations-c-sealed
https://rust-lang.github.io/api-guidelines/future-proofing.html#sealed-traits-protect-against-downstream-implementations-c-sealed

4.2. TYPESTATES: THE DSL

1 mod private {
2 /// The `Sealed` trait, unable to implemented by downstream users.
3 pub trait Sealed {}
4
5 // The trait implementations for each state.
6 impl Sealed for Waiting {}
7 impl Sealed for HasMoney {}
8 impl Sealed for HasPick {}
9 impl Sealed for NeedMoney {}
10 impl Sealed for Finish {}
11 }
12
13 /// The `State` trait. While any user can *technically* implement it,
14 /// its bound requires `private::Sealed` to also be implemented,
15 /// which is impossible because it is not accessible to downstream users.
16 pub trait State: private::Sealed {}
17
18 // The `State` trait implementations.
19 impl State for Waiting {}
20 impl State for HasMoney {}
21 impl State for HasPick {}
22 impl State for NeedMoney {}
23 impl State for Finish {}

Listing 4.10: The implementation of the sealed trait pattern for our vending ma-
chine automaton.

4.2.1 Syntax & Automaton Extraction

#[typestate]’s DSL syntax is interlinked with its automaton extraction process, as

such, I will discuss them in conjunction.

A quick primer on the DSL’s syntax is presented in Listing 4.11; this section covers

each functionality present in the primer by building towards a complete example. I will

present parts of the syntax and explain how it relates with the automaton. We will reuse

the vending machine example, illustrated in Figure 4.1 and model it using our DSL.

The #[typestate] macro is the DSL’s entrypoint and it only supports being attached to

modules (Listing 4.11 lines 1-3). Given that we want to access several parts of Rust’s

syntax (e.g. struct, enum, etc.) we can take one of two approaches — either analyze the

whole file with an external tool, or annotate and process the best next thing, the module.

The module provides most of the syntax elements available to “top-level” Rust, while

being possible to analyze using the macro system; inside a module we can declare struc-

tures, enumerations, free functions and so on.

To start modeling the vending machine we first declare a module, to which we will

call vending_machine_api, and annotate it with #[typestate]; as shown in Listing 4.12.

This alone is not enough, as the macro will throw an error due to the lack of an automaton;

shown in Listing 4.13.

45

CHAPTER 4. THE #[TYPESTATE] MACRO

1 // The entry point to the DSL
2 #[typestate]
3 mod typestate_dsl {
4 // Only one automaton per typestate specification
5 #[automaton] struct Automaton;
6 // N-states are possible
7 #[state] struct StateA;
8 #[state] struct StateB;
9 // Functions are defined inside traits
10 // Traits share their name with an existing structure
11 trait StateA {
12 // Transitions are functions that consume `self`
13 // and return an existing state
14 fn transition(self) -> StateB;
15 // Functions can declare states as initial/final
16 // Initial state declarations do not take `self`
17 fn new() -> StateA;
18 // Final state declarations consume `self` and
19 // do not return an existing state
20 fn end(self);
21 }
22 }

Listing 4.11: The main elements for the #[typestate] DSL.

#[typestate] mod vending_machine_api {}

Listing 4.12: The vending machine’s API module, annotated with the #[typestate]
macro.

error: Missing `#[automaton]` struct.
|
| #[typestate]
| ^^^^^^^^^^^^

Listing 4.13: The error issued by the code in Listing 4.12.

The #[automaton] annotation is attachable to structures only, and allows the macro to

know which of the declared structures is the automaton (Listing 4.11 lines 4-5).

Listing 4.14 fixes the error of Listing 4.12, by adding the VendingMachine structure

and annotating it with #[automaton] the macro is now able to know which structure is

the main state machine (i.e. which structure will be typestated).

Notice how the code from Listing 4.15 does not contain any reference to the current

#[typestate] mod vending_machine_api {
#[automaton] pub struct VendingMachine;

}

Listing 4.14: Listing 4.12; with an automaton declaration.

46

4.2. TYPESTATES: THE DSL

mod vending_machine_api {
mod private {

pub trait Sealed {}
}
pub trait State: private::Sealed {}
pub struct VendingMachine<S> where S: State {

state: S
}

}

Listing 4.15: Code resulting from Listing 4.14 expansion.

#[typestate] mod vending_machine_api {
#[automaton] pub struct VendingMachine;
#[state] pub struct Waiting;
#[state] pub struct HasMoney { money: u64 }
#[state] pub struct HasPick { picked_slot: usize }
#[state] pub struct Finish;
#[state] pub struct NeedMoney {

pub money: u64,
pub picked_slot: usize,

}
}

Listing 4.16: Listing 4.14; with all states declared.

state, that is added by macro through the #[automaton] annotation, along with the sealed

pattern skeleton; described in Section 4.1.1.

Once again, this still does not make the macro happy, while we now have an automa-

ton, we are lacking initial and final states; as shown in Listing 4.18.

The #[state] annotation, like the #[automaton] annotation, is only attachable to struc-

tures (Listing 4.11 lines 6-8); it marks them as states and also implements the necessary

traits to include the state in the sealed trait state set (Section 4.1.1).

As we can observe in Listing 4.16, declaring states is as simple as attaching the anno-

tation to an existing structure. In Listing 4.17 we can see the expansion of the NeedMoney

state; implementing the sealed trait pattern.

While we have declared our states, we still have the same error (Listing 4.18); that

is because, currently, we only have loose states, we have not connected them in any

meaningful way.

Function declarations allow us to declare transitions without any kind of annotations

(Listing 4.11 lines 9-21); we can simply check the function signature and infer the kind

of transition, however to do so, we first need to establish rules, those are:

• If a function takes self and returns a valid state, the function is considered to be a

transition between the current state and the returned state.

fn (self, ...) -> State;

47

CHAPTER 4. THE #[TYPESTATE] MACRO

mod vending_machine_api {
// ...
pub struct NeedMoney {

pub money: u64,
pub picked_slot: usize,

}
// using the qualified path (i.e. `private::Sealed`) we sidestep the
// requirement of being *inside* the `private` module
// to implement the `Sealed' trait
impl private::Sealed for NeedMoney {}
impl State for NeedMoney {}

}

Listing 4.17: Expansion of the NeedMoney state, declared in Listing 4.16.

error: Missing initial state. To declare an initial state you can use a
function with signature like `fn f() -> T` where `T` is a declared state.
--> vm-typestate/src/main.rs:15:1

|
| #[typestate]
| ^^^^^^^^^^^^
|

error: Missing final state. To declare a final state you can use a
function with signature like `fn f(self) -> T` where `T` is not a declared state.
--> vm-typestate/src/main.rs:15:1

|
| #[typestate]
| ^^^^^^^^^^^^
|

Listing 4.18: The error issued by the code in Listing 4.12.

• If a function does not take self as an argument and returns the current state, it

describes the current state as an initial state.

fn (...) -> State;

• If a function takes self as an argument and does not return a valid state, it describes

the consumed state as a final state.

fn (self, ...) -> ...;

To declare functions, we first need to declare a trait with the same name as the target

state, by doing this, the macro is able to know which state we are currently referring to;

inside the trait, we can declare all functions to be implemented by the current state.

If the reader is familiarized with Rust, they might have realized that traits cannot

share names with structures, enumerations or others; in our DSL that works because

during expansion the trait is renamed as: TraitName + State => TraitNameState.

In Listing 4.19, we use the Waiting state as it contains all the previously described

types of transitions.

48

4.2. TYPESTATES: THE DSL

#[typestate] mod vending_machine_api {
#[state] pub struct Waiting;
// The trait is named after the `Waiting` state,
// thus, the macro knows which state is the *current* one.
pub trait Waiting {

// Does not consume self, returns the current state: initial state
fn on() -> Waiting;
// Consumes self, does not return: final state
fn off(self);
// Consume self and return a valid state: transitions
fn insert_money(self, money: u64) -> HasMoney;
fn pick_slot(self, picked_slot: usize) -> HasPick;

}
}

Listing 4.19: Declaration of the Waiting state functions.

Annotation Attaches to Declares
#[typestate] Module API
#[automaton] Structure Automaton/Typestate
#[state] Structure State

Table 4.1: Overview of the DSL’s annotations.

Implementing the states and transitions is similar to what we did in Section 4.1, while

we have taken care of the sealed pattern, how the machine behaves is left to us.

When using the DSL, instead of declaring an implementation for the target state, as

follows:

impl VendingMachine<Waiting> { /* ... */ }

You implement a trait for the target state:

impl WaitingState for VendingMachine<Waiting> { /* ... */ }

This way, the compiler is able to point out which methods are missing (and in the

future, tools like rust-analyzer5 might add all missing signatures for the developer). The

rest of the implementation is made in the same way as the one in Section 4.1.

4.2.1.1 Summary

In Section 4.2.1 I have introduced the basic features of the DSL; in Table 4.1 I provide a

quick overview of the available annotations, #[typestate], #[automaton] and #[state];

in Table 4.2 I review the transition inference rules for function declarations.

5https://rust-analyzer.github.io/ (visited in 19/07/2021)

49

https://rust-analyzer.github.io/

CHAPTER 4. THE #[TYPESTATE] MACRO

Function signature Consumes a state Returns a state Inferred
fn (self, ...) -> State; ✓ ✓ Transition
fn (...) -> State; ✓ Initial State
fn (self, ...) -> ...; ✓ Final State

Table 4.2: Overview of the transition inference rules.

Typestate
Specification AST

Intermediate
Graph

State
Machine

Rust
Code

Visualization(s)

Parse

Extract

Convert

Check: Ok

Generate

Check: Error

Figure 4.2: From DSL specification to Rust code. First the DSL is parsed, an inter-
mediate graph representing the automaton in more general terms is extracted from
the AST, from the graph the macro will convert the user can generate visualizations
(for debugging or documentation), this step is optional.

4.2.2 Architecture

This section provides an overview over the macro architecture, afterwards I will dive into

the parsing and code generation details.

The macro’s architecture is illustrated in Figure 4.2, as demonstrated in the previous

section, the DSL’s entry point is the #[typestate] attribute, attaching it to a module

will cause the macro system to run our code during expansion and process the module’s

code as we wish. During expansion the Abstract Syntax Tree (AST) of the module is

passed in to the macro code where a series of visitors are defined and run (described

Section 4.2.2.2), performing the state’s machine extraction and verification (described in

Section 4.3). If verification fails the macro issues an error (or errors), pointing the user to

the relevant code; if all checks pass, the user is ready to start implementing the typestate’s

functionalities.

4.2.2.1 Parsing

The macro’s parsing procedure leverages the syn crate6 to simplify the parsing process,

this allowed me to focus on getting the most information out of the user’s code rather

than worrying about how to parse Rust.

6syn is a parsing library for Rust’s TokenStream, for more information please see https://docs.rs/syn/
1.0.72/syn/index.html (visited in 20/07/2021).

50

https://docs.rs/syn/1.0.72/syn/index.html
https://docs.rs/syn/1.0.72/syn/index.html

4.2. TYPESTATES: THE DSL

State
Visitor

Decision
Visitor

Transition
Visitor

Figure 4.3: The #[typestate] macro visitors, by running order.

As the #[typestate] macro can only be attached to modules, we instruct syn to expect

and parse a module item7; this simple step already saves us from manually ensuring the

macro is attached to the right item. The resulting item is the module’s AST, from which

we will run a series of visitors, each analyzing a different part of the code.

4.2.2.2 Visitors

The macro is split into three separate visitors, each performs a pass over different item

kinds and if necessary, mutates the tree by generating new code and either adding or

replacing existing nodes. The following visitors are described in their running other;

shown in Figure 4.3.

The structure visitor will visit all structures, as the name states; currently, a user can

declare one of three possible structures;

• A structure annotated with #[automaton] (of which there can only be one).

• One annotated with #[state] (of which there can be N).

• One without annotations (of which there can be none).

From the visited structures we can extract the automaton’s structure and its states, these

are added to the graph and the sealed trait pattern is implemented for each structure.

The enumeration visitor solely visits enumerations; it checks that all enumeration vari-

ants exist as states and establishes edges between them and the decision node. This visitor

is also known as the decision state visitor since each enumeration represents a decision

to be made during runtime.

The trait visitor, or the transitions visitor, is responsible for the extraction of all the

transitions out of the declared traits. This visitor conflicts with the first one since it

generates traits which would then be visited; to avoid this problem typestate declares

an additional, undocumented and inert macro (i.e. a macro that returns its input); the

#[generated] macro. When the visitor sees an item attached with #[generated] it ignores

the item, the #[generated] macro is later processed as a regular macro by the macro

system and the annotation is removed.

4.2.3 Advanced Features

Section 4.2.1 presents the basic features of the DSL, armed with them, the reader should

be able to write typestates. However, some typestates will require more complex mech-

anisms, both to develop and use, that is the purpose of this section. Once more, we will

expand over our recurring example, the vending machine; illustrated in Figure 4.1.

7https://doc.rust-lang.org/reference/items/modules.html (visited in 20/07/2021)

51

https://doc.rust-lang.org/reference/items/modules.html

CHAPTER 4. THE #[TYPESTATE] MACRO

1 #[state] struct NextState;
2 #[state] struct ErrorState;
3
4 enum FallibleOperationResult {
5 NextState,
6 ErrorState
7 }

Listing 4.20: Fallible operations can be described using enumerations like the
FallibleOperationResult decision state.

1 enum FallibleOperationResult {
2 #[metadata(label="Success!")]
3 NextState,
4 #[metadata(label="Error happened because network failed.")]
5 ErrorState
6 }

Listing 4.21: Listing 4.20 enumeration with the metadata attribute.

4.2.3.1 Decision states

Decision states were previously discussed in the final of Section 4.1, and were first listed

in Listing 4.5. I now show how the DSL handles this kind of state.

There are cases where it is required that some uncertainty is modelled into the type-

state, maybe the typestate depends on a procedure that can fail or maybe, given the

input, the resulting state may differ; such states are required to be modelled, the used

representation is based on DOA [36].

To achieve such goal, I took advantage of Rust’s enumerations as they can repre-

sent several types under a single enum, my DSL tweaks their semantic from normal Rust.

Instead of allowing enumerations containing several kinds of variants, each with their

respective name, the DSL enforces that each variant is of the Unit8 type and shares its

name with an existing state; an example is provided in Listing 4.20.

In contrast to Listing 4.5, the DSL’s decision state’s variant do not have arguments,

these are generated from their name by the macro.

Transition labels can be added through the use of the metadata attribute, this attribute

allows the addition of relevant metadata to the transition edge. This is especially useful

to specify under which conditions the transition from a decision state to a specific state

happens; currently, the attribute only supports the label value. A usage example of the

metadata attribute is listed in Listing 4.21.

8https://docs.rs/syn/1.0.73/syn/enum.Fields.html#variant.Unit (visited in 08/07/2021)

52

https://docs.rs/syn/1.0.73/syn/enum.Fields.html#variant.Unit

4.2. TYPESTATES: THE DSL

1 pub trait NeedMoney {
2 fn insert_money(self, money: u64) -> CheckFinish;
3 fn get_message(&self) -> String;
4 fn update_pick(&mut self, new_pick: usize);
5 }

Listing 4.22: The NeedMoney, extended with the get_message and update_pick func-
tions.

1 impl NeedMoneyState for VendingMachine<NeedMoney> {
2 // ...
3 /// Return the message to be displayed.
4 fn get_message(&self) -> String {
5 let state = &self.state;
6 let unpaid_amount = self.contents[state.picked_slot] - state.money;
7 format!("{} left to go!", &unpaid_amount)
8 }
9 /// Update the current user pick.
10 fn update_pick(&mut self, new_pick: usize) {
11 self.state.picked_slot = new_pick;
12 }
13 }

Listing 4.23: The implementation of NeedMoney’s new functions, as declared in lines
3 & 4 of Listing 4.22.

4.2.3.2 Self-transitions

Consider that we are asked to display a message containing the amount left to pay in

the NeedMoney state; to do so we can simply add a new function to the NeedMoney trait,

like in line 3 of Listing 4.22. Notice how the new method takes &self instead of self,

thus, it takes the state as an immutable reference, instead of consuming the state; disabling

mutation of the current state. Mutable references are also supported, line 4 of Listing 4.22

declares a method taking a mutable reference to the current state, which in turn allows

the user to update its snack selection.

When working with automata we need to consider that every transition has both a

source and a destination, in the case of functions that take references to self, immutable

or not, they still represent transitions, in this case, the source and destination are the

same state; hence the name of self-transitions.

4.2.3.3 State enumeration

There are some cases in which an enumeration might come in handy, one of them is when

you are required to loop forever, and you may “stop during processing” (i.e. not complete

a full Waiting to Waiting cycle). In this case you will need a variable that can contain

one of the many possible states the machine might be in, given that you cannot replace a

variable’s type once it is assigned, you will need to use Rust’s enumerations.

53

CHAPTER 4. THE #[TYPESTATE] MACRO

#[typestate(enumerate)] mod vending_machine { /* ... */ }

Listing 4.24: Using the enumerate macro attribute.

1 enum EVendingMachine {
2 Waiting(VendingMachine<Waiting>),
3 HasMoney(VendingMachine<HasMoney>),
4 HasPick(VendingMachine<HasPick>),
5 NeedMoney(VendingMachine<NeedMoney>),
6 Finish(VendingMachine<Finish>),
7 }

Listing 4.25: The resulting enumeration of the enumerate attribute, demonstrated
in Listing 4.24.

#[typestate(state_constructors)] mod vending_machine { /* ... */ }

Listing 4.26: Using the state_constructors macro attribute.

For large state machines, writing the enumeration by hand is error-prone and not

practical; to address these issues #[typestate] offers the enumerate macro attribute.

By changing the attached #[typestate] annotation to #[typestate(enumerate)], as

demonstrated in Listing 4.24, it will generate the enumeration described in Listing 4.25.

Along with the enumeration, the macro will also implement the From conversion trait

between the enumeration and the respective states; this way, if the API client wishes to

convert a VendingMachine<Waiting> into EVendingMachine, they will be able to perform

the conversion using .into() or .from().

4.2.3.4 State constructors

A small quality-of-life improvement is the automatic declaration of state constructors,

shortening the declaration of a new state instance; these are only generated for states

containing named fields and the constructor’s parameters will be named after them. Its

usage is similar to that of the enumerate attribute, as shown in Listing 4.26, declaring

#[typestate(state_constructors)] will generate the constructors with the default name

new_state, demonstrated in Listing 4.27.

1 impl NeedMoney {
2 pub fn new_state(money: u64, picked_slot: usize) -> Self {
3 Self { money, picked_slot }
4 }
5 }

Listing 4.27: The generated constructor for the NeedMoney state; using the attribute
shown in Listing 4.26.

54

4.3. VALIDATION

1 impl<S, T> From<IntermediateGraph<S, T>> for GenericAutomaton<S, T>
2 where
3 S: Hash + Eq + Debug + Clone + Display,
4 T: Hash + Eq + Debug + Clone + Display,
5 {
6 fn from(i: IntermediateGraph<S, T>) -> Self {
7 // ...
8 }
9 }

Listing 4.28: Implementation of the From trait for the conversion between
IntermediateGraph and GenericAutomaton.

4.3 Validation

In this section I will be discussing the validation strategies used in my work, I start by

discussing the guarantees provided by the macro, followed by the typestate validation

strategy, finally, I present the automaton validation strategy.

Guarantees. My library aims to provide guarantees related with automata, not typestates;

this is the case because Rust’s compiler is able to reason over typestates already, as long

as we put it to good use we can rely on the borrow checker and type system to catch

typestate related errors (i.e. calling a method in the wrong state).

Regarding automata, my macro provides the following:

Non-empty language. The language of the automaton should not be empty; the macro

ensures the presence of final states.

Usefulness. All states should be useful, that is, all states should be reachable from the

initial state and be able to reach the final state.

Minimality is not present in the list of provided guarantees because it is unclear how

the macro could provide feedback to the user; while the macro can simply state — “The
presented automaton is not minimal”, such message does not help the user correcting the

problem. Furthermore, non-deterministic automata are required to first be determinized,

producing new states which the user is unable to see and thus providing feedback on

them is not the best solution.

4.3.1 The Automaton and the Graph

The automaton is extracted from the intermediate graph, this is done by implementing

Rust’s From conversion trait (see Listing 4.28), while the representations are very similar,

the GenericAutomaton is a stripped and specialized version of the intermediate graph.

The automaton is modelled as a directed graph, this approach is more efficient than

that of projects like OFlat [24], which uses sets. Originally I used the petgraph library9,

9https://docs.rs/petgraph/0.5.1/petgraph/index.html (visited in 20/07/2021)

55

https://docs.rs/petgraph/0.5.1/petgraph/index.html

CHAPTER 4. THE #[TYPESTATE] MACRO

1 pub trait Property {}
2
3 pub trait Validate<P: Property> {
4 type Out;
5 fn validate(&self, _: P) -> Self::Out;
6 }

Listing 4.29: The Validate trait is generic over the property being validated, but
not its output, hence the Out type being declared as an associated type.

however the library turned out to be inadequate to the problem at hand, petgraph’s

GraphMap10 required node types to be Copy11 and the types I am storing are neither Copy

nor defined by me.

To fix the problem, I have implemented a directed graph using adjacency lists, that

is, for each node, there is a list containing its neighboring nodes and the respective con-

necting edges. This approach takes from the FAdo [28] project which also uses adjacency

lists; to simplify some algorithms, I have added extra structures such as the inverse δ, or

δ−1 (in automata, the delta set δ represents an automaton’s transitions, δ−1 is the delta set

where each transition has had their direction inverted).

4.3.2 Implementing a validation strategy

The current macro architecture implements an intermediate graph over which several

transformations and analysis can be done, one of which being validation. The typestate

validation is performed over a general representation of automata (extracted from the

intermediate graph), the representation has been adapted from the FAdo library [28].

To allow for multiple validation strategies I defined a Validate trait, presented in List-

ing 4.29, the trait is implemented for a structure, over a Property (a blanket trait used to

define strategies).

Implementing the Validate trait requires a struct which will implement the Property

trait, and an implementation of the Validate trait for a structure over the property being

validated; this is listed in Listing 4.30.

The empty language verification is easy to address, since the automaton is required to

have end states, I simply store all end states in a set, then I am only required to check if

the set is empty or not.

Usefulness can be checked by first performing a graph search (I have opted for Depth-

First Search (DFS)). Useful states are those that reach the end state(s) (i.e. productive

states) and reachable from the initial state(s). The end state set comes in useful here,

since we can simply iterate over all states in the set and start the graph exploration,

visited nodes will be the productive ones, in the case that not all states are productive the

10https://docs.rs/petgraph/0.5.1/petgraph/graphmap/struct.GraphMap.html (visited in 20/07/2021)
11https://doc.rust-lang.org/std/marker/trait.Copy.html (visited in 20/07/2021)

56

https://docs.rs/petgraph/0.5.1/petgraph/graphmap/struct.GraphMap.html
https://doc.rust-lang.org/std/marker/trait.Copy.html

4.4. VISUALIZING TYPESTATES

1 pub struct UsefulStates;
2
3 impl Property for UsefulStates {}
4
5 impl<State, Transition> Validate<UsefulStates> for
6 GenericAutomaton<State, Transition>
7 where
8 State: Hash + Eq + Debug + Clone + Display,
9 Transition: Hash + Eq + Debug + Clone + Display,
10 {
11 type Out = HashSet<State>
12
13 fn validate(&self, _: UsefulStates) -> Self::Out {
14 // ...
15 }
16 }

Listing 4.30: Implementation example of a validation strategy, in this case it checks
that all states are useful (i.e. all states are part of a path from the initial state to the
final state.), implementation details are omitted but can be seen in https://github.
com/rustype/typestate-rs/blob/16da7790ef864054eb5bddde4f10c64ed2bcd511/
typestate-proc-macro/src/igraph/validate.rs#L178-L209.

verification stops here and issues an error, highlighting the culprits in the code. Checking

for useful states is then as simple as repeating the exploration procedure starting on the

initial states, the set of visited states can then be intersected with the set of productive

states to compute the useful states, once more, in the case that not all existing states are

useful, an error is issued, highlighting the state at fault.

4.4 Visualizing Typestates

Along with all the previously described features, I have implemented an embedded type-

state visualization; the visualization supports exporting to Graphviz DOT12 and Plan-

tUML state diagrams13, along with documentation embedding using Mermaid.js14 and

the aquamarine crate15 (detailed in Section 4.4.2). All formats have their own feature flags

(only aquamarine is part of the default set of features), and all formats leverage the graph

used by the macro for analysis to export their visualizations.

4.4.1 Debugging with Visualizations

The visualization feature was born out of necessity, having a tool to visualize the typestate

graph extracted by the macro was invaluable, reducing the time spent debugging the

macro and the generated typestates. However, while it was born to debug the macro,

12https://graphviz.org/doc/info/lang.html (visited in 20/07/2021)
13https://plantuml.com/state-diagram (visited in 20/07/2021)
14https://mermaid-js.github.io/mermaid/#/stateDiagram (visited in 20/07/2021)
15https://docs.rs/aquamarine/0.1.9/aquamarine (visited in 20/07/2021)

57

https://github.com/rustype/typestate-rs/blob/16da7790ef864054eb5bddde4f10c64ed2bcd511/typestate-proc-macro/src/igraph/validate.rs#L178-L209
https://github.com/rustype/typestate-rs/blob/16da7790ef864054eb5bddde4f10c64ed2bcd511/typestate-proc-macro/src/igraph/validate.rs#L178-L209
https://github.com/rustype/typestate-rs/blob/16da7790ef864054eb5bddde4f10c64ed2bcd511/typestate-proc-macro/src/igraph/validate.rs#L178-L209
https://graphviz.org/doc/info/lang.html
https://plantuml.com/state-diagram
https://mermaid-js.github.io/mermaid/#/stateDiagram
https://docs.rs/aquamarine/0.1.9/aquamarine

CHAPTER 4. THE #[TYPESTATE] MACRO

1 pub struct Mermaid;
2
3 impl super::Format for Mermaid {}
4
5 impl<S, T> Export<Mermaid> for IntermediateGraph<S, T>
6 where
7 S: Hash + Eq + Debug + Clone + Display,
8 T: Hash + Eq + Debug + Clone + Display,
9 {
10 fn export<W: std::io::Write>(&self, w: &mut W, f: Mermaid) -> Result {
11 // ...
12 }
13 }

Listing 4.31: Implementation example of the Export trait for the Mermaid for-
mat. The full code is available at https://github.com/rustype/typestate-rs/
blob/16da7790ef864054eb5bddde4f10c64ed2bcd511/typestate-proc-macro/src/
igraph/export.rs#L18-L118

it can also be used to visually debug the typestate; in large systems it is hard for one

to visualize the typestate in their mind, having an actual picture of the system helps

immensely.

The implementation of export formats follows the same pattern used for validation,

having an Export trait which declares an export function and a Format trait which is then

implemented by a structure, in the Export trait case, it is implemented by the intermedi-

ate graph. An example is provided in Listing 4.31.

DOT was the first format to be exported as it was the first one that came to mind, it is

very simple and there are a lot of tools which leverage the format. To use this feature

the user can simply run cargo with any command that expands the code along with

–features typestate/export-dot; this will export all typestates of the project into their

own $TYPESTATE_NAME.dot file.

PlantUML offers the state diagram format, providing a more concise way of describing

the typestate by allowing us to have dedicated initial and final states, as well as decision

nodes. Just like the previous feature, exporting PlantUML is done using features; in this

case the flag is –features typestate/export-plantuml, which will export all typestates

into separate $TYPESTATE_NAME.uml files.

Customization of the exported formats is possible through environment variables, these

are listed in Table 4.3.

4.4.2 Embedding Visualizations in the Documentation

Exporting typestates in a way that enables the developer to visualize them is a valuable

tool during development and debugging, also improving communication. However, when

focusing on communication, the best way to ensure the API client gets to see the typestate

58

https://github.com/rustype/typestate-rs/blob/16da7790ef864054eb5bddde4f10c64ed2bcd511/typestate-proc-macro/src/igraph/export.rs#L18-L118
https://github.com/rustype/typestate-rs/blob/16da7790ef864054eb5bddde4f10c64ed2bcd511/typestate-proc-macro/src/igraph/export.rs#L18-L118
https://github.com/rustype/typestate-rs/blob/16da7790ef864054eb5bddde4f10c64ed2bcd511/typestate-proc-macro/src/igraph/export.rs#L18-L118

4.4. VISUALIZING TYPESTATES

Waiting

on

CheckFinish

NeedMoney

not enough money

Finish

transaction can be finished

HasPick

insert_money

insert_money

update_pick get_message

finish

off pick_slot

HasMoney

insert_money

pick_slot

Figure 4.4: The vending machine’s DOT typestate, rendered using the command —
dot -Tsvg VendingMachine.dot.

Tool Environment Variable Description

DOT
DOT_PAD Specifies how much, in inches, to extend the

drawing area around the minimal area needed
to draw the graph.

DOT_NODESEP In DOT, nodesep specifies the minimum space
between two adjacent nodes in the same rank,
in inches.

DOT_RANKSEP In DOT, sets the desired rank separation, in
inches.

PlantUML
PLANTUML_NODESEP nodesep specifies the minimum space between

two adjacent nodes in the same rank.
PLANTUML_RANKSEP Sets the desired rank separation.

Both EXPORT_FOLDER Declare the target folder for the exported files.

Table 4.3: All configuration parameters for the DOT and PlantUML visualization
features.

59

CHAPTER 4. THE #[TYPESTATE] MACRO

Waiting

Finish

HasPick

NeedMoney

HasMoney

on

finishinsert_money

not enough money insert_money transaction can be finished

pick_slot

update_pick get_message

offpick_slot insert_money

Figure 4.5: The vending machine’s PlantUML typestate, rendered using the com-
mand — plantuml -tsvg VendingMachine.uml.

would be to embed it in the documentation; as documentation is the de facto way to

communicate between a library’s author and its users.

Unfortunately, embedding images in Rust documentation requires a link to that image,

which in turn, requires some other place to host the image; this constraint makes it more

complicated to embed the DOT or PlantUML render inside the documentation. Ideally,

we want everything in one place, generated in one step!

Fortunately, aquamarine addresses that problem; it allows the declaration of Mer-

maid.js diagrams as documentation and then renders them as HTML inside the Rust

documentation. Its syntax is very similar to PlantUML’s, thus this feature’s implemen-

tation process was mostly porting the PlantUML generation code and fixing any bugs

which appeared.

Rendering the state diagram starts by adding doc comments16 to the module during the

macro processing, the doc comment contains the diagram description in the Mermaid.js

specification language; the expanded code for the vending machine example (Figure 4.1)

can be seen in Listing 4.32. When the user runs the documentation command — cargo

doc; the aquamarine attribute is attached and the comment is processed by the aquamarine

macro, the final diagram is then made available in the documentation; pictured in Fig-

ure 4.6.

16https://doc.rust-lang.org/reference/comments.html#doc-comments (visited in 20/07/2021)

60

https://doc.rust-lang.org/reference/comments.html#doc-comments

4.5. SUMMARY

1 ///```mermaid
2 ///stateDiagram-v2
3 ///[*] --> Waiting : on
4 ///state CheckFinish <<choice>>
5 ///CheckFinish --> NeedMoney : not enough money
6 ///CheckFinish --> Finish : transaction can be finished
7 ///HasMoney --> CheckFinish : pick_slot
8 ///HasPick --> CheckFinish : insert_money
9 ///Waiting --> HasMoney : insert_money
10 ///Waiting --> [*] : off
11 ///Waiting --> HasPick : pick_slot
12 ///NeedMoney --> CheckFinish : insert_money
13 ///NeedMoney --> NeedMoney : get_message
14 ///NeedMoney --> NeedMoney : update_pick
15 ///Finish --> Waiting : finish
16 ///```
17 mod vending_machine_api { /* ... */ }

Listing 4.32: Doc comments resulting for the expansion of the vending machine
example (Figure 4.1).

Bundling the macro in way that users can depend on this feature is not a trivial task; we

want users to simply import the typestate library and be able to embed their typestates in

the documentation. Rust applies some restrictions to procedural macro libraries, namely,

such libraries cannot export anything else other than the defined macros; this is a deal-

breaker since the typestate crate is a procedural macro crate and forcing the user to

explicitly import aquamarine into their project is more overhead than necessary.

The solution for this is to create a frontend crate which imports both the typestate

macro and aquamarine, and then exports both, this sidesteps the previous issue since the

crate exporting the items is not the macro crate; this process is pictured in Figure 4.7,

Figure 4.8 and Figure 4.9.

4.5 Summary

In this chapter I have presented:

• How the user can write typestates by hand (Section 4.1).

• How the DSL is architected, its syntax and more advanced features (Section 4.2).

• How the built typestate is validated (Section 4.3).

• How the user can visualize and document their typestates (Section 4.4).

The use of procedural macros is nothing new to the ecosystem, however, DSLs are

usually built with function-like procedural macros. While such approach has advantages

(e.g. the usage of new syntax and more expressive constructs) it comes at the cost of not

17typestate-deps is the set of dependencies for the macro (e.g. syn, quote, etc); it is dashed as it is not
exported.

61

CHAPTER 4. THE #[TYPESTATE] MACRO

Figure 4.6: The vending machine API documentation page. Result of Listing 4.32
when rendered using cargo doc.

typestate

typestate-deps

Figure 4.7: The original configuration, the macro depends only on
typestate-deps17and does not export any dependency.

typestate

typestate-deps aquamarine

Figure 4.8: The naive attempt, the macro depends on typestate-deps17 and
aquamarine, but it only tries to export aquamarine, this fails because typestate
is a procedural macro crate.

62

4.5. SUMMARY

typestate

aquamarine

typestate-proc-macro

typestate-deps

Figure 4.9: The macro was isolated in its own crate — typestate-proc-macro, which
depends on typestate-deps17; the typestate crate now depends and exports both
aquamarine and typestate-proc-macro.

only being harder to develop, but also requiring the developer to pay the upfront cost of

learning it before they can use the DSL.

The present work is by no means final, there is a lot to improve upon (this is detailed

in Chapter 6), but nonetheless, it achieves interesting insights:

DSLs do not need to be a complete new language or even extend their host language;

attaching a macro to a module provides a near complete language by itself, upon which

we can simply tweak its semantics to our purposes.

My DSL minimizes the cost of getting up and running by lightly tweaking Rust’s

semantics and building new constructs on top of it, such as the automata and state struc-

tures. While learning cost is reduced, a disadvantage is that some users may find the

tweaks to be “non-natural”.

Diagrams are powerful communication tools, as the popular saying goes — “A picture
is worth a thousand words”. Leveraging the graph-like nature of typestates to produce

diagrams provides an extraordinary tool to aid in any development related to the types-

tate. Taking advantage of Rust’s powerful macro system, one can eventually adapt these

to other areas such as session types, or other areas where the line between code and

information is blurred.

To the best of my knowledge, my work is the first to leverage an existing embedded

DSL and generate a moderately complex form of documentation. As a visual-leaning

learner, I believe this feature can help users of the final APIs to understand how their

typestates work, especially in more complex settings where state relationships may be dif-

ficult to visualize mentally. Moreover, these diagrams, being specifications, also facilitate

debugging, maintenance and extension of the applications.

63

5

Case Studies

In this chapter I present some case studies where my library was used and discuss some

of its strengths and weaknesses. This chapter’s example’s full code is available at https:

//github.com/rustype/typestate-examples.

5.1 Ring

The ring example is taken out of the Rumpsteak [7] repository. The general example is

composed of N participants, in a ring, where the first participant sends the value to the

participant on the right, the other participant receives the value from the left and each

participant repeats the same process; visualized in Figure 5.1.

Before comparing both APIs, it is important to notice that Rumpsteak is aimed at

Multi-Party Session Types (MPST) for Rust’s async/await syntax, enabling the description

and enforcement of communication patterns using the type system. #[typestate] was

designed with typestates and API constraints in mind, while it is unable to describe and

enforce communication patterns, it is able to enforce function call ordering at compile-

time, avoiding API misuses.

Taking it a step further, consider Figure 5.1, Rumpsteak is enforces constraints on the

edges of that graph (i.e. “external” protocol), such as where they come from and where

they go to, while #[typestate] enforces constraints on the nodes (i.e. “internal” protocol),

such as the possible steps the node will follow.

A

vB

v

C v

Figure 5.1: The ring example visualization.

64

https://github.com/rustype/typestate-examples
https://github.com/rustype/typestate-examples

5.1. RING

5.1.1 Comparison

Rumpsteak first declares a series of types, the global type — Roles; each participant

endpoint — structs A, B and C; the message being passed around — Value; finally, each

session type — structs RingA, RingB and RingC. The functionality of each participant is

then declared as an async function, notice that ring_b (lines 32-39 from Listing 5.1) and

ring_c (lines 41-48 from Listing 5.1) are identical, except for the types used.

Given the session type nature of Rumpsteak, the library is able to enforce communi-

cation patterns at the type level, In lines 19-21 of Listing 5.1 we can see through RingA’s

type that A will forcibly send the value to B and will then receive the value from C; this is

not enforceable using #[typestate].

The launch routine Listing 5.2 is standard, using the executor from the future crate

along with the try_join macro as a convenience to launch each one. Rumpsteak ends up

being fairly verbose w.r.t. the used types, although the final usage (i.e. the main and ring_

functions) is straightforward.

#[typestate] type usage requires less background knowledge than Rumpsteak, a user

that understands the DSL should be able to understand what goes on “behind the scenes”.

In my example (Listing 5.3, Listing 5.4, Listing 5.5) the protocol is enforced by declar-

ing the state machine of each participant; in this case, while the ring can scale up to N

participants, only two protocols are required — one for the participant starting the value

propagation, and one for the all other participants, which need to receive the value first.

The participants typestates are visualized in Figure 5.2.

Both RingA and RingB receive two channels (respectively, lines 12 & 23-25 in List-

ing 5.3, and lines 18 & 38-40 in Listing 5.4), one from which they will receive the value,

and one to which they will send the value, these channels, respectively, connect to the

previous and next participants in the ring; the channels are received upon instantiation

of the respective Ring object.

RingA (Listing 5.3) starts the process, thus, it is the only participant starting in a send-
ing state (lines 10-16, emphasizing line 12, which declares the initial state); in this state

the API allows the client to inspect the value with get_value (lines 13 & 27); transition to

the next state with send (lines 14 & 29-36); or end the protocol with end (lines 15 & 38).

Inversely to RingA, RingB will first receive the value, as it would be the participant next

to the first sender and thus all other participants; conversely, the protocol (Listing 5.4)

will start in a receiving state (lines 16-21, emphasizing line 18, which declares the initial

state). The main difference from RingA to RingB is the initial state, the inner logic is the

same and besides new (lines 18 & 38-40) and end (lines 20 & 51), other functions belong

to the same states.

While #[typestate] is unable to enforce communication patterns, it is able to reuse

the participants more effectively (i.e. who sends to whom); given that B and C perform

the same operations, we can simply reuse RingB (Listing 5.4) for both B and C (lines 7-8

of Listing 5.5).

65

CHAPTER 5. CASE STUDIES

1 #[derive(Roles)]
2 struct Roles(A, B, C);
3
4 #[derive(Role)]
5 #[message(Value)]
6 struct A(#[route(B)] Sender, #[route(C)] Receiver);
7
8 #[derive(Role)]
9 #[message(Value)]
10 struct B(#[route(A)] Receiver, #[route(C)] Sender);
11
12 #[derive(Role)]
13 #[message(Value)]
14 struct C(#[route(A)] Sender, #[route(B)] Receiver);
15
16 #[derive(Message)]
17 struct Value(i32);
18
19 #[session] type RingA = Send<B, Value, Receive<C, Value, End>>;
20 #[session] type RingB = Receive<A, Value, Send<C, Value, End>>;
21 #[session] type RingC = Receive<B, Value, Send<A, Value, End>>;
22
23 async fn ring_a(role: &mut A, input: i32) -> Result<i32> {
24 let x = input;
25 try_session(role, |s: RingA<'_, _>| async {
26 let s = s.send(Value(x)).await?;
27 let (Value(y), s) = s.receive().await?;
28 Ok((x + y, s))
29 }).await
30 }
31
32 async fn ring_b(role: &mut B, input: i32) -> Result<i32> {
33 let x = input;
34 try_session(role, |s: RingB<'_, _>| async {
35 let (Value(y), s) = s.receive().await?;
36 let s = s.send(Value(x)).await?;
37 Ok((x + y, s))
38 }).await
39 }
40
41 async fn ring_c(role: &mut C, input: i32) -> Result<i32> {
42 let x = input;
43 try_session(role, |s: RingC<'_, _>| async {
44 let (Value(y), s) = s.receive().await?;
45 let s = s.send(Value(x)).await?;
46 Ok((x + y, s))
47 }).await
48 }

Listing 5.1: Rumpsteak’s Ring implementation.

66

5.2. PIN

1 fn main() {
2 let Roles(mut a, mut b, mut c) = Roles::default();
3
4 let input = (1, 2, 3);
5 println!("input = {:?}", input);
6
7 let output = executor::block_on(async {
8 try_join!(
9 ring_a(&mut a, input.0),
10 ring_b(&mut b, input.1),
11 ring_c(&mut c, input.2),
12)
13 .unwrap()
14 });
15 println!("output = {:?}", output);
16 }

Listing 5.2: Rumpsteak’s Ring main function.

5.1.2 Summary

As previously stated, Rumpsteak allows the developer to enforce communication patterns

at compile-time, while #[typestate] does not, however, the latter is able to enforce behav-

ior patterns at the participant level; #[typestate] is thus more flexible, being usable in

synchronous or parallel programming, while Rumpsteak was designed with async/await

in mind.

It is important to note that in both cases (Listing 5.1 and Listing 5.5) there is oppor-

tunity to improve modularity, one can use macros to abstract over the mostly repeated

bits of code. For #[typestate], for example, one can define a macro like Listing 5.6 and

shorten the lines 17-28 in Listing 5.5 into lines 17 & 18 in Listing 5.7.

5.2 PIN

The PIN example has three principals, a card (Listing 5.9), read by the card reader (List-

ing 5.8), which is used by the final client.

To use the card, the reader ensures that the card is present by calling check_for_card

(line 10 of Listing 5.8); in the case the card is not present the reader transitions to the Error

state, otherwise, the reader transitions to the CardPresent state (line 13 of Listing 5.8).

The CardPresent state not only requires a reference to the card, but also that the card

itself is in the Start state (line 14 of Listing 5.8 and lines 8-13 of Listing 5.9). From the

CardPresent state, the reader can issue an authentication operation, which is done by

the card by checking the PIN against the on stored inside the card; if the authentication

succeeds, the card reference is now required to reflect the reader’s state, enforcing that

the card is also in the Authenticated state (line 21 of Listing 5.8 and lines 15-19 of

Listing 5.9); this relationship is visualized in Figure 5.3.

67

CHAPTER 5. CASE STUDIES

1 #[typestate]
2 mod ring_a {
3 use std::sync::mpsc::{Receiver, Sender};
4
5 #[automaton] pub struct RingA {
6 pub(crate) send: Sender<i32>,
7 pub(crate) receiver: Receiver<i32>,
8 }
9
10 #[state] pub struct SendA(pub i32);
11 pub trait SendA {
12 fn new(value: i32, send: Sender<i32>, receiver: Receiver<i32>) -> SendA;
13 fn get_value(&self) -> i32;
14 fn send(self) -> RecvA;
15 fn end(self);
16 }
17
18 #[state] pub struct RecvA;
19 pub trait RecvA { fn recv(self) -> SendA; }
20 }
21
22 impl SendAState for RingA<SendA> {
23 fn new(value: i32, send: Sender<i32>, receiver: Receiver<i32>) -> Self {
24 Self { send, receiver, state: SendA(value) }
25 }
26
27 fn get_value(&self) -> i32 { self.state.0 }
28
29 fn send(self) -> RingA<RecvA> {
30 self.send.send(self.state.0).unwrap();
31 RingA::<RecvA> {
32 send: self.send,
33 receiver: self.receiver,
34 state: RecvA,
35 }
36 }
37
38 fn end(self) {}
39 }
40
41 impl RecvAState for RingA<RecvA> {
42 fn recv(self) -> RingA<SendA> {
43 let value = self.receiver.recv().unwrap();
44 RingA::<SendA> {
45 send: self.send,
46 receiver: self.receiver,
47 state: SendA(value),
48 }
49 }
50 }

Listing 5.3: #[typestate]’s implementation of participant A.

68

5.2. PIN

1 #[typestate]
2 mod ring_b {
3 use std::sync::mpsc::{Receiver, Sender};
4 #[automaton]
5 pub struct RingB {
6 pub(crate) send: Sender<i32>,
7 pub(crate) receiver: Receiver<i32>,
8 }
9
10 #[state] pub struct SendB(pub i32);
11 pub trait SendB {
12 fn get_value(&self) -> i32;
13 fn send(self) -> RecvB;
14 }
15
16 #[state] pub struct RecvB;
17 pub trait RecvB {
18 fn new(send: Sender<i32>, receiver: Receiver<i32>) -> RecvB;
19 fn recv(self) -> SendB;
20 fn end(self);
21 }
22 }
23
24 impl SendBState for RingB<SendB> {
25 fn get_value(&self) -> i32 { self.state.0 }
26
27 fn send(self) -> RingB<RecvB> {
28 self.send.send(self.state.0).unwrap();
29 RingB::<RecvB> {
30 send: self.send,
31 receiver: self.receiver,
32 state: RecvB,
33 }
34 }
35 }
36
37 impl RecvBState for RingB<RecvB> {
38 fn new(send: Sender<i32>, receiver: Receiver<i32>) -> Self {
39 Self { send, receiver, state: RecvB }
40 }
41
42 fn recv(self) -> RingB<SendB> {
43 let value = self.receiver.recv().unwrap();
44 RingB::<SendB> {
45 send: self.send,
46 receiver: self.receiver,
47 state: SendB(value),
48 }
49 }
50
51 fn end(self) {}
52 }

Listing 5.4: #[typestate]’s implementation of participant B.

69

CHAPTER 5. CASE STUDIES

1 fn main() {
2 let (a_sender, b_receiver) = channel::<i32>();
3 let (b_sender, c_receiver) = channel::<i32>();
4 let (c_sender, a_receiver) = channel::<i32>();
5
6 let a = RingA::<SendA>::new(0, a_sender, a_receiver);
7 let b = RingB::<RecvB>::new(b_sender, b_receiver);
8 let c = RingB::<RecvB>::new(c_sender, c_receiver);
9
10 vec![
11 thread::spawn(move || {
12 println!("a: {}", a.get_value());
13 let a = a.send();
14 let a = a.recv();
15 a.end();
16 }),
17 thread::spawn(move || {
18 let b = b.recv();
19 println!("b: {}", b.get_value());
20 let b = b.send();
21 b.end();
22 }),
23 thread::spawn(move || {
24 let c = c.recv();
25 println!("c: {}", c.get_value());
26 let c = c.send();
27 c.end();
28 }),
29]
30 .into_iter()
31 .map(|handle| handle.join())
32 .collect::<Result<_, _>>()
33 .unwrap()
34 }

Listing 5.5: The main implementing for #[typestate]’s ring.

1 macro_rules! spawn_ring_b {
2 ($ring:ident) => {
3 thread::spawn(move || {
4 let $ring = $ring.recv();
5 println!("{}: {}", stringify!($ring), $ring.get_value());
6 let $ring = $ring.send();
7 $ring.end();
8 })
9 };
10 }

Listing 5.6: macro_rules! to abstract over the thread launching routing for RingB.

70

5.2. PIN

SendA

RecvA

recvsend

get_value

end

new

SendB

RecvB

newrecvsend

end

get_value

RingA RingB

Figure 5.2: The ring participants’ typestates.

1 fn main() {
2 let (a_sender, b_receiver) = channel::<i32>();
3 let (b_sender, c_receiver) = channel::<i32>();
4 let (c_sender, a_receiver) = channel::<i32>();
5
6 let a = RingA::<SendA>::new(0, a_sender, a_receiver);
7 let b = RingB::<RecvB>::new(b_sender, b_receiver);
8 let c = RingB::<RecvB>::new(c_sender, c_receiver);
9
10 vec![
11 thread::spawn(move || {
12 println!("a: {}", a.get_value());
13 let a = a.send();
14 let a = a.recv();
15 a.end();
16 }),
17 spawn_ring_b!(b),
18 spawn_ring_b!(c),
19]
20 .into_iter()
21 .map(|handle| handle.join())
22 .collect::<Result<_, _>>()
23 .unwrap()
24 }

Listing 5.7: The main implementing for #[typestate]’s ring using Listing 5.6.

71

CHAPTER 5. CASE STUDIES

Blocked

Start

Error

Authenticated

disconnect

perform_authentication

disconnect

newbrowse

disconnect disconnect

retry

Authenticated

Start

CardPresent

Error

check_for_card

authenticate

end

browse

start

end

Reader

Card

Figure 5.3: The Reader and Card typestates, the green arrows indicate the depen-
dency relationship between states.

Any client of the reader API is thus required to check all steps before proceeding with

the card. The state embedding also guarantees that the Reader is a well-behaved client of

the Card, similar to Fugue [8].

5.3 Auction Client

This example showcases how one can build a typestated API on top of an existing non-
typestated API, enhancing the guarantees provided by latter. Its goal is to ensure that the

user does not perform non-optimal bids (i.e. only bids higher than the existing one) in the

case the user is outbid by another, the client is then required to withdraw its bid before

submitting another.

The auction API is listed in Listing 5.10, it allows bidding to be done and to emulate

the closure of the auction with each bid a random boolean is generated, if the auction

closes, bidding is closed; all checks are performed at runtime.

The client is required to check if the auction is running before any action can be

performed. This is done through the has_ended function (line 13 of Listing 5.11), which

returns the AuctionState state (line 46 of Listing 5.11), an enumeration representing the

two possible outcomes of the transition; in case the auction has ended, the only thing

72

5.3. AUCTION CLIENT

1 #[typestate]
2 pub mod reader_api {
3 use crate::card::card_api;
4
5 #[automaton] pub struct Reader;
6
7 #[state] pub struct Start;
8 pub trait Start {
9 fn start() -> Start;
10 fn check_for_card(self) -> CheckCardResult;
11 }
12
13 #[state] pub struct CardPresent {
14 pub card: card_api::Card<card_api::Start>,
15 }
16 pub trait CardPresent {
17 fn authenticate(self, pin: [u8; 4]) -> AuthResult;
18 }
19
20 #[state] pub struct Authenticated {
21 pub card: card_api::Card<card_api::Authenticated>,
22 }
23 pub trait Authenticated {
24 fn browse(&self);
25 fn end(self);
26 }
27
28 #[state] pub struct Error {
29 pub message: String,
30 }
31 pub trait Error {
32 fn end(self);
33 }
34
35 pub enum CheckCardResult { CardPresent, Error }
36 pub enum AuthResult { Authenticated, Error }
37 }

Listing 5.8: The Reader typestate specification.

73

CHAPTER 5. CASE STUDIES

1 #[typestate]
2 pub mod card_api {
3 #[automaton] pub struct Card {
4 pub valid_pin: [u8; 4],
5 pub attempts_left: u8,
6 }
7
8 #[state] pub struct Start;
9 pub trait Start {
10 fn new() -> Start;
11 fn perform_authentication(self, pin: [u8; 4]) -> AuthResult;
12 fn disconnect(self);
13 }
14
15 #[state] pub struct Authenticated;
16 pub trait Authenticated {
17 fn browse(&self);
18 fn disconnect(self);
19 }
20
21 #[state] pub struct Error;
22 pub trait Error {
23 fn retry(self) -> Start;
24 fn disconnect(self);
25 }
26
27 #[state] pub struct Blocked;
28 pub trait Blocked {
29 fn disconnect(self);
30 }
31
32 pub enum AuthResult { Authenticated, Blocked, Error }
33 }

Listing 5.9: The Card typestate specification.

the user can do is end its “session”; otherwise the user will be placed in the NoBids state,

as they have not submitted any bids. From the NoBids state, the user can perform a bid;

in the case that the bid is not the highest, the user is forced to withdraw its bid; if the

bid is the highest the user can then check if their bid is still the highest or if the auction

has ended. In the case that the user’s bid is no longer the highest, the user transitions

into the Withdraw state again; in the case that the auction has ended, the user will then

check if they have won the auction or not, and take the according action before ending

the “session”.

5.4 Summary

In this chapter I have presented three examples which highlight different capabilities

of the #[typestate] macro. The first example (Section 5.1) shows how #[typestate] is

74

5.4. SUMMARY

1 pub struct Auction {
2 owner: String,
3 bids: HashMap<String, u64>,
4 highest_bid: u64,
5 ended: bool,
6 }
7
8 impl Auction {
9 pub fn new(owner: String) -> Self {
10 Self {
11 owner,
12 bids: HashMap::new(),
13 highest_bid: 0,
14 ended: false,
15 }
16 }
17
18 pub fn bid(&mut self, client: String, bid: u64) -> Option<()> {
19 if self.owner != client && !self.has_ended() {
20 self.ended = rand::random(); // simulate uncertainty
21 self.bids.insert(client, bid);
22 if self.highest_bid < bid {
23 self.highest_bid = bid;
24 }
25 Some(())
26 } else {
27 None
28 }
29 }
30
31 pub fn is_highest_bid(&self, client: &String) -> bool {
32 match self.bids.get(client).map(|bid| self.highest_bid == *bid) {
33 Some(is_highest) => is_highest,
34 None => false,
35 }
36 }
37
38 pub fn get_bid(&self, client: String) -> Option<&u64> {
39 self.bids.get(&client)
40 }
41
42 pub fn has_ended(&self) -> bool { self.ended }
43 }

Listing 5.10: The auction non-typestated API.

75

CHAPTER 5. CASE STUDIES

1 #[typestate]
2 mod auction_client_api {
3 use crate::auction::Auction;
4
5 #[automaton] pub struct Client {
6 pub(crate) name: String,
7 pub(crate) auction: Auction,
8 }
9
10 #[state] pub struct AuctionRunning;
11 pub trait AuctionRunning {
12 fn start(name: String, auction: Auction) -> AuctionRunning;
13 fn has_ended(self) -> AuctionState;
14 }
15
16 #[state] pub struct NoBids;
17 pub trait NoBids {
18 fn bid(self, bid: u64) -> BidStatus;
19 }
20
21 #[state] pub struct HasBidded;
22 pub trait HasBidded {
23 fn check_bid(self) -> BidStatus;
24 fn has_ended(self) -> AuctionEnded;
25 }
26
27 #[state] pub struct CheckWinner;
28 pub trait CheckWinner { fn is_highest_bid(self) -> WinnerStatus; }
29
30 #[state] pub struct Withdraw;
31 pub trait Withdraw { fn withdraw(self) -> AuctionRunning; }
32
33 #[state] pub struct Lost;
34 pub trait Lost { fn withdraw(self) -> End; }
35
36 #[state] pub struct Winner;
37 pub trait Winner { fn win(self) -> End; }
38
39 #[state] pub struct End;
40 pub trait End { fn end(self); }
41
42 pub enum WinnerStatus { Lost, Winner }
43
44 pub enum AuctionEnded { HasBidded, CheckWinner }
45
46 pub enum AuctionState { NoBids, End }
47
48 pub enum BidStatus { HasBidded, Withdraw }
49 }

Listing 5.11: The auction client’s typestate declaration.

76

5.4. SUMMARY

CheckWinner

AuctionRunning

HasBidded

Lost

Withdraw

Winner

NoBids

End

end

bid

win

has_ended

is_highest_bid

has_ended

check_bidbid > previous bid <= previous

withdraw

bidding closed

startwithdraw

Figure 5.4: The auction client’s typestate.

77

CHAPTER 5. CASE STUDIES

able to constrain the behavior of objects in multi threaded environments; the second

example (Section 5.2) highlights how using multiple typestates in conjunction allows the

developer to provide extra guarantees, especially when compared with non-typestated

APIs; finally, the final example (Section 5.3) illustrates how one can wrap an existing API

using #[typestate] to provide a safe-to-use API.

While in some cases one can further abstract over the code written using #[typestate],

such cases are often trivial to address using Rust’s macro_rules!. Overall, #[typestate] is

able to address the problem at hand and allow the developer to write an elegant solution

while providing the desired API constraints.

78

6

Conclusions & Future Work

6.1 Summary

In this thesis a new tool is presented for the development of typestates in Rust, a language

without first-class support for such concept. While it is possible to model typestates

in plain Rust, it is cumbersome and error-prone; my work takes advantage of Rust’s

advanced type and macro systems to provide an embedded DSL which simplifies the

development of typestates in Rust.

To the best of my knowledge, while similar works have been developed in other lan-

guages, the present work is the first one to leverage macros to automate and provide an

elegant DSL along with extra features over Rust’s existing typestate capabilities.

While the DSL is a single contribution, its parts constitute several points of improve-

ment over the current status quo:

Tool independent DSL. The DSL requires no dependencies external to Rust itself, a

user is able to start working with my work by simply adding a dependency to

their project.

Verification tool. The macro executes several verifications over the declared typestate

(discussed in Section 4.3).

Visualization tool. The macro behind the DSL also works as a visualization tool for the

developed typestates (discussed in Section 4.4), it provides three formats, one of

which can be embedded in the client’s API, avoiding documentation rot.

The capabilities provided by the macro are useful for large systems and provide extra

assurance during development, any system required to “get it right” can take advantage

of them, such as embedded devices, which, with the rise of the Internet-of-Things are

becoming ever more present in our lives. Typestates further allow reducing runtime state

checks and easing the development process of large stateful systems, another possible

use case are smart contracts, this idea is supported by the work on the Obsidian language

[6, 5].

79

CHAPTER 6. CONCLUSIONS & FUTURE WORK

This work is open-source and made available on GitHub under the dual license

APACHE/MIT, users can use the crate made available on crates.io. Following, are

the relevant links to the project:

• Repository — https://github.com/rustype/typestate-rs

• Documentation — https://docs.rs/typestate/0.9.0-rc2/typestate/

• Library — https://crates.io/crates/typestate

6.2 Future Work

The current version of the macro suffers from some limitations: it does not support gener-

ics and by consequence, state machine nesting. Furthermore, the present work lacks

formalization, relying on the Rust compiler to provide part of the formal guarantees;

formalizing the present work represents an important step towards ensuring more guar-

antees that can be used in the “real-world”.

While the previous points aim to provide extra features, the macro would also benefit

from some work in its internals. Everything works as expected, but the architecture and

code organization could be made cleaner by further dividing each visitor. Currently, some

visitors perform mutations to the tree at the same time they extract relevant information;

this process can be split into mutation and information extraction, easing code readability

and maintenance.

Along with the visitor changes, the underlying graph structures could also be modi-

fied, using a single graph structure as the result of the information extraction process. The

graph could then be “reduced” into several specialized use cases, such as state machine

verification and visualization.

The two previous items, visitors and graph, can be leveraged to take the macro from

a simple tool to an experimentation platform for typestates and automata verification

in Rust.

Finally, planning for the development of such work in the future — I believe that

starting with the re-architecture of the visitors followed by the graph would yield the best

results, allowing changes in the future to be integrated in a simple manner; leaving the

formal work and new features for a more stable and robust version of the macro.

80

https://github.com/rustype/typestate-rs
https://docs.rs/typestate/0.9.0-rc2/typestate/
https://crates.io/crates/typestate

Bibliography

[1] J. Aldrich et al. “Typestate-Oriented Programming”. In: Proceedings of the 24th
ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA’09). 2009, pp. 1015–1022. doi: 10.1145/1639950.1640073

(cit. on pp. 5, 17, 19, 37).

[2] D. Ancona et al. “Behavioral Types in Programming Languages”. In: Foundations
and Trends® in Programming Languages 3.2-3 (2016), pp. 95–230. doi: 10.1561/250

0000031 (cit. on pp. 4, 15, 18, 36).

[3] J. Bezanson et al. “Julia: A Fresh Approach to Numerical Computing”. In: SIAM
Rev. 59.1 (Jan. 2017), pp. 65–98. doi: 10.1137/141000671 (cit. on p. 8).

[4] D. M. R. Brian W. Kernighan. The ANSI C Programming Language. 1st. Prentice

Hall, 1978. isbn: 9780131101630 (cit. on p. 8).

[5] M. Coblenz et al. “Can Advanced Type Systems Be Usable? An Empirical Study

of Ownership, Assets, and Typestate in Obsidian”. In: Proceedings of the ACM on
Programming Languages (OOPSLA’20) (Nov. 2020). doi: 10.1145/3428200 (cit. on

pp. 5, 20, 79).

[6] M. Coblenz et al. Obsidian: Typestate and Assets for Safer Blockchain Programming.

2019. arXiv: 1909.03523 [cs.PL] (cit. on pp. 5, 79).

[7] Z. Cutner and N. Yoshida. “Safe Session-Based Asynchronous Coordination in

Rust”. In: Proceedings of the International Conference on Coordination Languages
and Models (COORDINATION’21). Vol. 12717. LNCS. Springer International

Publishing, 2021, pp. 80–89. doi: 10.1007/978-3-030-78142-2_5 (cit. on pp. 36,

64).

[8] R. DeLine and M. Fahndrich. The Fugue Protocol Checker: Is Your Software Baroque?
Tech. rep. MSR-TR-2004-07. Jan. 2004. url: https://www.microsoft.com/en-

us/research/publication/the- fugue- protocol- checker- is- your- software-

baroque/ (cit. on pp. 4, 36, 37, 72).

81

https://doi.org/10.1145/1639950.1640073
https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1137/141000671
https://doi.org/10.1145/3428200
https://arxiv.org/abs/1909.03523
https://doi.org/10.1007/978-3-030-78142-2_5
https://www.microsoft.com/en-us/research/publication/the-fugue-protocol-checker-is-your-software-baroque/
https://www.microsoft.com/en-us/research/publication/the-fugue-protocol-checker-is-your-software-baroque/
https://www.microsoft.com/en-us/research/publication/the-fugue-protocol-checker-is-your-software-baroque/

BIBLIOGRAPHY

[9] J. Duarte and A. Ravara. “Retrofitting Typestates into Rust”. In: 25th Brazilian
Symposium on Programming Languages. SBLP’21. 2021, pp. 83–91. doi: 10.1145/3

475061.3475082 (cit. on p. 6).

[10] T. Ekman and G. Hedin. “The Jastadd Extensible Java Compiler”. In: Proceedings of
the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’07). 2007, pp. 1–18. doi: 10.1145/1297027.1

297029 (cit. on pp. 23, 25).

[11] M. Fahndrich and R. DeLine. “Adoption and Focus: Practical Linear Types for

Imperative Programming”. In: SIGPLAN Not. 37.5 (May 2002), pp. 13–24. doi:

10.1145/543552.512532 (cit. on p. 36).

[12] S. Gay and A. Ravara. Behavioural types: From theory to tools english. 2017. doi:

10.13052/rp-9788793519817 (cit. on pp. 4, 38).

[13] S. J. Gay et al. “Modular session types for objects”. In: Logical Methods in Computer
Science Volume 11, Issue 4 (Dec. 2015). doi: 10.2168/LMCS-11(4:12)2015 (cit. on

pp. 15, 35).

[14] K. Honda. “Types for dyadic interaction”. In: Proceedings of the International Con-
ference on Concurrency Theory (CONCUR’93). Vol. 715. LNCS. Springer, 1993,

pp. 509–523. doi: 10.1007/3-540-57208-2_35 (cit. on pp. 4, 15).

[15] K. Honda, V. T. Vasconcelos, and M. Kubo. “Language primitives and type disci-

pline for structured communication-based programming”. In: Proceedings of the
European Symposium on Programming (ESOP’98). Vol. 1381. LNCS. Springer, 1998,

pp. 122–138. doi: 10.1007/BFb0053567 (cit. on p. 15).

[16] R. Hu, N. Yoshida, and K. Honda. “Session-Based Distributed Programming in

Java”. In: Proceedings of the European Conference on Object-Oriented Programming
(ECOOP’08). Springer, 2008, pp. 516–541. doi: 10.1007/978-3-540-70592-5_22

(cit. on p. 4).

[17] H. Hüttel et al. “Foundations of Session Types and Behavioural Contracts”. In:

ACM Computing Survey 49.1 (Apr. 2016). doi: 10.1145/2873052 (cit. on p. 15).

[18] T. B. L. Jespersen, P. Munksgaard, and K. F. Larsen. “Session Types for Rust”. In:

Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming (WGP’15).
2015, pp. 13–22. doi: 10.1145/2808098.2808100 (cit. on pp. 5, 35, 36).

[19] S. Klabnik. “The History of Rust”. In: Proceedings of ACM Conference Applicative.

2016. doi: 10.1145/2959689.2960081 (cit. on p. 10).

[20] W. Kokke. “Rusty Variation: Deadlock-free Sessions with Failure in Rust”. In:

Electronic Proceedings in Theoretical Computer Science 304 (Sept. 2019), pp. 48–60.

doi: 10.4204/EPTCS.304.4 (cit. on pp. 35, 36).

82

https://doi.org/10.1145/3475061.3475082
https://doi.org/10.1145/3475061.3475082
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1145/543552.512532
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.2168/LMCS-11(4:12)2015
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2959689.2960081
https://doi.org/10.4204/EPTCS.304.4

BIBLIOGRAPHY

[21] D. Kouzapas et al. “Typechecking protocols with Mungo and StMungo: A session

type toolchain for Java”. In: Science of Computer Programming 155 (2018), pp. 52–

75. doi: 10.1016/j.scico.2017.10.006 (cit. on pp. 4, 35, 38).

[22] N. Lagaillardie, R. Neykova, and N. Yoshida. “Implementing Multiparty Session

Types in Rust”. In: Proceedings of the International Conference on Coordination Lan-
guages and Models (COORDINATION’20). Vol. 12134. LNCS. Springer Interna-

tional Publishing, 2020, pp. 127–136. doi: 10.1007/978-3-030-50029-0_8 (cit. on

pp. 5, 36).

[23] X. Leroy et al. The OCaml system release 4.12. 2021. url: https://ocaml.org/

manual/ (visited on 07/17/2021) (cit. on p. 24).

[24] R. Macedo, A. M. Dias, and A. Ravara. “Visualização e animação de autómatos em

Ocsigen Framework”. In: (2019). arXiv: 1907.05384 (cit. on p. 55).

[25] J. Mota. Coping with the reality: adding crucial features to a typestate-oriented language.

MSc Thesis, NOVA School of Science and Technology. 2020. url: https://github.

com/jdmota/java-typestate-checker/blob/28a0acc90e5e3352ec20f8bbd71ab2438

3976a1e/docs/msc-thesis.pdf (cit. on p. 20).

[26] R. Neykova et al. “A Session Type Provider: Compile-Time API Generation of Dis-

tributed Protocols with Refinements in F#”. In: Proceedings of the 27th International
Conference on Compiler Construction (CC’18). Vienna, Austria, 2018, pp. 128–138.

doi: 10.1145/3178372.3179495 (cit. on p. 35).

[27] R. Pucella and J. A. Tov. “Haskell Session Types with (Almost) No Class”. In:

Proceedings of the First ACM SIGPLAN Symposium on Haskell (Haskell’08). Victoria,

BC, Canada, 2008, pp. 25–36. doi: 10.1145/1411286.1411290 (cit. on p. 35).

[28] R. Reis and N. Moreira. FAdo: tools for finite automata and regular expressions manip-
ulation. Tech. rep. DCC-2002-02. Universidade do Porto, 2002 (cit. on p. 56).

[29] D. M. Ritchie. “The Development of the C Language”. In: The Second ACM SIG-
PLAN Conference on History of Programming Languages (HOPL-II). 1993, pp. 201–

208. doi: 10.1145/154766.155580 (cit. on p. 8).

[30] R. E. Strom. “Mechanisms for Compile-Time Enforcement of Security”. In: Proceed-
ings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL’83). 1983, pp. 276–284. doi: 10.1145/567067.567093 (cit. on

pp. 4, 17).

[31] R. E. Strom and S. Yemini. “Typestate: A programming language concept for

enhancing software reliability”. In: IEEE Transactions on Software Engineering SE-

12.1 (1986), pp. 157–171. doi: 10.1109/TSE.1986.6312929 (cit. on p. 4).

[32] B. Stroustrup. The C ++ Programming Language. 4th. Addison-Wesley, 2013. isbn:

978-0321563842 (cit. on p. 8).

83

https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1007/978-3-030-50029-0_8
https://ocaml.org/manual/
https://ocaml.org/manual/
https://arxiv.org/abs/1907.05384
https://github.com/jdmota/java-typestate-checker/blob/28a0acc90e5e3352ec20f8bbd71ab24383976a1e/docs/msc-thesis.pdf
https://github.com/jdmota/java-typestate-checker/blob/28a0acc90e5e3352ec20f8bbd71ab24383976a1e/docs/msc-thesis.pdf
https://github.com/jdmota/java-typestate-checker/blob/28a0acc90e5e3352ec20f8bbd71ab24383976a1e/docs/msc-thesis.pdf
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1145/154766.155580
https://doi.org/10.1145/567067.567093
https://doi.org/10.1109/TSE.1986.6312929

BIBLIOGRAPHY

[33] The Rust Programming Language. 2021. url: https://doc.rust-lang.org/book/

(visited on 01/18/2021) (cit. on pp. 11, 13).

[34] The Rust Reference. 2021. url: https://doc.rust-lang.org/reference (visited on

01/18/2021) (cit. on pp. 30, 33).

[35] C. Torre et al. Panel: Systems Programming in 2014 and Beyond. 2014. url: https:

//channel9.msdn.com/Events/Lang- NEXT/Lang- NEXT- 2014/Panel- Systems-

Programming-Languages-in-2014-and-Beyond (cit. on pp. 7, 8, 10).

[36] A. Trindade, J. Mota, and A. Ravara. “Typestates to Automata and back: a tool”. In:

Electronic Proceedings in Theoretical Computer Science 324 (Sept. 2020), pp. 25–42.

doi: 10.4204/EPTCS.324.4 (cit. on pp. 42, 52).

[37] C. Vasconcelos and A. Ravara. “From Object-Oriented Code with Assertions to Be-

havioural Types”. In: Proceedings of the Symposium on Applied Computing (SAC’17).
Association for Computing Machinery, 2017, pp. 1492–1497. doi: 10.1145/301961

2.3019733 (cit. on p. 35).

[38] V. T. Vasconcelos, S. J. Gay, and A. Ravara. “Type checking a multithreaded func-

tional language with session types”. In: Theoretical Computer Science 368.1-2 (2006),

pp. 64–87. doi: 10.1016/j.tcs.2006.06.028 (cit. on pp. 15, 16).

[39] A. L. Voinea, O. Dardha, and S. J. Gay. “Typechecking Java Protocols with [St]Mungo”.

In: Proceedings of the International Conference on Formal Techniques for Distributed
Objects, Components, and Systems (FORTE’20). Vol. 12136. LNCS. Springer Inter-

national Publishing, 2020, pp. 208–224. doi: 10.1007/978-3-030-50086-3_12

(cit. on pp. 4, 18, 35, 38).

[40] H. Xi and H. Wu. “Linearly Typed Dyadic Group Sessions for Building Multiparty

Sessions”. In: (2016). arXiv: 1604.03020 [cs.PL] (cit. on p. 4).

[41] H. Xi et al. “Session Types in a Linearly Typed Multi-Threaded Lambda-Calculus”.

In: (2016). arXiv: 1603.03727 [cs.PL] (cit. on p. 4).

[42] N. Yoshida et al. “The Scribble Protocol Language”. In: Proceedings of the Inter-
national Symposium on Trustworthy Global Computing (TGC’13). Springer Interna-

tional Publishing, 2014, pp. 22–41. doi: 10.1007/978-3-319-05119-2_3 (cit. on

pp. 4, 35, 36).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 84).

84

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/reference
https://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2014/Panel-Systems-Programming-Languages-in-2014-and-Beyond
https://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2014/Panel-Systems-Programming-Languages-in-2014-and-Beyond
https://channel9.msdn.com/Events/Lang-NEXT/Lang-NEXT-2014/Panel-Systems-Programming-Languages-in-2014-and-Beyond
https://doi.org/10.4204/EPTCS.324.4
https://doi.org/10.1145/3019612.3019733
https://doi.org/10.1145/3019612.3019733
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1007/978-3-030-50086-3_12
https://arxiv.org/abs/1604.03020
https://arxiv.org/abs/1603.03727
https://doi.org/10.1007/978-3-319-05119-2_3
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Listings

	1 Introduction
	1.1 Context
	1.2 Problem
	1.2.1 The Billion-Dollar Mistake
	1.2.2 API Misuse

	1.3 State of the Art
	1.4 Contributions
	1.5 Outline

	2 Background
	2.1 Systems Programming Languages
	2.1.1 C
	2.1.2 C++
	2.1.3 Ada
	2.1.4 Go
	2.1.5 Summary

	2.2 The Rust Language
	2.2.1 What makes Rust different?
	2.2.2 Ownership
	2.2.3 Borrowing
	2.2.4 Concurrency
	2.2.5 Why Rust instead of Language X?

	2.3 Behavioral Types
	2.3.1 Session Types
	2.3.2 Typestates

	3 Related Work
	3.1 Language Preprocessors
	3.1.1 OCaml
	3.1.2 Java
	3.1.3 Kotlin

	3.2 Rust Macros
	3.2.1 Declarative Macros
	3.2.2 Procedural Macros
	3.2.3 Summary

	3.3 Approaches to Behavioral Types
	3.3.1 Session Types
	3.3.2 Typestate
	3.3.3 Summary

	4 The #[typestate] macro
	4.1 Typestates: The Hard Way
	4.1.1 Future Proofing

	4.2 Typestates: The DSL
	4.2.1 Syntax & Automaton Extraction
	4.2.2 Architecture
	4.2.3 Advanced Features

	4.3 Validation
	4.3.1 The Automaton and the Graph
	4.3.2 Implementing a validation strategy

	4.4 Visualizing Typestates
	4.4.1 Debugging with Visualizations
	4.4.2 Embedding Visualizations in the Documentation

	4.5 Summary

	5 Case Studies
	5.1 Ring
	5.1.1 Comparison
	5.1.2 Summary

	5.2 PIN
	5.3 Auction Client
	5.4 Summary

	6 Conclusions & Future Work
	6.1 Summary
	6.2 Future Work

	Bibliography
	Back Matter
	Back Cover

