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The insect cell-baculovirus expression vector system (IC-BEVS) has been widely
used to produce recombinant protein at high titers, including complex virus-like
particles (VPLs). However, cell-to-cell variability upon infection is yet one of the
least understood phenomena in virology, and little is known about its impact on
production of therapeutic proteins. This study aimed at dissecting insect cell
population heterogeneity during production of influenza VLPs in IC-BEVS using
single-cell RNA-seq (scRNA-seq). High Five cell population was shown to be
heterogeneous even before infection, with cell cycle being one of the factors
contributing for this variation. In addition, infected insect cells were clustered
according to the timing and level of baculovirus genes expression, with each
cluster reporting similar influenza VLPs transgenes (i.e., hemagglutinin and M1)
transcript counts. Trajectory analysis enabled to track infection progression
throughout pseudotime. Specific pathways such as translation machinery,
protein folding, sorting and degradation, endocytosis and energy metabolism
were identified as being those which vary themost during insect cell infection and
production of Influenza VLPs. Overall, this study lays the ground for the application
of scRNA-seq in IC-BEVS processes to isolate relevant biological mechanisms
during recombinant protein expression towards its further optimization.
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1 Introduction

The insect cells (IC) and baculovirus expression vector system (BEVS) constitute an
attractive alternative to mammalian cells for manufacturing of heterologous gene products,
including recombinant proteins as vaccine candidates and viral vectors for gene therapy
(Drugmand et al., 2012). Recent advances in next-generation sequencing technologies have
enabled a considerable improvement of our understanding of the IC-BEVS. For example,
RNA-seq has been used to assess the transcriptional changes of alphanodavirus-free High
Five cells upon infection by Autographa californica multiple nucleopolyhedrovirus
(AcMNPV) (Chen et al., 2013; Chen et al., 2014), providing a global picture of the
AcMNPV transcription regulation throughout the infection cycle. As the knowledge of

OPEN ACCESS

EDITED BY

Frank Delvigne,
University of Liège, Belgium

REVIEWED BY

Qingnan Liang,
Baylor College of Medicine, United States
Xiujun Zhang,
Wuhan Botanical Garden (CAS), China

*CORRESPONDENCE

António Roldão,
aroldao@ibet.pt

SPECIALTY SECTION

This article was submitted to
Bioprocess Engineering,
a section of the journal
Frontiers in Bioengineering
and Biotechnology

RECEIVED 12 January 2023
ACCEPTED 20 February 2023
PUBLISHED 06 March 2023

CITATION

Silvano M, Virgolini N, Correia R, Clarke C,
Isidro IA, Alves PM and Roldão A (2023),
Dissecting insect cell heterogeneity
during influenza VLP production using
single-cell transcriptomics.
Front. Bioeng. Biotechnol. 11:1143255.
doi: 10.3389/fbioe.2023.1143255

COPYRIGHT

© 2023 Silvano, Virgolini, Correia, Clarke,
Isidro, Alves and Roldão. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 06 March 2023
DOI 10.3389/fbioe.2023.1143255

https://www.frontiersin.org/articles/10.3389/fbioe.2023.1143255/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1143255/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1143255/full
https://www.frontiersin.org/articles/10.3389/fbioe.2023.1143255/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2023.1143255&domain=pdf&date_stamp=2023-03-06
mailto:aroldao@ibet.pt
mailto:aroldao@ibet.pt
https://doi.org/10.3389/fbioe.2023.1143255
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2023.1143255


the IC-BEVS grows, potential engineering targets to increase
recombinant protein production are being identified (Silvano
et al., 2022).

In recent years, technological advances in areas such as cell
isolation methods using microfluidics or microwell devices,
preparation of next-generation sequencing libraries from
ultra-low quantities of nucleic acids, and innovative labelling
strategies for MS-based proteomics have enabled the
characterization of DNA, RNA and proteins at single-cell
resolution (Lee et al., 2020). Using different single-cell omics
profiling strategies as building blocks, we can now build a multi-
omics profile of the same cell. These multi-omics methods will
play an important role in many diverse fields, and their
applications are rapidly expanding, including delineating
cellular diversity (Gulati et al., 2020), lineage tracing (Wagner
and Klein, 2020), identifying new cell types (Ianevski et al., 2022),
and deciphering the regulatory mechanisms between omics (Cao
and Gao, 2022). Single-cell analysis has unambiguously
demonstrated that cell populations are often heterogeneous
(Goldman et al., 2019). This heterogeneity not only applies to
different cell types in a tissue (Karlsson et al., 2021) but also to
clonal cell population (Stockholm et al., 2007).

Single-cell RNA sequencing (scRNA-seq) has just recently be
applied to virus-based processes. The power of scRNA-seq lies in
the simultaneous delivery of snapshots of virus and host
transcriptomes, and allows to compare host transcriptome
between cells with low and high viral loads (Suomalainen and
Greber, 2021). The high-resolution dissection of viral and host cell
gene expression patterns reveals that the transcriptional responses
of individual infected cells can be divergent, as the interplay
between underlying cellular heterogeneity and viral population
diversity influences the fate of infection (Sun et al., 2020). For
example, cell-to-cell variation in viral transcription has been
observed during influenza virus infection in mammalian (A549,
MDCK and HEK293) cells (Russell et al., 2018).

To date, the understanding of the IC-BEVS transcriptome has
been mostly relying on bulk RNA-seq analysis (Nguyen et al., 2013;
Chen et al., 2014; Silvano et al., 2022; Virgolini et al., 2022). For
instance, we have previously assessed whole transcriptome changes
in High Five insect cells during expression of influenza HA-
displaying virus-like particles (HA-VLPs) using IC-BEVS, which
enabled to identify key biological processes impacted by virus
infection (Silvano et al., 2022). Although these studies uncover
transcriptional changes in insect cell response to baculovirus
infection, they only provide rough models of the host cell
response. Understanding IC-BEVS at the single-cell level could
elucidate better the mechanisms of viral infection and potentially
enable to identify, within a potentially heterogenous cell population
and infection process, the characteristics of cells associated with a
more efficient progression of infection and production of
heterologous proteins.

In this study, we used scRNA-seq for the characterization of the
High Five insect cell line during production of influenza HA-VLPs
using IC-BEVS. The transcriptomics pipeline here described allowed
to study, at a single-cell level, High Five cell population
heterogeneity (prior and during infection), host cell response to
virus infection, and progression of infection (expression of virus
genes and transgenes encoding HA-VLPs).

2 Materials and methods

2.1 Cell line and culture media

High Five insect cells (Invitrogen) were routinely sub-cultured
to .3–.5×106 cell mL−1 every 2–3 days when cell concentration
reached 2–3×106 cell mL−1 in serum-free Insect-XPRESS™
medium (Sartorius) using 125–500 mL shake flasks with a 10%
working volume, and maintained at 27°C in a Inova 44R shaking
incubator (orbital motion diameter of 2.54 cm—Eppendorf)
operating at 100 RPM.

2.2 Baculovirus amplification and storage

Recombinant baculoviruses carrying influenza capsid
M1 from A/California/06/2009 H1N1 strain and hemagglutinin
(HA) from A/Brisbane/59/2007 strain genes were kindly provided
by Redbiotec AG (Schlieren, Switzerland). Baculovirus
amplification was performed as described elsewhere (Vieira
et al., 2005).

2.3 Production of HA-displaying VLPs

HA-VLPs production was carried out in a 0.5 L stirred tank
bioreactor (BIOSTAT Qplus–Sartorius) as specified elsewhere
(Correia et al., 2020). Cells were expanded in 500–2000 mL shake
flasks with a 10% working volume as described above. Infection
experiments were performed in bioreactor at cell concentration
at the time of infection (CCI) of 2×106 cell mL−1 and multiplicity
of infection (MOI) of 1 pfu.cell−1. Medium exchange was
performed at the time of infection by centrifugation at 200 g
at room temperature for 10 min. Samples were taken every 24 h
for the assessment of cell concentration and viability, and
detection of M1 and HA proteins; for scRNA-seq, samples
were taken before infection, and at 8 and 22 h post-
infection (hpi).

2.4 Purification of HA-displaying VLPs

Culture bulk from bioreactor run was harvested 3 days post-
infection and centrifuged at (first) 4°C, 200 g, for 10 min and
(second) four°C, 2000 g, for 20 min. The supernatant was filtered
using a .22 µm Stericup (Millipore), and the HA-VLPs were purified
using a SartoBind Q capsule (Sartorius Stedim Biotech) according to
manufacturer’s instructions. Purified material was formulated in
50 mM HEPES, 300 mM NaCl, 15% (w/v) trehalose, pH 7.4, and
stored at −80 or four°C.

2.5 Analytics

2.5.1 Cell concentration and viability
Cell concentration was determined in a Fuchs-Rosenthal

hemocytometer chamber (Brand) and cell viability assessed by
trypan blue exclusion method (J R Tennant, 1964).
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2.5.2 Baculovirus titration
Baculovirus titers were determined using the MTT assay as

described elsewhere (Mena et al., 2003; Roldão et al., 2009).

2.5.3 Western blot
Identification and relative quantification of M1 and HA in

culture supernatant were performed as reported elsewhere
(Correia et al., 2020).

2.5.4 Transmission electron microscopy
Negative staining transmission electron microscopy was used to

assess the conformation and size of HA-VLPs. Briefly, 5 μl of
purified VLP sample was fixed for 2 min in a copper grid coated
with Formvar-carbon (Electron Microscopy Sciences, Hatfield).
Grids were washed with H2O and then stained with 2% (v/v)
uranyl acetate for 5 min and left to air dry. Samples were then
observed in a Hitachi H-7650 Transmission Electron Microscope
(JEOL, United States).

2.6 Single-cell RNA sequencing

For single-cell gene expression profiling, ≈6000 cells (at 0 hpi
and 8 hpi) or ≈8000 cells (at 22 hpi) were loaded into a BD
Rhapsody cartridge (BD Biosciences) and libraries were
generated according to BD Rhapsody™ System mRNA Whole
Transcriptome Analysis (WTA). Upon confirming the quality of
the resulting libraries using a Bioanalyser, the quantity of each
library was determined using Qubit. ScRNA-seq libraries were
sequenced using an Illumina NovaSeq (Illumina) configured to
yield 150 bp paired end reads.

2.7 Single-cell RNA data analysis

2.7.1 Generation of a UMI count matrix
The cellular barcodes were pre-processed and demultiplexed

by the BD Rhapsody WTA bioinformatic workflow (BD
Biosciences) on the Seven Bridges Genomics (SBG) cloud
platform using default parameters, as reported elsewhere (Tzani
et al., 2021). STAR indexes were generated from the Trichoplusia ni
(Tnl) reference genome (RefSeq assembly accession: GCF_
003590095.1) and from AcMNPV (RefSeq assembly accession:
GCF_000838,485.1, ViralProj14023) (Dobin et al., 2013).
Specifically, a hybrid reference genome was used for RNA-seq
read mapping using transgenes (M1 and HA) sequences and
mtDNA sequence of the Tnl reference genome (GenBank
accession No. MK714850.1).

2.7.2 Filtering the UMI count matrix
The cell/gene matrices output from the SBG pipeline were

imported into the R-4.2.1 Statistical Software Environment and
merged to form a single matrix for further analysis. The
proportion of unique molecular indexes (UMIs) originating from
mtDNA was also determined for each cellular barcode, and cells
with >5% mitochondrial UMIs counts were considered of low-
quality and thus removed from further analysis.

2.7.3 UMAP and pseudotime analysis
Seurat v4 was used to apply a graph-based clustering

approach (Hao et al., 2021). These methods embed cells in a
graph structure with edges drawn between cells with similar
feature expression patterns, and then attempt to partition this
graph into highly interconnected “communities” (Xu and Su,
2015). To evaluate cell heterogeneity, data sets (0, 8, and 22 hpi)
were merged prior to global scaling normalization method.
Normalized and merged samples were scaled and variations
caused by different total UMIs per cell were regressed out.
The most variable features were considered for principal
component analysis, and 20 principal components were used
to perform cluster analysis. The Uniform Manifold
Approximation and Projection (UMAP) technique was used to
run non-linear dimensional reduction and to visualize and
explore the datasets (McInnes et al., 2018). Monocle three was
run to conduct trajectory analysis (Trapnell et al., 2014) and its
function graph_test was used to identify genes that change as
function of pseudotime. Genes with an average expression
change of ≥ .5 and p-value <.05 were considered significant.

2.7.4 Cell cycle correction
Cell cycle scoring function in Seurat v4 was used to determine

the likelihood of cells being in either S or G2/M phase, based on
reference genes known to play a role in distinct phases of the cell
cycle. To conduct this procedure, we mapped the mouse gene list to
the Tnl genome to carry out the classification and draw a list of Tnl
cell-cycle genes. The resulting scores for S, G2/M and G1 phases
were used to regress out the effect of cell cycle in downstream
analysis.

2.7.5 Functional annotation and enrichment
analysis

For gene annotation, the amino acid sequence of protein-
coding genes was used as a query. Blastp search was applied in
the NCBI nr protein database using Blast2GO OmicsBox (Götz
et al., 2008). No taxonomy filter was applied, and the E-value
cutoff was set to 1 × 10−3. The over-representation of pathways
within gene lists found to have a statistically significant
association with pseudotime were identified using the Fisher’s
exact test. Pathway terms with a False Discovery Rate
of <.05 were considered significant (Benjaminit and
Hochberg, 1995).

3 Results

3.1 Production of influenza HA-VLPs

High Five cells were infected at CCI of 2×106 cell mL−1 with a
MOI of 1 pfu.cell−1, and infection kinetics were assessed
throughout (Figure 1A). M1 and HA proteins were identified
by Western blot (Figure 1B), and particles resembling influenza
HA-VLPs, both in size and morphology, detected by TEM
(Figure 1C). These results are in line with those previously
reported (Silvano et al., 2022) and demonstrate that HA-VLPs
were successfully produced.
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3.2 Single-cell RNA-seq data processing and
quality control

For scRNA-seq, ~6,000–8,000 cells were collected at each
time point (>90% cell viability). After sequencing, an average of
391 million 150 bp-reads were acquired for each sample.
Following the completion of this initial pre-processing stage,
approx. 4% of the sequenced RNA-seq reads were removed from
further analysis due to insufficient read length, low base quality
and/or high single nucleotide frequency; an average of
≈377 million reads per time point remained valid for further
analysis (Supplementary Table S1). From the reads that passed
quality control, 87% of the reads were successfully assigned to
cell barcodes following demultiplexing. Mapping to the
reference genome resulted in a unique alignment rate of
~71%. Upon collapsing to UMIs and application of the RSEC
algorithm, between 4,496 and 5,408 unique cell barcodes were

identified for the three samples taken throughout the process.
The mean number of reads and mRNA molecules detected per
cell in this experiment were 41,166 and 28,787, respectively, with
an average of ~3,372 genes detected in each cell (Supplementary
Table S1).

To ensure that only high-quality genes were retained for further
analysis, the UMI count matrix was filtered to remove data that
might have originated from non-viable cells. An average of 8% of
cells contained >5% of detected UMIs originating from
mitochondrial genes and thus were eliminated from further
analysis (Figure 2A). The number of genes per cell and
baculovirus UMIs (Figure 2B) as well as the amount of total
UMIs per cell (Supplementary Figure S1) were assessed; while at
0 and 8 hpi the average number of genes identified per cell is
4000–5000, this number decreases significantly at later stages of
infection (i.e., 22 hpi) concomitantly with an increase in the
percentage of baculovirus UMIs.

FIGURE 1
Production of influenza HA-VLPs. (A) Cell growth kinetics upon infection. Viable cell concentration and cell viability in full and empty circles,
respectively. (B) Identification of HA and M1 proteins by Western blot. (C) TEM of purified HA-VLPs; scale bar represents 100 nm.
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3.3 High Five insect cells heterogeneity

To identify cell populations existing across the three single-cell
datasets (0, 8, and 22 hpi), merged analysis was performed using
Seurat v4. A total of 10 clusters were drawn from this analysis
(Figure 3A), with a noticeable cluster re-organization being observed
throughout infection progression. Importantly, five of those clusters
were already present before infection (0 hpi) suggesting that High
Five cells population was heterogeneous. Cell cycle is known to
contribute to heterogeneity in scRNA-seq datasets (McDavid et al.,
2016); to ascertain this in our study, cell cycle covariate was
estimated using the Cell Cycle Scoring method in the Seurat
package (Tirosh et al., 2016). While heterogeneity is clear at
0 hpi, with cells being associated to different cell cycle stages in a
proportion of ≈1:7:5 (S:G2M:G1), at 22 hpi most cells have been
identified as being in G1 phase (74%) (Supplementary Figure
S2A,B). However, at this later timepoint, cell cycle association
seems to be misassigned as exemplified by the overall low
expression of the G1 cell cycle-related genes ccnd3, ccne1, and
cdk6 in Supplementary Figure S2C. This could be a consequence
of overexpression of baculovirus UMIs (hence lower expression of
host cell genes), impairing correct cell cycle identification. Thus, the
cell cycle regression was not further applied for the merged dataset.

Cluster re-organization throughout infection seems to be
correlated with the expression of baculovirus genes as infection
progresses (Figure 3B); for example, expression of an early
baculovirus gene (ACNVgp135) was higher in clusters denoting a
transitory stage (i.e., cluster #2) whereas a late baculovirus gene
(ACNVgp138) was more expressed in clusters (e.g., clusters #3, #4,
and #6) furthest from those identified at 0 hpi. As seen for
ACNVgp138, expression of transgenes M1 and HA, both under
the regulation of the late expression promoter polyhedrin, was
mainly identified in clusters #3, #4, and #6 (Figure 3C), with
similar expression levels of HA and M1 genes being observed
regardless of the cell cluster (r = .98, q = .76, Figure 3D).

3.4 Pseudo-temporal ordering of cells after
infection

To assess cell population evolution during infection, pseudo-
temporal ordering (i.e., trajectory analysis) was applied. To perform
this analysis, 13,906 cells from the merged Seurat analysis were used
as input of Monocle 3. The cell cluster with the lowest percentage of
HA (cluster #5, see Figure 3A) was selected as root state of the
trajectory since it was the one most closely resembling the non-

FIGURE 2
Single-cell RNA-seq quality control. (A) Mitochondrial UMIs per cell (on the left) and number of cells before and after filtering per UMIs originating
from mitochondrial genes (>5%) (on the right). (B) Number of genes identified per cell and percentage (%) of cells containing UMIs originating from
baculovirus genes at each time point after cell filtering.
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infected cell population; the pseudotime variable was then ordered
accordingly (Figure 4A).

Transcriptomic changes characterizing the progression of
cells along HA production were assessed through identification
of genes correlated with pseudotime. Overall, 921 host cell genes
were found to be significantly (q value <.05) associated with
pseudotime. Pathway enrichment analysis allowed to identify
biological processes varying most along infection, of which
those associated to translation machinery, energy metabolism,
protein folding and endocytosis (Figure 4B) are some examples, in
good agreement to what we have previously found in bulk RNA

sequencing analysis (Silvano et al., 2022; Virgolini et al., 2022).
The relative expression of a selected number of genes involved in
these pathways is presented in Supplementary Figure S3,
illustrating the significant transcriptional changes in cells upon
infection.

4 Discussion

In this work, we used scRNA-seq sequencing to analyze, at the
single-cell level, alterations in the transcriptome of a High Five insect

FIGURE 3
Insect cells clustering and transgenes expression. (A)Merged scRNA-seq dataset obtained with UMAP. (B) Relative expression of early (ACNVgp135)
and late (ACNVgp138) baculovirus genes. (C) Relative expression of transgenes HA and M1. A color gradient scale was used to show the relative gene
expression per cell. (D) Relative HA and M expression per cell, with dashed line representing the best linear fit to the data (r—Pearson’s correlation
coefficient, q–angular coefficient). A color code was used to identify each cell cluster.
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cell line infected with baculovirus during the production of influenza
HA-VLPs.

Stable and high foreign gene expression levels are important
criteria during the development of producer cell lines for
pharmaceutical applications (Tripathi and Shrivastava, 2019), and
understanding the mechanisms behind gene expression variation of
genetically identical cells is the first step of this process. Cell
population heterogeneity can influence parameters such as cell
growth rate, genetic stability and productivity (Schmitz et al.,
2019), and thus tracking it is key to avoid process failure and
guarantee reproducibility (Olsson et al., 2022). Most studies on
this topic focus on mammalian cells (Lewis et al., 2016; Samoudi et
al., 2021), with none to date exploring insect cells. In our study, we
could observe heterogeneity in High Five cell population before
infection (as demonstrated by the identification of five cell clusters),
largely resulting from the phase of the cell cycle that the cells are in,
which was further amplified upon infection (6 more cell clusters
were identified) as consequence of viral DNA replication and gene
expression (Du and Thiem, 1997) and cell cycle arrest (Braunagel
et al., 1998).

Baculovirus genes are known to be transcribed temporally, a
process highly regulated by infection-derived mechanisms and
mediated by host and viral protein expression (Nguyen et al.,
2013). The timing and level of baculovirus gene expression were
herein identified as the main factors driving clustering of infected
insect cells. Trajectory analysis allowed us to confirm this, in
which a clear path along pseudotime is observed although cells
separate and order across multiple branches spanning the
transcriptomic space.

Biological mechanisms associated with baculovirus infection
and transgenes (in our case those coding for influenza HA-
VLPs) expression can be identified by correlating changes in
gene(s) expression to progression of cells along the infection

trajectory. Through pathway enrichment analysis, we found the
endocytosis pathway as being one of the most significantly
enriched biological processes during infection, which derives
from viruses exploiting cellular structures towards endocytosis-
mediated viral nucleocapsid transport to the nucleus (Monteiro
et al., 2012). In addition, entry of baculovirus is found
dependent on clathrin-mediated endocytosis (Long et al.,
2006), which was herein corroborated by the upregulation of
clathrin cltc and actin-related arpc5 and capza1 proteins at early
infection stages.

Among the cellular defense responses to environmental and
pharmacological stresses, the activation of heat shock response
(HSR) is one of the most important. It leads to rapid and robust
expression of members of the chaperone family of heat shock
proteins (HSPs) in order to protect the cell from proteotoxic
stresses and to maintain protein homeostasis (Fujimoto and
Nakai, 2010). Interestingly, viruses can exploit HSR as an
infection strategy, making use of HSPs such as HSP70 and
HSP90 for regulation of viral gene expression and capsid
assembly/disassembly (Mayer and Bukau, 2005; Xiao et al., 2010;
Nagy et al., 2011). Our data corroborates this, with the expression of
hsp70 found significantly upregulated early in infection. In addition,
the proteasome pathway was found enriched, in agreement with the
reported evidence of close collaboration between HSPs and
ubiquitin-proteasome system during the baculovirus replicative
cycle (Katsuma et al., 2011).

Baculovirus infection induces an important metabolic burden
on insect cells, enhancing the fluxes through the major catabolic
pathways including the tricarboxylic acid cycle (TCA) (Bernal et al.,
2009). Within the TCA cycle, the citrate synthase cs gene is involved
in aerobic energy production and metabolic interconversions in
mitochondria (Holloszy et al., 1970); in our analysis, the expression
of cs was found significantly increased at the onset of infection,

FIGURE 4
Pseudotime analysis of insect cells along infection. (A) Trajectory analysis onmerged cell dataset (0, 8, and 22 hpi); a color gradient scale was used to
visualize the pseudotime. (B) Pathway enrichment analysis performed with genes identified as the most changing in function of pseudotime using the
Fisher’s exact test; the number of genes involved and found in the enrichment analysis are shown next to the bars.
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suggesting that this gene plays a key role as a first-line response to
infection.

Overall, the enrichment analysis allowed to identify several
pathways (e.g., ribosome, spliceosome, oxidative
phosphorylation) that were common to those previously
identified in our bulk RNA sequencing study (Silvano et al.,
2022), demonstrating the robustness and replicability of the data.
Importantly, single-cell RNA sequencing allowed to evaluate
single cells at different states of infection within the same
sample and capture the transcriptional changes associated
with the infection process (not possible with the bulk RNA
sequencing approach), thus elevating the importance of single-
cell omics analysis in the IC-BEVS system.

5 Conclusion

Single-cell transcriptomics enabled us to study host cell and
baculovirus gene expression patterns at a resolution previously
unobtainable in a bulk approach, allowing to isolate traces of
different stages of infection progression. Such understanding can
be further applied through genetic engineering approaches for
overexpression/knock-out of specific genes, an approach that
opens possibilities such as developing cell lines specialized for
either virus replication or foreign protein expression, establish
inducible systems, and even stimulate infection synchronization
across all cells in culture towards a more controlled, homogeneous
production process. Notwithstanding, using scRNA-seq to study
additional IC-BEVS processes (i.e., comprising different products
of interest, infection conditions, among others) is crucial for a
more broader understanding of the transcriptome footprints of
this expression system.
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