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Abstract: Introduction: Pancreas transplantation is currently the only treatment that can re-establish
normal endocrine pancreatic function. Despite all efforts, pancreas allograft survival and rejection
remain major clinical problems. The purpose of this study was to identify features that could signal
patients at risk of pancreas allograft rejection. Methods: We collected 74 features from 79 patients who
underwent simultaneous pancreas–kidney transplantation (SPK) and used two widely-applicable
classification methods, the Naive Bayesian Classifier and Support Vector Machine, to build predictive
models. We used the area under the receiver operating characteristic curve and classification accuracy
to evaluate the predictive performance via leave-one-out cross-validation. Results: Rejection events
were identified in 13 SPK patients (17.8%). In feature selection approach, it was possible to identify
10 features, namely: previous treatment for diabetes mellitus with long-term Insulin (U/I/day), type
of dialysis (peritoneal dialysis, hemodialysis, or pre-emptive), de novo DSA, vPRA_Pre-Transplant
(%), donor blood glucose, pancreas donor risk index (pDRI), recipient height, dialysis time (days),
warm ischemia (minutes), recipient of intensive care (days). The results showed that the Naive
Bayes and Support Vector Machine classifiers prediction performed very well, with an AUROC and
classification accuracy of 0.97 and 0.87, respectively, in the first model and 0.96 and 0.94 in the second
model. Conclusion: Our results indicated that it is feasible to develop successful classifiers for the
prediction of graft rejection. The Naive Bayesian generated nomogram can be used for rejection
probability prediction, thus supporting clinical decision making.

Keywords: artificial intelligence; machine learning; pancreas transplantation; allograft survival;
allograft rejection; patient risk management

1. Introduction

Personalized medicine and precision medicine, which are complementary approaches
that work together to improve patient outcomes by providing more targeted and effective
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medical care, form a holistic approach to health care that enables for personalized diagnosis
and treatment [1].

While genetic testing and other OMICS-based personalized medicine approaches
can be expensive, machine learning, a branch of artificial intelligence, can be a useful
tool for personalized medicine. Machine learning can analyze conventional clinical data
that are already being collected as part of routine patient care. Its growing importance in
personalized medicine enables healthcare providers to analyze and interpret large amounts
of data, leading to the identification of patterns and associations that may not be visible to
human perception. This can potentially lead to individualized or tailored treatments and
diagnoses [2].

Simultaneous pancreas–kidney (SPK) transplantation is a viable treatment option for
patients with end-stage renal disease and type 1 diabetes [3]. In recent years, personalized
medicine has become increasingly important in the context of solid organ transplanta-
tion [4]. For instance, Sirota et al. [5] reviewed this topic and discussed the potential of
using omics technologies to improve solid organ transplant outcomes and move toward
personalized treatments in transplantation research. The authors described how various
omics technologies, including genomic, transcriptomic, proteomic, and metabolomic stud-
ies, could lead to identifying biomarkers and molecular pathways important for transplant
success or failure. In this review, the challenges and potential applications associated with
these technologies were also highlighted (e.g., standardization of methods), thus resulting
in more readable results between transplantation centers. Overall, they argue that the use of
omics technologies has the potential to revolutionize transplantation research and improve
transplant outcomes, making the field of transplantomics an important area of research in
the coming years. More recently, Maldonado et al. [4] highlighted the importance and im-
pact of the most recent developments in personalized medicine and noninvasive diagnostic
techniques and how they have impacted the outcomes in solid organ transplantation, which
were mainly summarized by the limitations of current immunosuppressive therapies and
the importance of individualizing treatment regimens. The paper emphasizes the potential
for personalized medicine and noninvasive diagnostics in solid organ transplantation
and the need for continued research and collaboration to fully realize these benefits for
transplant patients.

Additionally, with the boom in the application of artificial intelligence (AI) to every-
thing and everyone, healthcare and transplantation in particular having been impacted
by AI, with its application in clinical decision-making, biomedical research, and medical
education. Indeed, several researchers have focused their work on the applicability of these
new tools as a means to better understand transplant biology and improve outcome results
from transplantation. Works as presented by Mekov [6] in lung transplantation, Xu et al. [7]
and Piening et al. [8] in heart transplantation, Yu et al. [9] in liver transplantation, or Thong-
prayoon et al. [10], Kazi et al. [11], and Yoo et al. [12] in kidney transplantation, all the
authors as well as others have tried to use AI tools as a means to either evaluate waiting
lists and access to transplants or evaluate outcomes. The introduction of these methods
by lead several regulatory entities, e.g., Food and Drug Administrations indicate that they
felt the need to intervene. Validating and approving tools have also been introduced, and
these are either devices or products that can imitate intelligent behavior or mimic human
learning and reasoning [13].

Additionally, in SPK transplantation, researchers have been exploiting ways in which
personalized medicine can benefit patients and transplant outcomes. As an example, they
have explored ways to use genetic and other biomarkers to identify patients who are most
likely to benefit from the procedure and to optimize immunosuppressive therapy after
transplantation to minimize the risk of rejection and other complications. For example,
measuring levels of certain immune cell subsets, such as regulatory T cells or B cells, may
help identify patients who are at higher risk of acute rejection or infection after transplanta-
tion [14]. Another example of a personalized medicine approach in SPK transplantation
is the use of pharmacogenomics, which is the study of how genetic variation affects drug
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response. Some patients may have genetic mutations that influence how certain drugs are
metabolized, resulting in harmful side effects or suboptimal efficacy. By tailoring medica-
tions appropriately, clinicians may be able to optimize treatment results, thus minimizing
the danger of unfavorable outcomes [15,16].

However, allograft rejection remains a major concern in solid organ transplantation,
and there is a need for less invasive diagnostic tools and more targeted and effective
treatments. Personalized medicine and machine learning offer potential solutions to these
challenges. In SPK transplantation, as in other solid organ transplants, machine learning
can be used to predict allograft rejection and develop personalized treatment plans. This
approach involves the analysis of a patient’s genetic, clinical, and environmental factors to
identify the optimal treatment plan. By using personalized medicine, clinicians can better
predict which patients are at risk of rejection and provide more targeted treatments. For
example, machine learning algorithms can be used to predict which patients are at risk
of allograft rejection based on their clinical and genetic characteristics. These predictions
can help clinicians develop personalized treatment plans that are tailored to each patient’s
needs.

In this study, our aim was to evaluate the feasibility of identifying features and risk
factors, based on conventional laboratory analysis, both pre- and post-operatively and
during the follow-up period. Additionally, we aimed to develop a machine learning-based
model that could measure the likelihood of dysfunction or pancreas allograft rejection.
This model would enable clinicians to take appropriate actions to optimize and improve
pancreatic graft survival.

2. Materials and Methods
2.1. Study Population

This retrospective cohort study was conducted at Hospital Curry Cabral-Centro Hos-
pitalar e Universitário de Lisboa Central. We identified all recipients who underwent
technically successful simultaneous pancreas–kidney (SPK) transplants from systemic-
drained, whole-organ brain-dead donors between March 2011 and January 2020, resulting
in a total of 106 patients. However, 33 patients were excluded from the study (refer to
Figure 1). Therefore, a final cohort of 73 participants was included and evaluated until
March 2021. The study received approval from the CHULC ethics committee (number
985/2020). Patient data were collected from the SClinic database (Hospital Clinical System),
an evolving information system developed by the Ministry of Health for clinical digitization
within the National Health Service. It aims to standardize clinical record procedures to
ensure information normalization. All patients provided informed consent to participate in
the study. The procurement operation, back-table bench procedures, and recipient surgery
were previously described in detail by our research group in a separate publication [17].

2.2. Immunosuppression Protocol

To prevent rejection of transplanted organs, T cell-depleting antibodies were admin-
istered 2–4 h before transplant surgery, e.g., polyclonal rabbit antithymocyte globulin
(rATG-Thymoglobulin), at a dosage of 1.5 mg/kg and, whenever needed, continued intra-
operatively. This was followed by 1.5–2 mg/kg of rATG-Thymoglobulin per day during the
six days after surgery, for a total of seven doses. However, if the patient’s white blood cell
count was less than 2000/microL and/or the platelet count was less than 75,000/microL,
the rATG-Thymoglobulin dose was adjusted accordingly. For the first three days after
transplantation, three 500 mg IV methylprednisolone injections were given, with the first
one before surgery and the remaining two on the first and second days after surgery. After
the third day, oral prednisone was administered at a dose of 20 mg once daily for 2–3 weeks,
which was then tapered down to 5 mg once daily by the third month. Mycophenolate
mofetil (MMF) was given orally at a dose of 500 mg before surgery. After surgery, it was
administered at a dose of 250 mg intravenously twice daily until day 5, after which it was
switched to 360 mg of enteric-coated mycophenolate sodium (ECMPS) which was ingested
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orally twice daily. In case of acute cellular rejection, we treated patients with three daily
pulses of 500 mg methylprednisolone, followed by 1.5 mg/kg of rATG-Thymoglobulin. For
antibody-mediated rejection, our primary goal was to eliminate the clonal population of B
cells or plasma cells that produce the donor-specific antibody (DSA). To achieve this, we
performed five plasmapheresis sessions followed by intravenous immune globulin (IVIG)
and a 500 mg Rituximab IV infusion after the fifth plasmapheresis session.
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Figure 1. Exclusion criteria.

2.3. Rejection Classification and Identification

The preferred method for diagnosing and grading pancreas transplant rejection is
through biopsy, but it is not commonly performed due to the risk of complications. In
simultaneous pancreas–kidney (SPK) transplants, a kidney biopsy is usually conducted
first, which may be sufficient to justify rejection treatment [18]. Considering the avoidance
of pancreas biopsies and the primary reliance on laboratory testing for rejection monitoring,
clinical indicators that suggest rejection were used to investigate the relationship with
dd-cfDNA values. These indicators include a serum creatinine increase of more than 30%
and/or lipase levels exceeding site-specific normal limits in the presence of unexplained
fever or leukocytosis, new graft tenderness, or abnormal endocrine results such as fasting
glucose levels. If clinically necessary, for-cause biopsies were performed according to stan-
dard care protocols. Pancreas and kidney functions were evaluated at each post-operative
visit and through regular laboratory screenings. We recorded the number of pancreas and
renal transplant biopsies conducted, as well as the clinical reasons for performing them [19].

2.4. Features and Data Analysis

A total of 74 clinical features were extracted from electronic patient and donor records.
Among these, 30 were categorical features related to the recipient, including gender, renal
replacement therapy (hemodialysis, peritoneal dialysis, or pre-emptive), de novo DSA,
American Society of Anesthesiology Classification (ASA), and others. The remaining
44 features were numeric and included age at the date of transplant, weight, height, du-
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ration of renal replacement therapy, duration of diabetes mellitus, previous treatment for
diabetes mellitus with long-term insulin (U/I per day), SUM pre-transplant DSA MFI
(maximum), vPRA Pre-Tx (%), SUM pre-transplant DSA MFI (latest assay), and more.

Donor features encompassed age, weight, height, intensive care unit days, pancreas
donor risk index (pDRI) for numeric features, and cause of death and cardiac arrest for
categorical features. Surgical features were also included, such as intraoperative blood
transfusion, total operating time, cold and warm ischemia time, and others.

Machine learning algorithms (ML) and feature selection were performed in Orange
3 version 3.19.0 (Bioinformatics Lab, University of Ljubljana, Slovenia). Supervised ML
algorithms were assessed by area under the receiver operating characteristics (AUCs)
and classification accuracy (CA); F-1 score and precision and sensitivity were also calcu-
lated. Data features visualization was performed via unsupervised learning dimensionality
reduction using t-Distributed Stochastic Neighbor Embedding (t-SNE).

AUC and CA are two methods available to evaluate the effectiveness of a classification
model. The AUC curve considers two factors, namely, the True Positive Rate and False
Positive Rate. On the other hand, classification accuracy measures the percentage of
correctly classified subjects. To assess the model’s performance, a leave-one-out cross-
validation approach was used. This method involves using all available data points except
for one, which is used to train the model, and then using the omitted data point to test the
model. This process is repeated for each data point in the dataset, and the performance of
the model is averaged across all the iterations.

Feature selection was conducted using an information gain algorithm. This selection
method is used to identify the most relevant features for a particular classification problem.
It is calculated by computing the entropy of the target variable before and after the split,
and the difference is the information gain. In the end, features with high information gain
are considered to be more relevant to the classification problem. The selection resulted in
the identification of ten features (two categorical and eight numeric) which best contributed
to the strength of the models, namely: previous treatment for diabetes mellitus with
long-term insulin (U/I/day), type of dialysis (peritoneal dialysis, hemodialysis, or pre-
emptive), de Novo DSA, vPRA_Pre-Transplant (%), donor blood glucose, pancreas donor
risk index (pDRI), recipient height, dialysis time (days), warm ischemia (minutes), recipient
of intensive care (days).

2.5. Algorithms

Several ML algorithms were tested in the end based on their performance and AUC,
and CA Naive Bayes and Support Vector Machine (SVM) classifier algorithms were used.

2.5.1. Naive Bayes

Naive Bayes is a probability classification algorithm that uses Bayes’ theorem to
make predictions based on the probability of a particular event occurring given input
data. It assumes that all features of the input data are independent of each other, which
is called the “naïve” assumption. Notwithstanding this assumption, Naive Bayes has
been highly used and has provided evidence of good performance in lots of real-world
applications, including healthcare. It works by calculating the probability of a data point
being associated with a specific class by multiplying the probabilities of each feature given
that class, choosing the class with the highest probability as the prediction. Given its
simplicity it can be useful in situations where the independence assumption is reasonably
accurate or where the interdependence between features is not essential [20].

2.5.2. Support Vector Machine

The Support Vector Machine is a supervised machine learning algorithm that is com-
monly used for classification and regression analysis. The SVM works by finding the
optimal hyperplane in a high-dimensional space that maximally separates the data points
of different classes. The hyperplane is defined by a set of parameters called weights, and
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the goal of the algorithm is to find the optimal set of weights that maximizes the margin
between the hyperplane and the nearest data points of each class. The SVM has been
applied in various clinical scenarios, such as medical image analysis, disease diagnosis,
and outcome prediction, where it can learn to classify patients based on features extracted
from their data [20].

2.5.3. t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding is a dimensionality reduction technique,
mostly useful in visualizing complex, high-dimensional datasets, and is particularly ef-
fective in preserving the underlying structure and relationships in high-dimensional data
as it can preserve both local and global structures. The algorithms work by modeling
the similarity among pairs of statistical points within the high-dimensional area and the
low-dimensional area, aiming to hold the neighborhood relationships of the statistics points
as much as possible. This set of rules may be precious in medical studies for visualizing
affected person clusters or figuring out subgroups inside a population [21]. The t-SNE
algorithm first constructs a probability distribution that defines the similarity between the
high-dimensional data points based on their Euclidean distances.

3. Results

The t-SNE score plot presented in Figure 2, based on all 74 features, shows that no
major cluster formation can be observed. This result was somewhat expected since a larger
number of features in relation to the number of patients can lead to the identification of a
feature pattern unique to each patient instead of being unique to the analyzed condition.
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Likewise, when more complex algorithms are employed, such as the SVM and Naive
Bayes algorithm presented in Table 1, the results are disappointing. In the SVM model,
the AUC and CA values are 0.70 and 0.77, respectively, indicating satisfactory–good per-
formance. However, the specificity for rejection detection is quite low at 46%. The Naive
Bayes model shows some improvement in terms of specificity (90%) and AUC (0.89), but
the overall CA is very poor, at 0.47.

Table 1. Machine learning algorithm models for identification of rejection in simultaneous kidney
pancreas transplantation based on all features (n = 74).

Model AUC CA F1 Precision Recall Specificity

SVM 0.70 0.77 0.78 0.79 0.77 0.46

Naive
Bayes 0.89 0.47 0.51 0.87 0.47 0.90

SVM, support vector machines; AUC, area under the receiver operating characteristics; CA, classification accuracy;
F1, F1-score.

To address this problem and identify the features that had the greatest impact on the
predictive model, a feature selection algorithm was employed. In this particular case, the
information gain algorithm was used.

As observed in Figure 3, information gain improved the t-SNE plots, forming clus-
ters with the t-SNE model (Figure 3A), SVM model (Figure 3B), and Naive Bayes model
(Figure 3C). In the case of the t-SNE plot, there were seven misclassified patients (two patients
with rejection in the non-rejection group, and five non-rejection patients in the rejection
group). However, these misclassifications did not result in any significant worsening of
the outcomes. Nonetheless, the models themselves showed significant improvement, as
shown in Table 2, with an AUC and CA of 0.96 and 0.94, respectively, for the SVM model,
and 0.97 and 0.87 for the Naive Bayes model. There was also a major improvement in
terms of specificity, particularly for the SVM model, which increased from 0.46 (using all
features) to 0.93 (using the top 10 features identified using information gain). The AUC
performances of the models (Figure 4) were consistent for both the classification of rejection
and non-rejection cases. As a result, the SVM model correctly predicted 93.9% of true
rejection patients and 92.3% of true non-rejection patients, with a 13.8% false classification
rate. The Naive Bayes model had a 15.2% false classification rate (all predicted as rejection
patients when they were not), but it achieved a 100% prediction rate for all patients classed
as rejection patients (Figure 5).

Regarding the features that contribute the most to the models’ AUC and CA (Figure 6),
the type of kidney replacement treatment (peritoneal dialysis, hemodialysis, or pre-emptive)
was found to be one of the most influential features for the models’ AUC results. It ranked
first for the SVM model and second for the Naive Bayes model. The formation of de novo
DSA also emerged as an important feature, appearing in the top three features for both
models. However, in terms of CA, the type of kidney replacement treatment had a negative
impact on the Naive Bayes model (Figure 6D), while it was the second most important
feature for the SVM model. It is worth noting that 5 out of 10 features had a negative
impact on the CA of the Naive Bayes model, which could partially explain the lower value
obtained.

As the Naive Bayes model provides a good AUC and CA, we then constructed a
nomogram plot to predict pancreas rejection in SPK transplantation, as shown in Figure 7,
based on clinical and laboratory features. This nomogram-based strategy has been used in
other types of transplants, e.g., kidney [22], lung [23], and heart [24], as a means to predict
transplant-related events. In our model the 10 top features identified using information
gain were incorporated, and our endpoint was the ability to identify or generate risk
stratification for pancreas rejection in SPK transplantation, and to our knowledge this is
one of the first attempts of model-based risk stratification for pancreas rejection.
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Figure 3. Data visualizations in 2D using t-SNE form features selection (n = 10). (A) t-SNE all features,
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Table 2. Machine learning algorithm models for identification of rejection in simultaneous kidney
pancreas transplantation based on all features (n = 10).

Model AUC CA F1 Precision Recall Specificity

SVM 0.96 0.94 0.94 0.95 0.94 0.93

Naive Bayes 0.97 0.87 0.89 0.93 0.87 0.98
SVM, support vector machines; AUC, area under the receiver operating characteristics; CA, classification accuracy;
F1, F1-score.
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4. Discussion

Recent advancements in ML have shown promising results in the field of medical
decision making. In particular, ML algorithms have the potential to support clinical
decisions by identifying patients at risk of rejection after transplantation [25].

However, before the implementation of these new methodologies to support clinical
medical decision making, several questions must be answered. Can we, based on clinical
data, only identify patients that are more prone to have a rejection event? Are all features
contributing to the model? If not, which are the most informative features that better
contribute to the model?
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To answer the first question, it is possible to use clinical data to identify patients who
may be more prone to rejection events. In healthcare, ML algorithms can be trained on
large datasets of patient information and outcomes to identify patterns and factors that are
associated with several healthcare events and scenarios [26]. In the field of transplantation
and in pancreatic transplants, several authors have developed algorithms to make predic-
tions of which patients are at a higher risk for rejection of pancreatic islet grafts [27] or of
suffering delayed pancreatic endocrine graft functioning.

Regarding the second question, not all features will necessarily contribute equally to
the model. Some characteristics may be less important or even irrelevant or can even result
in worse results, since the expanded complexity as a result of the added number of features
several times over has no major impact on the prediction values. Many times, it is better to
simplify the model to improve its accuracy [28]. Thus, and answering the last question to
determine which features have the most information and contribute the most to the model,
a feature importance analysis can and should be performed. In our study on information
gain, as expected we observed a major gain in terms of AUC and CA [29].

Our improved models, based on pre-transplant recipient, donor, and transplantation
features, have shown that they can be practical tools for identifying patients at risk of rejec-
tion after transplantation. It is highly desirable to identify this risk early in the immediate
post-transplant period so that we can take measures to minimize inflammatory/immune
aggression on the pancreatic graft. Therefore, we identified the features that had the great-
est impact on the models, some of them already identified in the literature for other solid
organs, namely those related to: (1) pre-transplant recipient factors: pre-transplant insulin
requirement and virtual panel reactive antibody (VPRA) percentage; traditionally, a high
vPRA has been associated with increased risk of rejection [30]; and height, type, and length
of dialysis, which are significant factors in determining the onset of graft function and
rejection [31]. (2) Donor factors: pancreas donor risk index (PRDI); in the literature for
the PRDI, 1.24 or higher donor grafts had significant poorer outcome compared to a PDRI
less than 1.24 [32]; blood glucose level. (3) Transplantation factor: warm ischemia time.
(4) Immediate post-transplant factors: days in intensive care and de novo donor-specific
antibodies (DSA). De novo DSA against both classes I and II HLA conferred poorer graft
survival [33].

The provided results discuss the application of machine learning algorithms, specifi-
cally Support Vector Machines (SVMs) and Naive Bayes, for the identification of rejection
in simultaneous kidney–pancreas transplantation. Initially, when all 74 features were
considered, the t-SNE score plot did not show any significant cluster formation, indicating
that individual feature patterns were unique to each patient rather than being unique to the
analyzed condition. Similarly, the performance of the SVM and Naive Bayes models based
on all features was not satisfactory, with lower specificity and overall accuracy. To address
this issue and identify the features with the greatest impact on the predictive model, a
feature selection algorithm called Info Gain was employed. The application of Info Gain
resulted in improved t-SNE plots, forming clusters with the t-SNE model, SVM model, and
Naive Bayes model. Although there were some misclassifications, they did not significantly
worsen the outcomes. The AUC and overall accuracy values improved significantly for
both the SVM and Naive Bayes models after feature selection.

Specifically, the SVM model achieved an AUC of 0.96 and an overall accuracy of 0.94,
with a substantial increase in specificity from 0.46 to 0.93 when using the top 10 features
identified using Info Gain. The Naive Bayes model also showed improvement, with an
AUC of 0.97 and an overall accuracy of 0.87. However, the Naive Bayes model had a higher
false classification rate compared to the SVM model.

The analysis of feature importance revealed that the type of kidney replacement
treatment and the formation of de novo DSA were among the most influential features for
the models’ AUC results. However, the impact of these features on the overall accuracy
(CA) differed between the SVM and Naive Bayes models. As a result, the SVM model
correctly predicted rejection in 93.9% of true rejection patients and non-rejection in 92.3%



J. Pers. Med. 2023, 13, 1071 12 of 14

of true non-rejection patients, with a 13.8% false classification rate. The Naive Bayes model
had a 15.2% false classification rate, but it achieved a 100% prediction rate for all patients
with rejection.

Based on the promising performance of the Naive Bayes model, a nomogram plot was
constructed to predict pancreas rejection in simultaneous kidney–pancreas transplantation.
The nomogram incorporated the top 10 features identified using Info Gain and aimed to
provide a means of predicting or risk stratifying pancreas rejection in this transplantation
setting and has the potential to serve as a useful tool in supporting medical decision making,
particularly for patients for whom undergoing a biopsy can be risky.

In the future, this nomogram could provide valuable assistance in clinical settings,
particularly in the clinical decision-making process when taking measures that could
preserve the transplanted pancreas, improve patients’ quality of life, and avoid missing
the opportunity for transplantation due to organ scarcity and the lower likelihood of re-
transplantation in case of graft loss. Based on the findings of the study, there are several
potential future research directions that can build upon the current work and expand the
application of machine learning models in transplantation settings. These directions are
as follows: (a) Conducting external validation studies using independent datasets from
different transplantation centers and diverse patient populations would be essential to
validate the developed machine learning models. External validation helps assess the
models’ generalizability and ensures their reliability and effectiveness across different set-
tings. (b) Conducting prospective studies that collect data in real-time would provide more
robust evidence for the models’ predictive capabilities. Prospective studies allow for more
accurate and standardized data collection, minimizing biases associated with retrospective
designs. (c) Assessing the applicability and generalizability of machine learning models in
other transplantation settings beyond simultaneous kidney–pancreas transplantation is cru-
cial. The models can be tested and validated in different solid organ transplantations, such
as liver, heart, or lung transplants, to determine their utility and potential for personalized
rejection prediction in those contexts. (d) Integration with Clinical Decision Support Sys-
tems, exploring the integration of machine learning models into clinical decision support
systems to facilitate their practical implementation in transplantation clinics. By integrating
the models into electronic health record systems, clinicians can receive real-time predictions
and recommendations for personalized patient management, aiding in the decision-making
process and potentially improving patient outcomes.

By pursuing these future research directions, the field can advance the understanding
and application of machine learning models in transplantation, ultimately leading to more
personalized and effective patient care, improved outcomes, and enhanced decision-making
processes for transplant clinicians.

This study has some limitations and biases; the study focused on a specific set of
clinical and laboratory features, resulting in a limited number of variables being considered
for analysis. There may be other relevant factors not included in the study that could
influence the prediction of rejection in SPK transplantation. Additionally, there may be
missing data for some variables, which could introduce bias and affect the robustness of the
models. The preferred method for diagnosing and grading pancreas transplant rejection
is through biopsy. However, due to the potential risks and complications associated with
biopsies, they are not commonly performed. As a result, the reliance on clinical indicators
and laboratory testing for rejection monitoring introduces limitations in the accuracy of
rejection classification and identification.

5. Conclusions

Machine learning and personalized medicine can potentially provide answers to these
problems. Machine learning algorithms can predict the likelihood of rejection by looking at
a patients clinical and transplant-related factors, allowing clinicians to take proactive steps
to stop rejection before it happens or to discriminate between whom needs to undergo a
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biopsy or not, thus creating an individualized follow-up plan that caters to the unique
requirements of each patient.

We support the development of less-invasive diagnostic tools, such as the presented
nomogram, and more specialized therapies for pancreas transplant allograft rejection. In
this regard, personalized medicine and machine learning hold great promise, providing
clinicians with the ability to anticipate rejection and create tailored treatment regimens
based on individual patient and donor factors. This approach could significantly enhance
the long-term success of pancreas transplantation. In recent years, there has been sub-
stantial advancement in the field of organ transplantation, with pancreatic transplantation
becoming a critical therapy option for people with type 1 diabetes. However, one of the
biggest difficulties faced by clinicians is the potential for allograft rejection, which can result
in transplant failure and the need for additional interventions.

In conclusion, in this research, we stress the significance of creating less invasive
diagnostic tools and more specialized therapies for pancreas transplant allograft rejection.
Currently, to diagnose rejection, clinicians rely on invasive biopsy procedures, which can
be unpleasant and risky. As a result, new diagnostic approaches that can effectively detect
or identify patients at risk of rejection are required. These techniques should be able to
provide patient stratification allowing for the reduction of biopsy risk-associated events.
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