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ABSTRACT
We prove that the Minimum Distance Problem (MDP) on linear

codes over any fixed finite field and parameterized by the input

distance bound isW[1]-hard to approximate within any constant

factor. We also prove analogous results for the parameterized Short-

est Vector Problem (SVP) on integer lattices. Specifically, we prove

that SVP in the ℓ𝑝 norm isW[1]-hard to approximate within any

constant factor for any fixed 𝑝 > 1 and W[1]-hard to approximate

within a factor approaching 2 for 𝑝 = 1. (We show hardness under

randomized reductions in each case.)

These results answer the main questions left open (and explic-

itly posed) by Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C.

S., Lin, Manurangsi, and Marx (Journal of the ACM, 2021) on the

complexity of parameterized MDP and SVP. For MDP, they estab-

lished similar hardness for binary linear codes and left the case of

general fields open. For SVP in ℓ𝑝 norms with 𝑝 > 1, they showed

inapproximability within some constant factor (depending on 𝑝)

and left open showing such hardness for arbitrary constant factors.

They also left open showingW[1]-hardness even of exact SVP in

the ℓ1 norm.
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1 INTRODUCTION
Error correcting codes and point lattices are fundamental mathe-

matical objects, and computational problems on them have a wide

range of applications in computer science including to robust com-

munication, cryptography, optimization, complexity theory, and

more. Indeed, because computational problems on codes and lattices

are so ubiquitous, a highly active line of work spanning decades

has worked to understand the complexity of the problems them-

selves. In particular, a great deal of work has studied the complexity

of the Minimum Distance Problem (MDP) (and its affine version,

the Nearest Codeword Problem (NCP)) on linear error correcting

codes [4, 9, 14, 21, 40]. Similarly, a large amount of work has studied

the complexity of the analogous problems on lattices, the Shortest

Vector Problem (SVP) (and its affine version, the Closest Vector

Problem (CVP)) [3, 4, 24, 27, 33, 39].

InMDP𝑞 , the goal is, given a linear error correcting code C over a

finite field F𝑞 and a distance bound 𝑘 as input, to determine whether

or not the minimum Hamming weight of a non-zero codeword in

C is at most 𝑘 . Similarly, in SVP𝑝 the goal is, given a lattice L and a

distance bound 𝑘 as input, to determine whether or not the ℓ𝑝 norm

of a non-zero vector in L is at most 𝑘 .1 One may also consider

𝛾-approximate versions of these problems for 𝛾 ≥ 1, which we

denote by 𝛾-MDP𝑞 and 𝛾-SVP𝑝 , respectively. (In what follows we

refer to linear error correcting codes over finite fields simply as

“codes.” We define codes, lattices, and computational problems on

them formally in Sections 2.3 and 2.4.)

In the 1990s, the field of parameterized complexity, in which the

running time of an algorithm for a given computational problem

1
The ℓ𝑝 norm used is fixed and independent of the input. One may also consider SVP

with respect to arbitrary norms, but it is most commonly considered with respect to

ℓ𝑝 norms (and especially with respect to the Euclidean norm ℓ2) as is the case in this

work.
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is considered not just as a function of the problem’s input size 𝑛

but also in terms of some parameter 𝑘 , developed and matured.

The fundamental notion of efficiency in the study of parameter-

ized algorithms is fixed-parameter tractability, which means that

the algorithm runs in time 𝑓 (𝑘) · poly(𝑛) for some (possibly fast-

growing) function 𝑓 (𝑘) depending on the parameter 𝑘 but not

the input length. A computational problem (formally, problem-

parameter pair) with such an algorithm is called fixed-parameter
tractable (FPT), and the set of all such problems forms the complex-

ity class FPT. On the other hand, the canonical notion of inefficiency

for parameterized problems is W[1]-hardness, which is analogous

to NP-hardness in the non-parameterized setting. To showW[1]-
hardness of a given problem, it suffices to give an FPT reduction
from a known W[1]-hard problem to that problem. Giving such a

reduction in particular implies that the problem reduced to is not in

FPT unless W[1] = FPT, which is widely conjectured not to be the

case. (Determining whether FPT is equal toW[1] is a major open

question, and is the analog of the P versus NP question in the pa-

rameterized world.) See the books by Downey and Fellows [18, 19]

for comprehensive references on parameterized complexity.

Parameterized Complexity ofMDP and SVP. As part of the devel-
opment of parameterized complexity as a whole, substantial interest

arose in the parameterized complexity (specifically,W[1]-hardness)
of computational problems on codes and lattices. This was espe-

cially true for MDP and SVP, where in each case the parameter 𝑘 of

interest is the input distance bound.
2
Indeed, until recently, one of

the major unresolved questions in parameterized complexity the-

ory was to determine whether the Minimum Distance Problem on

binary codes wasW[1]-hard. It was one of the few remaining open

problems from [19], and Downey and Fellows called it one of the

“most infamous” such open problems in their follow-up book [18].
3

Similarly, the fixed-parameter (in)tractability of the Shortest Vector

Problem in the ℓ2 norm was mentioned as an important unresolved

question in [18, 19].

In recent seminal work, Bhattacharyya, Bonnet, Egri, Ghoshal,

Karthik C. S., Lin, Manurangsi, and Marx [10], building on work of

Lin [28], resolved both of these questions in the affirmative. They in

fact even showed that both parameterized MDP and SVP are hard

to approximate. Specifically, they showed that for any constant

𝛾 ≥ 1, 𝛾-MDP2 is W[1]-hard to approximate under randomized

reductions, and that for any 𝑝 > 1 and constant 𝛾 satisfying 1 ≤
𝛾 < (1/2 + 1/2𝑝 )−1/𝑝 , 𝛾-SVP𝑝 is W[1]-hard to approximate under

randomized reductions.

However, despite its major achievements, [10] still fell short of

providing a complete understanding of the parameterized hardness

of approximate MDP and SVP. To that end, they gave several open

questions. Specifically, the authors asked whether it was possible to

show W[1]-hardness of MDP over all finite fields F𝑞 (and not just

for the binary case of F2). They also asked about showing W[1]-
hardness of SVP in all ℓ𝑝 norms (specifically, they asked about

𝛾-SVP1, for which they did not show hardness even in the exact

case of 𝛾 = 1), and about showingW[1]-hardness of 𝛾-SVP𝑝 with

2
In the parameterized setting, we consider SVP only on integer lattices; otherwise the
distance bound is not meaningful.

3
More precisely, [18, 19] asked about the complexity of the Even Set Problem, which

is equivalent to the dual formulation of the Minimum Distance Problem over F2 .

arbitrarily large constant 𝛾 for (some) 𝑝 (they did not obtain such a

result for any 𝑝).4 The first two of these three questions from [10]

were also asked as Open Questions 2 and 3, respectively, in a recent

survey on approximation in parameterized complexity by Feldmann,

Karthik C. S., Lee, and Manurangsi [22], which discussed important

open problems in the field as a whole.

1.1 Our Contributions
In this work, we answer all three of the open questions of [10]

discussed above, and provide a nearly complete picture of the pa-

rameterized inapproximability of MDP and SVP. In each of the

three theorems below (i.e., Theorems 1.1 to 1.3) the parameter of

interest is the input distance bound 𝑘 .

We first give our hardness result for MDP, which resolves the

first open question from [10] (also asked as [22, Open Question 2]).

Theorem 1.1. For any fixed prime power 𝑞 and constant 𝛾 ≥ 1, 𝛾-
MDP𝑞 isW[1]-hard under randomized FPT reductions with two-sided
error.

Second, we settle the second open question from [10] (also asked

as [22, Open Question 3]) by showing the following hardness result

for parameterized 𝛾-SVP𝑝 for all (finite) 𝑝 ≥ 1 and some 𝛾 = 𝛾 (𝑝).5
Indeed, in particular applies to the ℓ1 norm. It also shows hardness

of approximation for larger factors 𝛾 (𝑝) for 𝑝 > 1 than [10] does.

Theorem 1.2. For any fixed 𝑝 ∈ [1,∞) and constant 𝛾 ∈ [1, 21/𝑝 ),
𝛾-SVP𝑝 is W[1]-hard under randomized FPT reductions with two-
sided error.

Finally, we establish the parameterized inapproximability of SVP

with an arbitrary constant approximation factor in the ℓ𝑝 norm for

all fixed 𝑝 > 1. This resolves the third question from [10] mentioned

above.

Theorem 1.3. For any fixed 𝑝 ∈ (1,∞) and constant 𝛾 ≥ 1, 𝛾-
SVP𝑝 isW[1]-hard under randomized FPT reductions with two-sided
error.

Remark 1.4. We note that [10] erroneously claimed in a passing

remark that the important Euclidean (i.e., 𝑝 = 2) special case of

Theorem 1.3 was already known. However, that remark was in fact

referring to a result from an earlier version of [10] (i.e., [11]) that

shows parameterized hardness of 𝛾-SVP2 for arbitrary constant 𝛾 ≥
1, but only under the (randomized) Gap Exponential Time Hypothesis
(Gap-ETH) or the Parameterized Inapproximability Hypothesis (PIH),
which are stronger assumptions thanW[1] ≠ FPT.6 In particular,

the result in Theorem 1.3 was previously unknown for any 𝑝 . We

thank Pasin Manurangsi [31] for clarifying this for us.

4
In fact [10], asked about such a result for 𝑝 ≠ 2 and claimed such a result in passing

for 𝑝 = 2. However, the claim was referring to a result from prior work (specifically,

[11]) that showed hardness only under stronger hypotheses. See Remark 1.4.

5
We do not consider the case of 𝑝 = ∞ because, as [10] notes, SVP in the ℓ∞ norm is

NP-hard even when 𝑘 = 1.

6
Gap-ETH [17, 32] states that there exist constants 𝜀, 𝑐 > 0 such that no randomized

algorithm which is given as input a 3-CNF formula 𝐹 with𝑚 clauses and runs in time

𝑂 (2𝑐𝑚 ) can distinguish with probability at least 2/3 between the cases where 𝐹 is

satisfiable and where only at most a (1 − 𝜀 )-fraction of clauses in 𝐹 are satisfiable.

PIH [29] states that there exists a constant 𝜀 > 0 such that it is W[1]-hard to ap-

proximate the Multicolored Densest Subgraph problem to within a 𝛾 = 1 + 𝜀 approxi-

mation factor. This corresponds to the problem where we are given as input a graph

𝐺 = (𝑉 , 𝐸 ) with the vertex set partitioned into 𝑘 sets𝑉1, . . . ,𝑉𝑘 , and the goal is to

select vertices 𝑣1 ∈ 𝑉1, . . . , 𝑣𝑘 ∈ 𝑉𝑘 that induce as many edges as possible in𝐺 .
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We provide a technical overview of our arguments in Section 1.2

and provide formal proofs of Theorems 1.1 to 1.3 in Sections 3 to 5,

respectively.

Fine-Grained Hardness of ParameterizedMDP and SVP. Our re-
ductions also directly yield improved results concerning the fine-

grained hardness of 𝛾-MDP𝑞 and 𝛾-SVP𝑝 under Gap-ETH. Lever-

aging results from [10, 11], Manurangsi [30] showed that there

are no (possibly randomized) algorithms running in time 𝑛𝑜 (𝑘 ) for
𝛾-NCP𝑞 (respectively, time 𝑛𝑜 (𝑘

𝑝 )
for 𝛾-CVP𝑝 ) with any 𝛾 ≥ 1 and

prime power 𝑞 (respectively, 𝑝 ≥ 1), where 𝑛 is the dimension of

the input code (respectively, the rank of the input lattice) and 𝑘

is the input distance bound (in each case) assuming randomized

Gap-ETH.

By inspection, our FPT reductions from approximate NCP𝑞 to

approximate MDP𝑞 and from approximate CVP𝑝 to approximate

SVP𝑝 in Sections 3 and 4, respectively, transform the distance pa-

rameter 𝑘 into 𝑘′ = 𝑂 (𝑘) (for formal statements, see Theorems 3.1

and 4.1). Therefore, we can combine these reductions with the re-

sults from [30] to immediately obtain the following results on the

parameterized fine-grained hardness of MDP and SVP.
7

Theorem 1.5. For any fixed prime power 𝑞 there exists a constant
𝛾 = 𝛾 (𝑞) > 1 such that, assuming randomized Gap-ETH, there is no
algorithm running in time 𝑛𝑜 (𝑘 ) for deciding 𝛾-MDP𝑞 , where 𝑛 is the
dimension of the input code and 𝑘 is the input distance bound.

Theorem 1.6. For any fixed real number 𝑝 ≥ 1 and every 𝛾 ∈
[1, 21/𝑝 ) it holds that, assuming randomized Gap-ETH, there is no
algorithm running in time 𝑛𝑜 (𝑘

𝑝 ) for deciding 𝛾-SVP𝑝 , where 𝑛 is the
rank of the input lattice and 𝑘 is the input distance bound.

Previously, Theorem 1.5 was only known to hold for 𝑞 = 2,

and Theorem 1.6 was only known to hold for 𝑝 > 1 and with

approximation factors 𝛾 = 𝛾 (𝑝) < (1/2+1/2𝑝 )−1/𝑝 that are smaller

than those achieved by Theorem 1.6; see [11, 30].

Interestingly, the standard technique of tensoring instances of

MDP or SVP to boost the approximation factor cannot be used to

prove fine-grained hardness results as above, because the distance

parameter 𝑘 is mapped to 𝑘′ = 𝑘𝑐 for 𝑐 > 1. This motivates the

search for FPT reductions that preserve the parameter 𝑘 up to a

linear factor (i.e., for which 𝑘′ = 𝑂 (𝑘)) while simultaneously show-

ing hardness for as large an approximation factor 𝛾 as possible.

Our pre-tensoring hardness reductions for MDP𝑞 and SVP𝑝 in Sec-

tions 3 and 4 are such reductions. Moreover, we note that although

we obtain betterW[1]-hardness of approximation for SVP𝑝 with

𝑝 > 1 from the reduction in Section 5, we in fact get better fine-

grained hardness from our reduction in Section 4. (The reduction

in Section 4 also has the advantage of showing hardness of SVP in

the ℓ1 norm.)

7
We note that we work with the standard (in the non-parameterized setting) formula-

tion of 𝛾 -SVP𝑝 throughout the paper, where the goal is to decide whether the input

lattice has a non-zero vector x with ∥x∥𝑝 ≤ 𝑘 or if all such vectors have norm greater

than 𝛾𝑘 . On the other hand, [10, 30] work with an equivalent but different parameteri-

zation of the problem, which asks whether the input lattice has a non-zero vector x
with ∥x∥𝑝𝑝 ≤ 𝑘 or if the 𝑝th power of the ℓ𝑝 norm of all such vectors is greater than

𝛾𝑘 . This discrepancy leads to certain runtimes and approximation factors in our work

being off by a power of 𝑝 from [10, 30].

1.2 Technical Overview
1.2.1 Parameterized Inapproximability of 𝛾-MDP𝑞 . Inapproxima-

bility results for MDP and SVP follow the blueprint originally pi-

oneered by Ajtai [3], Micciancio [33], and Khot [27] for lattices

and Dumer, Micciancio, and Sudan [21] for codes. In each case, the

idea is to reduce the affine versions of the problems (NCP and CVP,

respectively), for which NP-hardness results were long known, to
the linear versions (MDP and SVP, respectively).

The DMS Reduction from NCP toMDP. We start by illustrating

the Dumer-Micciancio-Sudan (DMS) reduction from NCP to MDP,

which is based on analogous reductions of Ajtai [3] and Miccian-

cio [33] from CVP to SVP. An instance of NCP consists of a linear

code C = C(𝐺) ⊂ F𝑚𝑞 generated by a matrix 𝐺 ∈ F𝑚×𝑛
𝑞 and a

target t ∈ F𝑚𝑞 and the goal is to minimize the distance dist(t, C) of
t to its closest codeword, i.e., the minimum Hamming weight of

𝐺x− t over all x ∈ F𝑛𝑞 . A natural reduction to MDP will produce the

instance C′ = span(C, t) generated by 𝐺 ′ = (𝐺 | t) ∈ F𝑚×(𝑛+1)
𝑞 .

If we restrict to codewords 𝐺x + 𝛽t of C′
that use the target in

the combination, i.e., have 𝛽 ≠ 0, then the minimum distance of

such a codeword equals the Hamming distance dist(t, C) of t to
C. Under this (unreasonable) restriction we have a reduction that

preserves the objective value. The obvious trouble though is that C
(and hence C′

) might have short codewords of weight much smaller

than dist(t, C). In this case, the minimum distance of C′
will equal

the distance of C, and have nothing to do with t. Note, however,
that this reduction does work if 𝜆(C) > 𝑘 . Further, starting from a

gap 𝛾 version of NCP asking if dist(t, C) ≤ 𝑘 or dist(t, C) > 𝛾𝑘 , we

would get hardness of a gap 𝛾 version of MDP if 𝜆(C) > 𝛾𝑘 .

A natural goal is therefore to increase the distance of C without

increasing the proximity parameter in NCP by too much. This was

achieved in [21] by encoding the message according to C as well

as a second code
˜C ⊂ F𝑚′

𝑞 with generator matrix 𝐺̃ ∈ F𝑚′×𝑛′
𝑞

with large distance, say 𝐷 . Further, ˜C will be a locally dense code
in the sense that one can find a “bad list decoding configuration"

comprising a center s ∈ F𝑚′
𝑞 that has a large number of codewords

of
˜C within distance 𝛼𝐷 for some 𝛼 < 1; we call 𝛼 the relative

radius of the locally dense code. (One can in fact construct such

locally dense codes with any constant relative radius 𝛼 > 1/2 [21].)
The number of codewords will be so large that one can sample a

linear map 𝑇 that with high probability projects these codewords

onto F𝑛𝑞 . If 𝐺̃ is the generator matrix of the locally dense code
˜C,

the reduction, which will use randomness to pick both the center s
and the projection 𝑇 , will produce the instance of MDP generated

by (
𝐺𝑇𝐺̃ t
𝐺̃ s

)
. (1)

The completeness of the reduction follows because for any x ∈
F𝑛𝑞 that might satisfy ∥𝐺x − t∥0 ≤ 𝑘 , there will be a codeword

𝐺̃y ∈ ˜C within distance 𝛼𝐷 from s that projects to x under𝑇 . Thus

multiplying the generator matrix from Equation (1) by (y𝑇 ,−1)𝑇
will yield a nonzero codeword of weight at most 𝑘 + 𝛼𝐷 . Since the

distance of
˜C is 𝐷 , codewords which don’t use the last column of

Equation (1) will have Hamming weight at least 𝐷 . If 𝛼𝐷 + 𝑘 < 𝐷 ,

which is possible to ensure provided 𝛼 < 1, we get a gap.
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Challenges in the FPT Setting. It is reasonable to wonder whether
the DMS reduction above works directly in the FPT setting. How-

ever, as already pointed out in [10, Section 2.1], one quickly runs

into some obstacles. Indeed, the locally dense codes used in [21]

have minimum distance 𝐷 which depends on the input code dimen-

sion, and this is necessary to ensure that we can sample the linear

map 𝑇 with the desired properties. This is because the existence of

𝑇 implies that there must be at least |F𝑛𝑞 | = 𝑞𝑛 codewords in
˜C of

Hamming weight at most 𝛼𝐷 . Since the distance threshold of the

resulting MDP instance is 𝑘′ = 𝛼𝐷 + 𝑘 , it follows that 𝑘′ depends
on the input code dimension 𝑛, and so the DMS reduction is not

FPT.

To overcome these issues, [10] modify both the problem they

reduce from as well as the reduction itself. First, instead of reducing

from NCP to MDP, they reduce from a variant of NCP they call

the Sparse Nearest Codeword Problem (SNCP), where the Hamming

weight of the coefficient vector realizing the nearest codeword

is also taken into account. More precisely, the objective function

dist(t, C) of NCP is replaced by minx∈F𝑛𝑞 (∥𝐺x− t∥0 + ∥x∥0), where
C = C(𝐺). It is not hard to reduce NCP to SNCP in the FPT setting,

and this allows [10] to avoid having to sample the linear map 𝑇 .

Second, they replace locally dense codes by another variant which

they call locally suffix dense codes (LSDCs). These are codes ˜C ⊆ F𝑚′
𝑞

with minimum distance 𝐷 and generator matrix(
𝐼𝑛 0

𝐺̃1 𝐺̃2

)
∈ F𝑚

′×𝑛′
𝑞

which have the property that, given any prefix p ∈ F𝑛𝑞 , for most

“suffix centers” s ∈ F𝑚′−𝑛
𝑞 there is a suffix u ∈ F𝑚′−𝑛

𝑞 within Ham-

ming distance 𝛼𝐷 of s such that (p, u) ∈ ˜C. With the help of these

notions, [10] consider the MDP instance generated by

©­«
𝐺 0 t
𝐼𝑛 0 0

𝐺̃1 𝐺̃2 s

ª®¬ ,
where s is sampled uniformly at random from F𝑚

′−𝑛
𝑞 . The proof

that this reduction works is similar to the one sketched above for

the DMS reduction. The main challenge is to efficiently construct

LSDCs with appropriate parameters, in particular with minimum

distance 𝐷 independent of 𝑚′
, 𝑛′, and 𝑛. Unfortunately, known

constructions of locally dense codes do not yield LSDCs with the

desired properties. In the binary setting 𝑞 = 2, [10] showed that one

can take 𝐶 to be a binary BCH code [12, 25] with design minimum

distance 𝐷 . This ingenious approach allows them to prove that

𝛾-MDP2 isW[1]-hard.
It is instructive to discuss more precisely why the choice of

binary BCH codes as LSDCs works, and why it cannot be extended

to other finite fields. Binary BCH codes with minimum distance

𝐷 have codimension ≈
⌊
𝐷−1
2

⌋
log(𝑚′ + 1). The crucial fact that

makes the counting analysis of [10] go through is that

⌊
𝐷−1
2

⌋
is also the unique decoding radius for the binary BCH code, i.e.,

Hamming balls of this radius centered on BCH codewords are

disjoint. In other words, binary BCH codes almost meet the sphere

packing bound. One would hope that replacing binary BCH codes

with 𝑞-ary BCH codes would suffice to showW[1]-hardness of 𝛾-
MDP𝑞 more generally. However, 𝑞-ary BCH codes with minimum

distance 𝐷 have codimension ≈ ⌊(𝐷 − 1) (1 − 1/𝑞)⌋ log𝑞 (𝑚′ + 1)
(see Theorem 3.4), while the unique decoding radius remains

⌊
𝐷−1
2

⌋
.

Put differently, 𝑞-ary BCH codes for 𝑞 > 2 are no longer close to

the sphere packing bound, which breaks the analysis from [10]. In

fact, for 𝑞 > 2, it is not known if there exist 𝑞-ary codes with rate

vs. distance trade-off close to the sphere packing bound. Therefore,

it seems challenging to make the approach from [10] work as is

over F𝑞 , for 𝑞 > 2.

Our Approach: Khot for Codes. We succeed in overcoming the

barriers that [10] faced and establish theW[1]-hardness of𝛾-MDP𝑞

for arbitrary finite fields F𝑞 via a different and arguably simpler

(direct) reduction from NCP to MDP. Our key insight is to adapt

Khot’s reduction [27] from CVP to SVP to the coding-theoretic

setting. We are able to meet the requirements of such a reduction

with locally dense codes constructed from 𝑞-ary BCH codes.

This approach is quite natural. In fact, early lecture notes of

Khot [26] showed how to use this strategy to reduce from NCP to

MDP in the special case of binary codes. Our reduction is more

general and requires more careful analysis in that it works with

arbitrary locally dense codes with constant relative radius 𝛼 < 1,

works over F𝑞 and not just F2, and requires a more careful analysis

of the the distance bound 𝑘′ in the output MDP instance as a func-

tion of the distance bound 𝑘 in the input NCP instance. However,

the core idea is the same.

More precisely, given an instance (𝐺, t, 𝑘) of 𝛾-NCP𝑞 with 𝐺 ∈
F𝑚×𝑛
𝑞 and t ∈ F𝑚𝑞 and an appropriate locally dense code (𝐺̃, s) with

𝐺̃ ∈ F𝑚′×𝑛′
𝑞 and s ∈ F𝑚′

𝑞 , we consider the intermediate code Cint
spanned by the generator matrix

𝐺int =

(
𝐺 0 −t
0 𝐺̃ −s

)
.

This is analogous to the intermediate lattice introduced in Khot’s

reduction [27] from CVP to SVP, with the difference being that we

replace the CVP instance by an NCP instance and the locally dense

lattice by a locally dense code. Note that it may happen that Cint
contains low weight vectors even when (𝐺, t, 𝑘) is a NO instance

of 𝛾-NCP𝑞 . This is, however, not a show-stopper, as it in fact suf-

fices to show that there are many more low weight vectors in Cint
when (𝐺, t, 𝑘) is a YES instance of 𝛾-NCP𝑞 than when (𝐺, t, 𝑘) is
a NO instance. Indeed, if this holds then we can sparsify Cint by
intersecting it with an appropriate random code C

rand
so that, with

high probability, all low weight vectors are eliminated in the NO

case, but at least one low weight vector survives in the YES case.

Again, this is analogous to the lattice sparsfication performed in

Khot’s reduction [27], Finally, the 𝛾 ′-MDP𝑞 instance is obtained by

computing a generator matrix 𝐺
final

of C
final

= Cint ∩ C
rand

and

outputting (𝐺
final

, 𝑘′) for some appropriate 𝑘′.
To guarantee that the reduction is FPT, we need to ensure that

𝑘′ ≤ 𝑓 (𝑘) for some function 𝑓 . In fact, in our reduction 𝑘 only

increases by a linear factor, i.e., we get 𝑘′ ≤ 𝑓 (𝑘) = 𝑂 (𝑘). We

briefly sketch how to establish the desired properties of Cint and
choose 𝑘′. Suppose that (𝐺̃, s) is a locally dense code with minimum

distance 𝐷 and such that there are at least 𝑁 vectors y satsifying

∥𝐺̃y−s∥0 ≤ 𝛼𝐷 for some𝛼 ∈ (1/2, 1). If (𝐺, t, 𝑘) is a YES instance of
𝛾-NCP𝑞 , i.e., there exists x such that ∥𝐺x−t∥0 ≤ 𝑘 , thenmultiplying

𝐺int by (x, y, 1)𝑇 yields a codeword of weight at most 𝑘′ = 𝛼𝐷 + 𝑘 .
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As a result, there are at least 𝑁 vectors in Cint of weight at most 𝑘′,
which we call good. On the other hand, if (𝐺, t, 𝑘) is a NO instance of

𝛾-NCP𝑞 and 𝐷 > 𝛾𝑘 , then it is not hard to see that every codeword

of weight at most 𝛾𝑘 in Cint is of the form 𝐺int (x, 0, 0)𝑇 , and so

there are at most 𝑞𝑛 such annoying vectors in Cint, where 𝑛 =

dim(C(𝐺)). (The “good” versus “annoying” vectors terminology

was also introduced in [27].)

We conclude that the reduction works and is FPT if we are able

to construct a 𝑞-ary locally dense code (𝐺̃, s) as above under the
constraints that (i) 𝐷 = 𝑔(𝑘) > 𝛾𝑘 , (ii) 𝑘′ = 𝛼𝐷 + 𝑘 ≪ 𝛾𝑘 , and (iii)

𝑁 ≫ 𝑞𝑛 (so that there many more good vectors in YES instances

than annoying vectors in NO instances and the sparsification step

works). While the approach of [10] described above required 𝑞-ary

codes of codimension ≈ 𝐷
2
log𝑞 (𝑚′), which are not known to exist

for 𝑞 > 2, we show that to construct locally dense codes satisfying

our constraints it is enough to consider 𝑞-ary codes with minimum

distance 𝐷 ≈ 𝛾𝑘 and codimension ≈ 𝛽𝐷 log𝑞 (𝑚′) for any 𝛽 < 1!

Therefore, we can use 𝑞-ary BCH codes of length𝑚′ = poly(𝑚)
with design minimum distance 𝐷 ≈ 𝛾𝑘 , which have codimension

≈ 𝐷 (1 − 1/𝑞) log𝑞 (𝑚′) for any prime power 𝑞.

This approach showsW[1]-hardness of 𝛾 ′-MDP𝑞 for some ap-

proximation factor 𝛾 ′ > 1; in fact, we get hardness with 𝛾 ′ ≈ 1/𝛽 ≈
1/𝛼 . We can then amplify this approximation factor 𝛾 ′ in a standard

manner via tensoring to obtain W[1]-hardness of 𝛾 ′′-MDP𝑞 for

every 𝛾 ′′ ≥ 1. For more details, see Section 3.

1.2.2 Parameterized Inapproximability of 𝛾-SVP𝑝 . We first define

locally dense lattices, which are analogous objects to locally dense

codes, and which are important both for understanding the issues

with [10] and our ways of handling them. A locally dense lattice
(with respect to the ℓ𝑝 norm) is a lattice L ⊂ R𝑚 together with a

shift s ∈ R𝑚 such that L − s contains many vectors of ℓ𝑝 norm

at most 𝛼𝜆
(𝑝 )
1

(L) for some constant 𝛼 = 𝛼 (𝑝) ∈ (1/2, 1), where
𝜆
(𝑝 )
1

(L) = minv∈L\{0} ∥v∥𝑝 . As is the case for locally dense codes,
we call 𝛼 the relative radius of the corresponding locally dense

lattice.

As in Section 1.2.1, we start by explaining the original approach

from [10] towards showing W[1]-hardness of 𝛾-SVP𝑝 for 𝑝 > 1

and some approximation factor 𝛾 > 1, and why it fails to resolve

the problems we tackle. To recall, [10] proved that 𝛾-CVP𝑝 isW[1]-
hard for every fixed 𝑝,𝛾 ≥ 1. Then, they simply noted that Khot’s

initial reduction [27] from CVP𝑝 to SVP𝑝 (which is similar to our

FPT reduction from NCP to MDP discussed in Section 1.2.1) is it-

self an FPT reduction if the parameters of the locally dense lattice

from [27] (which is based on binary BCH codes) are chosen appro-

priately. Combining this observation with the W[1]-hardness of
𝛾-CVP𝑝 immediately yields that 𝛾 ′-SVP𝑝 isW[1]-hard for some ap-

proximation factor 𝛾 ′ = 𝛾 ′ (𝑝) > 1. However, despite achieving this

nice result, the approach of [10] has two significant shortcomings.

Showing Inapproximability of SVP in All ℓ𝑝 Norms. The first lim-

itation of the approach in [10] is the use of Khot’s locally dense

lattices, which do not suffice to show either NP- or W[1]-hardness
of SVP in the ℓ1 norm.More specifically, Khot’s locally dense lattices

have relative radius 𝛼 = 𝛼 (𝑝) > (1/2 + 1/2𝑝 )1/𝑝 , which suffices to

showW[1]-hardness of parameterized 𝛾-SVP𝑝 (and NP-hardness

of non-parameterized 𝛾-SVP𝑝 ) for any

𝛾 ′ = 𝛾 ′ (𝑝) < 1/𝛼 (𝑝) < (1/2 + 1/2𝑝 )−1/𝑝 ,

and no better. Plugging 𝑝 = 1 into the right-hand side of this

equation shows that Khot’s reduction does not yield hardness even

for exact SVP1 (i.e., for 𝛾
′
-SVP1 with 𝛾

′ = 1). Indeed, this issue is

what kept Khot’s reduction from showing NP-hardness of SVP1
in [27] and what kept [10] from showingW[1]-hardness of SVP1.

Despite Khot’s reduction not working, other reductions never-

theless showed NP-hardness of (even approximating) SVP1. Unfor-

tunately, as [10] notes, these reductions both fail because of their

use of non-integral lattices and the fact that rounding real-valued

lattice bases to integral ones in a black-box way amounts to a non-

FPT reduction, since the minimum distance of the resulting lattices

will depend on their dimension. (Multiplying rational lattice bases

by the least common multiple of their entries’ denominators causes

a similar problem.) First, Micciancio [33] showed hardness of 𝛾-

SVP1 for any 𝛾 < 2 using locally dense lattices constructed from

prime number lattices. However, these locally dense lattices are

non-integral and even non-rational.
8
Second, Regev and Rosen [36]

showed how to use efficiently computable linear norm embeddings

to reduce 𝛾-SVP2 to 𝛾
′
-SVP𝑝 for any 𝑝 ≥ 1 and any constant 𝛾 ′ < 𝛾 .

Combined with Khot’s work [27], which showedNP-hardness of ap-
proximating SVP2 to within any constant factor 𝛾 , [36] implies that

SVP𝑝 for any 𝑝 (and in particular, SVP1) is NP-hard to approximate

within any constant factor as well. However, the norm embeddings

given in [36] use random Gaussian projection matrices, and there-

fore output non-integral lattices. Moreover, using different, integral

distributions for the projection matrices also does not obviously

work.

We overcome this first issue of Khot’s locally dense lattices not

working in the ℓ1 norm by instantiating Khot’s reduction with

different locally dense lattices. Specifically, we instantiate Khot’s

reduction with the locally dense lattices constructed in recent work

of Bennett and Peikert [7], which are built from Reed-Solomon

codes. These locally dense lattices meet all of the requirements

necessary for the proof of Theorem 1.2. Namely, they are efficiently

constructible; their base lattices L are integral; they can be con-

structed so that 𝜆
(𝑝 )
1

(L) does not depend on the dimension of

the input lattice L; and for 𝑝 ∈ [1,∞) they have ℓ𝑝 relative ra-

dius 𝛼 (𝑝) ≈ 1/2𝑝 < 1. In particular, they have ℓ1 relative radius

𝛼 (1) ≈ 1/2 (which is essentially optimal by the triangle inequality),

and so Khot’s reduction shows hardness of 𝛾-SVP1 for any con-

stant 𝛾 < 2. (We again note that the largest approximation factor

𝛾 = 𝛾 (𝑝) for which Khot’s reduction shows parameterized hardness

of 𝛾-SVP𝑝 is 𝛾 ≈ 1/𝛼 , where 𝛼 = 𝛼 (𝑝) is the relative radius of

the locally dense lattice used, and this is where the bound on the

approximation factor 𝛾 = 𝛾 (𝑝) in Theorem 1.2 comes from.)

Showing Inapproximability of 𝛾-SVP𝑝 . The second main short-

coming of the approach in [10] is that it is not clear how to amplify

the approximation factor 𝛾 > 1 for which they get W[1]-hardness
of 𝛾-SVP𝑝 (for 𝑝 > 1), to an arbitrary constant. As in the case of

codes, the natural thing to try for amplifying hardness is to take

8
We note in passing that Micciancio did in fact carefully analyze rounding these locally

dense lattices to get integral ones, but emphasize again that this rounding causes the

minimum distance of the resulting lattices to depend on their dimension.
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the tensor product of the input SVP instance with itself. The idea of

tensoring is, given an instance (𝐵, 𝑘) of SVP as input, to output the

SVP instance (𝐵 ⊗ 𝐵, 𝑘2), where 𝐵 ⊗ 𝐵 is the Kronecker product of

the input basis matrix 𝐵 with itself. Unfortunately, unlike for codes,

tensoring does not work in general for lattices. Indeed, although it

always holds that 𝜆1 (L(𝐵) ⊗ L(𝐵)) ≤ 𝜆1 (L(𝐵))2, the converse is
not always true or even “close to true”; see, e.g., [24, Lemma 2.3].

Although Haviv and Regev [24] showed that Khot’s original

SVP2 instances have properties that do in fact allow them to tensor

nicely, this is not the case for the SVP instances obtained in [10]. In-

deed, the (crucial!) subtlety is that the standard NP-hardness proof
for approximate CVP𝑝 proceeds via a reduction from approximate

Exact Set Cover [4, 24, 27], and the resulting CVP𝑝 instances en-

joy important additional properties that are then inherited by the

SVP𝑝 instances in [27]. Parameterized inapproximability of Exact

Set Cover is known under the (randomized) Gap-ETH and PIH

assumptions, and this is what allowed [11] to show parameterized

hardness of 𝛾-SVP2 for any constant 𝛾 ≥ 1; see also Remark 1.4.

However, it is not currently known whether approximate Exact

Set Cover is W[1]-hard, and so [10] generate their CVP𝑝 instances

via a different reduction from (the dual version of) NCP𝑞 with a

suitably large prime 𝑞 instead.
9
As a result, important properties

no longer hold when [10] use these alternative CVP𝑝 instances to

create SVP𝑝 instances via Khot’s reduction. Namely, it is no longer

true that every lattice vector with at least one odd coordinate has

large Hamming weight, a property that is needed to ensure that

the SVP𝑝 instance tensors nicely in [24].

It is also sensible to wonder whether Khot’s augmented tensor
product [27], which he introduced in his original work to overcome

issues with tensoring, can nevertheless be used to boost the approx-

imation factor of the SVP𝑝 instances generated in [10]. However,

the augmented tensor product cannot be applied in the FPT set-

ting unless the short lattice vectors in the base SVP instances also

have have short coefficient vectors (i.e., coefficient vectors whose

ℓ𝑝 norm is independent of lattice dimension). The SVP instances

in [10] do not seem to have this property.

Our Solution. In order to constructW[1]-hard SVP instances that
tensor nicely and thereby prove Theorem 1.3, we give a reduction

directly from approximate NCP2 to approximate SVP𝑝 for any 𝑝 >

1.
10

Our reduction is a variant of the reductions in Khot [27] and

Haviv and Regev [24], and again we instantiate the reduction with

locally dense lattices constructed from binary BCH codes similar to

those used by Khot [10, 27]. We emphasize that although the proofs

of Theorems 1.2 and 1.3 both use variants of Khot’s reduction, the

key to proving Theorem 1.2 was to instantiate Khot’s reduction

with different locally dense lattices and the key to Theorem 1.3 was

to reduce from a different W[1]-hard problem. Moreover, ensuring

that the characteristic of the underlying codes in the NCP instances

that we reduce from matches that of the underlying BCH codes

in the locally dense lattices that we use seems essential for our

analysis. Indeed, our NCP instances and locally dense lattices both

use codes over F2, whereas [10] reduced from NCP instances over

F𝑞 for larger prime 𝑞.

9
The exact version of this problem is known to beW[1]-hard, see [15, Section 13.6.3].

10
We could also use CVP as an intermediate problem in the reduction as is done in [10],

but that does not obviously make the reduction simpler or more modular.

Our reduction allows us to construct𝛾-SVP2 instances with some

constant 𝛾 > 1 that meet the sufficient conditions given in [24] to

be amplified to 𝛾 ′-SVP2 instances for arbitrarily large constant 𝛾 ′.
These conditions roughly say that the base lattices L in the SVP

instance must be such that all vectors v ∈ L ⊆ Z𝑛 satisfy at least

one of the following: (1) v has Hamming weight at least 𝑑 for some

distance bound 𝑑 , (2) v ∈ 2Z𝑛 and v has Hamming weight at least

𝑑/4, or (3) v ∈ 2Z𝑛 and v has very high ℓ2 norm. The minimum

distances of lattices in which all vectors satisfy either conditions

(1) or (2) behave nicely under tensoring, but condition (3) makes

the analysis subtle. However, we are essentially able to rely on

the analysis in [24]. Moreover, modifying the analysis in [24] a bit

additionally allows us to extend our result to ℓ𝑝 norms for 𝑝 > 1.

(The omission of 𝑝 = 1 is yet again for the same reason as in [10, 27];

it is because of the binary BCH-code-based locally dense lattices

that we use.)

1.3 Additional Related Work
Interest in the complexity of computational problems on codes and

lattices more broadly goes back several decades. We survey the

most closely related work here.

Complexity of NCP and MDP. Berlekamp, McEliece, and van

Tilborg [9] showed that certain problems related to linear codes,

such as the exact version of NCP, are NP-hard. They also con-

jectured that the exact version of MDP is NP-hard. This conjec-
ture remained open until groundbreaking work of Vardy [40], who

showed that exact MDP is indeed NP-hard. Not long after, Dumer,

Micciancio, and Sudan [21] showed that approximate MDP is NP-
hard under randomized reductions. Follow-up work by Cheng and

Wan [14], Austrin and Khot [5], and Micciancio [35] showed that

approximate MDP is NP-hard under deterministic reductions. The

unparameterized fine-grained hardness of NCP and MDP was re-

cently studied by Stephens-Davidowitz and Vaikuntanathan [38].

On the parameterized front, Downey, Fellows, Vardy, and Whit-

tle [20] showed, among other things, that the exact version of NCP

is W[1]-hard, and infamously conjectured that MDP is W[1]-hard.
As discussed above, the status of this conjecture did not budge

until the seminal work [10], where it was shown that 𝛾-NCP𝑞 is

W[1]-hard for every 𝛾 ≥ 1 and prime power 𝑞, and that 𝛾-MDP2 is

W[1]-hard for every 𝛾 ≥ 1. Finally, by establishing the parameter-

ized fine-grained hardness of Exact Set Cover and invoking results

from [10, 11], Manurangsi [30] showed that there are no algorithms

running in time 𝑛𝑜 (𝑘 ) for deciding 𝛾-NCP𝑞 and 𝛾-MDP2 assuming

Gap-ETH.

Complexity of CVP and SVP. The study of the complexity of

lattice problems was initiated by van Emde Boas [39], who showed

that CVP2 was NP-hard. He also showed that SVP∞ is NP-hard
and conjectured that SVP2 was NP-hard. This result remained the

state-of-the-art until Ajtai [3] extended it to the ℓ2 norm, and a deep

line of work soon followed showing progressively stronger hard-

ness of approximation results for SVP𝑝 in different ℓ𝑝 norms [13,

16, 24, 27, 33, 34]. A recent line of work has also focused on the

(unparameterized) fine-grained hardness of approximate CVP and

SVP [1, 2, 6, 8].
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In terms of parameterized hardness, Downey, Fellows, Vardy,

and Whittle [20] showed that exact CVP isW[1]-hard, and asked

whether SVP isW[1]-hard. As was the case for MDP, this question

was only settled in [10], where it was shown that 𝛾-SVP𝑝 is W[1]-
hard for 𝑝 > 1 with some 𝛾 = 𝛾 (𝑝) > 1. From a fine-grained

perspective, it was shown by Manurangsi [30] that, assuming Gap-

ETH, there are no algorithms running in time 𝑛𝑜 (𝑘 ) , where 𝑛 is the

rank of the input lattice, for deciding 𝛾-CVP𝑝 with any 𝛾 ≥ 1 for

𝑝 ≥ 1 and deciding 𝛾-SVP𝑝 with some 𝛾 > 1 for all 𝑝 > 1.

1.4 Open Problems
We highlight two interesting directions for future research:

• The reductions that we use to prove all of our main theo-

rems are randomized and have two-sided error due to our

randomized constructions of locally dense codes and lattices

and due to our use of sparsification. It would be a ground-

breaking contribution to find ways to derandomize these

reductions and obtain deterministic parameterized hardness

results for MDP and SVP. We note that when it comes to

showing NP-hardness (instead of W[1]-hardness), we know
deterministic reductions from NCP to MDP [5, 14, 35] and

randomized reductions with one-sided error from CVP to

SVP [34]. Additionally, we note that showing deterministic

(NP-)hardness of SVP in the non-parameterized setting is a

major open question.

• We have shown that 𝛾-SVP𝑝 is W[1]-hard for any fixed

𝑝 > 1 and 𝛾 ≥ 1. When 𝑝 = 1, we showed that 𝛾-SVP𝑝 is

W[1]-hard when 𝛾 ∈ [1, 2). We leave it as a fascinating open

problem to extend our W[1]-hardness result for all 𝛾 ≥ 1

to 𝑝 = 1 as well. This is an important missing piece of our

understanding of the parameterized hardness of approximate

SVP in ℓ𝑝 norms.

2 PRELIMINARIES
Throughout we use boldface, lower-case letters like v, x, s, t to de-

note column vectors.

2.1 Probability Theory
We denote random variables by uppercase letters such as 𝑋 , 𝑌 ,

and 𝑍 . Throughout this work we consider only discrete random

variables supported on finite sets. Given a random variable 𝑋 , we

denote its expected value by E[𝑋 ] and its variance by Var[𝑋 ]. We

write the indicator random variable for an event 𝐸 as 1{𝐸} .
We will make use of the following standard corollary of Cheby-

shev’s inequality. A proof can be found in the full version of this

work.

Lemma 2.1. Let 𝑋1, . . . , 𝑋𝑁 be pairwise independent random vari-
ables over {0, 1} such that Pr[𝑋𝑖 = 1] = 𝑝 > 0 for 𝑖 = 1, . . . , 𝑁 . Then,
it holds that Pr [∀𝑖 ∈ [𝑁 ], 𝑋𝑖 = 0] ≤ 1

𝑝𝑁
.

2.2 Parameterized Promise Problems and FPT
Reductions

We recall basic definitions related to parameterized promise (de-

cision) problems and Fixed-Parameter Tractable (FPT) reductions

between such problems. We refer the reader to [19] for an excellent

discussion of parameterized algorithms and reductions.

Definition 2.2 (Parameterized language). A set S ⊆ Σ∗ × N is

said to be a parameterized language (with respect to the rightmost

coordinate).

Definition 2.3 (Parameterized promise problem). The tuple of pa-
rameterized languages Π = (ΠYES,ΠNO) is said to be a parameter-
ized promise problem if {𝑥 : (𝑥, 𝑘) ∈ ΠYES}∩{𝑥 : (𝑥, 𝑘) ∈ ΠNO} = ∅
for every parameter choice 𝑘 ∈ N.

Definition 2.4 (FPT reductions with two-sided error). We say that

a randomized algorithm is an FPT reduction with two-sided error
from the parameterized promise problem Π to the parameterized

promise problem Π′
if the following properties hold:

• On input (𝑥, 𝑘), the algorithm runs in time at most 𝑇 (𝑘) ·
|𝑥 |𝑐 for some computable function 𝑇 (·) and some absolute

constant 𝑐 > 0 and outputs a tuple (𝑥 ′, 𝑘′);
• It holds that 𝑘′ ≤ 𝑔(𝑘) for some computable function 𝑔(·);
• If (𝑥, 𝑘) ∈ ΠYES, it holds that Pr

[
(𝑥 ′, 𝑘′) ∈ Π′

YES

]
≥ 2/3,

where the probability is taken over the randomness of the

algorithm;

• If (𝑥, 𝑘) ∈ ΠNO, it holds that Pr

[
(𝑥 ′, 𝑘′) ∈ Π′

NO

]
≥ 2/3,

where the probability is taken over the randomness of the

algorithm.

Note that if there is an FPT reduction with two-sided error from

Π to Π′
, it follows that there is a randomized FPT algorithm (i.e., an

algorithm running in time𝑇 (𝑘) · |𝑥 |𝑐 for some computable function

𝑇 (·) on input an instance (𝑥, 𝑘)) for deciding Π with two-sided

error whenever there is such an algorithm for deciding Π′
.

In this work we focus on the parameterized complexity class

W[1]. It is well-known that the parameterized Clique problem, in

which we are given as input a graph 𝐺 and a positive integer 𝑘

(with 𝑘 being the parameter of interest) and must decide whether𝐺

contains a clique of size 𝑘 , isW[1]-complete. That is, parameterized

Clique is inW[1] and it isW[1]-hard, i.e., there is an FPT reduction

from every problem in W[1] to it (see, e.g., [15, Theorem 13.18]).

Therefore, one may define W[1] to be the class of all parameterized

problems with FPT reductions to Clique. We refrain from discussing

W[1] in more detail; for an extensive discussion, see [19].

It is widely believed thatW[1] cannot be decided by FPT algo-

rithms, even if randomness with two-sided error is allowed. We

say that a parameterized promise problem Π′
isW[1]-hard under

randomized reductions if there is an FPT reduction with two-sided

error from aW[1]-hard problem Π to Π′
. The existence of such a

reduction shows that Π′
is likely intractable from a parameterized

perspective.

2.3 Coding Problems
Let C(𝐺) := {𝐺x : x ∈ F𝑛𝑞 } denote the code generated by generator

matrix𝐺 ∈ F𝑚×𝑛
𝑞 (note that here C(𝐺) is the F𝑞-span of the columns

of 𝐺). We write ∥𝑥 ∥0 = |{𝑖 ∈ [𝑚] : 𝑥𝑖 ≠ 0} for the Hamming

weight of a vector 𝑥 ∈ F𝑚𝑞 . For a code C ⊆ F𝑚𝑞 , let 𝜆(C) be the
Hammingminimum distance of C, and let dist(y, C) := minc∈𝐶 ∥y−
c∥0 denote the Hamming distance between a vector y ∈ F𝑚𝑞 and C.
Let B𝑞,𝑚 (𝑟 ) ⊆ F𝑚𝑞 denote the Hamming ball of radius 𝑟 in F𝑚𝑞 .
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We define two fundamental promise problems from coding the-

ory.

Definition 2.5 (Nearest Codeword Problem). The 𝛾-approximate
Nearest Codeword Problem over F𝑞 (𝛾-NCP𝑞) is the decisional promise

problem defined as follows. On input a generator matrix𝐺 ∈ F𝑚×𝑛
𝑞 ,

target t ∈ F𝑚𝑞 , and distance parameter 𝑘 ∈ Z+, the goal is to decide

between the following two cases when one is guaranteed to hold:

• (YES) dist(C(𝐺), t) ≤ 𝑘 ,

• (NO) dist(C(𝐺), t) > 𝛾𝑘 .

The parameter of interest is 𝑘 .

Remark 2.6. A scaling argument shows that the NO case in Defi-

nition 2.5 is equivalent to

• (NO) dist(C(𝐺), 𝛼t) > 𝛾𝑘 for any 𝛼 ∈ F𝑞 \ {0}.

The following results establish the W[1]-hardness and parame-

terized fine-grained hardness of NCP.

Theorem 2.7 ([10, Theorem 5.1, adapted]). For any prime power
𝑞 ≥ 2 and real number 𝛾 ≥ 1 it holds that 𝛾-NCP𝑞 isW[1]-hard.

Theorem 2.8 ([30, Corollary 5, adapted]). For any fixed prime
power 𝑞 and 𝛾 ≥ 1 and any function 𝑇 , assuming randomized Gap-
ETH, there is no randomized algorithm running in time 𝑇 (𝑘)𝑛𝑜 (𝑘 )
which decides 𝛾-NCP𝑞 with probability at least 2/3, where 𝑛 is the
dimension of the input code.

We remark that [10] states Theorem 2.7 as theW[1]-hardness
of the “𝛾-MLD𝑞” problem (where “MLD” stands for “Maximum

Likelihood Decoding” and the parameter of interest is again the

input distance 𝑘), which is equivalent to the𝛾-NCP𝑞 problem. More-

over, [10] only stated the result for prime 𝑞. However, direct inspec-

tion of [10, Section 5.2] shows that their proof also yields the more

general version stated in Theorem 2.7. In particular, [10, Definition

5.3], including the two observations there, generalizes to arbitrary

finite fields.

Definition 2.9 (Minimum Distance Problem). The 𝛾-approximate
Minimum Distance Problem over F𝑞 (𝛾-MDP𝑞) is the decisional

promise problem defined as follows. On input a generator matrix

𝐺 ∈ F𝑚×𝑛
𝑞 and distance parameter 𝑘 ∈ Z+, the goal is to decide

between the following two cases when one is guaranteed to hold:

• (YES) 𝜆(C(𝐺)) ≤ 𝑘 ,

• (NO) 𝜆(C(𝐺)) > 𝛾𝑘 .

The parameter of interest is 𝑘 .

Tensoring Codes. The tensor product of linear codes is an impor-

tant operation for building new codes with interesting properties

by combining two linear codes. In particular, tensoring can be used

to boost the approximation factor inW[1]-hardness results for NCP
and MDP from some constant 𝛾 > 1 to an arbitrary constant.

Given two linear codes C(𝐺1) and C(𝐺2) with 𝐺𝑖 ∈ F𝑚𝑖×𝑛𝑖
𝑞

and minimum distance 𝑑𝑖 for 𝑖 = 1, 2, we define the associated

tensor product code as C(𝐺1) ⊗ C(𝐺2) := C(𝐺1 ⊗ 𝐺2), where
𝐺1 ⊗ 𝐺2 ∈ F𝑚1𝑚2×𝑛1𝑛2

𝑞 is the Kronecker product of 𝐺1 and 𝐺2.

Furthermore, we have

𝜆(C(𝐺1) ⊗ C(𝐺2)) = 𝑑1 · 𝑑2 . (2)

See, e.g., [21] for a proof.

Suppose that we know that 𝛾-MDP𝑞 is W[1]-hard (under ran-

domized reductions) for some 𝛾 > 1. Then, using Equation (2), we

can immediately conclude that for any integer 𝑐 ≥ 1, 𝛾𝑐 -MDP𝑞

is W[1]-hard (under randomized reductions) by considering the

tensored MDP instances (𝐵⊗𝑐 , 𝑘𝑐 ), where 𝐵⊗𝑐
denotes the 𝑐-fold

Kronecker product of 𝐵 with itself. In particular, constructing ten-

sored MDP instances in this way gives an FPT self-reduction from

𝛾-MDP𝑞 to 𝛾𝑐 -MDP𝑞 .

2.4 Lattice Problems
Let L(𝐵) = {𝐵x : x ∈ Z𝑛} denote the lattice generated by the

matrix 𝐵 ∈ R𝑚×𝑛
. For 𝑝 ∈ [1,∞), we write ∥x∥𝑝 =

(∑𝑚
𝑖=1 |𝑥𝑖 |

𝑝
)
1/𝑝

for the ℓ𝑝 norm of a vector x ∈ R𝑚 . We use 𝜆
(𝑝 )
1

(L) to denote the

ℓ𝑝 norm of the shortest nonzero vector in L and set dist𝑝 (L, t) :=
minv∈L ∥v− t∥𝑝 . We write B (𝑝 )

𝑚 (𝑟 ) for the closed, centered ℓ𝑝 ball

of radius 𝑟 in R𝑚 .

We define two fundamental promise problems related to lattices.

Definition 2.10 (Closest Vector Problem). The 𝛾-approximate Clos-
est Vector Problem with respect to the 𝑝-norm (𝛾-CVP𝑝 ) is the deci-
sional promise problem defined as follows. On input a generator

matrix 𝐵 ∈ Z𝑚×𝑛
, a target t ∈ Z𝑚 , and a distance parameter 𝑘 ∈ Z+,

the goal is to decide between the following two cases when one is

guaranteed to hold:

• (YES) dist𝑝 (L(𝐵), t) ≤ 𝑘 ,

• (NO) dist𝑝 (L(𝐵), 𝛼t) > 𝛾𝑘 for any 𝛼 ∈ Z \ {0}.
The parameter of interest is 𝑘 .

The following results about theW[1]-hardness and parameter-

ized fine-grained hardness of CVP are known to hold.

Theorem 2.11 ([10, Theorem 7.2]). For any real numbers𝛾, 𝑝 ≥ 1

it holds that 𝛾-CVP𝑝 isW[1]-hard.

Theorem 2.12 ([30, Corollary 6, adapted]). For any fixed
𝑝,𝛾 ≥ 1 and any function𝑇 , assuming randomized Gap-ETH, there is
no randomized algorithm running in time 𝑇 (𝑘)𝑛𝑜 (𝑘𝑝 ) which decides
𝛾-CVP𝑝 with probability at least 2/3, where 𝑛 is the rank of the input
lattice.

Definition 2.13 (Shortest Vector Problem). The𝛾-approximate Short-
est Vector Problem with respect to the ℓ𝑝 -norm (𝛾-SVP𝑝 ) is the deci-
sional promise problem defined as follows. On input a generator

matrix 𝐵 ∈ Z𝑚×𝑛
and a distance parameter 𝑘 ∈ Z+, the goal is to

decide between the following two cases when one is guaranteed to

hold:

• (YES) 𝜆
(𝑝 )
1

(L(𝐵)) ≤ 𝑘 ,

• (NO) 𝜆
(𝑝 )
1

(L(𝐵)) > 𝛾𝑘 .

The parameter of interest is 𝑘 .

Tensoring Lattices. Analogously to the coding setting, we can also
consider the tensor product of lattices. Given two lattices L(𝐵1)
and L(𝐵2) with basis matrices 𝐵1 ∈ Z𝑚1×𝑛1

and 𝐵2 ∈ Z𝑚2×𝑛2
, we

define the associated tensor product lattice as L(𝐵1) ⊗ L(𝐵2) :=
L(𝐵1 ⊗𝐵2), where 𝐵1 ⊗𝐵2 ∈ Z𝑚1𝑚2×𝑛1𝑛2

is the Kronecker product

of 𝐵1 and 𝐵2.

Unlike for codes, it is not true that repeated tensoring of lattices

allows us to generically boost the approximation factor in known
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hardness results for CVP and SVP. Indeed, while it always holds

that

𝜆
(𝑝 )
1

(L(𝐵1) ⊗ L(𝐵2)) ≤ 𝜆
(𝑝 )
1

(L(𝐵1)) · 𝜆 (𝑝 )
1

(L(𝐵2)) ,
it may happen that the left-hand side of this inequality is signifi-

cantly smaller than the right-hand side. For an example, see [24,

Lemma 2.3]. Therefore, additional effort is required to prove special

structural properties of our CVP and SVP instances to ensure that

tensoring them allows us to boost the approximation factor in our

hardness results.

2.5 Locally Dense Codes and Lattices
Our FPT reductions from NCP to MDP and from CVP to SVP use

families of locally dense codes and lattices with appropriate param-

eters. Precise definitions of such objects follow below.

Definition 2.14 (Locally dense code). Fix a real number 𝛼 ∈ (0, 1),
positive integers 𝑑, 𝑁 ,𝑚,𝑛, and a prime power 𝑞. A (𝑞, 𝛼, 𝑑, 𝑁 ,𝑚,𝑛)-
locally dense code is specified by a generator matrix 𝐴 ∈ F𝑚×𝑛

𝑞 and

a target vector s ∈ F𝑚𝑞 with the following properties:

• 𝜆(C(𝐴)) > 𝑑 .

• |(C(𝐴) − s) ∩ B𝑞,𝑚 (𝛼𝑑) | ≥ 𝑁 .

That is, the code C(𝐴) has block length𝑚, dimension 𝑛, (design)

minimum distance 𝑑 , is over F𝑞 , and a “bad list decoding configura-

tion" with at least 𝑁 codewords within Hamming distance 𝛼𝑑 < 𝑑

of s.

Definition 2.15 (Locally dense lattice). Fix real numbers 𝛼 ∈ (0, 1)
and 𝑝 ≥ 1 and positive integers 𝑑, 𝑁 ,𝑚,𝑛. A (𝑝, 𝛼, 𝑑, 𝑁 ,𝑚, 𝑛)-locally
dense lattice is specified by a basis 𝐴 ∈ Z𝑚×𝑛

and a target vector

s ∈ Z𝑚 with the following properties:

• 𝜆
(𝑝 )
1

(L(𝐴)) > 𝑑 .

• |(L(𝐴) − s) ∩ B (𝑝 )
𝑚 (𝛼𝑑) | ≥ 𝑁 .

3 THE FPT NCP𝑞 TOMDP𝑞 REDUCTION
We next describe and analyze a randomized FPT reduction from

approximate NCP𝑞 to approximate MDP𝑞 which works over any

finite field. Our reduction is obtained by adapting Khot’s reduc-

tion [10, 27] from approximate CVP to approximate SVP to the cod-

ing setting and combining it with locally dense codes constructed

with the help of BCH codes over general finite fields. Combined

with Theorem 2.7, our reduction yields Theorem 1.1, which we

restate here.

Theorem 1.1. For any fixed prime power 𝑞 and constant 𝛾 ≥ 1, 𝛾-
MDP𝑞 isW[1]-hard under randomized FPT reductions with two-sided
error.

3.1 A Reduction with Advice
For the sake of exposition, we begin by describing our FPT reduction

from NCP to MDP in a modular fashion assuming that we are given

an appropriate locally dense code as advice. Later on in Section 3.3

we give an FPT randomized algorithm to construct locally dense

codes with the desired parameters and replace the advice with this

construction to yield the desired FPT reduction from approximate

NCP to approximate MDP with two-sided error. We establish the

following result.

Theorem 3.1. Fix a prime power 𝑞 ≥ 2 and real numbers 𝛾,𝛾 ′ ≥ 1

and 𝛼 ∈ (0, 1) additionally satisfying 𝛾 ′ ≤ 𝛾
1+𝛼𝛾 . Then, for𝑚 large

enough there is a randomized algorithm which on input a 𝛾-NCP𝑞
instance (𝐺, t, 𝑘) with𝐺 ∈ F𝑚×𝑛

𝑞 , t ∈ F𝑚𝑞 , and𝑘 ∈ Z+ and a (𝑞, 𝛼, 𝑑 =

𝛾𝑘, 𝑁 ≥ 100𝑞10 · (𝑞𝑚)𝑑 ,𝑚′, 𝑛′)-locally dense code (𝐴, s) outputs in
time poly(𝑚,𝑚′) an instance (𝐺

final
, 𝑘′) of 𝛾 ′-MDP𝑞 with 𝑘′ < 𝛾𝑘

satisfying the following properties with probability at least 0.99:
• If (𝐺, t, 𝑘) is a YES instance of 𝛾-NCP𝑞 , then (𝐺

final
, 𝑘′) is a

YES instance of 𝛾 ′-MDP𝑞 ;
• If (𝐺, t, 𝑘) is a NO instance of 𝛾-NCP𝑞 , then (𝐺

final
, 𝑘′) is a

NO instance of 𝛾 ′-MDP𝑞 .

We prove Theorem 3.1 by analyzing the following algorithm. On

input a 𝛾-NCP𝑞 instance (𝐺, t, 𝑘) with 𝐺 ∈ F𝑚×𝑛
𝑞 and t ∈ F𝑚𝑞 , we

first check whether t ∈ C(𝐺). If so, we output a trivial YES instance
of 𝛾 ′-MDP𝑞 . From here onwards we assume that t ∉ C(𝐺). We set

Cint to be the code with generator matrix

𝐺int :=

(
𝐺 0𝑚×𝑛′ −t

0𝑚′×𝑛 𝐴 −s

)
,

where (𝐴, s) is the locally dense code described in the statement of

Theorem 3.1. Note that𝐺int has full column rank (over F𝑞 ) whenever
𝐺 and 𝐴 have full column rank.

We will take the intersection of Cint with an appropriate random

code C
rand

⊆ F𝑚+𝑚′+1
𝑞 of codimension at most ℎ = ⌈7 + 𝑑 (1 +

log𝑞𝑚)⌉. More precisely, we sample C
rand

by first sampling the

entries of a parity-check matrix𝐻 ∈ Fℎ×(𝑚+𝑚′ )
𝑞 independently and

uniformly at random from F𝑞 and setting C
rand

= ker(𝐻 ). Then,
we compute a generator matrix 𝐺

final
of C

final
= Cint ∩ C

rand
and

𝑘′ := 𝑘 + 𝛼𝑑 , and output (𝐺
final

, 𝑘′) as the MDP instance. Note that

𝑘′ ≤ 𝑑/𝛾 ′ by the constraints imposed on 𝛾 , 𝛾 ′, and 𝛼 .

3.2 Proof of Theorem 3.1
In order to prove Theorem 3.1, we begin by establishing some

useful properties of the intermediate code Cint constructed by the

algorithm from Section 3.1.

Lemma 3.2. Fix a prime power 𝑞 ≥ 2 and real numbers 𝛾,𝛾 ′ ≥
1 and 𝛼 ∈ (0, 1) satisfying 𝛾 ′ ≤ 𝛾

1+𝛼𝛾 . Given a 𝛾-NCP𝑞 instance
(𝐺, t, 𝑘) with 𝐺 ∈ F𝑚×𝑛

𝑞 and t ∈ F𝑚𝑞 and a (𝑞, 𝛼, 𝑑 = 𝛾𝑘, 𝑁 ≥
100𝑞10 · (𝑞𝑚)𝑑 ,𝑚′, 𝑛′)-locally dense code (𝐴, s), the algorithm from
Section 3.1 constructs Cint = C(𝐺int) in time poly(𝑚,𝑚′) satisfying
the following properties:

• If (𝐺, t, 𝑘) is a YES instance of 𝛾-NCP𝑞 , then there are at least
𝑁 ≥ 100𝑞10 · (𝑞𝑚)𝑑 non-zero vectors in Cint of Hamming
weight at most 𝑘′. We call such vectors good;

• If (𝐺, t, 𝑘) is a NO instance of 𝛾-NCP𝑞 , then there are at most
(𝑞𝑚)𝑑 non-zero vectors in Cint of Hamming weight at most
𝑑 = 𝛾𝑘 ≥ 𝛾 ′𝑘′. We call such vectors annoying.

Proof. The claim regarding the time required to construct Cint
is directly verifiable. We proceed to argue the two items of the

lemma statement.

First, suppose that (𝐺, t, 𝑘) is a YES instance of 𝛾-NCP𝑞 . This

means that there is a vector x ∈ F𝑛𝑞 such that ∥𝐺x − t∥0 ≤ 𝑘 .

Moreover, we know that there are at least 𝑁 ≥ 100𝑞10 · (𝑞𝑚)𝑑
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vectors y ∈ F𝑛′
𝑞 such that ∥𝐴y− s∥0 ≤ 𝛼𝑑 . For each such y, consider

the associated vector zy = (x, y, 1) and note that

∥𝐺intzy∥0 = ∥𝐺x − t∥0 + ∥𝐴y − s∥0 ≤ 𝑘 + 𝛼𝑑 = 𝑘′ .

Therefore, there are at least 𝑁 ≥ 100𝑞10 · (𝑞𝑚)𝑑 good vectors in

Cint, as desired.
On the other hand, suppose that (𝐺, t, 𝑘) is a NO instance of

𝛾-NCP𝑞 . This means that for every x ∈ F𝑛𝑞 and 𝛽 ∈ F𝑞 \ {0} it
holds that ∥𝐺x − 𝛽t∥0 > 𝛾𝑘 = 𝑑 . Consider an arbitrary vector

z = (x, y,−𝛽) ∈ F𝑛+𝑛′+1
𝑞 . We claim that if 𝐺intz is annoying it must

be the case that y = 0 and 𝛽 = 0. To see this, first note that if 𝛽 ≠ 0

then ∥𝐺intz∥0 ≥ ∥𝐺x − 𝛽t∥0 > 𝑑 , since (𝐺, t, 𝑘) is a NO instance of

𝛾-NCP𝑞 and 𝑑 = 𝛾𝑘 . Therefore, we may assume that 𝛽 = 0. Under

this assumption, it holds that ∥𝐺intz∥0 ≥ ∥𝐴y∥0 > 𝑑 if y ≠ 0, which
yields the claim. This allows us to conclude that all vectors z such
that 𝐺intz is annoying are of the form z = (x, 0, 0) for some x ∈ F𝑛𝑞 .
As a result, the number of annoying vectors is at most

|C(𝐺) ∩ B𝑞,𝑚 (𝑑) | ≤ |B𝑞,𝑚 (𝑑) | ≤ (𝑞𝑚)𝑑 ,
as desired. □

We are now ready to prove Theorem 3.1 using Lemma 3.2.

Proof of Theorem 3.1. The claims regarding the time required

to construct C
final

and the bound on 𝑘′ are directly verifiable. We

proceed to argue the two items of the theorem statement.

Recall that we construct C
final

by intersecting Cint with an ap-

propriate random code C
rand

of codimension at most ℎ = ⌈7+𝑑 (1+
log𝑞𝑚)⌉. More precisely, C

rand
is obtained by sampling the entries

of a parity-check matrix 𝐻 ∈ Fℎ×(𝑚+𝑚′+1)
𝑞 independently and uni-

formly at random from F𝑞 and setting C
rand

= ker(𝐻 ). Observe
that for any given v ∈ F𝑚+𝑚′+1

𝑞 \ {0} we have

Pr

𝐻
[𝐻v = 0] = 𝑞−ℎ . (3)

Moreover, the random variables 1{𝐻v=0} and 1{𝐻w=0} are pairwise
independent whenever z and w are linearly independent. Let 𝑍v =

1{𝐻v=0} and write 𝑍S =
∑
v∈S 𝑍v for any set S.

Suppose that (𝐺, t, 𝑘) is a YES instance of𝛾-NCP𝑞 . By Lemma 3.2,

this means that there are at least 100𝑞10 · (𝑞𝑚)𝑑 good non-zero

vectors in Cint of Hamming weight at most 𝑘′. Let G denote the

set of such good vectors. We claim that Pr[𝑍G = 0] ≤ 0.01, i.e., at

least one good vector survives with probability at least 0.99 over

the sampling of C
rand

. Note that there exists a subset G′ ⊆ G of

size |G′ | ≥ |G|/𝑞 ≥ 100𝑞9 · (𝑞𝑚)𝑑 such that all vectors in G′

are pairwise linearly independent. This set G′
can be obtained by

keeping only one element of G per line in F𝑚+𝑚′
𝑞 . The variables

{𝑍v}v∈G′ are pairwise independent Bernoulli random variables

with success probability 𝑞−ℎ , and so Lemma 2.1 guarantees that

Pr[𝑍G = 0] ≤ Pr[𝑍G′ = 0] ≤ 𝑞ℎ

|G′ | ≤
𝑞ℎ+1

|G| ≤ 0.01,

by our choice of ℎ and the lower bound on |G′ |. Therefore, with
probability at least 0.99 there is a codeword v ∈ C

final
\ {0} such

that ∥v∥0 ≤ 𝑘′, and so (𝐺
final

, 𝑘′) is a YES instance of 𝛾 ′-MDP𝑞 .

Now, suppose that (𝐺, t, 𝑘) is a NO instance of 𝛾-NCP𝑞 . In this

case, Lemma 3.2 ensures that there are at most (𝑞𝑚)𝑑 non-zero

vectors in Cint with Hamming weight at most 𝑑 . Let A denote the

set of such annoying vectors. Note that Pr[𝑍A ≥ 1] ≤ (𝑞𝑚)𝑑
𝑞ℎ

≤
0.01, where the first inequality follows from Equation (3) and a

union bound over all |A| ≤ (𝑞𝑚)𝑑 annoying vectors, and the

second inequality follows from the choice of ℎ above. Therefore,

all annoying vectors are removed from C
final

with probability at

least 0.99. A union bound over these two events implies that with

probability at least 0.98 it holds that C
final

has minimum distance

larger than 𝑑 , and so (𝐺
final

, 𝑘′) is a NO instance of 𝛾 ′-MDP𝑞 . □

3.3 Finalizing the Reduction
In this section we provide a randomized construction of locally

dense codes based on BCH codes [12, 25] which can be combined

with Theorem 3.1 to yield the desired FPT reduction with two-sided

error and without advice. More precisely, we prove the following

theorem.

Theorem 3.3. Fix a prime power 𝑞 ≥ 2 and set𝛾 = 4𝑞. There exists
a randomized algorithm running in time poly(𝑚) which given as
input 𝑘,𝑚 outputs with probability at least 0.99 a (𝑞, 𝛼, 𝑑, 𝑁 ,𝑚′, 𝑛′)-
locally dense code (𝐴, s), where

𝑚′, 𝑛′ ≤ poly(𝑚),
𝑑 = 𝛾𝑘 = 4𝑞𝑘,

𝛼 = 1 − 1

2𝑞
,

𝑁 =
(𝑞𝑚)2𝑑
100

≥ 100𝑞10 · (𝑞𝑚)𝑑 ,

provided that𝑚 is sufficiently large compared to 𝑞.

Combining Theorems 2.7, 3.1 and 3.3 shows that 𝛾 ′-MDP𝑞 is

W[1]-hard under randomized reductions with two-sided error and

𝛾 ′ =
4𝑞

4𝑞−1 > 1. Then, as discussed in Section 2.3, coupling this

result with a tensoring argument immediately shows that 𝛾-MDP𝑞

isW[1]-hard for an arbitrary constant𝛾 ≥ 1, leading to Theorem 1.1.

Similarly, since 𝑘′ = 𝑂 (𝑘) in Theorem 3.1, combining Theorems 2.8,

3.1 and 3.3 yields Theorem 1.5.

3.3.1 BCH Codes over F𝑞 . The following theorem states the main

properties of (narrow-sense, primitive) BCH codes with design min-

imum distance over an arbitrary finite field (see [23] for a discussion

of BCH codes and related objects). Although versions of this theo-

rem are well-known, we present a proof in the full version of this

work.

Theorem 3.4 (𝑞-ary BCH codes). Fix a prime power 𝑞. Then,
given integers𝑚′ = 𝑞𝑟 − 1 and 1 ≤ 𝑑 ≤ 𝑚′ for some integer 𝑟 , it is
possible to construct in time poly(𝑚′) a generator matrix 𝐺BCH ∈
F𝑚

′×𝑛′
𝑞 such that CBCH = C(𝐺BCH) ⊆ F𝑚

′
𝑞 has minimum distance

at least 𝑑 and codimension𝑚′−𝑛′ ≤ ⌈(𝑑 −1) (1−1/𝑞)⌉ log𝑞 (𝑚′ +1).

3.3.2 Locally Dense Codes from BCH Codes. We now show how

to use 𝑞-ary BCH codes (Theorem 3.4) with appropriate parame-

ters to construct locally dense codes satisfying Theorem 3.3. This

construction is similar in spirit to the construction of locally dense

lattices by Khot [27].

Proof of Theorem 3.3. Suppose that we are given as input 𝑞,

𝑘 , and𝑚. Let 𝑑 = 4𝑞𝑘 . Choose𝑚′
to be the smallest number of the
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form 𝑞𝑟 − 1 larger than or equal to (𝑑𝑞𝑚)4𝑞 , and set 𝛼 = 1 − 1

2𝑞 .

Let𝐺BCH ∈ F𝑚′×𝑛′
𝑞 be the generator matrix of the CBCH code with

minimum distance at least 𝑑 + 1 and codimension

𝑚′ −𝑛′ ≤ ⌈𝑑 (1− 1/𝑞)⌉ log𝑞 (𝑚′ + 1) = 𝑑 (1− 1/𝑞) log𝑞 (𝑚′ + 1) (4)

guaranteed by Theorem 3.4, where the last equality holds by our

choice of 𝑑 . We sample our locally dense code (𝐴, s) as follows:
(1) Set 𝐴 = 𝐺BCH with 𝐺BCH as defined above;

(2) Sample s uniformly at random from B𝑞,𝑚′ (𝛼𝑑).
By Theorem 3.4, this procedure runs in time poly(𝑚′) = poly(𝑚).

We now show that this procedure outputs with probability at least

0.99 an (𝑞, 𝛼, 𝑑, 𝑁 ,𝑚′, 𝑛′)-locally dense code (𝐴, s), where
𝑚′, 𝑛′ ≤ poly(𝑚),
𝑑 = 4𝑞𝑘,

𝛼 = 1 − 1

2𝑞
,

𝑁 =
(𝑞𝑚)2𝑑
100

,

which yields Theorem 3.3. It follows directly from the length, codi-

mension, and minimum distance of CBCH = C(𝐺BCH) = C(𝐴) that
𝑚′, 𝑛′ ≤ poly(𝑚) and 𝑑 = 𝛾𝑘 = 4𝑞𝑘 . It remains to show that with

probability at least 0.99 over the sampling of s as above it holds that

| (C(𝐴) − s) ∩ B𝑞,𝑚′ (𝛼𝑑) | ≥ 𝑁 =
(𝑞𝑚)2𝑑
100

. (5)

This can be proved via the reasoning from [27, Lemma 4.3]. A

complete argument can be found in the full version. □

4 THE FPT CVP𝑝 TO SVP𝑝 REDUCTION
In this section we describe and analyze an FPT reduction from

approximate CVP𝑝 to approximate SVP𝑝 which works for all 𝑝 ≥ 1.

Our reduction is obtained by combining Khot’s reduction [10, 27]

from approximate CVP to approximate SVP with locally dense

lattices stemming from Reed-Solomon-based Construction-A lat-

tices, as first studied in [7]. In conjunction with Theorem 2.11, our

reduction yields Theorem 1.2, which we restate here.

Theorem 1.2. For any fixed 𝑝 ∈ [1,∞) and constant 𝛾 ∈ [1, 21/𝑝 ),
𝛾-SVP𝑝 is W[1]-hard under randomized FPT reductions with two-
sided error.

4.1 A Reduction with Advice
As in Section 3.1, we begin by describing our FPT reduction from

CVP to SVP in a modular fashion assuming that we are given an

appropriate locally dense lattice as advice. In Section 4.2, we give

an FPT randomized algorithm to construct locally dense lattices

with the desired parameters and replace the advice with this con-

struction to yield the desired FPT reduction from approximate NCP

to approximate MDP with two-sided error. More precisely, we have

the following result.

Theorem 4.1. Fix real numbers 𝑝,𝛾,𝛾 ′ ≥ 1 and 𝛼 ∈ (0, 1) addi-
tionally satisfying 𝛼 ≤ ( (𝛾/𝛾 ′ )𝑝−2)1/𝑝

𝛾 . Then, for𝑚 large enough there
is a randomized algorithm which on input a 𝛾-CVP𝑝 instance (𝐵, t, 𝑘)
with 𝐵 ∈ Z𝑚×𝑛 , t ∈ Z𝑚 , and 𝑘 ∈ Z+ and a (𝑝, 𝛼, 𝑑 = 𝛾𝑘, 𝑁 ≥

10
5 · (2𝑚(1 + 𝛾𝑘)) (𝛾𝑘 )𝑝 ,𝑚′, 𝑛′)-locally dense lattice (𝐴, s) outputs

in time poly(𝑚,𝑚′) an instance (𝐵
final

, 𝑘′) of 𝛾 ′-SVP𝑝 with 𝑘′ < 𝛾𝑘

satisfying the following properties with probability at least 0.99:
• If (𝐵, t, 𝑘) is a YES instance of 𝛾-CVP𝑝 , then (𝐵

final
, 𝑘′) is a

YES instance of 𝛾 ′-SVP𝑝 ;
• If (𝐵, t, 𝑘) is a NO instance of 𝛾-CVP𝑝 , then (𝐵

final
, 𝑘′) is a

NO instance of 𝛾 ′-SVP𝑝 .

We prove Theorem 4.1 via the following algorithm. On input a

𝛾-CVP𝑝 instance (𝐵, t, 𝑘) with 𝐵 ∈ Z𝑚×𝑛
and t ∈ Z𝑚 , we begin by

checking whether t ∈ L(𝐵), in which case we output a fixed trivial

YES instance if 𝛾 ′-SVP𝑝 . Therefore, we may henceforth assume

without loss of generality that t ∉ L(𝐵). We set the intermediate

lattice Lint to be the lattice generated by

𝐵int :=
©­«

𝐵 0𝑚×𝑛′ −t
0𝑚′×𝑛 𝐴 −s
0𝑛 0𝑛′ 1

ª®¬ ,

where (𝐴, s) is the locally dense lattice described in Theorem 4.1.

We add the bottom (0, . . . , 0, 1) row to 𝐵int to ensure that it has full

column rank whenever 𝐴 and 𝐵 have full column rank as well.

Then, we add an appropriate random constraint to Lint in or-

der to obtain the final SVP𝑝 instance. More precisely, let 𝜌 be the

smallest prime larger than 100(2𝑚(1 + 𝛾𝑘)) (𝛾𝑘 )𝑝 . Sample a vector

v ∈ Z𝑚+𝑚′+1
by sampling each entry independently and uniformly

at random from {0, . . . , 𝜌 − 1}. We define 𝐵
final

to be the (integral)

basis of the sublattice L
final

= L(𝐵
final

) ⊆ Lint defined as

L
final

= {w ∈ Lint : ⟨v,w⟩ = 0 (mod 𝜌)}.
For fixed 𝑝,𝛾 ≥ 1, it is well known that we can compute 𝐵

final
given

𝐵int, v, and 𝜌 as inputs in time poly(𝑚,𝑚′, log 𝜌) = poly(𝑚,𝑚′)
(see, e.g., [37, Claim 2.15]). Finally, we compute

11 𝑘′ =
𝛾𝑘
𝛾 ′ and

output (𝐵
final

, 𝑘′) as the SVP𝑝 instance. As the proof of Theorem 4.1

follows along similar lines as that of Theorem 3.1, we relegate it to

the full version.

4.2 Finalizing the Reduction
In this section we provide a randomized construction of locally

dense lattices based on Construction A lattices stemming from

Reed-Solomon codes, which can be combined with Theorem 4.1 to

yield the desired FPT reduction with two-sided error and without

advice. More precisely, we prove the following theorem.

Theorem 4.2. Fix real numbers 𝑝 ≥ 1 and 𝛾 ′ ∈ [1, 21/𝑝 ). Let
𝜀 = (𝛾 ′)−𝑝 − 1/2 > 0 and set 𝛾 = max

(
12/𝜀, 1

(1+𝜀/2)1/𝑝−1

)
. There

exists a randomized algorithm running in time poly(𝑚) which given
as input 𝑘,𝑚 outputs a (𝑝, 𝛼, 𝑑, 𝑁 ,𝑚′, 𝑛′)-locally dense lattice (𝐴, s)
with probability at least 0.99, where 𝑑 = 𝛾𝑘 and 𝑛′,𝑚′ = poly(𝑚),
and

𝛼 =

(
1

(𝛾 ′)𝑝 − 2

𝛾𝑝

)
1/𝑝

,

𝑁 = (2𝑚(1 + 𝛾𝑘))3(𝛾𝑘 )
𝑝

≥ 10
5 · (2𝑚(1 + 𝛾𝑘)) (𝛾𝑘 )

𝑝

,

provided that𝑚 is sufficiently large compared to 𝑝 .

11
We can always set 𝛾 to be an integer multiple of 𝛾 ′

to ensure that 𝑘 ′
is an integer.

For the sake of readability, we avoid taking floors and ceilings.
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Combining Theorems 2.11, 4.1 and 4.2 yields Theorem 1.2. Simi-

larly, observing that 𝑘′ = 𝑂 (𝑘) in Theorem 4.1, combining Theo-

rems 2.12, 4.1 and 4.2 yields Theorem 1.6.

Locally Dense Lattices from Reed-Solomon Codes. The locally

dense lattices described in Theorem 4.2 are obtained via Construc-

tion A lattices based on Reed-Solomon codes, which were analyzed

in [7].

For a fixed prime 𝑞, we define the Reed-Solomon code with

blocklength 𝑞 and dimension ℓ , which we denote by RS𝑞,ℓ , as

RS𝑞,ℓ =

{
(𝑓 (𝜁 ))𝜁 ∈F𝑞 : 𝑓 ∈ F𝑞 [𝑥], deg(𝑓 ) < ℓ

}
.

It is well known that it is possible to construct a generator matrix

for RS𝑞,ℓ in time poly(𝑞).
Given a Reed-Solomon code RS𝑞,ℓ , we define the associated Reed-

Solomon (Construction A) lattice LRS𝑞,ℓ
as

LRS𝑞,ℓ
= {x ∈ Z𝑞 : x (mod 𝑞) ∈ RS𝑞,ℓ } = RS𝑞,ℓ + 𝑞Z𝑞 .

Since we can construct a generator matrix of RS𝑞,ℓ in time poly(𝑞),
we can also construct a basis of LRS𝑞,ℓ

in time poly(𝑞). Theorem 4.2

is proved via the analysis of the following candidate construction

of a locally dense lattice (𝐴, s) under an appropriate choice of 𝑞, ℓ ,

and𝑤 :

(1) Set 𝐴 to be a basis of LRS𝑞,ℓ
;

(2) Sample s uniformly at random from 𝐵𝑞,𝑤 , the set of vectors

in {0, 1}𝑞 of Hamming weight at most𝑤 .

We present a complete analysis in the full version.

5 W[1]-HARDNESS OF SVP𝑝 FOR ANY
APPROXIMATION FACTOR

In this section we analyze an FPT reduction from approximate

NCP2 to approximate SVP𝑝 which when combined with results of

Haviv and Regev [24] leads to Theorem 1.3, which we restate here.

Theorem 1.3. For any fixed 𝑝 ∈ (1,∞) and constant 𝛾 ≥ 1, 𝛾-
SVP𝑝 isW[1]-hard under randomized FPT reductions with two-sided
error.

5.1 The Haviv-Regev Conditions for Tensoring
of SVP Instances

We will use the following generalization of a result of Haviv and

Regev [24] which establishes conditions under which an SVP in-

stance behaves well under tensoring.

Lemma 5.1. Fix an integer 𝑐 ≥ 1 and real numbers 𝑝,𝛾 ≥ 1.
Suppose that (𝐵, 𝑘) with 𝐵 ∈ Z𝑚×𝑛 and 𝑘 ∈ Z+ is an instance of
𝛾-SVP𝑝 with the additional property that if (𝐵, 𝑘) is a NO instance
of 𝛾-SVP𝑝 , then every nonzero vector w ∈ L(𝐵) satisfies at least one
of the following conditions, where 𝑑 = 𝛾𝑘 :

• ∥w∥0 > 𝑑𝑝 ;
• w ∈ 2Z𝑚 and ∥w∥0 > 𝑑𝑝/2𝑝 ;
• w ∈ 2Z𝑚 and ∥w∥𝑝 > 𝑑𝑐+3𝑝/2.

Then, (𝐵⊗𝑐 , 𝑘𝑐 ) is a YES instance of 𝛾𝑐 -SVP𝑝 if and only if (𝐵, 𝑘) is a
YES instance of 𝛾-SVP𝑝 , where 𝐵⊗𝑐 denotes the 𝑐-fold tensor product
of 𝐵 with itself.

Haviv and Regev [24, Lemma 3.4] proved a similar result for the

case 𝑝 = 2 only. It turns out to be not hard to generalize for any

𝑝 ≥ 1. Note, however, that the conditions of Lemma 5.1 depend a

priori on the (constant) number of times 𝑐 we will be tensoring the

base SVP𝑝 instance. We provide a proof of Lemma 5.1 in the full

version of this work.

5.2 The FPT NCP2 to SVP𝑝 Reduction Amenable
to Tensoring

We proceed to describe an FPT reduction from approximate NCP2,

which we know isW[1]-hard by Theorem 2.7, to approximate SVP𝑝

that yields the following result.

Theorem 5.2. Fix an even integer 𝛾 ≥ 2, an integer 𝑐 ≥ 1, and real
numbers 𝑝 > 1, 𝛾 ′ ≥ 1, and 𝛼 ∈ (1/2+2−𝑝 , 1) additionally satisfying

𝛾 ′ <
(

𝛾

2
𝑝+1+𝛼𝛾

)
1/𝑝

. Then, for𝑚 large enough there is a randomized

algorithmwhich on input a𝛾-NCP2 instance (𝐺, t, 𝑘) with𝐺 ∈ F𝑚×𝑛
2

,
t ∈ F𝑚

2
, and 𝑘 ∈ Z+ outputs in time poly(𝑚) an instance (𝐵

final
, 𝑘′)

of 𝛾 ′-SVP𝑝 with 𝑘′ = (2𝑝𝑘 + 𝛼𝛾𝑘 + 1)1/𝑝 < (𝛾𝑘)1/𝑝 satisfying the
following properties with probability at least 0.9:

• If (𝐺, t, 𝑘) is a YES instance of 𝛾-NCP2, then (𝐵
final

, 𝑘′) is a
YES instance of 𝛾 ′-SVP𝑝 ;

• If (𝐺, t, 𝑘) is a NO instance of 𝛾-NCP2, then (𝐵
final

, 𝑘′) is a
NO instance of 𝛾 ′-SVP𝑝 such that every nonzero vector w ∈
L(𝐵

final
) satisfies at least one of the following conditions:

– ∥w∥0 > (𝛾 ′𝑘′)𝑝 ;
– w ∈ 2Z𝑚 and ∥w∥0 > (𝛾 ′𝑘′)𝑝/2𝑝 ;
– w ∈ 2Z𝑚 and ∥w∥𝑝 > (𝛾 ′𝑘′)𝑐+3𝑝/2.

Combining Theorem 5.2 with Lemma 5.1 and Theorem 2.7 imme-

diately yields Theorem 1.3. This is because Lemma 5.1 guarantees

that we can directly tensor the 𝛾 ′-SVP𝑝 instances from Theorem 3.1

with 𝛾 ′ > 1 an arbitrary (constant) number of times 𝑐 ≥ 1 to con-

clude that 𝛾 ′′-SVP𝑝 is W[1]-hard for any constant 𝛾 ′′ ≥ 1.

We proceed to describe the algorithm we use to prove Theo-

rem 5.2. First, we set up some auxiliary objects and lemmas. Sup-

pose that we are given as input an instance (𝐺, t, 𝑘) of 𝛾-NCP2,
where 𝐺 ∈ F𝑚×𝑛

2
, t ∈ F𝑚

2
, and 𝑘 ∈ Z+. Let 𝑑 = 𝛾𝑘 . We denote by

𝐵NCP the basis of the Construction A lattice LNCP = C(𝐺) + 2Z𝑚 ,

which we can compute in time poly(𝑚). Without loss of generality,

we may assume from here onwards that t ∉ LNCP. Otherwise, we

can output a trivial YES instance of 𝛾 ′-SVP𝑝 .
With some hindsight, set 𝑚′

to be the smallest integer of the

form 2
𝑟 − 1 larger than

max

(
𝑚 + 1, (108𝑑12𝑐 )

1

𝛼−(1/2+2−𝑝 )

)
= poly(𝑚),

and let CBCH ⊆ F𝑚′
2

be a binary BCH code with minimum distance

at least 1 +𝑑 and codimension ℎ ≤
⌈
𝑑
2

⌉
log(𝑚′ + 1) = 𝑑

2
log(𝑚′ + 1)

guaranteed by Theorem 3.4. We denote by 𝐵BCH the basis of the

Construction A lattice LBCH = CBCH + 2Z𝑚
′
. Note that we can

compute a basis ofLBCH in time poly(𝑚′) = poly(𝑚). Furthermore,

we sample a target vector s ∈ F𝑚′
2

uniformly at random from 𝐵𝑚′,𝛼𝑑 ,

where we recall that 𝐵𝑚′,𝛼𝑑 is the set of vectors in {0, 1}𝑚′
with

Hamming weight at most 𝛼𝑑 . As in previous sections, the tuple

(𝐵BCH, s) satisfies a local density property with high probability
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over the sampling of s, as described in the following lemma (a proof

can be found in the full version).

Lemma 5.3. It holds with probability at least 0.99 over the sampling
of s that

| (LBCH − s) ∩ B (𝑝 )
𝑚′ ((𝛼𝑑)1/𝑝 ) | ≥

(𝑚′

𝛼𝑑

)
100(𝑚′ + 1)𝑑/2

=: 𝑁 .

Equipped with the above, we consider the intermediate lattice

Lint generated by the basis

𝐵int :=
©­«
2𝐵NCP 0𝑚×𝑚′ −2t
0𝑚′×𝑚 𝐵BCH −s
0𝑚 0𝑚

′
1

ª®¬ .

The bottom (0, . . . , 0, 1) row is added to ensure that 𝐵int has full

column rank over R.
Then, we add a random constraint Lint to obtain our final SVP

instance. More precisely, we set 𝜌 to be the smallest prime larger

than 10
−2𝑁 , sample a vector v ∈ Z𝑚+𝑚′+1

by sampling each entry

of v independently and uniformly at random from {0, . . . , 𝜌 − 1},
and construct in time poly(𝑚) a basis 𝐵

final
of the random sublattice

L
final

= {w ∈ Lint : ⟨v,w⟩ = 0 (mod 𝜌)}.

Then, we set 𝑘′ = (2𝑝𝑘 + 𝛼𝑑 + 1)1/𝑝 and output (𝐵
final

, 𝑘′) as our
𝛾 ′-SVP𝑝 instance.

12

5.3 Proof of Theorem 5.2
In order to prove Theorem 5.2, we first establish some useful prop-

erties of the intermediate lattice Lint.

Lemma 5.4. Fix an even integer 𝛾 ≥ 2, an integer 𝑐 ≥ 1, and
real numbers 𝑝 > 1, 𝛾 ′ ≥ 1, and 𝛼 ∈ (1/2 + 2

−𝑝 , 1) additionally
satisfying 𝛾 ′ <

(
𝛾

2
𝑝+1+𝛼𝛾

)
1/𝑝

. Given a 𝛾-NCP2 instance (𝐺, t, 𝑘)
with 𝐺 ∈ F𝑚×𝑛

2
, t ∈ Z𝑚 , and 𝑘 ∈ Z+, the algorithm from Section 5.2

constructs Lint = L(𝐵int) ⊆ Z𝑚+𝑚′+1 in time poly(𝑚) satisfying
the following properties with probability at least 0.99, where we recall
that 𝑑 = 𝛾𝑘 and 𝑘′ = (2𝑝𝑘 + 𝛼𝑑 + 1)1/𝑝 :

• If (𝐺, t, 𝑘) is a YES instance of 𝛾-NCP2, then there are at least

𝑁 =
(𝑚′
𝛼𝑑)

100(𝑚′+1)𝑑/2 pairwise linearly independent vectors w in
Lint such that ∥w∥𝑝 ≤ 𝑘′. We call such vectors good;

• If (𝐺, t, 𝑘) is a NO instance of 𝛾-NCP2, then there are at most
𝐴 ≤ 10

−5𝑁 non-zero vectors w in Lint that satisfy all of the
following properties:
– ∥w∥0 ≤ (𝛾 ′𝑘′)𝑝 ;
– Either w ∉ 2Z𝑚+𝑚′+1 or ∥w∥0 ≤ (𝛾 ′𝑘′)𝑝/2𝑝 ;
– Either w ∉ 2Z𝑚+𝑚′+1 or ∥w∥𝑝 ≤ (𝛾 ′𝑘′)𝑐+3𝑝/2.
We call such vectors annoying.13

Proof. The claim about the running time is directly verifiable.

We proceed to argue the two items in the lemma statement.

12
Our choice of 𝑘 ′

may not be an integer. For the sake of readability, we avoid working

through the argument with floors and ceilings. It is also relevant to note that 𝛾 can be

chosen so that our choice of 𝑘 ′
is the 𝑝th root of an integer, which already matches

the requirements of the definition of approximate SVP𝑝 in [10].

13
Annoying vectors are the ones that do not satisfy the properties of NO instances

laid out in Theorem 5.2.

Suppose that (𝐺, t, 𝑘) is a YES instance of 𝛾-NCP2. This means

that there is a codeword c ∈ C(𝐺) such that ∥c − t∥0 ≤ 𝑘 . Noting

that C(𝐺) ⊆ LNCP (when seen as a subset of {0, 1}𝑚 ⊆ Z𝑚),

we conclude that there is x ∈ Z𝑛 such that 𝐵NCPx = c, and so

∥𝐵NCPx − t∥𝑝𝑝 ≤ 𝑘 . Moreover, by Lemma 5.3 we also know that

with probability at least 0.99 there are at least 𝑁 =
(𝑚′
𝛼𝑑)

100(𝑚′+1)𝑑/2

vectors y ∈ Z𝑛′
such that ∥𝐵BCHy − s∥𝑝𝑝 ≤ 𝛼𝑑 . For each such good

y, consider the vector zy = (x, y, 1). Then, we have that

∥𝐵intzy∥
𝑝
𝑝 = ∥2𝐵NCPx − 2t∥𝑝𝑝 + ∥𝐵BCHy − s∥𝑝𝑝 + 1 ≤ 2

𝑝𝑘 + 𝛼𝑑 + 1,

and so ∥𝐵intzy∥𝑝 ≤ (2𝑝𝑘 +𝛼𝑑 + 1)1/𝑝 = 𝑘′. Moreover, since the last

coordinate of 𝐵intzy is always 1, these vectors are pairwise linearly

independent. As a result, there are at least 𝑁 good vectors in Lint.

On the other hand, suppose that (𝐺, t, 𝑘) is a NO instance of

𝛾-NCP2. This means that for every c ∈ C(𝐺) it holds that

∥c − t∥0 > 𝑑 = 𝛾𝑘 ≥ (𝛾 ′𝑘′)𝑝 ,

where the last inequality follows by our choice of 𝑘′ and the con-

straints on 𝑝 ,𝛾 ,𝛾 ′, and𝛼 . Recall that our goal is to bound the number

of annoying vectors in Lint appropriately. Consider an arbitrary

vector z = (x, y, 𝛽) ∈ Z𝑛+𝑛′+1
. We proceed by case analysis:

(1) 𝛽 ∉ 2Z: In this case, we have

∥𝐵intz∥0 ≥ ∥𝐵NCPx − 𝛽t∥0 ≥ ∥𝐺x − t (mod 2)∥0 > 𝑑 ≥ (𝛾 ′𝑘′)𝑝 ,

and so no vector of this form is annoying.

(2) 𝛽 ∈ 2Z and 𝐵BCHy ∉ 2Z𝑚
′
: In this case, we have

∥𝐵intz∥0 ≥ ∥𝐵BCHy − 𝛽s∥0 ≥ ∥𝐵BCHy (mod 2)∥0 > 𝑑 ≥ (𝛾 ′𝑘′)𝑝 ,

and so no vector of this form is annoying. The third inequal-

ity uses the fact that 𝐵BCHy (mod 2) is a non-zero codeword
of CBCH, which has minimum distance larger than 𝑑 = 𝛾𝑘 .

(3) 𝛽 ∈ 2Z and 𝐵BCHy ∈ 2Z𝑚
′
: In this case, it holds that all

coordinates of 𝐵intz are even. Therefore, in order for 𝐵intz to
be annoying it must be that ∥𝐵intz∥0 ≤ (𝛾 ′𝑘′)𝑝/2𝑝 ≤ 𝑑/2𝑝
and ∥𝐵intz∥𝑝 ≤ (𝛾 ′𝑘′)𝑐+3𝑝/2 ≤ 𝑑3𝑐 . There are at most

(2𝑑3𝑐 + 1)𝑑/2
𝑝

(
𝑚 +𝑚′ + 1

𝑑/2𝑝

)
vectors in Lint with these properties.

We conclude that there are at most 𝐴 = (2𝑑3𝑐 + 1)𝑑/2𝑝
(𝑚+𝑚′+1

𝑑/2𝑝
)

annoying vectors in Lint. Finally, we claim that 𝐴 ≤ 10
−5𝑁 . This

follows from our choice of parameters and simple algebraic manip-

ulation which can be found in the full version. □

Proof of Theorem 5.2. The desired result follows by combin-

ing Lemma 5.4 with a standard sparsification argument, as carried

out in the proof of Theorem 4.1. A more detailed argument can be

found in the full version of this work. □
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