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Abstract – The diagnosis of infections in hospital or clinical 

settings usually involves a series of time-consuming steps, including 

biological sample collection, culture growth of the organism isolation 

and subsequent characterization. For this, there are diverse infection 

biomarkers based on blood analysis, however, these are of limited 

use in patients presenting confound processes as inflammatory 

process as occurring at intensive care units.  In this preliminary study, 

the application of serum analysis by FTIR spectroscopy, to predict 

bacteraemia in 102 critically ill patients in an ICU was evaluated. It 

was analysed the effect of spectra pre-processing methods and 

spectral sub-regions on t-distributed stochastic neighbour 

embedding. By optimizing Support Vector Machine (SVM) models, 

based on normalised second derivative spectra of a smaller sub-

region, it was possible to achieve a good bacteraemia predictive 

model with a sensitivity and specificity of 76%. Since FTIR spectra 

of serum is acquired in a simple, economic and rapid mode, the 

technique presents the potential to be a cost-effective methodology 

of bacteraemia identification, with special relevance in critically ill 

patients, where a rapid infection diagnostic will allow to avoid the 

unnecessary use of antibiotics, which ultimately will ease the load on 

already fragile patients’ metabolism. 

Keywords — FTIR spectroscopy, Infection, Biomarkers, 

Intensive Care Unit  

I. INTRODUCTION 

The diagnosis of infections in a hospital environment, 

particularly in intensive care units (ICUs), is of critical 

importance due to the high risk of mortality associated with it 

[1], [2], with some being nosocomial [3]. However, current 

methods for identifying infections through culture-based 

diagnosis are time-consuming and laborious [4]. For this 

reason, biomarkers based on blood analysis, such as 

procalcitonin (PCT) [5], [6], C-reactive protein (CRP) [7], [8], 

interleukin-6 (IL-6) [9], [10] and Cluster of Differentiation 64 

(CD64) [11] have been used.  However, in the case of 

critically ill patients, presenting inflammatory conditions, 

these biomarkers are not specific, as there are systemic signs 

such as fever, tachycardia, and leucocytosis [12]. This has 

prompted the search for alternative specific and sensitive 

biomarkers of infection that can effectively aid in the 

diagnosis and treatment of infections, especially in critically 

ill patients.  

Fourier Transform Infrared (FTIR) spectroscopic presents 

diverse characteristics that can enable to achieve that goal, as 

it enables to acquire the metabolic status of the biological 

system in a high sensitivity and specificity mode [13]–[15]. 

Indeed, FTIR spectroscopy has been extensively used in 

biomedicine applications, especially in the mid-infrared 

region of the spectra (400cm-1 to 4000cm-1), with varied 

examples of applications including metabolite quantification 

[16], monitoring of stem cell differentiation [17], transfection 

events [18], discriminate between B and T-lymphocytes [19], 

infection processes [20], [21], capturing the human 

physiological state through serum and plasma analysis [22]  

[23] [24], as well as for medical diagnosis, prognosis and 

therapy monitoring [25], [26], [27].  

This work aims to evaluate if FTIR spectroscopic analysis 

of serum would enable to predict bacteraemia in critically ill 

patients in an ICU environment.  

II. MATERIALS AND METHODS 

A. Biological assay 

Peripheral blood was collected in a serum tube with no 

anticoagulant VACUETTE®, using standard blood collection 

procedures. Samples were maintained at 4ºC until blood 

centrifugation at 3000 rpm for 10 minutes (Mikro 220T, 

Hettich, Tuttlingen, Germany). Serum samples were kept at -

20ºC up until FTIR spectra acquisition. A total of 102 

patients, with COVID-19 and admitted to the ICU of Hospital 

São José, Centro Hospital Universitário Lisboa Central, 

were considered. 
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All patients at the time of blood sample collection were 

submitted to blood microbiological analysis, in which 48 

patients presented a bacterial infection (i.e., bacteraemia). All 

participants provided a signed written informed consent 

before enrolment in the study approved by the Hospital’s 

Ethics Committee.  

B. FTIR spectra acquisition 

Triplicates of 25 μL of serum diluted at 1/10 in water were 

transferred to a 96-wells Si plate and then dehydrated for 

about 2.5 h, in a desiccator under vacuum (ME 2 pump, 

Vacuubrand, Wertheim, Germany). Spectral data was 

collected using a FTIR spectrometer (Vertex 70, Bruker, 

Germany) equipped with an HTS-XT (Bruker, Germany,) 

accessory. Each spectrum represented 64 coadded scans, with 

a 2cm−1 resolution, and was collected in transmission mode, 

between 400 and 4000 cm−1. The first well of the 96-wells 

plate did not contain a sample and the corresponding spectra 

was acquired and used as background. Medians of triplicate 

spectra were used. 

C. Spectra pre-processing and processing  

 All spectra were submitted to atmospheric correction, using 

OPUS® software, version 6.5 (Bruker, Germany, Billerica, 

USA). Second derivative spectra (based on a Savitzky-Golay 

filter, and a 2rd order polynomial over a 15-point window) and 

unit vector normalization and spectra processing were 

conducted by Orange 3 Data Mining Toolbox (Faculty of 

Computer and Information Science, University of Ljubljana, 

Slovenia) [28]. Spectra processing included, t-distributed 

stochastic neighbour embedding (t-SNE), and Support 

Vector Machine (SVM). Student’s t-test was performed with 

Microsoft Excel™ regarding to demographics variables.  

 

III. RESULTS AND DISCUSSION 

A total of 102 patients, all hospitalised at an ICU, were 

considered, from which 48 presented bacteraemia, as based on 

microbiological analysis. Patients between the two groups 

(with and without bacteraemia) did not present significant 

differences concerning gender, age and body mass index 

(p>0.1).      

Fig. 1 represents the average spectra between the two groups 

of patients, after atmospheric and baseline correction, with 

unit vector normalization (Fig.1A) and the average 

normalised second derivative spectra (Fig.1B). While 

normalization minimises the impact of sample quantity under 

analysis and other variations during experiments, the second 

derivative resolves superimposed bands, increasing therefore 

the information retrieved from the spectra. Since derivatives 

also increase noise, a sub-region of the spectra, with high 

signal-to-noise ratio was considered, between 600 to 1800 

cm-1 and between 2800 to 3100 cm-1. 

 

 

 

Fig. 1. FTIR pre-processed spectra with atmospheric and baseline correction 

with unit vector normalization (A) or normalised second derivative spectra 

(B). In blue, the spectra of the infected group and in red the spectra of non-
infected, with shades of the colours representing minimum and maximum 

values, and solid lines representing their averaged values. 

The spectra t-SNE (Fig. 2) points to the advantages of the 

second derivative spectra, as the scores of the infected group 

are partially separated from the scores of the non-infected 

group when based on normalised second derivative spectra 

(Fig. 2B), and not so when simply using non-derivative 

spectra (Fig. 2A). To further improve scores separation 

between the two groups of patients on the t-SNE score-plot, 

based on the normalised second derivative spectra, a smaller 

spectral region was selected. In order to achieve this, it was 

selected the following spectral regions that were statistically 

different between the two groups of patients at p<0.001, as 

based on an ANOVA: 1375 to 1393 cm-1, 1465 to 1468 cm-1, 

1741-1765 cm-1, and between 2837 to 3016 cm-1. It was also 

selected the following even smaller region, that resulted in a 

higher statistical significance (p<0.0001): 2837 to 3016 cm-1. 

The t-SNE based on these sub-regions resulted in better scores 

separation between the two groups of patients (Fig. 2C, D). 

Support Vector Machines (SVM) models were developed to 

predict bacteraemia, based on non-derivative spectra and 

second derivative spectra based on whole the spectra or sub-

regions. For that, 80% of patients’ data was used for model 

training and 20% for independent validation. This process was 

repeated 100 times, for each spectra pre-processing method 

and spectral sub-region evaluated. The average model 

performance obtained from these 100 models are represented 

in Table 1.  
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Fig. 2. t-SNE of infected (blue) and non-infected (red) patients, based on 

serum spectra after baseline correction and normalization (A), normalised 
second derivative between 600 to 1800 cm-1 and between 2800 to 3100 cm-1 

(B), or between 1375 to 1393 cm-1, 1465 to 1468 cm-1, 1741-1765 cm-1, and 

between 2837 to 3016 cm-1 (C), or between 2837 to 3016 cm-1 (D). 

 

According to the previously observed in the t-SNE score-plot, 

it was only possible to predict bacteraemia, based on SVM 

models, with normalised second derivative spectra with 

values for Area Under the Curve (AUC) of a receiver-

operating curve higher than 0.72, whereas when based on non-

derivative spectra, an AUC lower than 0.5 was obtained. 

Table 1. SVM models’ performance to predict bacteraemia based on spectra 
from serum of 102 patients, with baseline correction and normalization (A), 

normalised second derivative between 600 to 1800 cm-1 and between 2800 

to 3100 cm-1 (B), or between 1375 to 1393 cm-1, 1465 to 1468 cm-1, 1741-
1765 cm-1, and between 2837 to 3016 cm-1 (C), or between 2837 to 3016 cm-

1 (D). It is presented the model performance considering 100 models, each 

based on the random selection of 80% of data for model training and 20% as 
an independent data set for model validation.  

 AUC Accuracy Precision Sensitivity Specificity 

A 0.424 0.513 0.507 0.513 0.498 

B 0.725 0.674 0.688 0.674 0.658 

C 0.791 0.768 0.767 0.768 0.763 

D 0.780 0.750 0.750 0.750 0.748 

 

The best predictive model was achieved based on the spectral 

sub-regions between 1375 to 1393 cm-1, 1465 to 1468 cm-1, 

1741-1765 cm-1, and between 2837 to 3016 cm-1, highlighting 

the relevance of the regions 1750 cm-1 due to νC-O band of 

the acyl chains, 1380 cm-1 associated with δsCH3 and 

between 2830 to 3000 cm-1 due to ν and νas of CH3 and CH2 

groups, all from lipids.  This is representative of lipids being 

a key player in many processes involved in host-pathogen 

relations, including energy and resource homeostasis, 

controlling pathogen expression and infection progression 

[29]. Another highlighted region, 1450 cm-1 is associated 

with δsCH3 and δasCH3 from lipids and proteins, also 

according to the relevance of proteomics in infection 

diagnosis [30]. The relevance of lipids in the infection process 

is highlighted by the good prediction model developed on the 

region between 2837 to 3016 cm-1, which resulted in a 

decrease of only 1.8% and 1.5% in sensitivity and specificity, 

respectively, in relation to the best model.  

The present work points, therefore, to an alternative mode to 

detect infections among severe patients, as the ones admitted 

in an ICU, usually presenting confound factors for the more 

common serum biomarkers, due to inflammatory process 

independent of the infection. Therefore, the present method 

can potentially lead to a rapid detection of infections, leading 

to an immediate antibiotics-based therapy in severely 

debilitated patients. Additionally, in the case of a rapid 

negative result for infection, it would allow to avoid the 

unnecessary use of antibiotics, that usually are overused in 

ICU patients, leading to an unnecessary metabolic burden. 

Furthermore, the technique can be implemented based on 

simple, rapid and economic mode. 
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