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Abstract – Metabolomics has emerged as a powerful tool in 

the discovery of new biomarkers for medical diagnosis and 

prognosis. However, there are numerous challenges, such as 

the methods used to characterize the system metabolome. In 

the present work, the comparison of two analytical 

platforms to acquire the serum metabolome of critically ill 

patients was conducted. The untargeted serum metabolome 

analysis by ultraperformance liquid chromatography 

coupled to tandem mass spectrometry (UPLC-MS/MS) 

enabled to identify a set of metabolites statistically different 

between deceased and discharged patients. This set of 

metabolites also enabled to develop a very good predictive 

model, based on linear discriminant analysis (LDA) with a 

sensitivity and specificity of 80% and 100%, respectively. 

Fourier Transform Infrared (FTIR) spectroscopy was also 

applied in a high-throughput, simple and rapid mode to 

analyze the serum metabolome. Despite this technique not 

enabling the identification of metabolites, it allowed to 

identify molecular fingerprints associated to each patient 

group, while leading to a good predictive model, based on 

principal component analysis-LDA, with a sensitivity and 

specificity of 100% and 90%, respectively. Therefore, both 

analytical techniques presented complementary 

characteristics, that should be further explored for 

metabolome characterization and application as for 

biomarkers discovery for medical diagnosis and prognosis. 

Keywords: Metabolomics; Mass Spectrometry; Liquid 

Chromatography; Fourier Transform Infrared Spectroscopy

I. INTRODUCTION 

Metabolomics is at the downstream of genomics, 

transcriptomics and proteomics and, consequently, provides 

a direct reflection of an organism's status and dynamic 

responses to various disturbances arising from genetic and 

environmental factors, such as microbiota, diet, stress, 

gender, age, lifestyle, and diseases [1]–[3]. For that, 

untargeted biofluids metabolomics has been applied in order 

to discover biomarkers for medical diagnosis and prognosis. 

Biofluids, e.g., plasma, serum, and urine, reflect the 

organism's pathophysiological state [4], with the advantage 

of being obtained by non-invasive or minimally invasive 

methods. Indeed, biofluids metabolomics have been applied 

as a starting point towards personalized medicine [5], by 

allowing the discovery of biomarkers for disease diagnosis 

such as Parkinson's disease [6], type 2 diabetes [7], and 

transplant rejection [8], among others. Metabolomics 

involves the profiling of a system metabolites, i.e., 

molecules with molecular weights below 1.5 kDa, including 

amino acids, peptides, sugars, lipids, among others, as well 

as the understanding of their interactions, mechanisms of 

action, and functions within the metabolic pathway network. 

The Human Metabolome Database (HMDB) reports that the 

human body contains over 250,000 metabolites [9]. 
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Biofluids metabolomics, is usually retrieved by 

ultraperformance liquid chromatography coupled to tandem 

mass spectrometry (UPLC-MS/MS). An alternative 

technique to retrieve the system metabolic state is Fourier 

Transform Infrared (FTIR) spectroscopy, that, despite not 

being used to identify the set of metabolites, is applied in a 

more holistic mode to acquire, in a highly sensitive and 

specific mode the molecular fingerprint associated to a 

defined metabolic state [10]. Biofluids’ FTIR spectroscopic 

analysis  associated to multivariate data analysis, including 

machine learning algorithms, have been applied, for medical 

diagnosis [11], [12]. The study’s aim was to analyze the 

serum metabolome of critically ill patients using untargeted 

UPLC-MS/MS and FTIR spectroscopy. The focus was on 

developing mortality prediction models and identifying 

other molecular data that could enhance the management of 

critically ill patients admitted to the intensive care unit 

(ICU). 

II. MATERIALS AND METHODS 

A. Biological Samples 

Serum samples from 6 male Coronavirus Disease 2019 

(COVID-19) patients (3 discharged and 3 deceased), 

admitted to the ICU of Hospital São José, Centro 

Hospitalar Universitário Lisboa Central, were considered, 

according to all legal requirements and ethics approval from 

the Hospital’s Ethics Committee. The two groups of patients 

(deceased and discharged from ICU) were not statistically 

different (p>0.05) concerning age and comorbidities. The 

serum samples were deproteinated by mixing with methanol 

at 75:265 (v/v), followed by centrifugation at 18,000g for 

15 minutes at 4 ºC according to [13]. Each serum sample 

was submitted to this procedure in triplicates and kept at -

80ºC till analysis. 

B. UPLC-MS/MS  

Each sample was analyzed in triplicate using an UPLC 

system coupled with a QqTOF Impact II mass spectrometer 

and an electrospray ion source (Bruker Daltonics GmbH & 

Co.). Reverse-phase (RP) and Hydrophilic interaction liquid 

chromatography (HILIC) were used. A 25 μM solution 

containing quercetin, L-tryptophan (indole-d5), L-valine 

(d8), sulfolene (d4), and N, N-dimethyl-d6 glycine HCl was 

prepared and used as quality control (QC). These QC 

samples were analyzed every six hours to ensure that 

chromatographic resolution and spectrometer detection 

weren’t changed throughout time. MS data was acquired 

using Data Analysis (Bruker Daltoniks), converted to 

mzXML with ProteoWizard MSConvert and uploaded to 

the XCMS server, were data processing, including feature 

detection, retention time correction, peak alignment, 

METLIN annotation, pairwise sample comparison, 

multimodal analysis (independent of separation and 

acquisition modes), and global metanalysis were conducted 

[14]–[18]. 

 C.  FTIR spectroscopy  

Each sample was analyzed in quadruplicate in a 384-well 

silicon microplate. Spectra were acquired with a FTIR 

spectrometer (Vertex 70) associated to a HTS-XT (Bruker 

Optics GmbH & Co. KG). Each spectrum resulted from 64 

scans with a 2 cm-1 resolution on mid-infrared (MIR). 

Atmospheric and baseline correction of the spectra was 

performed on OPUS software (version 6.5, Bruker Optics 

GmbH & Co. KG.). 

D. Data Analysis 

Principal component analysis (PCA) and Linear 

Discriminant analysis (LDA) were conducted with 

ORANGE Data Mining 3.32, IBM SPSS Statistics version 

26 and The Unscrambler® X (CAMO software AS, version 

10.4, Oslo, Norway), respectively. 

 

III. RESULTS AND DISCUSSION 

Over 1800 features, i.e., m/z peaks, were detected by UPLC-

MS/MS. From those features, 12 metabolites were identified 

as significantly different between the deceased and 

discharged patients (p<0.01) (Fig.1A).  

 

 

 
 

Fig. 1. Metabolites significantly different (p<0.01) between deceased and 

discharged patients’ serum samples (A), and  the corresponding PCA 

considering the most intense m/z peak of those metabolites (B). 

A 
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Some of these metabolites are associated with SARS-CoV-2 

pathogenesis, as the up-regulation in deceased patients of 2-

trans-hexadecenal, palmitate, iduronate and sorbitol are 

associated to the increase of apoptotic events and 

immunogenic responses by the host [19]–[22]. The up-

regulation of stearate, α-linolenate and 4-hydroxy-2-

nonenal-glutathione conjugate can be associated with 

oxidative damage and mitochondrial insult [23], [24]. The 

up-regulation of N-acetyl-β-neuraminate and biliverdin in 

deceased patients are associated to renal and hepatic failure 

[25]–[28]. The down-regulation in deceased patients of 

(4Z,7Z,10Z,13Z,16Z,19Z)-docosahexaenoate is interesting 

as this metabolite has been associated to neuroprotection, 

inflammatory and immune response modulation [29], [30]. 

PCA of the most intense m/z peak of each 12 metabolites 

(Fig. 1B) points to a separation between scores of the two 

patients’ groups. Interestingly, the loading vector of PC1 

highlighted the following molecules with a high 

contribution for sample separation according to the patients’ 

group: palmitate, stearate, biliverdin, iduronate, sorbitol and 

2-trans-hexadecenal. 

LDA was conducted, based on the most intense m/z peak of 

the 12 metabolites, where 80% of data was used for model 

training and 20% as an independent data set for model 

validation. As previously pointed out by the PCA score-plot, 

a very good LDA model enabled to predict mortality in the 

validation model with a sensitivity and specificity of 80% 

and 100%, respectively. 

It was also evaluated the FTIR spectra of serum 

metabolome. The average spectra of deceased patients 

presented different wavenumber bands in comparison to 

discharged patients (Fig. 2A). Indeed, the spectra PCA 

pointed a separation between scores of the two groups of 

patients (Fig. 2B). PC3 loading vector pointed the following 

wavenumbers as relevant for sample separation between the 

two patients’ groups:  1650 cm-1 due to N-H vibrations and 

2920 cm-1 due to CH2 vibrations in lipids (Fig. 2C). This 

was according to previously identified metabolites by 

UPLC-MS/MS platform, including the up-regulation in 

deceased patients of diverse lipidic metabolites (e.g., 

hexadecenal, butanoate, stearate, linolenate, palmitate, and 

biliverdin at  1650 cm-1). 

The mortality predicting model based on FTIR spectra 

PCA-LDA was also trained on 80% of data and validated on 

20% independent data set. The  validation model, lead to 

very high sensitivity and specificity of 100% and 90% 

respectively. 

 

 

 
Fig. 2. FTIR spectra of serum metabolome (A) and its corresponding 

PCA (B), and the PC3 loading vector (C). 

As observed, with both MS and FTIR spectroscopic data, it 

was possible to separate the samples according to the 

patients’ outcome. Mortality predicting models based on 

LDA or PCA-LDA, were also developed based on both 

techniques, leading to sensitivities and specificities higher 

than 80%. A better predictive model was achieved with 

FTIR spectroscopy as a 100% sensitivity was achieved 

against 80% obtained with the metabolite set identified by 

UPLC-MS/MS. This is a preliminary result, since a very 

small study sample was used. 

The UPLC-MS/MS technique is more laborious, complex 

and time consuming than FTIR spectroscopy. However, its 

advantages include the identification of metabolites, that can 

facilitate biomarkers validation and acceptance by the 

community. Furthermore, the identification of metabolites 

also helps to identify dysregulated metabolic pathways, and 

consequently the understanding of the underlined 

pathophysiologic mechanisms, which can be used to 

improve and develop new therapies. In the future, the study 

sample will be increased to retrieve more robust 

classification models, enabling its application in real ICUs 

context. FTIR spectroscopy can be applied in a much 

simpler, rapid, and economic mode. It can also be conducted 

in high-throughput, as the one used in the current study, 

A 

B 
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based on a microplate with 384 wells. Therefore, FTIR-

spectroscopy represents a very interesting and 

complementary technique for the metabolome 

characterization and for the development of predicting 

models for medical diagnosis and prognosis. 
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