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Precision agriculture focuses on the development of site-specific harvest considering the variability of
each crop area. Vegetation indices allow the study and delineation of different characteristics of each field
zone, generally invisible to the naked-eye. This paper introduces a new big data triclustering approach
based on evolutionary algorithms. The algorithm shows its capability to discover three-dimensional pat-
terns on the basis of vegetation indices from vine crops. Different vegetation indices have been tested to
find different patterns in the crops. The results reported using a vineyard crop located in Portugal depicts
four areas with different moisture stress particularities that can lead to changes in the management of
the vineyard. Furthermore, scalability studies have been performed, showing that the proposed algorithm
is suitable for dealing with big datasets.
� 2023 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

It is a well-established fact that the era of Big Data [1] has chan-
ged the way in which data are generated, stored and processed, to
the extent that 90% of the data that exist in the world has been
generated during the last years [2]. These vast amount of data
can be difficult to understand or even to analyze, and therefore
the need for techniques to process this information arises. In this
sense, new tools have been developed under the title of Data
Science [3].

One of the areas that benefits from these developments is Pre-
cision Agriculture (PA), that can be defined as the application of
technologies and principles to manage spatial and temporal vari-
ability associated to all aspects of agricultural production for the
purpose of improving crop performance and environmental quality
[4]. It is a fact that shortage of natural resources endangers our
future. Public awareness of these problems urges local authorities
to intervene and impose tight regulations on human activity. In
this environment, reconciling economic and environmental objec-
tives in our society it is mandatory. PA has an important role in the
pursuit of such aspiration, as the techniques used in PA permit to
adjust resource application to the needs of soil and crop as they
vary in the field. In this way, specific-site management (that is
the management of agricultural crops at a spatial scale smaller
than the whole field) is a tool to control and reduce the amount
of fertilizers, phytopharmaceuticals and water used on site, with
both ecological and economic advantages. Indeed, being able to
characterize how crops behave over time, extracting patterns and
predicting changes is a requirement of utmost importance for
understanding agro-ecosystems dynamics [5].

One of the major concerns associated to the shortage of natural
resources is the enormous consumption of water associated to
farming activities. Water is a scarce resource worldwide and this
problem is particularly acute in the South of Europe, where the
Alentejo (Portugal) and Andalusia (Spain) regions are located. Both
regions are mainly agriculture-dependent and thus, farmers and
local authorities are apprehensive about the future.

In this paper, a new algorithm, hereinafter called bigTriGen, is
proposed to delineate management zones by measuring the vari-
ability of crop conditions within the field. For this purpose, bigTri-
Gen analyzes time series of geo-referenced vegetation indices,
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obtained from satellite imagery. Thus, the bigTriGen algorithm,
based on the evolutionary strategy introduced in the TriGen algo-
rithm [6], is a triclustering method capable to analyze a set of satel-
lite images indexed over time in addition to the ability to analyze
vast three-dimensional datasets in a big data environment. It has
been applied to a vineyard crop located in Baixo Alentejo, Portugal,
with different experimental datasets in order to test its scalability.

The rest of the paper is structured as follows. In Section 2, the
recent and related works are reviewed. In Section 3 our proposal
is described. In Section 4 the results obtained using the vineyard
crop dataset are presented and discussed. Finally, in Section 5,
the conclusions of this work and point directions for future works
are presented.
2. Related works

Interest in precision agriculture methods applied to viticulture
has had a tremendous growth in the last decade: at the research
level, the number of papers published has increased from 20 in
2011 [7] to 517 hits in response to googling ‘‘vineyard precision
agriculture” in Google Scholar, in spite of having restricted the
search to the current year. In fact, generally, vineyards meet the
three classical conditions that are required in order to site specific
management methods to be justified: (1) significant spatial vari-
ability within field exists (2) the causes of this variability can be
identified and measured, and (3) the information from these mea-
surements can be used to modify crop-management practices to
increase profit and quality and decrease environmental impact
[8]. These three conditions define themselves three important lines
of research that complement each other. This paper addresses the
first one, that is, we aim at identifying areas within the field with
different behaviors as to grape quality and productivity. This objec-
tive involves both gathering data and extracting information from
data. In the following, some of the proposed methods to deal with
these topics are reviewed.

Vineyards are often planted in irregular/steep terrains resulting
in difficult and expensive direct inspection tasks for wine growers.
Thus, discrete point sampling, which is the most traditional mean
of data collection on soil conditions and/or plant growth and devel-
opment, is very difficult to implement on this type of crop [8,9]. On
the other hand, aerial remote sensors have proven to be very effec-
tive means of collecting data as they can provide, at a relatively low
cost, a fairly detailed, spatially referenced measure of almost all the
same features. Both satellite and airborne imaging systems,
namely unmanned aerial vehicles (UAV), with multispectral and
hyperspectral cameras have been used for gathering crop related
data for a few decades. Several papers have reviewed the use of
aerial remote sensors and compared the quality of the information
extracted from both means in accessing vineyard variability [10–
13]. Satellite imagery is affordable and easily available, but inferior
with regard to resolution and more vulnerable to atmospheric
interference. Nevertheless, although it is widely accepted that
UAV imagery provides a more complete view of the field [10–
12], it has also been shown that good correlation exists between
Normalized Difference Vegetation Index (NDVI) data from Sentinel
2 and NDVI unfiltered data from UAV [13]. Additionally, [14] shows
that by complementing aerial data with information gathered by
ground-based sensors, high-resolution management zones can be
delineated.

Rather comprehensive reviews on methods for data analysis in
precision agriculture are presented in [15,16]. The identification of
site-specific management zones is achieved mostly through clus-
tering techniques. Twenty of those techniques are compared in
[17]. The comparison was conducted with data obtained between
2010 and 2015 from three commercial agricultural fields cultivated
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with soya bean and maize in Brazil. Then, the divisions suggested
by the results of a one-way ANOVA performed on the yields were
compared to the divisions obtained using the various algorithms.
The results showed that 17 out of the 20 produced quite good
results, although McQuitty’s Method and Fanny were considered
to be the best choices. [18] presents a smaller study on four unsu-
pervised methods applied to vineyard canopy segmentation in
three different scenarios, with both RGB (Red-Green–Blue) and
NRG (Near Infrared-Red-Green) imagery. The k-means algorithm
has proven to be the more stable over the identification in the
orthomosaic and sub-regions regarding the RGB acquisitions,
whereas the HSV-RGN algorithm is the more stable over the iden-
tification in the orthomosaic and sub-regions regarding the NRG
acquisitions. Many other studies are available, where a given
method is proposed to define management zones in vineyards,
based in various characteristics of the crop (disease detection,
berry composition and sanitary status under humid conditions,
among others) but we are not aware of the existence of a wider
recent comparison on that matter.

Clustering tools to determinate time space patterns in precision
agriculture can also be found in the literature: the evapotranspira-
tion of a Pinot noir commercial vineyard in California was charac-
terize through the unsupervised fuzzy c-means algorithm in [19]
and, in [20], NDVI spatio-temporal patterns were obtained for a
corn field in the Alentejo, Portugal, by means of a triclustering
methodology.

Triclustering methodology has become a very researched area
in the last years [21]. Some algorithms are based on genetic oper-
ators as [6] that included different evaluation measures [22–25] or
[26] which used COVID-19 propagation model to optimize multi-
objective functions. The characteristic of mining spatio-temporal
patterns can be applied to different study areas as: medical [27],
seismic [28] or even in environmental sensors in online learning
[29]. Regarding the big data characteristic, [30] introduced a new
parallel batch algorithm based on k-means providing speed results.
[31] presented a parallel and scalable validation model for simple
clusters in big data using Apache Spark. However, there is still
much research to conduct in the development of big data triclus-
tering algorithms.
3. Methodology

In this section, the methodology in order to obtain triclusters
that enclose patterns from crops images is presented. Firstly, the
triclustering that models the problem is described in Section 3.1,
and finally, the way in which triclustering is applied, that is, the
bigTriGen algorithm is presented in Section 3.2.
3.1. Problem modeling: triclustering

The triclustering techniques emerge as an evolution of cluster-
ing techniques applied over three-dimensional (3D) datasets. Tri-
clustering aims at obtaining a set of triclusters (3D clusters) from
the input dataset, with the values of each tricluster representing
a pattern of behavior.

To formalize the triclustering concepts, firstly a three-
dimensional dataset D3D composed of the three sets DI;DF and
DTP is defined as follows:

D3D ¼ DI;DF ;DTP
n o

ð1Þ

where DI ¼ i1; i2; . . . ; iIf g represents the I instances,
DF ¼ f 1; f 2; . . . ; f Ff g the F features and DTP ¼ t1; t2; . . . ; tTPf g the TP
time points of the dataset.



L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278
Each pair instance-feature of the dataset represents a time ser-
ies DTS, that is, a sequence of time-indexed values from the time
instant t1 to tTP as shown in the following equation:

DTSði; f Þ ¼ v t1 ;v t2 ; . . .v tTP

� �
; 8i 2 DI; 8f 2 DF ; 8t 2 DTP ð2Þ

In conclusion, D3D is typically arranged as a data cube where the
rows are the instances, the columns are the features and the depths
are the time points of the time series.

Secondly, a tricluster T is a subset of instances TI , features TF

and time points TTP of D3D defined by the following equation:

T ¼ TI; TF ; TTP
n o

withTI � DI TF � DF TTP � DTP ð3Þ

The time points in TTP for a particular instance and feature of the
tricluster make up a continuous and ordered sub-sequence of val-
ues of the entire sequence of the dataset, that is, a time series TTS

from initial time ts (first tricluster time point) to final time tTS (last
tricluster time point) defined as follows:

TTSði; f Þ ¼ v ts ; v tsþ1 ; . . .v tTS

� �
; 8i 2 TI; 8f 2 TF ; 8t 2 TTP ð4Þ

Thus, the behavior patterns (BP) depicted by each time series of
the tricluster will present similar behavior regarding the values or
tendency. To summarize, a tricluster is a subset of instances, fea-
tures, and time points of a three-dimensional dataset,with time
series that depict a similar behavior pattern.

BPðTTSðiA; f AÞÞ � BPðTTSðiB; f BÞÞ; 8iA; iB 2 TI; 8f A; f B 2 TF ð5Þ
Finally, a triclustering model of a three-dimensional dataset,

MD3D , is a set of N triclusters defined as:

MD3D ¼ T1; T2; . . . ; TNf g ð6Þ
3.2. The bigTriGen algorithm

bigTriGen is applied to obtain a triclustering model providing a
set of behavior patterns from the input dataset. bigTriGen is based
on the paradigm of genetic algorithms. In that sense, a complete
evolutionary process is performed for each tricluster to be
obtained, i.e., T1; T2; . . . ; TN . First, each evolutionary process applies
the genetic operators described in Section 3.2.1 over a population
of individuals. Then, the process presented in Section 3.2.2 makes
the population evolve based on the optimization of a fitness func-
tion during a specific number of generations.

bigTriGen receives a three-dimensional dataset, D3D, as an
input. Each slice of time represents an image of a crop, where each
pixel ðx; yÞ is a space point representing the value of a particular
vegetation index collected at a given instant ti 2 ft1; t2; . . . ; tTPg.
Therefore, the DF set corresponds to the X coordinates of the image
and the DI set to the Y coordinates. Fig. 1a shows the NDVI index
represented on the images. That is, the point ð200;81Þ at t1 is the
NDVI value of the pixel in the row 81 and column 200 at the time
instant t1.

An individual of the evolutionary process corresponds to a tri-
cluster, Ti, being a particular area from the whole input space at
a given time window. Thus, Ti is a subset of X and Y coordinates
and a continuous subset of time points. Fig. 1b shows an individual
represented by the subspace limited by the coordinates
Y ¼ 87;88;89;90;91;92;93;94f g and
X ¼ 200;201;202;203;204f g, and containing the index values for
the time series from t8 to t11.

The output of the bigTriGen algorithm is a set of triclusters that
correspond to a triclustering model MD3D of the input dataset D3D.
Each tricluster of this model is a sub-area of an original image of
the input dataset, as shown in Fig. 1d. Fig. 1c depicts the behavior
patterns for each of the time series that make up a tricluster. Each
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ðx; yÞ point corresponds to a time series of the specific vegetation
index.

Therefore, the aim of the bigTriGen algorithm is to discover a
triclustering model, MD3D , from a three-dimensional dataset, D3D,
where each tricluster determines a sub-area of the original image
of the dataset and the time series associated to the tricluster pre-
sent patterns with similar behavior.

3.2.1. Genetic operators
Several updates have been carried out in bigTriGen with respect

to TriGen to deal with satellite imagery related to the precision
agriculture. These updates are mainly focused on the genetic oper-
ators, which are described below.

Initial population In this phase, the initial individuals of the pop-
ulations are built. A subset of X and Y coordinates are randomly
selected from the input dataset. The ðx; yÞ points resulting from
the combination of both subsets is a subspace of the original image
of the input dataset. Each new individual’s time points are ran-
domly selected from the input dataset, forming a continuous
sequence. The number of individuals built in the initial population
is determined by the control parameter In.

Selection A tournament algorithm is chosen for this operator.
The individuals of the population are firstly separated into three
groups, then they are ordered by fitness. A percentage of the pop-
ulation is selected from these three ordered groups. These selected
individuals are directly promoted to the next generation and will
be the parents suitable for reproduction by applying the crossover
operator. The percentage of selected individuals is defined by the
control parameter Sel.

Crossover Two individuals are randomly chosen for the repro-
duction from the individuals selected by the selection operator.
From these two parent individuals P1 and P2, two new children
CH1 and CH2 will be obtained as shown in Eqs. (7) and (8). The first
new individual CH1 is composed of the X coordinates of the P1, the
Y coordinates of the P2, and the time points of the P1. The second
one CH2 is composed of the X coordinates of the P2, the Y coordi-
nates of the P1, and the time points of P2.

P1 ¼ PX
1 ; P

Y
1 ; P

TP
1

n o
and P2 ¼ PX

2 ; P
Y
2 ; P

TP
2

n o
ð7Þ

CH1 ¼ PX
1 ; P

Y
2 ; P

TP
1

n o
and CH2 ¼ PX

2 ; P
Y
1 ; P

TP
2

n o
ð8Þ

The number of children to obtain is In� ðIn� SelÞ, considering
Sel as a percentage of selected parents. In order to get them,
numcross crossovers are made, where numcross is the quotient plus
the remainder of the division by two of the number of children
to obtain. As previously mentioned, from one crossover, two chil-
dren are obtained. Once all crossovers are computed, the specified
number of children are selected from all children considering the
best fitness function.

Mutation The new individuals obtained by means of the cross-
over operator are elegible to be altered by mutation. An individual
can be altered by removing or adding a random X or Y coordinate
or a random time point. The probability of mutation of an individ-
ual is set by the control parameter Mut. The operations are con-
trolled by specific parameters referring to maximum and
minimum number of coordinates that an individual must have.

3.2.2. Fitness function
As a genetic algorithm, the core of bigTriGen is the fitness func-

tion to be optimized. In this work, a fitness function based on the
MSL measure [23] has been used. MSL measures the similarity of
the behavior patterns contained in a tricluster and it is based on
the differences between the angles that every two points of a series
form with the X-axis (the slope of a straight line). Thus, this algo-
rithm provides an accurate measure of how similar the behavior



Fig. 1. TriGen overview.

Table 1
DataFrame example for the population.

INDid TSid Y X TPs TS

1 0 2 3 f2;3;4;5g f0:05;0:58;0:23;0:22g
1 1 2 4 f2;3;4;5g f0:15;1:82;0:38;0:25g
1 2 3 3 f2;3;4;5g f0:54;2:84;1:25;0:15g
1 3 3 4 f2;3;4;5g f0:23;0:38;2:23;1:01g
2 0 20 21 f19;20;21;22;23g f0:08;0:81;0:09;0:12;2:24g
2 1 20 22 f19;20;21;22;23g f0:01;1:12;0:01;0:09;1:25g
2 2 21 21 f19;20;21;22;23g f0:02;1:20;0:02;0:14;3:12g
2 3 21 22 f19;20;21;22;23g f0:03;1:25;0:25;0:15;5:02g
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patterns inside a tricluster are. The MSL measure is widely
explained and discussed in [23]. Moreover, the fitness function
includes a control mechanism to balance the size of the triclusters
and the overlapping among them.

The fitness function of a tricluster T is defined by a weighted
average as follows:

FitnessðTÞ ¼ wmsl �MSLðTÞ þws � SðTX ; TYÞ þwo � OðT;MD3DÞ
wmsl �ws �wo

ð9Þ

where MSLðTÞ is the MSL index of the tricluster T; SðTX ; TY Þ is the
size of the area demarcated by the X and Y coordinates of the tri-
cluster T;OðT;MD3D Þ is the overlapping degree of the tricluster T
with the remaining triclusters of the model MD3D , and wmsl;ws and
wo are the weights of each component, respectively [23].

3.3. Big data implementation remarks

The bigTriGen algorithm has been developed in a big data envi-
ronment to provide it with the ability to analyze big three-
dimensional datasets. Therefore, a model with bigger triclusters
(more X and Y coordinates and time points) will be discovered from
datasets with more significant time points and/or more significant
areas (X;Y). bigTriGen has been implemented in Scala 2.12 [32]
with Apache Spark 2.3.4 [33]. Its implementation is based on the
DataFrame object of Apache Spark. The main feature of this data
structure is to be distributed through the nodes of the cluster
where the application is deployed [34].

For the bigTriGen algorithm, the input dataset D3D is loaded into
a DataFrame, where each row represents a point
(instance; feature; time) and its associated value.

The population is also implemented using a DataFrame. An
example of the structure can be found in Table 1. In this case, each
row represents a time series for the particular coordinates ðy; xÞ of
a tricluster individual. Therefore, a row will be composed of an
individual numerical identifier (INDid), a time series identifier
(TSid), the associated Y and X coordinates, the time point list (TPs)
and, the time series values (TS). The justification of these imple-
mentation decisions is due to two aspects, both related to the
application of the Spark DataFrame API actions and transforma-
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tions to the population. On the one hand, this structure leads the
Spark’s actions and transformations to execute the genetic opera-
tors in a best-optimized way in a big data environment. On the
other hand, this structure boosts the application of the Spark Data-
Frame API actions and transformations to the population and,
therefore, maximizes the distribution of it through the nodes of
the Spark cluster where bigTriGen was deployed. In conclusion,
with this implementation, the bigTriGen algorithm’s scalability,
regarding the execution time against the size of the input dataset,
is reached. As explained in the above paragraphs, bigTriGen is a
novel algorithm with an own design and implementation. A sum-
mary of the new features of the bigTriGen is shown in Table 2
where it can be confirmed that bigTriGen differs in the implemen-
tation, characteristics and results comparing with TriGen. The orig-
inal TriGen and the new bigTriGen keep the control parameters of
the algorithm, the evolutionary work-flow, and the selection oper-
ator in common. In contrast, as discussed above, the bigTriGen
allows for the analysis of input datasets and triclusters with sizes
impossible to manage on a single machine. Furthermore, it adds
the space and time series modeling (presented in Section 3.2)
and, therefore, new initial population, crossover and, mutation
operators. A detailed description of the original TriGen algorithm
can be found in [6,23].

3.4. Validation of the triclusters

In this work, the triclusters of the model MD3D will be validated
in three ways. Firstly, the TRIQ quality measure [24] that provides



Table 2
Similarities and differences between TriGen and bigTriGen.

Common features New features of bigTriGen

Control parameters Bigger input datasets
Bigger triclusters

Evolutionary process ðX;YÞ space modeling for instances and features
Time series modeling (consecutive instant points)

Selection operator Initial population operator
Crossover operator
Mutation operator
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an index to determine the similarity of the patterns of the triclus-
ters and the correlation level of the time series associated to the
tricluster will be used. In particular, TRIQ combines weighted Pear-
son and Spearman correlation values with a weighted normaliza-
tion of MSL angle value. It has been shown as a valid measure for
representing and summarizing the quality of the triclusters.

Secondly, a visual analysis of the discovered patterns will be
carried out. This analysis will determine the coherence of the dis-
covered triclusters in relation to the input dataset. The time series
plots will be graphed, and the average of the time series will assess
the cohesion of the values of the tricluster. Furthermore, an analy-
sis of the behavior observed will be performed by an expert.

Finally, a global study of the located areas will be also made.
The demarcated areas for each tricluster of the model will be also
analyzed by an expert. That is necessary to determine any intra-
Fig. 2. Triclusters using the NDVI
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relation between the selected zones for the different triclusters
of the model.
4. Results and discussion

This section reports the analysis of the results obtained by the
bigTriGen algorithmwhen applying to a crop image dataset. In par-
ticular, the dataset and the vegetation indices typically used in the
crops are described in Section 4.1, the experimentation process is
explained in Section 4.2, the discussion of the patterns is presented
in Section 4.3 and the scalability analysis to show the ability of the
proposed algorithm to deal with big data is in Section 4.4.

4.1. Dataset and vegetation indices

The bigTriGen algorithm is tested in a vineyard crop located in
Baixo Alentejo, in Portugal. The study area has 5.15 hectares and its
center at the coordinates 37�56’43.62”N 7�52’15.06”W. In particu-
lar, the field is monitored during three years (2018, 2019 and 2020)
selecting the months that correspond to vineyard season. Data is
extracted from Sentinel-2 imagery with high spatial resolution at
the defined coordinates using the QGIS software and its Semi-
Automatic Classification Plugin. The calculation of the vegetation
indices of each image is also made with this software.

Vegetation indices allow the quantitative and qualitative evalu-
ation of different measures of crops, as cover, vigor, growth, type or
index for the vineyard crop.



L. Melgar-García, D. Gutiérrez-Avilés, Maria Teresa Godinho et al. Neurocomputing 500 (2022) 268–278
quality. They are based on the measured canopy reflectance of dif-
ferent wavelength bands [35]. This canopy reflectance can be
detected remotely using satellite imagery as the one provided by
Sentinel-2. In this particular study, measuring leads to monitor
fruit ripening to develop a site-specific harvesting of each zone of
the vineyard crop; it is known as Precision Agriculture or more
specifically in this case, Precision Viticulture [36].

One of the most used vegetation indices is the NDVI index. This
index is very related to the content of the vegetation and varies
from 1.0 to �1.0, where 1.0 corresponds to the denser and health-
ier areas. NDVI includes in its calculation the near-infrared band
(NIR) and the band for the red (visible) regions (Red). NDVI formula
is NDVI ¼ NIR�Red

NIRþRed. NDVI is a very useful index, for example, to deter-
mine areas of a corn crop that behaves differently [20].

Other indices used in this study that improve NDVI are the Soil-
Adjusted Vegetation Index (SAVI) and the Enhanced Vegetation
Index (EVI) used to determine grapevine phenology in [37]. The
first one introduces L as a correction factor for soil brightness
and the second one adds two C1 and C2 coefficients to the atmo-
spheric resistance and the Blue band, respectively. SAVI is defined
as SAVI ¼ NIR�Red

NIRþRedþL � ð1þ LÞ and EVI as

EVI ¼ 2:5� NIR�Red
NIRþC1�Red�C2�BlueþL. In this study, L is 0.5, C1 is 6 and C2

is 7.5; they are used values for this kind of crop.
The Moisture Stress Index (MSI) and the Green Normalized Dif-

ference Vegetation Index (GNDVI) include two different bands:
Fig. 3. Triclusters using SAVI, EVI an
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Green and middle-infrared (MIR), respectively. GNDVI is sensible
to the variation of chlorophyll in the crop. On its side, MSI is used
to analyze the water stress and it usually varies from 0.4 to 2
where higher values mean higher water stress and so, less soil
moisture. Both indices are, as the above-mentioned ones, very
studied in vine crops. For example, [38] concludes their vineyard
crop study identifying the MSI as the only vegetation index directly
related to the content of the vegetation. GNDVI is represented as
GNDVI ¼ NIR�Green

NIRþGreen and MSI as MSI ¼ MIR
NIR
4.2. Experimental setup

The experiments are run on a cluster located at the Data Science
and Big Data Laboratory in Pablo de Olavide University. The cluster
is made up of four nodes: one master and three slaves. It has four
Processors Intel(R) Core (TM) i7-5820 K CPU with 48 cores, 120 GB
of RAM memory. The cluster uses Ubuntu 16.04 LTS, Apache Spark
2.3.4 and HDFS file system on Hadoop 2.7.7. The bigTriGen algo-
rithm is implemented in Scala programming language.

Considering the work published in [20] that discovered three
dimensional patterns in a maize plantation area in Baixo Alentejo
and after several experimental tests with the bigTriGen algorithm,
the selected control parameters for the experimentation are: N = 4,
G = 10, In = 200, Sel = 0.8 and Mut = 0.1. The fitness function used
d GNDVI for the vineyard crop.
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is described in Section 3.2.2 and the validation of the triclusters is
made considering the remarks in Section 3.4.

4.3. Pattern discovery

The process of discovering three-dimensional patterns using the
proposed algorithm is performed from two points of view: spatial
and temporal.

4.3.1. Spatial patterns
The goal of this analysis is to find behavior patterns that identify

spatial zones on the vineyard crop with different characteristics.
This analysis is carried out for the 2018 growing season.

Fig. 2 represents the triclusters found by the bigTriGen algo-
rithm using the NDVI index. It shows a great uniformity between
all the areas of each sub-figure, as the discovered patterns show
very similar behavior curves. In order to confirm this uniformity,
more vegetation indices that consider corrections of the NDVI
and more environmental factors are used.

Fig. 3 depicts the behavior patterns of the field with SAVI, EVI
and GNDVI indices during 2018. The analyses carried out using
these indices confirm the assessment made with the NDVI index,
i.e., triclusters curves represent an uniform behavior for vegetative
growth and development of the crop throughout its extension.

To further study the water stress to which the crop is subjected,
an additional analysis is carried out with the MSI index, which
introduces MIR band in its calculation. Areas of the crop with dif-
ferent trends in the value of water stress are identified, although
Fig. 4. Triclusters using the M
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this stress does not imply effects on the crop that are perceptible
when the rest of indices are used.

Fig. 4 illustrates the different behavior patterns of the four tri-
clusters obtained by the proposed bigTriGen algorithm when using
the MSI. Fig. 4a represents, unlike the other three, an area with
higher soil moisture during the initial period of the growing sea-
son. The trend is similar in the other behavior patterns, tending
towards an increase in water stress as the growing season pro-
gresses. However, in the final phase, close to harvest time, is where
the greatest differences among the different triclusters identified
can be seen. While water stress is maintained in the area repre-
sented in Fig. 4a, a clear increase in stress is observed in Fig. 4c
and d, in contrast to an increase in soil moisture in Fig. 4b, consid-
ering that lower MSI values correspond to lower water stress and
so, higher soil moisture or water content. The quality of the found
triclusters has been measured with the TRIQ measure described in
Section 3.4. For values that move in the [0–1] interval, the first tri-
cluster has a TRIQ value of 0.8799, the second of 0.9365, the third
of 0.9153 and the forth of 0.8321, thus ensuring accurate patterns
for all cases.

This information may be relevant for the analysis of productiv-
ity in each field zone. It is necessary to identify the causes of the
different behavior in order to determine whether they are due to
productive factors (irrigation inequality, pests, etc.) or to specific
factors of the terrain (inclines, type and quality of the terrain, etc.).

Fig. 5 identifies the geographic areas in the field map repre-
sented by the found triclusters when using the MSI index.
SI for the vineyard crop.



Fig. 5. Geographic location of the triclusters using the MSI index in the vineyard
crop.

Table 3
Execution times (in minutes) according to number of cores and size of datasets.

Multiplier 12 cores 24 cores 36 cores 48 cores

x 1 19.7759 19.6475 20.3361 20.8268
x 2 25.1146 26.7812 25.9973 26.5552
x 4 42.2082 39.5204 38.5376 40.4623
x 8 76.0349 68.0430 69.9858 64.0017
x 16 141.9072 120.7762 120.9260 125.3108
x 32 278.6696 270.0996 232.3536 239.3660
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4.3.2. Temporal patterns
In this Section, the search of different behavior patterns

between different growing seasons is considered. Years 2018,
2019 and 2020 have been analyzed, in particular, the analyses
were limited to the months between May and November, which
correspond to the vine growing season in its different phases.

The results obtained from the determination of triclusters for
the NDVI data in the different growing seasons confirm the unifor-
mity of the patterns in terms of crop behavior, i.e., patterns identi-
fied each year are very similar to the others found in the same year.
However, there is a clear difference between one year and another.
The patterns of 2018 are in Fig. 2 and a representation of the ones
of 2019 and 2020 in Fig. 6.

The patterns of the last months of the vineyard period for the
years 2018 and 2020 are very similar and correspond to the theory
of what the NDVI trend should be over the course of a growing sea-
son. Nevertheless, the triclusters for 2019 show a different behav-
ior during the month of August. In that period, the crop suffered a
drop in NDVI index indicating a loss of quality of the plantation,
which has managed to recover in the following months. This inci-
dence coincides with the period of severe forest fires in the area
where the field is located. It is very likely that this is the cause of
the temporary deterioration of the crop.
Fig. 6. Triclusters using the NDVI
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The bigTriGen algorithm demonstrates with this analysis that it
is suitable for discovering anomalous behavior in a temporal
sequence of historical events. Its use with current data can be a
good tool to detect indications of anomalies at an early stage, even
not perceptible to the naked eye in the crop, allowing corrective
measures to be taken as soon as possible to mitigate the effects
of these occurrences.
4.4. Scalability analysis

Once the found patterns have been evaluated, the next step is to
study the scalability of the proposed bigTriGen algorithm. The evo-
lution of the execution times is analyzed in two parts: in the first
one, considering the effect of the number of nodes used and in
the second one, considering the influence of the size of the dataset
used. These tests are executed with a base dataset with the same
characteristics as the one defined in Section 4.1 and the optimal
parameters described in Section 4.2.

First, the scalability in terms of resources is analyzed by chang-
ing the number of nodes used when executing the bigTriGen algo-
rithm. As explained in Section 4.2, the cluster used is made up of
four nodes with twelve cores in each node. This analysis is made
with 12 cores, 24 cores, 36 cores and 48 cores.

To analyze the effects of the dataset size, a base dataset of a size
of 65 MiB has been used. This characteristic of the scalability anal-
ysis is studied by multiplying the length of the base dataset by 1, 2,
4, 6, 16 and 32. It corresponds to six experiments with datasets of
65 MiB, 130 MiB, 260 MiB, 520 MiB, 1040 MiB and 2080 MiB,
respectively.

Results of twenty-four scalability experiments are shown in
Table 3 and in Fig. 7, where the execution times are presented in
in the years 2019 and 2020.



Fig. 7. Scalability analysis.
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minutes. The computing time is not very influenced by the number
of cores used when the size of the dataset is small, i.e., x1, x2, x4 or
x8, but when the size increases, the execution time is smaller for
36 and 48 cores.

The behavior of the bigTriGen leads to express its scalability fac-

tor as Factori ¼ sizei
size i

2

, where size represents the dataset size and i

varies from 2 to 32. This factor is usually smaller than 2 which is
better than linear scalability. It is important to considering that
the bigTriGen algorithm is influenced by chance, for example by
means of the mutation operation, among others. However, in order
to get a comparable scalability analysis, these operators have been
controlled.
5. Conclusions

In this paper the new bigTriGen triclustering algorithm has
been introduced to mine three-dimensional patterns from big
datasets. In particular, this algorithm has used specific genetic
operators to find triclusters in addition to control the overlapping
with the previously found tricluster solutions. The bigTriGen has
been applied to a vineyard crop in southern Portugal to find a pre-
cision viticulture solution. The accuracy of the algorithm has been
shown with respect to two different features: the quality measure
of the found patterns and the scalability of the algorithm. On the
one hand, different vegetation indices have been calculated using
Sentinel-2 images downloaded from QGIS software. The found pat-
terns using these vegetation indices have shown that the index
that best fits this field is the MSI. In this way, the algorithm has
been able to find four different areas of the vineyard crop that
behave differently in terms of their soil moisture. In addition, the
algorithm has found different behaviors of the crop during 2018,
2019 and 2020. On the other hand, the scalability of the algorithm
has been studied considering the number of nodes used and the
size of the dataset. In both cases, the scalability factor of the bigTri-
Gen has been proven to be even better than linear scalability.

The future works will be focused on developing more character-
istics of the algorithm such as detecting anomalies in streams, cre-
ating methods to select the optimal values of the parameters or
using other type of data.
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