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Abstract

Distributed caching systems based on in-memory key-value stores have become a

crucial aspect of fast and efficient content delivery in modern web-applications. However,

due to the dynamic and skewed execution environments and workloads, under which

such systems typically operate, several problems arise in the form of load imbalance.

This thesis addresses the sources of load imbalance in caching systems, mainly: i) data

placement, which relates to distribution of data items across servers and ii) data item

access frequency, which describes amount of requests each server has to process, and how

each server is able to cope with it. Thus, providing several strategies to overcome the

sources of imbalance in isolation.

As a use case, we analyse Memcached, its variants, and propose a novel solution for

distributed caching systems. Our solution revolves around increasing parallelism through

load segregation, and solutions to overcome the load discrepancies when reaching high

saturation scenarios, mostly through access re-arrangement, and internal replication.

Keywords: Distributed Caching Systems, Memcached, Selective Replication, Key Place-

ment, High-Availability, Parallelism, Load Balance, Memory Management
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Resumo

Os sistemas de cache distribuídos baseados em armazenamento de pares chave-valor

em RAM, tornaram-se um aspecto crucial em aplicações web modernas para o forne-

cimento rápido e eficiente de conteúdo. No entanto, estes sistemas normalmente estão

sujeitos a ambientes muito dinâmicos e irregulares. Este tipo de ambientes e irregularida-

des, causa vários problemas, que emergem sob a forma de desequilíbrios de carga.

Esta tese aborda as diferentes origens de desequilíbrio de carga em sistemas de caching

distribuído, principalmente: i) colocação de dados, que se relaciona com a distribuição

dos dados pelos servidores e a ii) frequência de acesso aos dados, que reflete a quantidade

de pedidos que cada servidor deve processar e como cada servidor lida com a sua carga.

Desta forma, demonstramos várias estratégias para reduzir o impacto proveniente das

fontes de desequilíbrio, quando analizadas em isolamento.

Como caso de uso, analisamos o sistema Memcached, as suas variantes, e propomos

uma nova solução para sistemas de caching distribuídos. A nossa solução gira em torno

de aumento de paralelismo atraves de segregação de carga e em como superar superar as

discrepâncias de carga a quando de sistema entra em grande saturação, principalmente

atraves de reorganização de acesso e de replicação interna.

Palavras-chave: Sistemas de caching distribuídos, Memcached, Replicação seletiva, Colo-

cação de dados, Alta disponibilidade, Paralelismo, Equilíbrio de carga, Gestão de memória
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1
Introduction

"What is considered slow depends on your requirements. But when something
becomes slow it’s a candidate for caching - High Scalability, A Bunch Of Great
Strategies For Using Memcached And MySQL Better Together"

As the web evolves, so do its challenges. A massive use of web services and applications

lead to an increasing number of client requests in which the user-perceived latency is de-

terminant, for instance, in cases such as Facebook, Youtube, Flickr, Twitter, or Wikipedia.

Ensuring low response times requires fast data retrieval from web services. In turn this

motivates the need for highly efficient designs of mechanisms that can speed up data

access times when compared to simply fetching data from a (potentially slow) database

or set of databases.

A study performed by Microsoft and Google [34] demonstrates that response times

matter, revealing that server delays have a substantial negative impact on the continu-

ous usage of web applications. In particular, delays under half a second affect business

metrics, with a direct translation on generated revenue. Moreover, they have shown that

the cost of delays increases over time and persists, even when the source of the delay is

removed.

A Web Application deployment is commonly divided into three main components: i)

Load Balancer, ii) Web-Logic, and iii) Storage. The Load Balancer is usually seen as an

ingress point for all client traffic; it has some internal policy (e.g. Round Robin) on how to

distribute the incoming request across the multiple existing Web Servers that materialize

the Web-Logic component.

The Web-Logic component, in addition to web servers, might also contain application

servers. This component is responsible for handling the business logic for the application,

as well as handling the presentation of the application (and results of operations) for the

end users. To enable multiple web/application servers to operate independently, servers

1



CHAPTER 1. INTRODUCTION

materializing this component are usually stateless. This enables client operations to be

handled by any active server (and also to quickly increase the number of such servers

when the system is under heavy load). Therefore, the applications state is managed by

the third component: storage.

The Storage component might be composed by one or several storage systems, includ-

ing SQL or NoSQL databases, or any other persistence storage, such as a distributed file

system. Typically, a web application server is used to mediate the access to one or multi-

ple storage services when handling different client operations. Upon getting a reply from

the storage services, the web application server computes (and composes) an answer for

the client and sends it.

When designing a web application, the storage is a crucial component of the appli-

cation. This design has to be addressed carefully, due to its significant impact on the

overall application performance. Some designs might include a single persistence store

such as MySQL, DynamoDB, Cassandra, or Amazon S3, but a conventional approach is

to store data over multiple systems, each of the systems optimized for different types of

application data.

In these cases, the response time is dependent on the slowest storage system. Still,

there are several factors that weight in the response time of a web application, such as

the computational cost of executing a given query, the size of the receiver queues in the

database, and the network communication time. In particular, relational databases tend

to be particularly difficult to scale when subjected to heavy loads.

Non-volatile storage is several orders of magnitude slower than RAM, and as often

seen in real workloads, both reads and writes follow a random access pattern for disk

I/O, which can wreak havoc on performance. As a way to reduce the latency in such

data-intensive environments, one can store the replies sent to clients for frequent read

operations. This avoids the application servers to consult the storage component, allowing

the reuse the previously computed replies, and hence lower the user-perceived latency of

such requests. In general, this entails the use of caching systems.

A caching system is a secondary storage component, typically materialized by an

in-memory data store, that provides fast access to data items or previously computed

replies, that either exist or depend on data that is (persistently) stored in one or more of

the databases used by the application. The web application servers typically exploit this

Caching component to avoid duplicate work and speed-up data access times. Caching

systems usually follows a principle of non-interference, where they do not interact with

other storage systems directly. This design choice provides simplicity to their design and

avoid increasing the complexity of the main storage component.

Caching is commonly associated with the fact that the information contained within

it is transient, as it will only reside in the cache for a given amount of time, as well as

the fact that the cache is limited in space. This restriction in space requires establishing

some form of priority over items in the cache. Eventually, some item will have to be

eliminated from the cache for some other data item to take its place. An eviction policy

2



usually regulates this. The most common being Least Recently Used (LRU) and Least

Frequently Used (LFU), that attempt to ensure that data items that are more frequently

accessed remain more time in the cache.

When clients make a request, the web application servers will first try to access the

cache, only resorting to the slower data storage component when the data is not currently

cached. If the requested item can be found in the cache, it will be counted as a cache hit,
if not, it will be a cache miss. Evidently, a higher number of cache hits translate directly

to faster response times, as it avoids resorting to slower storage systems more often.

Considering a single server working as a cache, that is accessed by all web/application

servers, one can obtain some improvements in terms of access time for an application.

However, this also brings some limitations, making it a single point of failure, and a

bottleneck since all web applications servers are simultaneously making requests to a

single cache server, whose capacity may become exhausted.

Most systems try to overcome these limitations by leveraging distributed caching

systems, where multiple cache servers co-exist. In these deployments, each server is

responsible for a fraction of the data items being accessed by the whole system, allowing

for requests to be divided across all cache servers, improving the overall scalability, and

hence performance, of the caching system. Even if a server fails, another will take over

its responsibilities, also improving fault-tolerance.

There are several examples of caching systems in the literature that are deployed

and used by many applications. Each of these systems has their own properties, such

as: MICA [18] that achieves extremely high throughput; Aerospike [41] that is optimized

for flash-memory, unlike most alternatives, allowing data persistence by design; Redis

[30] which resorts to dynamic memory allocation, and Memcached [2] that employs static

memory allocation. We discuss these different systems in more detail in the next chapter.

Problem Statement

The response time in a web application is a crucial aspect that directly impacts the user ex-

perience, as such we take fast response times as primary concern, which can be mitigated

through a better cache usage regarding memory management and access distribution.

Most web based environments tend to display a Zipfian distribution as its access pat-

tern, where the increase in accesses is strongly coorelated with data item popularity. This

distribution can become highly disruptive, becoming the cause of several bottlenecks.

The goal of this thesis is to study new mechanisms and combinations of techniques

that allow to boost the performance (in terms of cache hits, throughput, and latency) of

distributed caching architectures. We will focus, in particular, on the popular Memcached

system which is highly deployed in production environments throughout the world.

3



CHAPTER 1. INTRODUCTION

Approach

Our solution strives to increase the overall throughput by exploiting parallelism while

resorting to a memory access partitioning scheme. However, this kind of approach im-

poses limitations in high saturation scenarios with synchronous clients, where the highest

latency experienced by a partition limits the overall response time. To address this, we

developed two algorithms that mitigate such limitations with different goals: (1) redis-

tributing the load, and (2) internal replication for a more fine grain load relief.

Document Structure

The remainder of this document is structured as follows:

• Chapter 2 - Introduces the related work, focusing on the standard Memcached,

variants, eviction policies, and key sources of load imbalance in caching systems.

• Chapter 3 - Presents the conceptual view of our solution and discusses the desired

cache properties to mitigate the sources of load imbalance in caching systems, striv-

ing for an overall better performance.

• Chapter 4 - Discusses the relevant technical aspects, algorithms, and protocols

applied in our solution.

• Chapter 5 - Provides an experimental evaluation of our solution, following an anal-

ysis of access patterns, data placement algorithms, considering the individual com-

ponents of our solution and their combination.

• Chapter 6 - Concludes the document with final remarks and directions for future

work.

4
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2
Related Work

This chapter discusses multiple aspects and existing solutions in the context of in-memory

caching systems. For that purpose, we present and discuss existing caching architectures,

with a step-by-step evolution in paradigm from a single node to distributed caching

systems. Afterwards we tackle the variants of currently existing systems (with a particular

emphasis in Memcached, which we use as a case study in this work), key distribution

techniques, and quality of service aspects. We then discuss other aspects that are present

in storage systems that go beyond caching systems, such as replication techniques and

data consistency aspects.

2.1 Preliminaries

Throughout this chapter, we discuss many solutions that resort to pseudo-random gener-

ators and cryptographic hash functions. For completeness, in this section we provide a

description of what is assumed regarding these abstractions, that serves as a departure

point for the remainder of the presentation in this chapter.

A Pseudo Random Number Generator (PRNG) is a class of deterministic functions,

that take as input a seed and generates sequences of numbers, trying to approximate a

true random number generator. Most PRNGs guarantee a certain level of randomness

within a sequence of generated numbers. Although with low guarantees regarding the

correlation between sequences generated using different seeds, which can lead to more

predictable distributions and less fairness [24] (randomness).

A cryptographic hash function takes an arbitrary sized input and generates a fixed

size output with the following properties:

Deterministic: The same input always results in the same output.
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Uniformity: Every output should have the same generation probability for the output

values range of the function.

Fast Computation: The operation should be inexpensive in terms of required number of

CPU cycles.

Avalanche Effect: Small changes in the input cause the output to change significantly.

Collision Resistance: It should be difficult for two different inputs m1 and m2 to have

hash(m1) = hash(m2), in more detail, knowing hash(m1) and m1, it should be hard

to find an arbitrary m2, such that hash(m1) = hash(m2).

2.2 Cache Overview

A cache is responsible for storing limited amounts of frequently accessed data, usually

in faster memory (RAM), to minimize the access times for that data. When talking about

main memory, it implies that it is normal RAM, not focusing on the inner layer of caching

such as L1, L2, and L3, which is fully managed by the hardware. From the point of view

of caching systems, we are only concerned if the intended data is present in the process

(dynamic or static allocated) main memory.

Data items in a caching system (usually) also exist in a persistent (and slower) data

store, or they can be the result of performing computations over multiple inputs stored

in one or multiple persistent data stores. This technique offers the potential to reduce

the overall latency of requests, particularly, when applied to systems with workloads

composed mostly of read operations. This happens because caching avoids accessing

these slower storage systems, such as databases and hard disks. As caches have limited

space (RAM is limited), in general, not all data items can be maintained in the cache

systems at all times. Hence, when cache space is exhausted, eviction of existing data

objects trough an eviction policy, is essential to accommodate new data items.

Eviction policies define which data items in the cache should be removed, in order to

accommodate new elements. These policies strive to maximize the probability of having

in the cache items that will be requested in future accesses.

If a requested element exists in the cache, it will result in a cache hit, otherwise, it

will result in a cache miss. The fraction of cache hits over all the requests translates to a

hit-ratio and the complementary metric is called miss-ratio. A key performance indicator

for caching systems is the hit-ratio, where higher values imply better performance, which

usually directly translates to lower response times for the application using the cache

system.
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2.3 RAM Key-Value Stores

There are several layers of caching throughout most systems, which can be divided in two

groups: (1) proxy cache, and (2) service cache.

Proxy caches are mainly accessed by clients and employ a philosophy of caching

data closest to the clients. In order to achieve it, a common approach is to rely on an

hierarchical caching architecture, where the root cache is the only one that interacts with

a persistent storage system [9], and all other cache levels contents are also present in

caching layers above it in the cache hierarchy.

Service caches are the caching systems in which the work presented in this thesis

focus on. These are for exclusive use of an application on the server side. Most of theses

caching systems present an interface based on key-value stores, in which a data item

is defined as an entry indexed by an unique identifier. Typically, some meta-data is

associated with each data item stored in the caching system. This meta-data can include

control information such as time stamps, vector clocks, locks and marked bits that serve

to manage that object within the cache system.

2.3.1 Single Cache Instance

A cache system can be deployed as a single instance. In this case, all data objects currently

cached will be in the same machine. The benefit of such deployments is in their simplicity,

where there is no replication, which inherently ensures a high degree of data consistency.

On the other hand, a single instance deployment is only suitable for small application

deployments, as machines have limited RAM. Additionally, in this case, the cache can

become a single point of failure, that might impact user perceived latency.

In this setting, to accommodate data items, one has to scale up the machine sup-

porting the caching system, by adding more resources (such as RAM and CPU capacity).

Additionally, the cache can also become a bottleneck, which can lead to increased latency

on answering user requests, particularly damaging if the system exhibits a high miss ratio,

as most interactions with the cache system will simply be delaying the answers for client

requests.

2.3.1.1 Local Eviction Policies

Considering the deployment of a single instance, with a limited amount of RAM, the

management of the cache contents becomes a crucial aspect as to ensure high hit-ratio.

Since pushing new data items into the cache, will eventually require evicting some of the

old ones still present there.

The key challenge in this aspect resides on the automatic selection of which data items

to evict. For that, there are several algorithms [46] that can be used, and have demon-

strated good performance, at least for specific workloads: Least Recently Used (LRU),

Least Frequently Used (LFU), Random Marking (RMARK), Reverse RMARK (RRMARK),
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LRU-K, 2Q policy, and GAVISH among others. Most of these algorithms strive for sep-

arating data items, either in classes, or to classify data items in relation to each other,

typically taking three factors into account to guide the selection of the data items to evict:

Access Frequency Rate at which accesses to a data item occur in a bounded period of

time.

Access Recency An indicator of when was the last access to a data item.

Overhead Both memory usage and computational cost for management.

For completeness, we now briefly describe some of the more popular eviction policies:

FIFO Evicts the oldest data item residing in the cache system, without considering either

recency or frequency. The clear benefit of this policy is that it is simple and can be

implemented without tracking accesses to individual data objects.

LRU Evicts the least recently used items first, which causes it to only take into account

recency, leading to considering frequently accessed and recently accessed data items

similar.

LFU Keeps track of all the accesses made to a data item, evicting the data item with a

lower number of accesses. This causes it to only take access frequency into account,

which leads to the frequency values associated with data items to lower slowly,

leading to a poor capacity of the eviction policy to adapt to changing workloads.

This can lead to the eviction of newly created data items, due to low number of

accesses.

LRU-K Combines recency and frequency. This strategy takes into consideration the K

most recent accesses of a data item, storing K-1 references for each data item access.

It takes into account an estimate of access arrivals for eviction priority. If a data item

was accessed less than K times, it will have higher eviction priority. LRU-2 can be

used storing the penultimate access time in a priority queue, achieving logarithmic

complexity. This method improves LRU by using a more aggressive eviction rule

to quickly remove cold data items from the cache that become unpopular (i.e, less

frequently accessed).

2Q policy [15] Is composed by three queues: A1, A2, and the shadow queue. The A1

queue stores cold data items, eligible for eviction using a FIFO policy, and uses the

shadow queue as a complementary support data structure, which stores only the

identifiers of data items that have been accessed more than once, while residing in

the A1 queue. Queue A2 is managed using a LRU policy and stores data items that

have received hits while referenced in the shadow queue.
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RMARK Combines both recency and frequency. This is achieved by separating the data

items in two sets, marked and unmarked, where only unmarked data items are

eligible for eviction. New data items and accessed data items are moved to the

marked set. When the unmarked set becomes empty, the marked data items become

unmarked. This method allows some distinction between "hot"and recent data

items, taking frequency into account, without the overhead introduced by LFU.

RRMARK Is very similar to RMARK, with the key difference that a new data item starts

as unmarked. RRMARK, in relation to RMARK, is more biased towards frequency.

GAVISH Proposes an interesting and different approach. Unlike the previously dis-

cussed policies, it uses four hierarchical lists, where new items enter the bottom

of the hierarchy. With each access, a data item moves to the head of the list above,

and each time the list exceeds its size, the tail data item is moved to the middle of

the list bellow. If this happens at the bottom list, the data item is evicted from the

cache. This solution allows for a clear separation of access frequency by levels with

low overhead, where high access frequency data items will mostly reside in the top

levels, and the lower access frequency data items will stay in the bottom levels of

the cache. Warm data items (that lie between very popular and rarely accessed data

items), will move cyclically among the middle queues.

These eviction policies are local decisions that aim at increasing the hit-ratio of a

single node. However, these decisions do not take into account the global system, where

emergent behaviors might impact negatively the existence of other cache servers making

their own independent decisions.

2.3.2 Distributed Caching Systems

A distributed cache is typically deployed in a cluster of nodes, offering a logical view

of the cache as if it was materialized by a single node. This is commonly accomplished

through horizontal partitioning using data sharding, where data items are split among

the nodes using a deterministic algorithm, usually consistent hashing [17]. This allows

for load distribution across nodes, where each access targets the node that’s responsible

for the requested data item. Also, it allows a simple way of scaling-out when in need

to accommodate more data items, by simply adding more nodes to the system. This is

a great advantage since scaling-up is not cost-effective, where the cost of adding more

resources is not linear with the improvements provided by it [24].

When in the presence of a node failure, it does not result in complete outage of the

cache, as the system will still continue to operate, taking only a small overhead, as another

node will have to take over the responsibilities of the failed node.

In the following, we study the sources of imbalance on the system, that force some

nodes to struggle with the load they are subjected to, resulting in an overall decay in

performance.
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2.4 Load Imbalance

Nowadays, websites can store and process very large quantities of data. This leads to a

large number of requests being processed. In such scenarios, any single cache instance

would have its capacity easily overwhelmed, and so, distributed caching systems are

commonly seen as a more suitable solution, since they can easily scale out, allowing them

to better adapt to the applications needs [45].

Some core features that are desirable in caching systems are high hit-ratio and fast

response times with low variance. Typically, applications are subject to accesses that

can be modelled by a Zipf distribution, with varying data item sizes that change their

popularity over time. All these aspects cause some instability across caching servers

that might become saturated with requests, leading to degradation of performance when

accessing data items in those servers.

This imbalance, therefore, should be tackled as to normalize the load imposed over

each caching server, instead of allowing that, by chance, some nodes become clogged with

requests. Redistribution of load across several nodes provides a solution to deal with the

skewed workloads that the system might be subject to, while allowing it to adapt and

change accordingly.

This can be described by the popular Balls into Bins problem [29], where one considers

a finite set of m balls, being thrown into a finite set of n bins, each throw is independent,

and if the throws follow an uniform distribution, it implies that the probability of ball

falling into a bin is 1
n . It is well know that the maximum load is approximately logn

loglogn ,

with a high probability.

If two distinct balls fall into the same bin, and we consider it as a collision, then the

amount of collisions directly translates to the amount of balls in each bin. This will tend

to be similar across all bins. However, relative to our current problem, there are a set of

practical restrictions, that cause a deviation from such expected uniform behavior:

• Each bin has a maximum capacity. Once a bin is filled, to accommodate a new ball,

it implies that some other ball must be discarded.

• Each ball has two weights: (1) size weight, and (2) popularity Weight. The first

weight is fixed per ball, and the second is a dynamic value that changes over time

for each different ball. These weights regulate which balls should be discarded, if

needed.

• Re-insertions, fall in the same previously used bin, and affect (2) the weight popu-

larity.

A clear understanding on imbalance in caching systems, allows the distinction of

three main vectors as a source of load imbalance: (1) Data Placement, (2) Data Access

Frequency, and (3) Data Object Size. Any of these factors, even in isolation has the

potential to degrade the cache performance and waste system resources.
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We now discuss each one in turn. We note that in the work presented in this thesis we

do not tackle the imbalance due to varied object data sizes. However, for completeness

we also discuss it in this chapter.

2.4.1 Data Placement

Achieving uniform distribution in data placement comes as a key aspect in distributed

storage systems. In this particular case, distributed caching systems are composed by a

set of nodes with limited amount of RAM, where the aim is typically to fully utilize the

available RAM before resorting to evictions. Cases of non-uniform data placement dis-

tributions lead to memory capacity under usage. Requiring more nodes to accommodate

the same global amount of data items.

Previous work [14] has shown that, non-uniformity data placement distributions with

a maximum variability of 10%, requires up to 9,1% more machines in order to accommo-

date the same global amount of data items compared with a scenario with uniform data

placement distribution.

Therefore, achieving uniform key distribution is a very important feature in order to

achieve near optimal data placement, which allows to mitigate local sources of imbalance.

However, there is set of properties that are essential for any key distribution scheme to

ensure that it is practical:

Low Overhead In order to achieve low overhead, placement decisions should be made

locally with the minimal amount of information needed (e.g, server and object

names).

Load Balancing Each node should have equal probability of receiving an object as to

uniformly distribute the load between nodes.

High Hit Ratio All clients must agree on object (or key) placement, ensuring that if a

data item is present, it will be retrieved. Hence, retrieval of data items will yield

the maximum utility, in terms of hit ratio.

Minimal Disruption When a node fails, only objects which were mapped to that node

must be reassigned.

Distributed K-Agreement Each node, must select the same K nodes to place the same

data items, based on local information.

2.4.1.1 Simple Approach

A naive approach for key distribution is having all the keys stored in the clients main

memory with server mappings. This is an expensive and unpractical way of storing key-

server mapping, as the number of keys will probably take a large toll on the client memory.

This also requires clients to coordinate among them to agree on the assignment of each
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key. Furthermore, if added the possibility of server failing and joining the current pool

of servers, each time this happens there is a need to re-map a large set of keys. To avoid

this computationally expensive process, there are more clean and efficient methods that

take advantage of some properties of a hash functions.

TheHashT able, a well known data structure, recurs to a simple hash function hash(O)

mod(N ). This allows to evenly distribute a given number of data item identifiers (O)

through the positions of the HashT able array of size N. Or in this case, N servers by

assigning a distinct value to each server between [0,N [, similar to an array position. This

solution achieves close to an uniform distribution of objects per server.

There is however, an issue. When we take into account the possibility of server failures

and servers joining the system, similar to the resize operation in the HashT able example,

it is required to perform a remapping of all to keys to servers, which is a very expensive

and disruptive operation.

2.4.1.2 Consistent Hashing

This method, described in [17], is based in a single computation of a hash function

hash(O)mod(U ). Where O is the object name, or some unique identifier, and U the range

of acceptable values that map into the range used by servers as their own identifiers.

To solve the problem of servers joining or leaving the system, this method instead

of considering N (number of servers), considers U as the upper bound on the range of

values the solution is considering, being U >> N . For this to work properly there is a

need for a ring-like structure where each server has a given bucket [a,b[. There are no

two servers where buckets intersect each other, and the union of all buckets is [0,U [.

The hash function simply points to a value θ in [0,U [, so the object will fall in the

bucket where θ ⊂ [a,b[. A server joining membership simply means that a bucket will be

split and a server leaving means that two existing buckets will be merged.

However, simply assigning a bucket to a server is not enough, since if buckets are not

all the same size, the number of keys assigned to each server will be very distinct.

To overcome this aspect, a common solution is to rely on the technique popularized by

Dynamo [7, 8], which is the notion of virtual nodes. The key intuition is to simply increase

the number of buckets assigned to each server in order to have a better approximation of a

uniform distribution. These buckets have an arbitrary position in the identifier space (i.e,

the ring), meaning that a server is unlikely to have two buckets where [a,b[∪[b,c[= [a,c[.

Some variants of this algorithm achieve Distributed k − agreement either by following

the ring structure clock-wise k-1 hops from the initial node to where the key of the object

is mapped to, or by concatenating the data item identifier with a salt value in the range

[0,K[.
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2.4.1.3 Highest RandomWeight

This method described in [39] exploits the properties of an hash function to achieve global

server ordering for a given object, using hash(O||Si), where O is the data item identifier, ||
is concatenation operation, and Si the server identifier.

The algorithm is simple and intuitive: for a given object, the hash(O||Si) has to be

computed for each server identifier. This output can be displayed in a ordered list, where

the first position represents the home server for the data item. The uniform distribution

property is expressed at each position of the list, as long as all clients choose the same

positions. Distributed k-agreement can be achieved by simply selecting the first K positions

of the ordered list.

2.4.1.4 In Line Data Placement Algorithms

These class of algorithms typically represents a node as a segment over a finite space

defined as a line. The segment size assigned to a server is proportional to the capacity of

that server (in our case all segments have the same size). The segment placement over the

line is deterministic and do not overlap, so all clients can compute it independently.

a ) Random placement with gaps b ) Random placement with full line

Figure 2.1: In line Random placement strategies

There are two major segment placement policies: with gaps (fig.2.1a) or using the full

identifier space (fig.2.1b). Segment placement with gaps is used in SPOCA [6] , ASURA

[14], and SOURA [47]. Although this require a retry mechanism in order to pin point the

target segment, where this can be accomplished by iteratively generating random number

using a PRNG with the data item identifier used as the seed. Until the output value is

contained within a segment, or by using a hash function iteratively with its previous

output as input.

Segment placement using the full line space such as Random Slicing [24], requires that

the client to have a full causal history of all the changes in the membership to compute

the current range of each segment. This is only needed for bootstrap, and to accomplish it,

this scheme requires a persistence store to supply the initial view to new clients. Based on

these mechanism, every client can compute the optimal segment separation, in order to

have all segments with the same size in the identifier interval. Compared with solutions
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Table 2.1: Comparison between key distribution algorithms

Strategy Fairness Memory Usage Lookup Time

Consistent Hashing (fixed) Poor * High Low
Consistent Hashing (adapt.) Moderate High High
Highest Random Weight Good Low Very High**
Random Slicing Good Low Low

* Fairness increases with the amount of nodes/ virtual nodes.
** Lookup time increases with the amount of nodes.

that allow gaps, these scheme only requires one computation to find the target segment

for an object.

Most of these algorithms achieve Distributed K − agreement, by iteratively executing

the same deterministic function using the previous value as input, until it hits K different

segments.

2.4.1.5 Discussion

In caching systems, response time is a fundamental concern, and since network latency

contributes to increase response times, most distributed caching systems avoid the use

of Distributed Hash Tables (DHT’s) such as Chord [36, 37], to avoid multi-hop routing.

Instead, solutions where each node knows the global membership of the system are

favored [12].

All algorithms described here allow weighted key distributions, but avoid it since

most systems are homogeneous in terms of capacity of each server.

The key feature in these algorithms is to always use a function that, apriori, ensures

uniform distribution [23]. Most algorithms use this factor so that only the size of a seg-

ment (relative to the total identifier space) will have an influence in the amount of data

items that each server becomes responsible for. If each server is responsible for a segment

of equal size, and assuming uniform distribution of objects across segments, the distribu-

tion among servers tends to be similar. This can be seen in most of these algorithms, and

is the main cause of load skew in consistent hashing, that tries to minimize it through the

use of virtual nodes.

As a cross reference between work presented in [24] and [14], we can establish a base

comparison between several of these algorithms in terms of fairness, memory usage, and

lookup time. In this context, fairness refers to the ability to evenly spread a large set of

data items over a finite set of nodes.

The comparison is presented in Table 2.1, and it shows that Consistent Hashing with a

high amount of virtual nodes incurs in high space overheads. This is required to maintain

the logical ring between all servers. The Highest Random Weight, even though it is the

algorithm that achieves the most uniform distribution, requires the computation of N

hash functions for each data item identifier in order to map it to a node (N is the total
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number of servers). This can have a non-negligible overhead on clients. In line data

placement algorithms with gaps, there is no bound on the number of iterations to assign

an object to a segment. Random Slicing, even though it requires a persistence store, seems

the most balanced and computationally efficient solution.

Due to this, we will explore this alternative as a way to mitigate object assignment

imbalance on distributed caching systems.

2.4.2 Data Access Frequency

Frequency of accesses to data items is a key aspect that should be considered by a caching

system to determine which elements should be kept in the cache. But at a smaller scope,

when looking at each caching server individually, there is a notion of load associated with

it. This load can be seen when looking at the amount of requests received by a server and

the amount of responses it can produce in a bounded time window.

Typically, each node is subject to different loads according to the amount of data items

it holds and the access frequency of each of those data objects. The presence of high

access frequency data items can be highly disruptive, making the server a bottleneck in

the system due to large request reception queues. This affects the response times of all

requests received by that server [33].

Since it is unavoidable to have some data objects that are accessed with a much higher

frequency, it becomes relevant to identify them, so that they can be flattened. In some

solutions, the servers can share objects while striving to achieve a uniform local distribu-

tion in terms of the number of request received per time unit. There are multiple ways to

identify such ”hot” data items both locally (in the context of a server) and globally (across

all servers). We now discuss these techniques in some detail.

2.4.2.1 Local Detection

In local detection, decisions are made by each caching server individually, while disre-

garding the rest of the system. Spore [13], is an example of such a system that resorts

to one of these mechanisms. In this system, selective replication is used based on local

highest access frequency. In order to detect if a server is under heavy load, it marks a

threshold in each of the caching servers receiver queues. This threshold represents the

maximum admissible latency that the application can accept. Once this threshold is

reached in a server, there is a need to relieve the load on that server in a fast, efficient, and

non-disruptive way. To do this, Spore strives to identify and replicate the data items with

highest access frequency, as this will share the load in serving that object with another

server, promoting load reduction and ensuring the availability of the (highly popular)

data item.
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2.4.2.2 SystemWide Detection

To achieve System Wide Detection of ”hot” data objects, one usually relies on mechanisms

that compute a global view of the access frequencies for all cached data items. Based on

the popularity of such data items the system can infer the appropriate measures to be

taken as to avoid having some servers overloaded. To achieve this, there are several

approaches such as (1) Inter-node communication or (2) client side sampling.

Inter-node communication requires each server to keep track of each of their data items

popularity and exchange locally gathered information with others servers. This

introduces a large amount of communication to achieve a concrete and up-to-date

view of all data items access frequency. Such solution incurs in additional complex-

ity, while generating more traffic for each of the servers in the caching system.

Client side sampling is based on a simple assumption that there are a set of alerts (typi-

cally the application server) that distributes requests to servers originated by end

users. Assuming that each client observes a uniform sample of requests, if a data

item has high access frequency it will also have high access frequency in each of the

clients (compared with the other data items). Allowing each client to infer locally

which are the popular data items based on their local view and without additional

communication.

The Zebra algorithm [6] uses a sequence of bloom filters, where each bloom filter

represents requests for a given time interval (tick). This sequence has a fixed length

where after each tick a new bloom filter is added and the oldest discarded. Content is

deemed popular based on the union of the bloom filters. The sliding window of bloom

filters allows for data item popularity to increase and decrease over time.

Using a sampling mechanism like Zebra, allows the use of a Two-Tier caching, where

the client side relieves the load on the caching servers by caching themselves, the most

popular data objects. This overcomes the fact that serving very popular data items de-

grades the overall response time for several other data items. This is based on the concept

of a front-end cache that stores very few elements, which by itself, results in faster re-

sponse time for those data items. As explained in [33] any typical front-end cache reduces
load imbalance, however it might incur in coherency problems that is usually dealt by

caching objects at that layer for every small time windows.

2.4.2.3 Discussion

Dealing with load imbalance typically requires the use of replication. This allows to keep

up with the data item access frequency by distributing the load across N servers (where

N is the total number of replicas of that object). This by itself, reduces the congestion in
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a local receiver queue allowing lower response times for all data items. Therefore, repli-

cation enables the reduction of local access frequency while providing more availability,

allowing the system to have more stable response times.

On the other hand, Two-Tier caching mechanisms also provide a good solution, since

it directly reduces the load on the caching servers, while providing faster response times

for data items with very high access frequency.

The reader should note that, both mechanism might complement each other, where

one adjusts local maximum access and the other amortizes the load of global maximum

frequency data items. Is the context of this thesis we explore the use of replication, as we

are addressing caching solutions that can support any application, and two-tier caching

can be damaging for applications that have significant complex processing happening on

web application servers.

2.4.3 Data Object Size

Data object size imbalance comes as a concern since it conditions several factors, such as

(1) data transmission and (2) memory management.

In the context of (1) data transmission, high variances in data item size will cause

variability in response times, impacting the time it takes to process a request. In this

scenario, there are several approaches that aim at solving it, such as the use of RAID

levels, allowing parallel access for large data objects, usually applied in the context of

DBMS, and disk arrays. This allow a wide range of different configurations to exploit

different benefits. Other approaches go through simply splitting data items in several

chunks and shard them across multiple servers, this is akin to the use of Erasure Code

[32, 43]. Most of these solutions, besides decreasing data item size variance in each node,

also allow higher throughput since they parallelize the fetch of a large data item across

multiple small chunks, rebuilding the large data item at the client. On the other hand,

the overall response time is conditioned by the slowest server across all servers serving

chunks of the data object.

In (2) memory management, there are multiple scenarios where data size can have

an impact on the system performance. Although, we restrict the variants to a caching

philosophy where there are no Swap-in/out operations, and ignoring L1, L2, L3 or higher

internal cache level, considering only the overall hit/miss ratio over the RAM, our main

focus revolves around four features: (i) Memory Usage, (ii) Memory Fragmentation, (iii)

Data Structure Overhead, and (iv) CPU Utilization.

In this context, memory management is resumed to Heap Allocation, and how to

manage it. To store a data item, a segment of memory blocks is required to accommodate

it. To allocate a given amount of blocks, a system call is required, which consists on

executing kernel operations. This is commonly deemed as an expensive process. The

same kind of process is required to free previously allocated memory. These operations

in conjunction lead to efficient space memory management since internally, they avoid
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memory fragmentation. However, this space efficiency process takes a toll on the overall

execution time.

Other approaches such as Slab Allocation, move memory management to the applica-

tion level, where large heap memory segments are allocated and managed according to

some application logic. It typically benefits the execution time, by avoiding the frequent

memory allocation and release. However, in cases of high variance in data item sizes, it

may result in memory under usage due to memory fragmentation.

The analysis carried out in [33] shows that load imbalance increases with the amount

of shards in relation to the coefficient of variation of the data item size. While chunking

(splitting a data item in several parts) is a very practical and effective solution to reduce

load imbalance, that allows to mitigate the effects on data item popularity by making

per-chunk decisions.

2.4.3.1 Discussion

We do not analyze any further the data size imbalance, since the Slab Allocation, cur-

rently in place in Linux systems, is highly successful. It provides one of the best designs

for memory management to avoid memory fragmentation, since all the data items are

segregated by size, and the allocations are performed in batch.

2.5 Data Replication

Replication comes as a simple concept, where multiple instances of the same data item

coexist in the same system. Typically, this is a strategy used to increase reliability and

load balance, since several instances of the same data item allow the object to be read

simultaneously by several clients with lower interference, while remaining available even

if some of the copies of the object disappear. A common approach in replication relies on

having the replicas at different storage devices or machines for improved fault tolerance

(i.e, to avoid correlated failures).

However, in the particular case of distributed caching systems, this approach always

translates into an increase in memory overhead, since in most schemes replicating a

data item N times requires N times more memory consumption. When thinking about

cache systems in general, there is a common concept that is always present: the fact

that the information in the cache is transient, and will only reside in the cache for a

given (maximum) amount of time. Therefore, it becomes essential to decide the actual

importance of fault-tolerance in a distributed cache.

Also, under the assumption of failures not being frequent and information being

written in a persistent manner elsewhere, the overhead to ensure fault-tolerance, given the

limited amount of RAM available and the additional required coordination to maintain

some degree of consistency among the the different replicas of a data object whose value

can be update, might not be the ideal solution for a distributed cache system.
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Fault-tolerance might not be a feature needed in the cache, so there is no need for

replicating all data items. Instead, a more selective replication strategy should be encour-

aged.

Following the reasoning above, holding more data items in the cache will lead to

higher hit-rates, which aligns with the principle of no fault-tolerance in the cache. Nonethe-

less, the lack of replication will lead to an increase in response times when dealing with

high access frequency data items. For this, replication seems to become relevant from the

perspective of overall performance of the system and as a technique to mitigate imbal-

ances due to varied access frequency for different data objects.

There is an extremely large set of replication schemes, and presenting them all goes be-

yond the goals of this thesis. Instead we define a set of dimensions in which we categorize

most existing replication mechanisms:

1. First Dimension: What and how the content is replicated.

Active Replication All operations are executed by all processes.

Passive Replication Operations are executed by a single process, and the outputs

are propagated to the other processes as an update.

2. Second Dimension: When does the replication occur.

Synchronous Replication The replication happens in the critical path of generat-

ing client responses.

Asynchronous Replication A local update takes place, and the replication only

starts after the reply is sent to the client.

3. Third Dimension: Which processes handle direct client operations.

Single Master Only a replica process receives and executes operations that modify

the state of the data, other replicas are only used to read data objects (or fault-

recovery).

Multi-Master Any replicas can receive and execute any operation.

Any replication scheme can be seen as a composition of design choices among these

three dimensions which present trade-offs between performance, fault-tolerance guaran-

tees and replication semantic (often refered as data consistency).

2.5.1 Data Consistency

Replication becomes a non-trivial challenge when we allow more than just read interac-

tions with the data. The operations that change data items (commonly refered as write

operations), can lead to a divergence in the data kept for the different replicas on different

points in time. Such inconsistencies can be exposed to clients which can be unacceptable
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for same applications. An usual requirement is to maintain some form of consistency

over the replicated data items exposed to clients.

Furthermore, there is a need to specify the restrictions on how data can be perceived

by the client. This specification of interactions follows some norms that are called data-

centric consistency models [25, 26]. We describe the most relevant, where any relaxation

of sequential consistency is typically reference as being a form of weak consistency:

Strict Consistency Assumes updates are propagated instantly to all replicas, where any

read operation returns the effects of the most recent write over a data item.

Sequential Consistency There is a total order of events across all replicas (both, reads

and writes), implying a coherent history of the system that justifies all values ex-

posed to clients.

Causal Consistency Write operations that are potentially causally related must be exe-

cuted by all replicas in the same order. Concurrent writes might be seen in different

order by different replicas (and consequently, clients).

FIFO/PRAM Consistency All replicas see all write operations performed by each client

in the same order that the client has executed them.

Cache/Coherent Consistency Similar to FIFO but with a granularity of single data items,

where writes to different data items may be observed to occur in different order for

different replicas.

Eventual Consistency Updates are propagated on background, where there is no total

ordering of operations, and conflicting updates over a given data item must be dealt

by some additional mechanism. Clients can observe any value of an object at each

read operation despite the order or the client that issued different write operations

over that data object.

2.5.2 Replication Protocols

Caching systems usually demand fast response times, which is accomplished in most

systems by having a single instance of a data item. However, when the access frequency

of requests for a data item exceeds the ability of a server to respond in a bounded time, it

requires more instances to distributed the load across servers avoiding clogging a single

server with requests. The replication in ideal conditions would reduce the access fre-

quency to a data item by N times(where N represents the number of replicas). Still, this

does not happen, since having multiple instances requires coordination and enforcing

appropriate consistency guarantees. This implies that there is a trade-off between the

benefits of replication and the coordination overhead required to keep replicas consistent.

In the case of a Caching system, in the ideal scenario, a client only has to contact a

single server to perform a read or write operation with minimal execution time. Since
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write operations require ordering, a simple solution that does not incur in high coordi-

nation overheads, forces all write operations to be submitted to the same server, respond

to the client, and only start the replication process afterwards. This kind of solution is

compliant with a Single-Master Passive Asynchronous replication approach.

Moreover, in this ideal scenario, a client should be able to perform a read operation

over any replica. This would allow for a load balancing algorithm to take full advantage

over the read requests, but this would relax consistency constraint to a form of weak

consistency (in this case eventual consistency).

A Caching system needs to enforce some degree of consistency, in which it allows

clients to make (read/write) requests to different replicas of the same logical data items

and not obtain different arbitrary results.

Sequential consistency is always a desired feature in most systems, yet protocols to

enforce it do not scale well since it requires linearization, which demands a total ordering

of operations. This level of consistency can be accomplished either by a high degree of

coordination or through a single process deciding the global order. It typically incurs in

problems regarding slow data access or lack of proper load balance in the accesses to the

several instances of a data item.

In the following we briefly describe some replication approaches and discuss their

usefulness for improving the design of distributed cache systems.

2.5.2.1 Primary/Backup Protocols

Primary/Backup Protocols [4, 38], are the common class of protocols for achieving passive

replication. These assume a primary replica, which coordinates all writes on the data

items that it is responsible for. Depending on the variant of the protocol, it might allow

for reads to be performed on any replica. When the primary fails, the protocol blocks

until a new primary is elected among the existing backup replicas.

2.5.2.2 Chain Replication

Chain Replication [31] is a variant of the Primary/Backup Protocol that aims to achieve

high throughput and availability while maintaining per object linearizability.

Most replica management protocols in the presence of failures either block or sacrifice

consistency to recover from failures. However, this protocol overcomes this problem by

organizing the nodes in the form of a chain where each node of the chain represents a

replica. A chain is composed of three different types of replicas:

Head node responsible for receiving all write requests from clients;

Middle set of nodes between the head and the tail;

Tail node responsible for handling all read requests, and issue replies back to clients;
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This scheme requires all write operations to be processed by the head, defining a

total order for all write operations. Afterwards, write operations are propagated down

the chain to the tail, which ensures per object linerizability. However, only after the

write propagation reaches and is processed by the tail, can the reply to the client be sent.

Therefore, the full length of the chain becomes the critical path to the client’s response

time when processing a write operation.

Notice that despite its simple design, the protocol provides high robustness since it

allows tolerance up to N-1 concurrent faults, which is the worst scenario where only the

tail remains available.

Despite this, even though this solution provides robustness against failures, it disre-

gards load balancing, where the replication is only used to achieve fault-tolerance since

the tail must process all requests (reads and writes).

A variant of this protocol, weak-chain replication, relaxes the consistency constraint,

allowing read requests to potentially read stale data by interacting with any server in the

chain. Contrary to the expectations, it might under-perform in the presence of more than

15% write operations when compared with the original chain replication protocol [31].

2.5.2.3 ChainReaction

ChainReaction [3] is a storage system that relies on a variant of chain replication, where

the core concepts remain the same, but relaxing the consistency requirements to provide

load balancing.

In this variant, the chain splits into two segments, the first K elements and the re-

maining elements of the chain. The first K elements follow the philosophy of Chain

Replication, which defines the critical path for the client’s response time. In which the

writes are submitted at the head of the chain, and the Kth node establishes a linearization

for all operations. The second segment of the chain receives updates through lazy repli-

cation (lower priority than the other write requests). Clients are allowed to read at any

replica albeit, with restrictions as to enforce casual consistency guarantees.

This mechanism provides load balancing by generating a token which represents

the last position of the chain the client contacted while a write operation is in progress.

This token restrains the range of nodes the client can interact with in following read

operations to achieve causal consistency, ensuring that once a value is observed it is not

possible to observe a previously written value. The causal consistency is guaranteed by

the downstream propagation of the write operation.

Once the whole chain has completed the write operation, a back propagation of a no-

tification will indicate the end of the write operation, allowing for clients in a subsequent

access to discard the token and choose any replica to submit read operations.
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2.5.3 Discussion

Chain Replication and ChainReaction, unlike the primary/backup protocol, do not block

while performing a write operation, which allows higher throughput.

The analysis of Facebook’s [27] deployment shows that cached data items tend to be a

monotonically increasing snapshots of the database, where most applications can use a

stale values.

Since for caching systems it is acceptable to hold stale data for a bounded period of

time. Furthermore, relaxing this constraint to support causal consistency will provide

more availability and better load distribution, which can be achieved using a solution

inspired in the variant of Chain Replication used by ChainReaction [3].

Furthermore, in our use case when considering ChainReaction as a replication pro-

tocol, with a k value set to 1, it allows the execution of local write operations, thus only

initiating the replication after the response to the client is sent.

Since we assume no fault tolerance, if a server fails, all the writes in progress will

have to be discarded. This can be tackled by manipulating the value of k akin to what is

proposed in [3].

2.6 Cache Interaction Models

Looking at a cache system from a more generic perspective, the cache is simply a sec-

ondary storage system for transient data that is used to speed up accesses, by avoiding

requests to a primary persistent storage system. The interaction with both storages can

be categorized by the read and write operations.

For the read operations there are a few choices: (1) interact only with the primary

persistent storage (no cache interaction), or (2) try to fetch data from the secondary

storage, and if not present (miss) fetch from the primary storage and insert it into the

secondary.

The write operations can in most cache systems be described through its hits and

misses, where a hit mean a specific data item already existed in the cache, and the miss

its opposite.

In terms of a hits, the two possible scenarios are: (1) Write-Through, where the write

operations are applied to both storages, or (2) Write-Back, where the write operations are

only applied to the secondary storage, and latter on (mostly when data items are replaced

or evicted) to the primary.

The Write-Through approach is several times slower than Write-Back, since it has to

wait for the operation to be performed in the slower storage. However, it allows crash

faults in the secondary storage without compromising the consistency of the primary.

In terms of misses, the two possible scenarios are: (1) Write allocate, where the write

operations are performed in the secondary storage, and (2) No Write Allocate, where the

write operations are performed on the primary storage and not to the secondary.
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These two follow different perspectives. The Write Allocate tries to exploit temporal

locality, since it assumes that there is a high likelihood of read operations afterwards.

The No Write Allocate, is the exact opposite, by trying to reduce the secondary storage

evictions, by not wasting space for a data that might not be read.

Even thought there are several combinations of behaviours of hit and miss patterns

we will be assuming hence forward Write-Through with Write allocate as a common

configuration for web environments.

2.6.1 Cache Coherence

Typically the persistence storage defines and enforces rules over data, such as the ordering

of operations, which works well when it is the only storage component in the system.

Considering two independent storage systems, that share information over a set of

independent intermediaries (application servers in most cases), maintaining the same

write ordering in both becomes a non-trivial challenge.

Cases such as two clients making a write operation on the same data item, one after the

other, might lead to incoherences, as changes in the primary durable storage do not imply

that the secondary storage will apply such changes in the same order. Common causes

are the lack of coordination between the intermediaries, (variable) latency in message

transmission, and request queue management.

There are several solutions to address this lack of coherence displayed between pri-

mary and secondary storage systems which typically fall in two groups [38]: (1) disallow

shared data, or (2) allow shared data. The first class of solutions are based on caching

only private data, resulting in an effective solution but with limited performance im-

provements; The solutions in the second group [10] have more promising performance

improvement but mainly resort to time-based expiration mechanism, explicit invalidation

mechanisms, pre-fetching, and piggy-back validation. All these solutions either increase

the miss rate or generate more load in the database to validate the freshness of cached

data leading to additional delays in accessing data objects.

A naive solution would be to add to the queries response from the primary storage a

parameter such as the current time, and use this information to coordinate the writes in

the secondary storage. A time based solution would only work if there was just a single

instance of the database.

A more generic approach, would require databases to expose a sequence number of

the transactions with each query reply. The sequence number would define the write

ordering for the secondary storage, most databases however, do not provide this.

We note that the level of consistency offered by the distributed cache system, even

if strong, is not ”relevant” if its contents are not coherent with the whole system (in

particular the contents of the primary storage system).
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2.6.2 Handling Stale Data

In caching systems there are known access patterns, in which data objects access fre-

quency tend to follow a power-law leading to a Zipf Distribution, where few elements are

accessed very frequently, a medium number of elements have a medium frequency, and

many elements are accessed with a very low frequency. This leads to an important impli-

cation: higher frequency occurrences should be privileged in caching. Also, mostly-read

environments are usually the target for caching, allowing elements to stay in the cache

with low probability of being written.

Since these features are a baseline on caching principles, intuitively there are some

adjacent properties that results in the improvement of the cache hit-ratio:

• holding more popular data items.

• holding data items for a longer period of time.

Holding data for long periods of time will often lead to stale data since, if the cached

data is changed on the primary storage component, these changes will not be reflected

on the cache immediately, potentially making those changes not observable by clients. In

these situations, there are common solutions like invalidation schemes, but this type of

mechanisms introduces some overhead in the system since it requires more coordination

with the persistent storage. More simple solutions are usually employed to avoid the

overhead of invalidation, such as using a time-to-live (TTL) associated with each cached

object. This limits the amount of time an object can remain in the cache, implicitly

defining a bound in the time window where stale data can be served.

2.7 Memcached

In our work we use Memcached [2] 1 as a case study, which is an open source, high-

performance, distributed memory object caching system that can be found in large com-

panies with data intensive workloads such as Facebook, which have read intensive access

patterns, where data objects have significant variations in popularity. The system is gen-

eral purpose, due to its simplistic data sharding standalone server model. This system

is composed by a client-server architecture where the clients store an HashTable with

a key-server mappings managed by Consistent Hashing. Only one copy of an entry is

kept for the whole system. This solution has some obvious drawbacks (most of which

have been discussed before), such as limited Fault-Tolerance, Server Warm Up Phase after

recovery from a failure, Hot-Spot due key distribution, and key access patterns cause by

load imbalance.

A Memcached instance is composed by a Cache Item Data Structure (CIDS)(see Figure

2.2)[44], which is an aggregation of data structures to manage data items, containing

1implementation wise, we consider version 1.5.10 available in https://github.com/memcached/memcached
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several components: (1) HashTable, that is used to locate a data item in CIDS , (2) Eviction

Mechanism, and (3) Slab Allocator.

Figure 2.2: Cache Item Data Structure (CIDS)

2.7.1 Slab Allocation

Slab allocation is a mechanism based on a pool of slabs, where each slab is characterized

by a continous segment of memory with a defined size and a known amount of memory

chunks it can hold. Each chunk inside the same slab has the same size. This kind of

memory organization tries to avoid memory fragmentation and lowers the overhead in

memory allocation since it avoids allocating, initializating, and deallocating memory for

data items individually, which otherwise would require the use of slow system calls [44].

There is a trade-off between fast placement of data items and memory usage, where

this solution requires the data items to be placed in the slab that can better accommodate

the data item according to the slab chunk size and the data item size. Since objects might

be smaller than the chunk size, some space might not be used leading to under-usage of

server memory. The chucks of memory in a slab, once allocated will not be freed, there is

only a transition between states, where if a chunk is not being used for hosting a data item

it is marked as free for allowing subsequent data placements. An in-depth measurement

study on performance of Memcached presented in [5] evidences that Memcached can

have close to 10% of memory under-usage.

2.7.2 Eviction Policy

In Memcached, the eviction policy is limited to an individual slab, where each slab is in-

dependent from all others. Currently, Memcached allows two options regarding eviction:

(1) LRU, and (2) a more recent eviction, Segmented LRU policy based on the 2Q Policy

variant, more specifically the OpenBSD variant.

In the former (1) eviction algorithm, each slab contain an LRU built using a doubly

linked list, where there were no working threads to maintain it, and items were either

moved to the head at each access or eventually discarded when reaching the tail.
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This had serious implications, since according to the authors of Memcached, "the

Multi-threaded scalability is heavily limited by the LRU locking". Furthermore, it also

refered that scaling beyond 8 worker threads in this simple LRU policy was dificult.

Due to the scalability problem, the Segmented LRU algorithm is currently in place.

This algorithm consists of a set of queues (sub-LRU’s), HOT, WARM, and COLD, where

items are ”bumped” between queues asynchronously. By itself these queues do not solve

the problem, as such, there are two special threads to manage them:

LRUMaintainer Thread Responsible for managing all the sub-LRU’s, peeking at tail

items, reclaiming expired items, moving items when necessary, and process asyn-

chronous bumps.

LRU Crawler Thread Examines all sub-LRU’s for each Slab class in order to reclaim

expired data items. It inserts special crawler items in the queues that traverse from

tail to head, using a round robin policy at item level across the HOT, WARM, and

COLD queues.

This policy has allowed the system to scale quite well, as pointed out by the authors:

"Very read heavy workloads have scaled nearly to 48 cores once optimizations were made.".

These improvements have greatly reduced LRU lock contention, since items are never

bumped when directly fetched, with no increase in per item meta-data size.

The major difference the latter eviction policy has when compared with 2Q policy,

resides in the shadow queue that is used to keep an history of previously cached objects

to determine what was previously in the cache (and evicted meanwhile) by only storing

the keys. In the variant currently employed by Memcached, there is still a notion of three

queues, but now they are named HOT, COLD, and WARM, where all these queues store

data items.

The management is done according to the following strategies:

HOT queue ingress point on the segmented LRU, and only a transition state (there are

no bumps within this queue) before an item is sent either to WARM queue if it has

received at least two hits, or to the COLD queue otherwise.

WARM queue items that received at least two hits when reaching the tail, are bumped

to the head of the queue, otherwise they are sent the COLD queue instead.

COLD queue places at the head of the queue data items evicted from HOT and WARM

queues. Data items at the tail that received at least two hits will be queued asyn-

chronously in the WARM queue, otherwise, they are evicted from the cache.

This eviction policy that follows along the line of 2Q policy, provides a safety for

elements residing in the WARM queue against "scanning", where a wide range of data

items are accessed only once, flushing out data objects accessed more frequently.
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2.7.3 Concurrency Control

Memcached is naturally multi-threaded to process clients requests, where there is a set of

available operations which can be split into two categories (1) reads and (2) writes. The

write operation condenses all the operations from the API that involve the manipulation

of the contents of cached data items (i.e., modifying the value of a data item).

In a typical execution flow, either of these operations requires a HashTable lookup in

order to find the data item. Additionally, the data item is simply retrieved or updated,

resulting in an update in the respective slab eviction mechanism being used. Both these

steps require synchronization that is achieved through the use of locks, and as a penalty,

the locks for both queues involved in the operation have to be held simultaneously since

they are shared data structures with a strong coorrelation [44].

The HashTable is managed by the maintenance thread, responsible for performing

the HashMap resize operation when the data item count threshold is triggered. It forces

all worker threads to pause, until the resize is finished. This threshold verification is a

timed event.

Furthermore, there is also a subset of internal operations such as: the crawler for check-

ing TTL expiration and generation of statistics that also require locking. Some of these

mechanisms resort to coarse grain locking which can impact negatively the performance

of Memcached.

2.8 Memcached Variants

2.8.1 R-Memcached

R-Memcached [19], that stands for Replicated Memcached takes the same approach as

persistent Key-Value Stores, where each data item is replicated K times, and is assigned

(and accessed) using Consistent Hashing. It exploits three replication strategies: (1)

Two-Phase Commit, (2) Paxos, and (3) one that provides Weak-Consistency. Each of

their replication strategies is used to address different requirements from applications

operating on top of R-Memcached.

R-Memcached ensures fault tolerance through the use of replication. All employed

replication schemes requires a minimum of three in order to tolerate at least one fault.

This hard lower bound on replication induces a high memory consumption by a factor

of three over the total data items. However, the replication factor is controlled by a

parameterizable value of K, therefore one can used additional replicas if required.

This schema provides a solution for access frequency hot spot until some extent de-

limited by K, where the reads might be load balanced between K servers for all data

items. We note however that this solution presents an necessary overhead in memory

consumption, by replicating all data objects.

Replicating only highly accessed data items could still benefit load balancing with a

low overhead.
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2.8.2 Spore

Spore [13] follows a more reactive design, where it tries to leverage the frequency of

data items with the latency requirements of an application. To do this, Spore defines a

threshold in the receiving queue for each of the Memcached servers. This threshold is

used to trigger (selective) replication for the most frequently accessed data items. It uses

Reactive Internal Key Renaming (RIKR), that appends a suffix to the original key (i.e,

identifier) of each data item. This suffix is defined as γ and it controls the replica count

for each data item, not including the home server (i.e, the server responsible for that data

item when the item is not replicated). This process requires the clients to maintain a

client side cache that records the γ values only for the replicated objects. The RIRK is

used for defining key server mappings, combined with Consistent Hashing. To do this,

Consistent Hashing is applied over the object identifier appended with a value between

0 and γ .

To select which data items should be replicated, when the receiving message queue

threshold is reached, Spore captures the popularity of data items residing in that server.

To avoid unnecessary processing overhead this is only performed considering the top

elements, since only the most popular must be replicated in order to provide minimal

data transfer with significant impact on load distribution. Sampling provides a solution

for this problem, but typically incurs in high space overhead. So, in order to achieve a

space efficient method to discover these data items, SPORE makes use of a very small

cache (' 3% of the size consumed by all items stored in that node) that stores the access

frequency for those items. The frequency of each data item is measured using Exponen-

tially Weighted Moving Average (EWMA) [20] that computes the variance of an access

based on the variance observed previously. This provides a way to allow popularity to

decay with time, and adapt to changes in the workload.

The replica discovery is made simply by piggy-backing the γ to the client on a subse-

quent access to that data item during routine operations, where the servers keep track of

the γs for each of the replicated data items, that they store locally.

When a client accesses (i.e, reads) an object that is replicated, it is notified (in the

answer) of the current replication factor for that object (the γ value). This value is stored

by the client for some time, during which it distributes read accesses among all γ servers

for that object. After some time, this value is discarded and the client simply reverts to

contacting the home server when fetching objects. The writes are always directed to the

home server in order to preserve write ordering.

SPORE provides two mechanisms for replication data objects with different caching

consistency guarantees. The base mechanism provides weak consistency, and SPORE-SE

(that is the variant featuring the second mechanism) uses Two-Phase Commit in order to

ensure strong consistency.
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2.8.3 CPHash

CPHash [21, 22] is based in an isolation conceptual design, in which the main goal is to

create a hash table that works well on CPUs with multiple cores. In order to achieve it,

memory is split into several independent parts (partitions). Key placement is performed

among the partitions through the use of simple hash functions. Each partition has a

designated server thread that is responsible for all the interactions with that partition,

where each server thread is pined to a core. This approach, where each core works in

isolation, results in higher throughput and a larger number of cache hits in L2 and L3

caches, especially when the HashTable meta-data fits the hardware caches of the CPU.

This approach, when applied in a distributed context, becomes a two-tier indexing

schemme to reach a Key-Value store partition. Where a client uses Consistent Hashing to

reach a server, and internally another layer of hashing is employed to locate the partition

and the corresponding thread responsible for managing the target data object.

Each partition has several buckets and chains of data items (similar to an HashTable)

to locate a data item, which uses the former (single LRU per SlabClass) eviction policy of

Memcached. The partition scheme does not require locking due to the exclusive access

policy, and since there are no other threads other than the partition owner meddling in

eviction process.

2.8.4 MICA

Most caching systems resort to locking mechanisms to speed up data accesses by lever-

aging concurrency. This usually leads to heavyweight locks for concurrency control, and

when possible fine-grain locks (stripped locks). However, even with fine-grain locking,

the synchronization overhead is noticeable, affecting negatively the overall performance

of a caching system.

MICA [18], was designed to overcome this performance bottleneck by removing the

need of locking while also minimizing space consumption (that is implicit in concurrency

control). It partitions the main memory per CPU Core (similar to CPHash), where each

core becomes the owner of a partition and has a designated receiver buffer for access

requests, exclusively for the data items in that partition. It also maps the requests directly

to the specific CPU Core at the Network Interface Card (NIC), redirecting the request to

its respective receiver buffers without any high level interference.

The general architecture of MICA is composed of three components:

Memory Partitions The main memory is striped in several partitions corresponding to

the number of cores.

Parallel Data Access Each core becomes the owner of a partition with exclusive write

access for data items in that partition.
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Request Direction It relies in data affinity which distributes data items across partitions,

and consequently cores.

MICA comes in the form of two variants that have different approaches on how to

deal with concurrency: (1) MICA EREW and (2) MICA CREW.

MICA EREW provides a non concurrent environment by avoiding internal data sharing,

which implies that a set of data items is only accessible though a single core for read

and write operations. This eliminates the overheads associated with concurrency

control but leads to a potential bottleneck in data access, due to imbalance of the

load across partitions (i.e, CPU).

MICA CREW provides a concurrent environment where the execution of write is ex-

clusive to the owner core, but allowing the reads to occur from any of the cores.

Write-write conflicts are solved by having the owner core define the order of ev-

ery write operation, leaving only the read-write operations as a potential source of

conflict. This is addressed through versioning.

MICA CREW materializes itself as a solution for the bottleneck introduced in EREW,

by relaxing its read constraints through the use of versioning. This mechanism introduces

its toll on performance due to the use of retry mechanisms. This retry mechanism is based

on a 32-bit version number that controls the interactions with a data item based on its

state. This scheme can be explained by the behavior of the read and write accesses:

Read Access before and after reading a data item value, this version number must be

read. If the version number read is odd or if different between the two read accesses,

the operation must abort and retry.

Write Access before changing a data item value, the respective version number is in-

cremented, signaling that a write is in progress (putting it as odd). The write is

performed, and the version number is incremented again (becoming even again),

which signals that the write has terminated.

Statistical analysis over MICA, allows for a better understanding of the applications

of these two variants. CREW compared with EREW offers a small increase in through-

put, when mostly read accesses are performed (95% read accesses). When dealing with

a lower number of read accesses (50% read accesses), EREW outperforms CREW. This

performance decay in CREW is a result of the retry mechanism associated with the ver-

sioning technique. While in EREW the read accesses show better performance due to the

lack of contention and context switching implicit in the exclusive access architecture.

These solutions do not implement any kind of mechanisms to deal with real world

deployments, since intrinsically there is no eviction policy mechanism that is adequate

to deal with data item access frequency. This happens because memory management
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is based on single continuous memory chunk per partition, that works in a FIFO order

only to avoid memory fragmentation. The most probable result for this memory manage-

ment scheme is a significant drop in the hit ratio in some workloads (for instance, in the

presence of scan operations).

2.8.5 Other Systems and Proposals

Intel developed a version of Memcached [44] exploiting concurrency control and in-

creased parallelism. The main focus was achieving finer-grain locking for the underlying

data structures while applying light weight locks (over critical sections). This is moti-

vated by the fact that locks in the standard Memcached are in some cases coarse grain,

which leads to high contention.

The locking mechanisms force a context switch for lock acquisition/release, this con-

text switch can be classified in two distinct categories: (1) in-process thread switch, and

a (2) kernel process switch. The first mechanism is much more efficient than the second,

since, in the presence of standard mutex, it requires each use to switch the execution

mode to kernel mode, which implies a high overhead in context switching. Using critical

sections avoids the kernel interaction, since it can only be used by the threads of a single

process, not allowing it to be shared across processes [28].

Currently Memcached uses POSIX thread mutex. This is an implementation of the

mutex that does not requires switching to kernel mode unless in the presence of high con-

tention. This implies that Memcached is sensitive (performance-wise) to high contention.

2.9 Summary

In this chapter we discussed the sources of load imbalance in caching systems, how they

are detected, existing approaches to deal and minimize them, as well as other system

implementations that explore some of those topics.

This analysis allows us to understand the key features surrounding caching systems

and how to maximize resource utilization, namely through partitioning, and data distri-

bution.

Considering the previously referred partitioning schemes, their main advantage are

the lack of lock contention.

However, indexing partitions seems to pose additional challanges, where some utilize

in-server clients for partition indexing, which wastes a large amount of processing power

(close to half of the available CPUs ), while others use direct NIC Access to process high

level packets.

The following chapter presents the conceptual design of the proposed solution, which

combines some of the ideas explored in previous work and novel ideas with the goal of

leveraging the load among CPU Cores for maximum utility.
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3
Conceptual Design

This Chapter presents the design of our solution for caching systems that use a memory

partitioning scheme with exclusive access. The Chapter is divided in three parts. It

begins by providing a description on standard caching systems and discussing their key

characteristics. This is followed by the presentation and discussion of the design of

our solution of distributed cache systems, which is the main contribution of this thesis.

Finally, the Chapter provides the key insights on making clients compatible with our

proposed distributed caching system.

3.1 Cache Systems

Caching systems operate as a secondary storage for transient data items, which are main-

tained persistently in a storage system. In most scenarios, these systems are deployed

within private networks. Figure 3.1 depicts one such scenario, which is composed by

three main components (highlighted in the figure):

Cache Pool: Contains the set of servers dedicated to caching. These, commonly execute

an in-memory key-value store in isolation, where each server has its own limited

resources.

Registry: Functions as a middle man between the caching servers, the clients for server

discovery and server membership updates, keeping up-to-date information about

the servers through an independent coordination system that is fault-tolerance (e.g.,

Zookeeper [16]).

Client Driver: The component that provides clients with a logical view of the caching

servers as a single instance.
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Figure 3.1: Cached pool interaction

These three main components are the foundation to ensure the correct operation of

the system. Typically, the system operates following a structured interaction as shown

by the numbered arrows in Figure 3.1. A new cache server joins the cache pool, by (1)

registering itself in the Registry’s membership to be considered active. The new server

is required to have a persistent connection (2) to the Registry, making it possible for the

Registry to verify the server’s alive status. If a server fails, the connection is lost, making

the Registry discard that server from the membership.

For application servers (i.e., clients) to become operational, they require information

regarding the cache servers, which is acquired from the Registry by fetching the current

membership of the cache server pool (3− 4).

The application servers receive inbound web traffic, and perform some application

logic in order to provide a reply to the application clients. The information for the

application logic is retrieved by querying the caching layer (5−6). This is achieved via the

client driver that contacts the server (or set of servers) that contain the requested data.

If the request data is not present in the caching system (miss) the application server

will be forced to retrieve the data from a slower persistence storage elsewhere, or in some

cases, the cache could do it transparently for the client.

3.1.1 Cache Server Model

Caching servers typically demand reduced latency when fetching data items, while deal-

ing with a high volume of client connections. As such, in most cases, this is accomplished

by an event-driven model sustained by a thread pool, as depicted in Figure 3.2.

In this model, incoming requests are queued by arrival order, where each request

will trigger an event associated with a function/procedure (callback) that contains the

logic for the reply. The event loop manages those event triggers that will be retrieved

according to thread availability, where each thread becomes responsible for answering a

given request and fetching another as soon as the last is finished.
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The amount of threads is limited and typically created in the server bootstrap phase

(before the server is considered operational), remaining alive during the full program

execution. This set of threads is commonly referred to as a thread pool.

Figure 3.2: Cache server layout

To answer a request, a thread is required to fetch (or write in the case of the set

operation) data items stored in RAM. However, the threads are working simultaneously

over the same memory space (shared memory access). In this scenario, several working

threads can access the same data item, while resorting to mutual exclusion to ensure

consistency.

This mutual exclusion at the data item level is commonly achieved through the ac-

quisition of a lock (or set of locks) before accessing a data item, which imposes some

overheads and limitations on data item availability. The lock acquisition itself can be con-

sidered a fast process, and it does not comprise the majority of the delay when accessing

a data item.

This delay is caused by the contention generated around a data item, which is more

notorious as its popularity increases, and threads compete among them to hold its lock.

3.1.2 Data Item Availability

Sharing data items among several threads is one of the most popular methods to increase

resource utilization.

However, instead of having the threads compete with each other to hold the data item

lock, which generates contention, one can assign the subsets of data items to separate

memory spaces (partitions) and only grant access to one thread per partition.

This hypothesis tries to exploit increased parallelism, where the lock contention in

the best case is completely removed, since each thread is only responsible by a subset of

items. Hence, it also responsible by the respective subset of the request that targets only

those items, providing additional data locality.

3.2 Partitioned Server

Increasing parallelism through data segregation in the form of partitions, which are

owned and only accessed by a given thread, aims at maximizing the overall efficiency
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achieved by each individual thread, striving for improved server latency, which inherently

improves the performance of the system in its distributed context.

The partitioned server can be achieved considering a single cache server instance,

inspired by MICA and CPHash, where the total reserved memory can be split into equal-

sized memory segments (partitions).

Each of these partitions is uniquely identified and is only allowed to be read or written

in an exclusive mode. Thus making it is impossible for any two worker threads to access

a partition at the same time, removing the explicit notion of concurrency when accessing

the cache memory, in which is typically located the main source of contention.

Since the threads are now responsible for its own memory segments, which consist

on a set of data items with an associated popularity, it becomes advantageous for the

threads to be bound to a CPU Core. It avoids unnecessary context switching by avoiding

moving the thread between CPU Cores, and achieves improved data locality by avoiding

the invalidation of the CPU caches (e.g., L1, L2, and L3).

However, the concept of a thread owning a partition (or set of partitions), implies that

each thread has to deal with all the load of accesses over that partition.

There are cases, in which a given partition might hold several high access frequency

data items. That might introduce delays when accessing data items in other partitions

if both are managed by the same CPU Core, due to large request queues associated with

that memory partition.

As such, in our solution the partitions are not bound to any specific thread, as it would

provide a sub-optimal solution. Instead, there is flexibility through thread mobility,

since the partitions can be redistributed among the worker threads, giving them the

opportunity to improve their access time.

3.2.1 In-Memory Management

We have explored our proposal in the context of building a novel partitioned version of

Memcached with exclusive memory access while maintaining all its internal management

policies as close as possible to the original Memcached.

Exclusive access is achieved by dividing the total available memory among the parti-

tions, where each partition has its own slab memory. As seen in Memcached, slab memory

provides a great benefit regarding performance, since it does not require constant reallo-

cation of memory, while maintaining reduced memory fragmentation.

However, in this particular case, exclusive access becomes a loosen term since it only

holds from the clients perspective. In practice, this is not entirely true, since internally

there are other auxiliary threads that interact with the data items and slabs. Thus, locking

is still required, only resulting in very low contention when accessing a data item (and

hence, additional parallelism and less CPU time being wasted).

Client accesses to data items in the Slab memory are conducted through an Hashmap,

where each partition has its own map, that is intertwined with the respective segmented
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LRUs of the partition.

Each partition having its own Slab memory implies that in the server there can be N

slab classes of the same size, and inherently N segmented LRU’s for each slab class instead

of one. This allows the lack of lock contention to become more notorious as concurrency

increases, especially in write operations, since LRU and slab locks (coarse) have to be

acquired.

Increasing the amount of locks has reduced impact on get operations, since in most

cases, there is no need to acquire either the LRU or the slab locks to fetch an item.

The partitioned scheme provides a very low increase in space overhead, since only the

amount necessary to maintain the additional control structures is not used to code data

objects, the total amount of data items remains (mostly) the same.

Furthermore, we allow two equal data items to reside in the same server. In shared

memory this would naturally pose a problem, where typical approaches to deal with it

would be to rename them and store two distinct keys with some mapping for a data item.

However this would increase the amount of meta-data and only takes into account shared

memory systems. Since we are dealing with exclusive memory, there should be no need to

rename an item, since data items reside in distinct partitions, and are fetched by different

hashmaps. This effectively allows to atribute more CPU time to process request for highly

popular data objects

3.2.1.1 Item Lock Acquisition

Data item access is regulated by distinct HashMaps, one per partition, which provides

some isolation between memory segments. This allows for new situations to arise, such as,

the possibility for two equally named data items to reside in the same server in different

partitions. The partition scheme should naturally adapt to this scenario. However, in

Memcached locking is still required due to existence of management threads that access

all data items.

In this particular case, data item locks are acquired at the scope of the process, through

the use of an hash function that takes the data item identifier as its argument, causing two

equally identified data items to share the same lock. Keeping the lock acquisition only

based on the data item identifier would generate the same contention as if the threads

were competing to access the same data item, removing the possible benefits of having

two equal data items, only taking its toll.

In shared memory systems the problem of dealing with two equal data items is typ-

ically solved by renaming data items and storing two distinct keys with some mapping

for a data items, but this increases the amount of meta-data.

Instead, we are dealing with the abstraction of a partition, where there is no need to

store any additional information or extra memory required to distinguish the data items,

since each partition is uniquely identified.
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As such, by prepending the partition identifier to the data item identifier, and taking

advantage of the Hash function properties, it allows the same data item to map to different

locks depending on the partition it resides. (note that we choose prepend instead of

append, since it would cause more entropy in the output of the Hash function due to the

avalanche effect.)

3.2.1.2 HashMap Resize

In the original Memcached version, the HashMap is a shared resource, monitored by the

main thread in a timed event. Each time the HashMap data item count surpasses a given

threshold, it triggers a re-size, that is carried by the Maintenance Thread.

The Maintenance Thread has the sole responsibility of performing re-sizes on the

shared Hashmap. Each time it is activated, it requires the system to halt, forcing all

worker threads to pause, resulting in server downtime.

Given that we are working with partitions, and each Hashmap is independent, only a

thread, or set of threads, should be required to pause according to its respective re-size

thresholds at a given moment.

Since the HashMaps are no longer a shared resource, there is no need to keep the

Maintenance Thread. The main process can directly inform a thread that a partition it

owns has surpassed the size threshold, and that it needs to perform a re-size.

This implies that each thread might pause several times, according to the number of

partitions it holds. Also, the threads halt independently, and for small amounts of time,

when compared with a re-size of the Hash map with all the items.

The overall time in which each thread is stopped should be slightly higher than in the

original version, due to the additional memory allocation for the expansions that have to

be done in each Hashmap. This method avoids system downtime, by taking short pauses

for each thread according to its necessities (that are not necessarily synchronized).

3.2.2 Partition Access

As seen in CPHash, one could have a top layer in the server responsible for directing each

request to its respective partition, as depicted in Fig. 3.3 a). However, this would increase

the number of threads, context switching and number of messages.

According to the authors of Memcached, the recommended number of server threads

should not surpass the number of available cores for maximum usability. Hence, if one

adds a set of threads to act as clients, it will decrease the CPU time for each thread and

increase context switching, since there are far more threads than CPU Cores. Each request

would be required to go through internal client thread for indexing beforehand.

Furthermore, the communication between client and server threads is commonly

based on message passing, where each request will demand two event triggers to be

performed in different threads, while containing the information of which socket to attend

to. This implies that the request has to be processed twice, or a connection item has to be
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allocated in the client thread, passed to the server thread for processing, and finally freed

before the reply.

a ) Server Side Decision b ) Client Side Decision c ) Middle-ware Decision

Figure 3.3: Two-Tier Indexing Schemes

To avoid all this computation and its downsides which impacts negatively server

performance, we expose a socket port for each partition, creating a multi-port server, and

push partition access decisions on to the client side, as depicted in Fig. 3.3 b).

This is achieved by performing the computation for partition indexing in the client

itself. The client possesses all the means to perform indexing simply by knowing the

amount of statically configured partitions in a server. If different servers have a different

number of partitions, one could add that information to the registry. From here on, it

would only require a step further than the normal indexing scheme already performed

by the clients, where it first chooses a server, and the respective target port afterwards.

Furthermore, there is also the option of relying on midleware to perform the second

tier of indexation, as depicted in Fig. 3.3 c), which might solve the downsides of the

CPHash model benefiting its throughput. However, it would incur in increased latency.

3.2.2.1 Summary

The exclusive memory access policy is represented by a set of sockets that are strongly

correlated to their respective partitions. At any given point in time, each worker thread

is responsible for a subset of partitions. Each subset only allows the respective worker to

access a disjoint set of data items from all the data items present in the server.

Even though each partition has its own memory management, achieved through in-

dividual Slab Structures and respective LRUs, the presence of a single HashMap per

partition is what provides the necessary abstraction to ensure the goal of restricting the

clients access to each partition.

Entering a paradigm of exclusive access relieves the data item lock contention prob-

lem, and introduces new bottlenecks, mostly due to the fact that each partition is seen as
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a block that has to be managed by some thread.

If the load caused by the access to a partition or set of partitions, is greater than the

CPU Core capacity that those partitions can possess, then the access to all those items

will become negatively affected.

In particular, the number of operations that can be performed in a single CPU Core is

limited and will be the cause of additional server latency, by keeping requests waiting to

be processed for a longer amount of time in a given partition or set of partitions.

This latency will be perceived by the client, and will limit the overall throughput

when compared with Memcached, since it is able to distribute the load across the threads,

and decrease the waste of CPU time when processing client requests.

In our case, the server will become exhausted when the first CPU Core reaches full

utilization, at this point the server cannot process more requests per time unit without a

penalty on response times.

3.3 Local Access Frequency Imbalance Management

Detecting load imbalances does not necessarily imply that a partition holds the most

accessed data items. There are several circumstances where a partition or set of parti-

tions might experience increased latency, mainly due to the load on the CPU Core being

employed to execute other unrelated tasks.

A given CPU Core might be exposed to more load than simply the worker thread

answering the client’s requests, it might also be subject to the Main process, Maintainer

Thread, Crawler Thread, or even external tasks that the Operating System (OS) triggers.

All the threads that are not the worker threads are considered free threads, which have

to be assigned to some CPU Core through the OS scheduler.

To detect cases in which a CPU is overloaded, we monitor each CPU and calculate

its occupation as a percentage in a one-second time window. However, this percentage

only reflects the occupation over the last second, which is too sensible to load peeks. That

might be caused by a (short) burst of requests, or some free threads that are temporarily

using a CPU Core.

As such, we amortize the load over a given time period using the Exponential Moving

Average (EMA) [40], providing a concept similar to the average where the most recent

readings have more weight, giving us some sensibility to the tendencies, and not a flat

estimate of the load. Furthermore, to handle the load we should not intervene with any

of the free threads, which might rely outside the program scope. As such, our solution to

relieve the load requires managing the partitions, and for a more fine-grain solution, the

data items.
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3.3.1 Decision Making

The first step to make a meaningful decision is to understand when exists a problem

which needs handling. For this we define an overload state for the CPU Cores, where

some threshold is defined and when surpassed, triggers a mechanism to readjust the load,

if possible.

As suggested in Spore, a threshold in the receiver queues that expresses the latency

requirements for an application, might guide the design of an adequate solution. How-

ever, taking into account that there are two main types of connections: persistent, and

non-persistent, marking a threshold in the receiver queues of each socket is not a plau-

sible solution for persistent connections. For example in cases such as TCP connections,

the socket that constitutes the ingress point on the system only deals with accepting

new connections. Hence, to make a measure of how much load a partition is subject to,

would require keeping track of all the child socket queues and establish some cumulative

threshold.

As such, we apply a threshold for each amortized CPU Core utilization instead. When

the threshold is surpassed (overload state), it is probably due to the high access frequency

of data items, which triggers a re-balancing mechanism where the first approach tries

to balance the server itself. It does so by redistributing the partitions by the CPU Cores,

relieving the bottleneck in the overloaded CPU Core.

In this scenario, it becomes convenient to have several partitions per thread, which

allows a more divisible load and better internal rebalance. The load in each partition is

described through the use of the Exponential Moving Average (EMA) over the number of

accesses to each partition per second.

The current load imposed over a thread can be inferred based on the amortized

amount of accesses to each partition and the current distribution of partitions by the

threads.

Furthermore, a clear insight on the discrepancy between the number of accesses to

the threads can be achieved by computing a standard deviation. If the standard deviation

exceeds a specific threshold, it will try to redistribute the partitions by the threads while

aiming at achieving a lower standard deviation over the number of accesses managed by

each thread.

The best outcome of this rearrangement can be solved through the Minimum Makespan

Problem [11, 42], where the algorithm considers a set of tasks with a given duration to

be distributed by a set of processing units with minimal variance.

In our case, instead of task with a duration, we consider partitions with an associated

load, which are analogous. However the exact minimum is an NP-Hard problem with

an exponential time complexity, as demonstrated in [42], which would severely damage

the system performance as the number of partitions increases, and since this has to be

calculated on a regular bases.
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As such we turn to an approximation of the algorithm for load balancing, more partic-

ularly, the special case in which there is no partial order between "tasks". This algorithm

provides a very good approximation in linear time, as described in Equation 3.1, where

c∗ represents the optimal value (minimum load), while c is the load that resulted from

the approximation algorithm, which aims at c
c∗ staying relatively close to 1.

c
c∗
≤ 4

3
− 1

3m
(3.1)

The algorithm itself, consists of ordering the partitions in decreasing order of their

load, and assigning each partition sequentially to the thread with the lowest cumulative

load.

If there is no viable rearrangement of the partitions by the CPU Cores, or the new

standard deviation generated based on the approximation algorithm, is still above the

threshold, it will resort to replication as a more fine-grained load relief method. It will

select a set of data items with the highest access frequency from the partition with the

highest amount of accesses of the overloaded CPU Core, which should translate to the

most load relief.

3.3.2 Socket Shift

As mentioned before partitions and sockets are strongly correlated, where the socket

regulates the access to a given partition. Any partition itself is reachable from any thread

since we are dealing with an abstraction over shared memory. So we only need to relocate

the ingress point of the access to a partition in order to rearrange the partitions by the

CPU Cores, as depicted in Figure 3.4.

For persistent connections one requires to keep track of which connections are asso-

ciated with each partition. This is required so that if load rises, triggering a rebalancing,

we can shift them to another thread maintaining the exclusive access policy. This also

requires to stop the target thread until all the relevant connections are moved.

However, this does not work too well for non-persistent connections, since it would

require constantly adding and removing connections from a tracker data structure, which

can lead to significant bookkeeping overhead. Performing these operations would impact

the server latency, as well as an increase in the amount of meta-data to establish the

correlation between the all the sockets and the partitions.

To overcome these challenges, we developed the socket shift algorithm that requires

very low meta-data and is agnostic to connection persistence.

We do not try to keep track of all the sockets from a top-level view, instead we grant to

each socket the ability to verify if they are in the same thread as the socket that originated

the connection (master socket). This validation is done before each operation, since the

algorithm only moves the master socket to the desired thread.

When a child socket notices a change in ownership, it will move itself to the thread

where the master socket currently resides.
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The shift is not a forced bulk of connections being moved, instead, each connection

moves itself when required to. The result will be similar to the bulk, but will still allow

operations to be performed by the worker threads interleaved with the shifts.

a ) Unbalanced b ) Balanced

Figure 3.4: Correlation between sockets and partitions with exclusive access

3.3.3 Selective Replication

Selecting popular data items is a non trivial task, since maintaining access frequency

information over all data items becomes impractical due to the necessity of high amounts

of meta-data. Using sampling, might prove to be a reliable mechanism, since it allows to

pinpoint exactly which are the most popular items.

However, sampling also requires some permanent extra memory to keep track of

the most requested items, while having to work as front end cache for each partition

separately.

This would increase the sever latency, since all request would have to go through the

front-end cache first, before accessing a partition. The first cache would need a high

performance to avoid increasing the server latency to much.

Thus, we arrive at our solution, a form of replication that tries to exploit the peculiar

characteristics of a cache, that typically does not occur in normal storage systems, which

takes advantage of the partition scheme, and its internal LRU’s.

Knowing the LRU policy present in the cache allows to estimate the location of the

most popular data items. However, it does not allow to pinpoint precisely which are the

most popular items without incurring in a persistent increase on management metadata.

The amount of partitions minimizes the probability gap when selecting the most popular

by restricting each decision to small subset of data items.

As such, we cause a controlled burst of replication with fast shrinking, and set an

upper bound on the number of data objects that are replicated per burst, and overall.

This will result in only the truly popular items maintaining their replicated status.
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The burst is controlled by a single background thread that performs the replication

by increasing a γ value for each selected item that represents its replication level (replica

count), similar to the mechanism used by Spore.

The shrink phase is controlled by a threshold in the LRU, in this particular case,

performed either by the Maintainer or the Crawler Thread, when a replicated item drops

from the WARM queue.

Common sense would say that replication should be done across servers, but this is

typically under the assumption that servers are multi-threaded, working with shared

memory access, and the main focus besides availability is mostly fault-tolerance.

These assumptions do not hold in the current scenario, since even though it is a multi-

threaded system, each worker thread performs its tasks mostly in isolation, since each

partition can only be accessed by a single worker thread at any given time, which is

perceived by the clients as a single server itself.

3.3.3.1 External Replication

Replication typically takes consistency over the replicas as a prime concern, since the

closer to strong consistency, the higher amount of coordination and latency is required to

manage the replication.

In caching systems, the information is transient and needs to have a fast data retrieval

time. Hence, a notion of causality should suffice. Taking as an example a variant of

ChainReaction, configured with a K value of 1, such replication solution enables write

operations to be performed on the ”home” node of a data item, and respond to a client

before starting the replication, reducing the critical path for the client’s response into a

single node.

This example would allow us to have writes performed without blocking while prop-

agating write operations. However, there is a lot more to external replication that implies

certain overheads, such as a server being required to keep track of all the currently active

servers, and either maintain a persistent connection for each server, or open shortly-lived

connections according to the replication protocol needs.

Furthermore, it provides the oportunity to load balance accesses across replicas for

very popular objects, where each client must keep a token of ongoing write operations in

replicated data items. This solution naturally adapts to the existence of a single instance

of a data item.

This kind of replication entails additional message passing through the network,

where one should strive to achieve minimal data movement, on the other hand, our

item selection process revolves around bursts with fast shrinking, which requires each

server to keep track of who owns a given item, and send notifications for decreasing the

replica count for that item.

It also implies that the clients must acquire some form of leases during a write op-

eration over a replicated item, to avoid fetching inconsistent states. This lease can be
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discarded after the write is completed.

When considering external replication, sampling is advised, since the items being

replicated are the most popular in that partition. Therefore, there is no need for the other

servers to give feedback on the item, where the growth and shrinking of each item is

regulated based solely on the home server. This would provide minimal data transfer, but

incurrs on extra overhead, where the worst is the penalty of persistent loss of a portion

of memory for sampling.

3.3.3.2 Internal Replication

This is an unusual type of replication since in most systems, where there is no notion of

partitions, performing in-server replication seems counter-intuitive and requires renam-

ing the items and keeping track of the originals.

This is not our case, we can simply distinguish the replicas by the partition they are

placed on, and freely access them since in its core we are still dealing with shared-memory.

Implementing any replication protocol in this environment seems trivial, since it

should allow a large number of simplifications.

However, the data item locks impose restrictions yet again, since there is the possi-

bility of hash collisions in and between sequences of lock acquisitions, even though the

probability of one of this occurrences is extremely slim, it would still result in a deadlock.

Hence we resume the implementation of a replication protocol using message passing

through operative system pipes for inter thread communication, while following the lines

of the original algorithm, where a thread is only allowed to hold locks from the partitions

it owns, or a single lock at any instant.

Since latency is a prime concern, we discarded strong consistency algorithms which

are known to be very time consuming, and focused on causal consistency, in particular

Chain-Reaction, that allows progress without blocking while performing an update.

The principles of fast growth and shrinking discussed before are still applied, where

the overall amount of replicated items that survives the shrink phase will tend to be very

low, as well as the number of replicas for each data item.

3.3.4 Indexing Replicas

Server driven replication requires each server, in some sense, to also behave as a client,

where it has to index the target partition for a given key to be written in a deterministic

fashion, where clients will also have to implement this behavior.

Since there is an immutable amount of partitions in a server, it becomes easy to index

a partition by using the modulus over a hash function with the number of partitions.

However, since we are applying replication, some changes have to be made in the

indexation to pick more than one target partition for the same item.
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Employing any structured algorithm to define the chain, such as ordering the ports

of the server and applying a shift in the interval [0,γ] beginning in the owner port, might

not be the best choice.

Structured algorithms will lead to all the replicated items from an overloaded par-

tition to target the same sequence of partitions. This has severe implications, such as

probably overloading the next partition, by flushing the same amount of items that are

being replicated from a single partition, and in the worst case scenario the targeted parti-

tion might reside in the same overloaded CPU, resulting in a total waste of memory with

no benefit (the impact would be similar if performing external replication).

0 1 2 3

a ) Structured Chain Algorithm

2 0 3 1

b ) Unstructured Chain Algorithm

Figure 3.5: Correlation between sockets and partitions with exclusive access

We use the same concept of Spore, unstructured replication, by performing the mod-

ulus with the number of partitions over the hash function of the item key concatenated

with a value in the interval [0,γ] , ensuring that the access to replicated data items can be

balanced by varying the chosen value.

This method has a very high probability of scattering replicated items across the

partitions. However, this also implies that some items might target partitions that already

have those items (including the owner partition) and partitions residing in the same

overloaded CPU.

In the case a replicated item targets a partition which already has that item, the λ

value is maintained, but the write is discarded, resulting in the same state as if that replica

did not exist, only reducing the amount of load distribution for that item.

In the second case where it targets a partition in the overloaded CPU there is not an

actual problem, since the other replicated items will relieve the CPU and it will behave

normally.

This unstructured replication reaps a crucial benefit, not flushing a large set of items

from a single partition, it flushes small sets of items across all partitions, leading to the

least increase in the miss ratio, since the items flushed are the lowest access frequency

items of the server.

3.3.5 Summary

Our solution performs a memory split, proving exclusive access to each partition through

a socket that is owned by a worker thread. Each worker thread is bound to a CPU Core

and might have assigned one or more partition, each partition is self-contained having its

own LRU’s, and a Hashmap to perform item indexation.
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Having exclusive access to partitions will eventually cause at least one of the CPU

Cores to become overloaded. For such cases, there is a rebalancing mechanism in place

with two algorithms: Socket Shift, and Selective Internal Replication. These might become

complementary between iterations of overload triggers.

The Socket Shift rearranges partitions across the CPU Cores, while Selective Internal

Replication, performs a more fine grain load relief controlled bursts of replication, with

a fast shrink pace based on the popularity of data items. The replication scatters the

replicated data items across all the partitions.

This method allows a server to keep working at full capacity, for its intended purpose,

storing the most popular data items, while providing more availability than Memcached.

Considering that instead of keeping all the data items while struggling in overload as

Memcached does, it grants more privileges to the popular items through internal repli-

cation, while inherently discarding the least popular, achieving the best outcome for the

limited space constraint.

3.4 Client Architecture

Conventional indexing schemes typically display the servers in a flat structure, where

each target is at the same level as the others. However, due to internal replication, this is

not the case there is a need to distinguish between server and ports, forming a two-tier

indexing scheme.

The first data placement algorithm should decide which server to place them on, and

the second should determine what port to use.

The two algorithms follow different assumptions. The first algorithm has to deal with

dynamic memberships, where servers might join or leave. The second algorithm only

needs to take into account the number of ports open in the chosen server. The number of

ports is a fixed and either all or none fails, where the first case is interpreted as a server

failure.

Both algorithms should strive for near-optimal data placement algorithm with low

overhead able to scale, since it provides close to the equal probability of a server owning

a data item, which reflects the maximum usability of the server pool. We use Random

Slicing as our use case to index the servers, since it fits this requirement, in which it

has less the 1 % maximum variability from the normal distribution (for comparison,

Consistent Hashing has a maximum variability of nearly 20%), requiring the use a PRNG

or Hash function to select a target server.

For performing the port selection we simply mimic the server replication indexation

scheme.
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3.4.1 Global Access Frequency Imbalance Management

To prevent additional load on caching servers, typically introduced by very high access

frequency data items, a Two-Tier caching solution is typically in place. In this scenario,

most of the very high access frequency data items will appear to client as high access

frequency data items in comparison to all the other data items, as such, storing them in a

local client-side cache for the most accessed data items implicitly reduces the accesses to

the caching servers. However, this local-cache will demand low TTL to avoid incoherence.

The updates to the local cache should be done asynchronously, since it is irrelevant if

some of the updates are delayed or fail, because the only interest resides in the data items

that show a very high access frequency compared with others in a local context.

3.4.2 Random Slicing Implementation

The Random Slicing algorithm is a representation of a line segment of the interval [0,1],

which in itself is composed by a set of segments, each representing either a portion or the

full quota of the assigned space for a server, according to its weight relative to the others.

At top level this line segment is represented by a View which is composed by two

main lists: the Servers linked list, and the Strip which is comprised of buckets forming a

doubly linked list.

The Sever list adds new elements to its head, and the removes are performed by IP

address match.

The Strip is composed by an ordered set of buckets, each with an interval, where the

total sum of all intervals quotas amounts to 1. The first bucket starts at 0, the last ends at

1, and all the intermediate buckets begin where the previous ended.

Figure 3.6: Random Slicing Structure
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In its initial state, there is only one bucket that condenses the interval of the full strip

([0,1]) as unassigned.

As servers are added and removed, either split or gathers are performed in the buckets,

where each bucket references its owner server. Each server only references the first owned

bucket, since all his buckets are linked between themselves forming a doubly linked list

of owned buckets which is intertwined with the strip.

For the gap collection algorithm, we use CutShift, as recommended by the authors.

The remove and add operations if performed in batch reduce the fragmentation, and

allow a more efficient gap collection.

3.4.2.1 Lookup Improvements

To perform a lookup in the Strip, a PRNG function is needed to generate a value between

[0,1], the same can be accomplished by using the result of a hash function divided by its

maximum value while maintaining the same properties.

The strip is iterated until a bucket has the interval that contains the respective value,

from which its owner is the target server.

To achieve a time complexity of O(1) instead of O(n) while performing the lookup, an

array was added, which indexes constant offsets, forming a Skipped List over the Strip,

where each array position reference the bucket that contains its offset. If the number of

buckets is N times greater than the array it performs a re-size, followed by a reference

update due to the new offsets.

3.4.2.2 View Computation and Coordination

The View computation is a deterministic algorithm, assuming all clients process all the

transformations in the same order. Where each client can compute a new server view by

performing a transformation on the previous, as such, for a new client to compute the

current view, it would have to compute all the previous transformations starting in the

initial view.

To avoid this expensive bootstrap process, the current View can be stored in a shared

location with its respective sequence number, which allows new clients to fetch the pre-

computed an up-to-date view. However, to store the current view, only one client is

required to compute it, since all the other clients can fetch the newly computed view,

instead of doing it themselves.

To achieve this, a leader election process is required, hence, the use of Zookeeper,

which provides the creation of ephemeral nodes, where the node only exists while a

connection is active, and also different types of semantics for node creation, where a node

can be created only if it does not exist already.

Furthermore, to compute a new view, a client must maintain watch over all the cur-

rently registered servers, in order to detect changes in the membership. Zookeeper also

provides a functionality for this, where a client is able to watch over a node and receive a
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push notification if any changes are performed on the node or any of its children (regis-

tered servers).

Nevertheless, if only the client leader is keeping watch over the servers, only he is

able to detect the changes. When it loses its connection or fails, a new leader election

process will sprout, resulting in a new leader. This new leader will have to scan through

the servers in the view and compare with the currently active servers to detect if any

change in the membership occurred during the leader election process.

To avoid the scan over the view and all active servers, all or subset of clients can

also keep watch over the active servers, and keep track of the few last changes in the

membership. Where in the case of the subset, only those can run for leader election.

3.5 Summary

In this chapter we described typical deployment environments for caching systems, core

aspects, and designs. This was followed by the structure of our solution, discussing how

to perform memory partitioning and how to expose the partition for client accesses.

We analyzed the developed algorithms and methodologies applied to mitigate the

challenges that arise from the partition scheme under stress scenarios. In particular, the

Socket Shift is a coarse load relief method that redistributes the load among the worker

threads, and the Selective Replication is a more fine grain method, which discards data

items with low popularity to provide more availability to popular data items.

Finally, we provided an additional module for the client to index the partitions and a

low data misplacement algorithm that strives to achieve low implicit miss ratio.

The following chapter presents the core aspects of our prototype in detail, in particu-

lar we describe the changes performed over the original Memcached and the aspects to

consider when implementing memory partition, Socket Shift, and Selective Replication,

which lie at the core of our solution.
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4
Implementation Details

Here we will discuss, in some detail, some of the relevant aspects of our implementa-

tion that strive to achieve an optimized solution, considering space and complexity of

operations.

All operations in Memcached can either read or change an item state, as such, we

focus on set and get operation, since all the others are fundamentally similar, and can be

handled using similar techniques. Most of the presentation in this chapter is performed

at a high level, with details being presented when required to fully grasp the reasons

behind our implementation decisions.

All the solutions presented strive to use the least amount of resources possible, while

reusing the already existing structures when possible, to avoid increasing overheads, and

maintain O(1) time complexity in most operations.

4.1 Internal Network Model

Memcached represents all possible connections using an array (conn* conns) with the

maximum number of connections delimited by an adjustable threshold. This array stores

all the meta-data for each file descriptor, which can be mapped by its integer value to the

respective index of the array.

In order to monitor the active connections, it resorts to libevent (event notification

library) for managing file descriptors in an event-driven model, it provides a generic and

portable interface that automatically leverages on the most perfoment library available

on the host, such as select, poll, or epoll.

Libevent executes a callback function when a specific event occurs in a monitored file

descriptor. These callback functions are provided for each file descriptor when added to

the libevent-base for monitoring. The libevent-base consists of a control loop that iterates
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over all triggered events, executing the respective callbacks or that waits until an event is

triggered.

Figure 4.1: Network model

The main process which performs the bootstrap phase in Memcached, launches all the

worker threads, one for each CPU core is recommended for maximum performance. The

main thread, and all the workers, each have their own libevent-base, henceforward, the

libevent-base of the main process will be referred as the main-base. During the bootstrap

phase, the main process while creating all the workers, also creates read and write pipes

which are identified by a file descriptor, and a connection queue of items (cq_item) for

each of the workers, as depicted in Fig.4.1. This pipe and queue structures allow the main

process to send content to the workers, by pushing a connection item into the worker

queue and triggering an event trough a write operation in its respective pipe, which will

signal that a connection item is ready to be poped out of its queue for handling.

The main-base is responsible by only two events: Clock update and Main socket

triggers.

The clock update is one of the most important functions which will perform a system

call to get the current time and write it to a global variable. This is a periodic event

triggered every second, which provides enough accuracy if all the other triggered events

on the main-base do not exceed one second to process, otherwise, it will delay the clock.

This greatly affects the system performance, where otherwise, the system would require

a system call for each time a timestamp is needed. Notice that the clock value is used

extensively. As an example, the crawler uses it with a very high frequency while checking

the expiration date and the maximum age of the tail items in the internal queues.

The main socket is the ingress point of all new connections in the system, and where

the accept system call is performed, hence filling all the meta-data of the respective

(spawned) connection. After the accept is performed, the file descriptor is forwarded to

a worker thread through a pipe, with a round-robin policy, to be added to the respective

libevent-base, and become functional.

The libevent-base in each thread is responsible for monitoring the pipe created by the

main process and all the file descriptors of the accepted connections that are assigned to
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it by the main thread. Afterwards, any incoming requests from a connection will only be

processed by its monitoring thread.

4.1.1 Exclusive Partition Access

Figure 4.2: Accept New Connections

Achieving exclusive access to a single partition is fairly simple since there is an already

existing pipe structure for each worker that is associated with the Main process. Taking

advantage of this pipe structure, the Main process in its bootstrap phase creates N sockets

(master sockets) with the same configuration as the original Main socket, and distributes

them to each worker in a Round-robin fashion.

Each worker thread is bound to a specific core, where its core mask matches the

modulus of the worker thread identifier(i.e., thread id) over the total amount of available

cores. The worker thread id is a sequential value.

The Main process keeps track of master sockets file descriptors using an array, where

each array index position directly maps to the index of the respective partition. This index

value is also stored within its respective connection item in the global file descriptor array.

The stored partition index value within the connection item is meant to provide the

index directly when an event is triggered (it only provides the file descriptor) instead of

searching the master socket array for the file descriptor and fetching its index.

Each worker upon receiving a push notification will add the respective master socket

to its libevent-base, as illustrated in Fig.4.2. When a new connection is accepted, it is the

result of the triggered event on the libevent-base where the master socket resides, hence

this new connection will inherit the respective master socket partition index and will be

added to the same libevent-base.
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This implies that only the respective thread where the master socket resides is able

to access the requests from these connections, that carry request to its local memory

partition.

4.2 Memory Partitioning

Our exclusive access policy is driven by the network model, which already provides an

abstraction for the memory partitions. As such we identify each partition by the master

socket creation order, that maps directly to its index, uniquely identifying each partition

and any related component. Since each new connection inherits the associated master

socket partition index, they remain within the same access scope.

4.2.1 Slab Memory

The memory management is based on the concept of Slab Classes, an incremental ruler

that defines the maximum size of an item it may hold. The memory allocation process

revolves around fixed allocation of 1MB memory pages, represented by a Slab, where

each Slab is split into several chunks according to the destination Slab Class size. Each

Slab Class has its own embedded LRU that dictates which items should be evicted, if page

allocation is not possible.

a ) SlabClass Structure b ) Overlapped HashTable

Figure 4.3: Memcached Memory Structure

If an allocated Slab is not under any specific Slab Class, it will be placed in Slab Class

0, that represents the Global Free pages, which will replace the next page allocation, and

afterwards be split according to the assigned Slab Class.

The Slab allocation creates several equal-sized chunks, even if only one is needed.

This avoids the next few allocations for that data item size with minimal memory frag-

mentation, and also enabling Slab migration between Slab Classes .

This memory displacement scheme is very efficient in terms of memory usage. Still, in

isolation, it does not provide a fast lookup mechanism, since it would require traversing
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all data items. As such, an HashTable is in place, to provide a fast lookup, over all data

items.

Due to this structure, all operations are conditioned by a set of locks: (1) the slabs

locks, and (2) the items locks. The Slabs locks are in place over each Slab Class, while

items locks are placed on each individual item.

The partitioning scheme is achieved by splitting the overall memory limit over the

number of available sockets, where the last partition accumulates both its share, and the

remaining memory, if any. Inside each partition, the memory keeps the same original

structure, and allocation policies.

This implies that the amount of Slab Classes increases by a factor of N partitions,

and so do the Slab locks. This provides a more fine-grain locking policy, which has a

great impact over the write operations since when performed, it requires a Slab lock to

be acquired to bump an item to the head of the queue.

Furthermore, intuition says that isolated memory segments that are exclusively ac-

cessed by a single thread, should not require locking. Still, this is not the case due to the

interference of the LRU Threads, that are in place due to scalability issues according to

the authors of Memcached.

4.2.1.1 LRU Threads

The LRU Maintainer and LRU Crawler Threads are the main mechanisms that allow Mem-

cached to scale in terms of worker threads, hence, we maintain their internal logic, only

multiplexing it over all the partitions, instead of having two threads dedicated for each

partition. This required some tweaks on coefficients that parameterize the behaviours of

these threads, variables, and minor changes to the asynchronous bumping queues.

The LRU Maintainer Thread is required to perform more peeks to the tails of LRUs,

and deal with the asynchronous bumps of all the partitions, which requires it to maintain

track of the partition for which each bumped item belongs to, by keeping the them in

separate queues.

The LRU Crawler Thread has to create more special crawler items to insert in the

LRU’s, since there are more LRU’s to deal with, but since the amount of items in the

server is still the same, the total amount of iterations over the items, and time spent per

operation remains the same.

4.2.2 Item Access

The direct mapping from socket to partition provides a foundation to perform a memory

split. However, it does not control item reachability, since assigning a socket to a specific

thread does not imply exclusive access to a partition. This is achieved by restricting the

socket accesses through a single Hash map per partition, instead of a shared hash map

for all the data items.

55



CHAPTER 4. IMPLEMENTATION DETAILS

Even though the hashmaps restrict the memory access from the client side, the items

are not entirely isolated, and still suffer interference from the LRU threads. Thus, item

locking is still required. The locking is external to the hashmap, and is performed before

each item access through the use of a hash function based on the data item key.

This locking method works on a global scope, which allows interferences between

partitions in the case duplicate items in different partitions. To limit the locking scope

we could append the partition index to the key, to be processed by the Hash function.

The append operation would have to be performed for every request. Hence, its

cumulative effect would probably impact the server latency.

As such, we do not perform an append, but instead slightly change the hash function

to take in another parameter, the partition index (salt), and process it after the key, as if it

were appended, maintaining its original desired properties (e.g., avalanche effect). This

allows the same key to acquire different locks according to the partition where it resides.

These changes were applied to the murmur3 (default) and Jenkins hashing algorithms

present in Memcached. We present, as an example, in Listing. 4.1 the same kind of

modification to djb2, which is a simpler and more compact algorithm (This algorithm

should not be used since it generates insufficient entropy).

Listing 4.1: djb2 variant

1 unsigned long hash(unsigned char *str, unsigned char *salt)

2 {

3 unsigned long hash = 5381;

4 int c;

5

6 /** same effect as prepending the salt value **/

7 while (c = *salt++)

8 hash = ((hash << 5) + hash) + c; /* hash * 33 + c */

9

10 while (c = *str++)

11 hash = ((hash << 5) + hash) + c; /* hash * 33 + c */

12

13 return hash;

14 }

4.2.2.1 HashTable Re-size

The HashTable only retains its high lookup performance until an item count threshold is

reached. Afterwards, the amount of collisions per bucket increases, and a lot more time

is needed to traverse the linked list and find a given item. As such, a resize is in place.

During the resize process, no change or lookup should be performed, since it would risk

creating a race condition.

In the original Memcached version, to avoid the race conditions, a full stop is issued

from the main thread through the underlying pipe structure, and all worker threads have

to pause. Meanwhile, the main thread also activates the Maintenance Thread to perform
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the HashTable resize, which upon completion, replaces the current HashTable, and allows

the worker threads to resume their normal execution.

In our case, since each HashTable is limited to a partition, and each partition is only

managed by a single thread at any given time, this problem does not occur. Also, it

removed the need for the Maintenance Thread, where instead of the main signalling it

to perform the resize, it signals the owner thread of a given partition, if the need for this

operation arises.

If a partition has been shifted before the signal has been processed, the mechanism

naturally adapts, since the thread will discard the request for a resize for a partition it

does not hold, and it will be issued again correctly in the next timed event.

4.3 Load Monitor

This is an entirely new main sub-routine that occurs in a one second interval. This sub-

routine should take less than a second to compute, to avoid delaying the global clock

update routine, and is responsible for the detection of CPU Core saturation. Once found,

it will try to redistribute the current load in an iterative fashion, first by attempting to

redistribute the partitions by the worker threads, and if unable to do so, it will resort to

selective replication as a mean to distribute some partition load among the others.

Fetching the load of each CPU Core (described by the Equation 4.1, and in greater

detail for UNIX systems in Annex I) only provides a load estimate over the last second,

which is too sensible to load peeks, as such we use the Exponential Moving Average (EMA)

over a number of readings.

CPU_load =
∆user +∆nice+∆system

∆user +∆nice+∆system+∆idle
(4.1)

The EMA is based on a set of readings in a time frame (window), which defines its

multiplier, as seen in equation 4.2. The multiplier gives a higher weight (significance) to

the last readings, relative to the previous cumulative readings of the window.

Multiplier = (2/(window − 1)) (4.2)

Typically the initialization of the EMA requires a Simple Moving Average to be com-

puted over an initial window, where the weight is the same for all the readings. However,

we do not apply this method, we assume a value of 0 for the initial input, which mimics

the initial state of a stale server. This change only impacts the first few readings, where

the result of the EMA will not reflect the actual system load.

Not using the initial SMA avoids the memory allocation, and storage of all the readings

for each initial window. Hence, the new EMA can simply be computed by using the

previous EMA value, as described in Equation 4.3.

EMA = (V alue −EMAprevious) ∗Multiplier +EMAprevious (4.3)
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The EMA is also applied over the number of operations performed in each partition.

The internal statistics maintained internally, provides a foundation to retrieve this value,

since it keeps track of the amount of operations performed, by operation type. As such

we perform an aggregations over these values.

The Monitor sub-routine, described in Listing 4.2 is responsible for updating the EMA

value of each CPU and partitions. If any of the CPU Cores has reached a given threshold,

and is experiencing higher load than the others, it will try to provide the relief method

that best fits the system needs, and update the time penalties. Since each relief method

after triggered requires a time penalty superior to the EMA window for the system to

readjust, and avoid a rebalance trigger to be performed needlessly.

Listing 4.2: Monitor Main Trigger

1 Global State:

2 EMA_cpu // array for storing the current EMA over the load of each cpu.

3 last_rebal_wait // value of the last wait time

4 rebalance_wait // current value of the time penalty

5 shift_threshold // load which is worth to try to optimize

6 rep_threshold // reaching high load levels that might require a fine-grain method.

7

8 Local Initial State:

9 try_socket_shitf ← false

10 try_replication ← false

11

12 Upon time trigger do:

13 /** Check for load symptoms **/

14 foreach cpu in cpus{

15 if(EMA_cpu[cpu]>shift_threshold && previous_shift_finished()){

16 try_socket_shitf ← true;

17 }

18 if(EMA_cpu[cpu]>rep_threshold && has_available_space()){

19 try_replication ← true;

20 }

21 }

22

23 /** try to perform rebalance and adjust waiting time penalty **/

24 if(rebalance_wait= 0){

25 done_rebal ← process_rebalance(try_socket_shitf, try_replication);

26 if(done_rebal){

27 rebal_last_wait ← window+1;

28 }else{

29 if(rebal_last_wait<60)

30 rebal_last_wait ← rebal_last_wait*1.5;

31 }

32 rebalance_wait ← rebal_last_wait;

33 }

34

35 /** Update wait time penalty **/

36 if(rebalance_wait >0){

58



4.3. LOAD MONITOR

37 rebalance_wait--;

38 }

When dealing with the CPU load, the amount of accesses of a partition might not

translate the actual load it is subject to, since the amount of operations performed is

restricted by the amount of operations the CPU is able to handle, not accounting for the

increasing amount of incoming requests that are waiting in the receiver queues, which

will have to be dealt with by the next CPU Core.

Due to this phenomena, what we achieve is an extrapolation of the load, based on the

relative amount of requests processed between partitions owned by a CPU. This defines

a lower bound on the real load a partition is experiencing.

The currently emplayed Decision Model 4.3, only contemplates two relief methods,

the (1) Socket Shift, and the (2) Internal Replication. The Socket Shift, will move partitions

between threads striving to achieve a good distribution of load over all the CPU cores.

This is a coarse method for load balancing, that has very few downsides, and can be

improved by increasing the amount of partitions. On the other side, Internal Replication,

will provide a more fine-grain relief method (at data-item level), but at the expense of

additional memory usage.

When there is a trigger for rebalance, the first step is to have a clear picture of how

far the load is from a uniform distribution. This is achieved by the current standard

deviation of all accesses to the threads.

Afterwards, if the socket shift option is valid, it will run a simulation (e.g., Makespan

algorithm) of the partition relocation. If the relocation achieves a better standard devia-

tion than the previous, the Socket Shift algorithm will execute the change reballancing.

Independently, if a Socket Shift has happened, or if there is no viable rearrangement of

partitions. If the Replication option is valid, it will take the achieved minimum standard

deviation, and test if the load is within the desired levels of uniformity (regulated by

a slack parameter), if not a Selective Internal Replication process will start, striving to

achieve it.

Listing 4.3: Decision Model

1 Global State:

2 EMA_ops // array of structs for storing the current EMA value of each cpu.

3 curr_dist // array that stores to the sum of the EMA_ops of the partitions owned

4 by a thread.

5

6 struct EMA_ops:

7 value // current EMA value of a given partition

8 curr // current owner of the partition

9 new // new owner of the partition

10 socket // socket id value

11

12 boolean process_rebalance(try_socket_shitf, try_replication){

13 done_rebal ← false
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14 curr_dist ← compute_dist(on_curr) // computed based on EMA_ops.curr

15 mean ← get_mean(curr_dist,n_threads)

16 curr_stDev ← stDev(curr_dist,n_threads)

17 new_stDev ← MAX_FLT

18

19 if(try_socket_shitf){

20 makespan() //changes the value of EMA_ops.new

21 new_dist ← compute_dist(on_new) // computed based on EMA_ops.new

22 new_stDev ← stDev(new_dist,n_threads)

23

24 if(new_stDev<curr_stDev){

25 foreach p in EMA_ops{

26 if(p.new != p.curr){

27 Call socket_shift(p.curr,p.new,p.socket, is_master)

28 p.curr ← p.new

29 }

30 }

31 done_rebal ← true;

32 }

33 }

34

35 if(try_replication){

36 if(mean*load_tolerance < min(curr_stDev,new_stDev)){

37 partition ← get_max_partition_in_max_thread()

38 Call Replication(partition)

39 done_rebal ← true

40 }

41 }

42 return done_rebal

43 }

The Selective Internal Replication is performed on the highest accessed partition in

the CPU with the highest saturation to deal with the excess load. This form of replication

does not occur indefinitely, since in the worst case of mass evictions would sprout, and as

such there are restrictions to limit how much a saturated server can adapt.

4.3.1 Internal Full Mesh Network

Both relief methods require inter-thread communication, since each worker thread should

be responsible for its own resources.

A simple and effective solution would be to use the currently in place client interfaces

for each partition, where the messages sent would only go through the loopback interface,

yet we would have to open a set of connections to those sockets.

These connection could be persistent or short-lived, in the case of short lived would

require a connection establishment for a set of messages to be transmitted, followed by

closing the connection.
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In the case of persistent connections, we can employ two distinct strategies to have

a set of sockets perform write operations shared among the whole system, while being

protected by a lock, to ensure mutual exclusion; or each thread can have its own set of

sockets to perform the writes.

Either-way, in any of these cases we are increasing further the amount of open file de-

scriptors, in the best case, linearly. This has a negative impact in the system performance.

Or solution does not open new connections, it simply re-uses the current in place

operative system pipes structure, where each thread has its own pipe to write, and read

from. The same considerations as above are present in this scenario, where the pipes can

be shared and accessed from any thread to perform a write.

However, pipes have a peculiar feature, according to POSIX.1, the write of less than

P IP E_BUF bytes must be atomic, where POSIX.1 requires P IP E_BUF to be at least 512

bytes. As such, we can avoid locks by performing write operations with lengths below

the P IP E_BUF’s lower bound.

The read from pipe operation performed from each worker thread are batched, where

a read will try to fetch a large buffer from the pipe, instead of fetching a single Frame

of data. This avoids very large pipe buffers, that can be occur due to replication bursts

behaviour.

As a final remark, the internal full mesh network was already in place from the very

beginning, the only additional consideration is how to perform the writes to preserve

atomicity.

4.4 Socket Shift

The Socket Shift algorithm strives for a low increase in meta-data while making a smooth

connection transfer, without large amounts of connections being transfered all at once,

and forcing threads to stop while performing several adds and removes of the respective

libevent bases.

As such, the shift only occurs directly over a master socket, all its children will act

accordingly upon answering client requests. All the interactions are coordinated through

the control plane that is composed of four components:

(1) The master sockets indexes, matching the partition index.

(2) An array of Master sockets that stores each file descriptor.

(3) CPU masks that match the respective thread ids.

(4) The partition array that stores the current owner CPU mask/thread id.

The abstraction of the control plane that is provided, diverges from the actual im-

plementation for simplicity, but the memory accesses in this process has O(1) time com-

plexity with reduced meta-data, where the master socket index is actually stored inside
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the connection items on all sockets, to avoid array iterations. The only components that

match the implementation are (3-4) in Figure 4.4 that provides the ownership storage

with direct access.

Figure 4.4: Logical view of the socket shift control plane

The socket shift process uses the underlying network model to smoothly transfer the

partitions across threads, and is composed by two phases: (1) master socket migration,

and (2) self-migration.

The first phase, is coordinated by the main process, which indicates which socket is

to be moved from the owner CPU to the targeted CPU, since each CPU can only host one

thread, and each thread is bound to a CPU, it implies a direct correlation between them,

where referring either produces the same outcome.

The information for this transition is passed down from the main to the thread that

currently owns the partition, and afterwards to the target thread. This is achieved through

message passing acording to the listing 4.4 using the Frame structure represented in

Figure 4.5.

The actual transition accurs when the source thread is signaled to remove the file

descriptor from its libevent-base, and concede the ownership to the target thread by

placing the target thread id in the respective partition index on the partition array.

Afterwards, when the source thread has forwarded the frame to the target thread, it

will acquire the socket, by adding it to its libevent-base, and resuming normal execution.

The second phase, starts in the source thread context, before each client request is

processed, by performing a lookup on the partition array, based on the inherited partition

index.

If this value does not match the current thread id, the thread will remove the file

descriptor from its own libevent base, create a Frame with the target thread as its rightful

owner, and send it to the target thread, with a flag as pending.

62



4.4. SOCKET SHIFT

The target will behave similarly to the first case, only with a slight change, it will

fist add the file descriptor to its libevent-base, and only afterwards fulfill the pending

request.

Answering the pending request must be the last task, due to closeconnection requests,

where we can’t add the file descriptor of a connection that no longer exists to the libevent-

base.

1 Byte

Flag

2 Bytes

Source CPU

2 Bytes

Target CPU

4 Bytes

File Descriptor

Figure 4.5: Socket Shift Frame

Furthermore, the means for answering a client request are stored in the global connec-

tions array, that can be accessed by using the file descriptor as the index from anywhere

in the system.

Listing 4.4: Socket Shift algorithm

1 //frame : message that is passed down along the threads

2

3 on monitor:

4 frame.flag ← shift_socket

5 frame.source ← swamped CPU core id

6 frame.fd ← master socket file descriptor with lowest accesses in

7 frame.target ← CPU core id with lowest load

8 source.pipe.write(frame)

9

10 on shift socket trigger:

11 frame ← self.pipe.read()

12 self.event_base.remove(frame.fd)

13 partitions[conn[frame.fd].index] ← frame.target

14 frame.flag ← acquire_socket

15 frame.target.pipe.write(frame,none)

16

17 on process request:

18 target ← m_partitions[conn[fd].index]

19 if(self.thread_id != target){

20 frame.flag ← acquire_socket

21 frame.fd ← fd

22 frame.target ← target

23 self.event_base.remove(fd)

24 target.pipe.write(frame,pending)

25 }

26

27 on acquire socket trigger:

28 self.event_base.add(frame.fd)

29 if(pending)

30 process_request(frame.fd)

31
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32 Note: The triggers have a prior validation that the received frame is either in the right

33 thread, if not the message will be redirected to the correct thread.

It is crucial that the initial validation of the second phase (self-migration) is extremely

fast and simple, since it is performed in every request, and any unnecessary overhead will

have a cumulative negative impact on performance.

4.5 Selective Internal Replication

The Selective Internal Replication (SIR) is an overload relief mechanism that attempts to

flatten skewed partition accesses, and is regulated by configurable soft and hard limits

and burst sizes. Unlike most forms of replication, it is an iterative algorithm for in server

replication, that is not applied to all data items, it does not have a fixed replica count, and

is performed in bursts.

It strives to take advantage of the already in place eviction policy in the caching

systems. In this case, the segmented LRU algorithm, designed to be resistant to scanning

workloads, that provides a mechanism to protect the most popular items by default,

which is accomplished by the three queues and the interactions between them.

The HOT queue is the ingress point on the segmented LRU, and only a transition

state (there are no bumps within this queue) before an item is sent either to the COLD or

WARM queues. So the HOT queue only contains the most recent items, which by itself

only allows to distinguish if items are popular during the short amount of time they have

resided in the cache. The COLD queue is the only egress point of the segmented LRU,

Figure 4.6: Segmented LRU

providing priority for eviction among the lowest accessed items, which does not provide

any useful information on the most popular items.
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The WARM queue keeps the popular elements, since if items are deemed relevant

either in the HOT or COLD queues, they will be placed in the WARM queue, which

maintains the most popular items towards the head of queue.

These three queue greatly vary in size, where the HOT and WARM queues are limited

primarily by a percentage of memory used, typically the the HOT queue is small, and

the WARM slightly larger, while the COLD queue takes the most space, and has no

restrictions.

Since probabilistically the most popular items in each Slab Class reside in the head

of the WARM queues, we make sudden busts of replication by selecting the first K data

items on the heads of the WARM queues of the partition with the highest amount of

accesses in the CPU subject to the highest load.

The target partition is chosen at data item level based on a scatter function, in this

case, the murmur3 variant taking γ as the salt value (see section 4.2.2), and computing

the modulus over the total number of partitions.

Since the burst selection is based on the WARM queues of a given partition, then

having a higher number of partitions will provide a more refined replication process,

which would increase popular data item availability.

However, not restricting the replication, in cases where the most partitions are satu-

rated, could cause a cascade effect, where the replicated data items from one partition

would trigger other partitions to perform replication, and so on, resulting in a uncon-

trolled flush of data items.

4.5.1 Burst Control

Understanding the impact of the replicas on the system, and in each partition, without

a sizable increase in meta-data is not a trivial accomplishment. As such, we do not try

to keep track of every replicated data item, instead we impose, and keep track of three

configurable limits on replication:

Hard limit percentage of the space used in replication, relative to the total amount of

reserved memory.

Soft limit percentage of the WARM queues used in the selection on each saturation

trigger.

γ limit restricts the amount of replicas of a single data item.

When a saturation threshold is triggered on a partition, its Slab Classes are traversed,

from the smallest to the largest, applying the Soft limit. Since there is no correlation

between data item size and popularity, as such, allowing the smaller items to take priority

in replication provides a higher probability of reducing the saturation, with the least

memory waste.
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Regulating the Soft limit, will allow a more aggressive or more passive burst. Lower

values will tend to achieve higher γ values, allowing truly popular data items to become

more replicated, while a higher value provide a faster partition relief with a higher num-

ber of data item flushes.

However, when close to reaching the the Hard limit, the fairness between Slab Classes

inside a partition is compromised, such as, in cases where the amount of space available

is not enough to traverse all Slab Classes. For this particular scenario, we keep track of

the last Slab Class subjected to replication on each partition, so that the next iteration

can start from where the last has left. Allowing the tracker to be reset between iterations

would result in starvation of the larger data items for a chance to be replicated.

4.5.2 Shrink

The shrinking of the γ is not a forced procedure, it is inferred based on the the normal

behavior of accesses to replicated data items. If a data item is not able to maintain its

current status (remain in the WARM queue) after a burst, then it is not an adequate fit

for their current γ value. As such we apply two restrictions:

(1) Reduction If a replicated data item is intended to drop to the COLD queue, a request

for γ reduction is issued to the data item home partition.

(2) Bumping If a replicated data item has a γ value greater than 0, instead of dropping

from the WARM queue, it will be bumped to the head.

The fist restriction, provides the fast shrinking based on the premise that most items

residing in the WARM queue should not be able to handle its popularity being cut by 1/γ ,

while maintaining their current status. The request to decrease the γ value are issued

with an absolute value to avoid cases where several partitions simultaneously issue the

same request and remove several replicas at once.

The second, is a safety restriction that avoids data items from being discarded from a

partition while being replicated. Otherwise, the replicated data items might drop from

its original WARM queue due to its popularity being cut by a factor of γ , putting it as a

candidate for eviction. If it is evicted, the other replicas will still be active and cause an

undefined behavior, as well as increase the miss-ratio until the item is discarded from all

partitions.

4.5.3 In Memory Replication Protocol

For the replication protocol, we selected ChainReaction, which provides causal consis-

tency, since it allows write pipelines, and provides a fast response time, while only being

required to interact with a single partition to fetch a data item. This is achieved in write

(set) operation by defining our critical path for an update as 1, the home partition of the
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data item, and the replicas update as a background propagation, represented in Figure 4.7

-b).

Due to the dynamic replication environment, the replication process is coordinated

by the current γ value of each data item, that represents the tail of the chain. The head of

the chain has is delimited by the value 0, and the middle by the values between the head

and the tail.

To support the operation of the algorithm, each data item stores its current γ (not

their relative position in the chain), an update value, and a sequence number, besides the

original information. Each of these new fields has a size of 2 bytes.
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Figure 4.7: Get/Set operations

When a write is executed, an update chain begins with a sequence number associated

with it, the sequence number is an incremental value, that is only altered by the head of

the chain, the thread responsible for the data item home partition. As a replication frame,

depicted in figure 4.8, is being passed down the chain, at each stop it increments a local

update variable on the data items which resumes how many updates are in progress. On

the way back, in the ack back propagation, this value is decreased, as reference in Listings

4.5 and 4.6.

The read operations are only required to contact a single replica from the replica set

as depicted in Figure 4.7 a). This is achieved by selecting a value q between 0 and γ when

indexing a data item, which targets one of the partitions that holds a replica.

In the reply its piggy-backed the current γ value that is stored in the data item, and

its respective local update value. If the update value is greater than 0, it means that there

are updates in progress, which implies that to maintain causal consistency in subsequent

accesses, only replicas between 0 and q can be accessed, until the local update value in

the next requests is brought back to 0.
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Figure 4.8: Replication Frame

Contrary to the expectations, the replication frame does not contain the body of the

data item, only the means to retrieve it. It is designed this way, to maintain the atomicity
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property in the pipe, and to avoid very large P IP E_BUF’s. As such, when an update to

a replica is performed, the body of the data item is fetched from the previous hop of the

chain.

The sequence numbers are in place for two reasons: (1) out of order frame, and (2)

chain loops. In the first case, even though the pipe ensures a First-In-First-out (FIFO)

semantic, due to the socket shift algorithm, where a partition can change its owner thread,

it is possible to have out of order frames, since the pipe belongs to threads. This is explicit

in the the algorithm as a "redirect for the rightful owner"in Listings 4.5 and 4.6.

The second case, occurs due to the unstructured replication pattern caused by the

scatter function, which allows loops to occur in the chain. In this cases, if a partition

is visited more than once, it will not perform any operation, only increment the update

value of the data item.

0 1,4 2

3

5

Figure 4.9: Chain Loop

The increase in the update value in the event of a loop is necessary, since the acknowl-

edgements, that decrease the update value, do not have any perception over the sequence

number. Hence, they are not able to distinguish between a loop a and a linear chain.

The old lambda value in the frame is in place to allow the frame propagation to reach

the tail of the chain. This corner case is also due to the chain loops, where the γ value

stored in the data items during the shrink process will not reflect the tail of the chain,

since its value as been updated before, as depicted in Figure 4.9.

If a shrink occurs in a scenario without the oldγ value, the hop 1 would update its γ

value to 4, and and when the propagation reached the hop 4 it would assume it as being

the tail, beginning the ack back propagation, leaving us with an eternal data item (hop 5),

that would cause successive shrinks while flooding the pipe of the data item home, since

it would be starved from accesses, and constantly trying to drop from its WARM queue.

Listing 4.5: Propagation of replica update

1 Global state:

2 used_rep_memory // array with that keeps track of how much bytes each partition
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3 has in replicated data items

4 m_partitions // array that stores the thread that is managing each partition

5

6 process_replica(frame){

7 owner ← get_partition_owner(frame.target)

8 if (owner != self){

9 owner.pipe.write(frame) //forward the frame to the right owner

10 }

11

12 do_update ← check_sequence_number(frame.target,...)

13 update_value ← get_update_value(frame.target,...)

14

15 if(do_update){

16 if(frame.hop<= frame.lambda){

17 //performs the copy from the data items of the previous hop

18 size ← process_copy_and_update_replica(frame.source,frame.target,...);

19

20 if(size>0){

21 used_rep_memory[target] += size;

22 else { // enforce removed or expired

23 used_rep_memory[target] -= expire_data_item(frame.target,...);

24 }

25 }else{ // tail of the previous chain

26 used_rep_memory[target] -= expire_data_item(frame.target,...);

27 }

28 }

29

30 if(frame.hop<frame.lambda && status >= 0){

31 increase_update_value(frame.target); // increment the update variable

32 }

33

34 if(frame.hop<max(frame.lambda,frame.old_lambda)){

35 next_partition ← get_partition(frame.key,frame.hop +1);

36 next_thread ← m_partitions[next_partition];

37 // changes the source, target, and hop fields respectively

38 if(do_update){

39 frame ← change_fields(frame.target,next_partition, frame.hop+1)

40 }else{

41 frame ← change_fields(frame.source,next_partition, frame.hop+1)

42 }

43 next_thread.pipe.write(frame)

44 }

45

46 if(hop= lambda){

47 frame ← set_flag_to_ack(frame)

48 previous_partition ← get_partition(frame.key,frame.hop -1);

49 previous_owner ← m_partitions[previous_partition];

50 // changes the source, target, and hop fields respectively

51 frame ← change_fields(frame.target,previous_partition, frame.hop-1)

52 previous_thread.pipe.write(frame)
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53 }

54 }

Listing 4.6: Acknowledgement from replication Chain

1 Global state:

2 m_partitions // array that stores the thread that is managing each partition

3

4 ack_replica(frame){

5 owner ← get_partition_owner(frame.target)

6 if (owner != self){

7 owner.pipe.write(frame) //forward the frame to the right owner

8 }

9

10 decrease_rep_update( key, nkey,target) // increment the update variable

11

12 if(frame.hop>0){

13 previous_partition ← get_partition(frame.key,frame.hop -1);

14 previous_owner ← m_partitions[previous_partition];

15 // changes the source, target, and hop fields respectively

16 frame ← change_fields(frame.target,previous_partition, frame.hop-1)

17 previous_thread.pipe.write(frame)

18 }

19 }

4.5.3.1 Deadlock Avoidance

Due to the locking philosophy applied in Memcached, it becomes easy to enter a deadlock

state when dealing with more than a single data item. For instance, each data item lock

is computed trough an hash function, which has an implicit collision probability higher

than 0. Hence, there are at least two obvious scenarios where it can enter a deadlock state

depicted in Figure 4.10.
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Figure 4.10: Deadlock scenarios at data item level
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In Figure 4.10a) deadlock occurs when two data items share the same lock in a chain

at 1 hop distance of each other. In Figure 4.10b) it occurs when any two distinct chains

acquire an inverse sequence of data item hashes for locking.

Furthermore, the data item updates in Memcached do not reuse the same data item,

since its size (assigned SlabClass) and header might change over time. Every change in

the data item, implies a new data item allocation, and swapping with the previous. Due

to this peculiarity, the update is a special case of the creation.

When performing replication, to avoid deadlock states we never hold two data item

locks at the same time, or more than one lock between partitions. As such, to cope with

this policy all operations (creation, update, and deletion) revolve around the core copy

function in Listing 4.7, which performs the memory copy of the data item residing in the

previous hop partition to a temporary buffer, and afterwards to the current partition.

The copy operation only fails if the data item has been removed or evicted. If the

data item in the previous hop of the chain no longer exists, it must have been removed or

evicted, as such we enforce it by expiring our own data item, and forwarding the frame,

which will cause a cascade effect, deleting the entire chain.

The algorithm itself first acquires the data item lock from the partition of the previous

hop and makes a local copy the header information and stores the body in a separate buffer

in the thread context, releasing the lock afterwards.

Now we acquire the lock for the data item in the current partition, and with the

header information that was retrieved it is possible to allocate the new data item. After

the allocation is successful, we copy the data from the buffer to the newly allocated data

item.

Listing 4.7: copy operation

1 int rep_copy(char* key, int nkey, short source, short target,

2 item ** it_recv, uint32_t hv, uint32_t hv2){

3 //hv - data item hash from source partition

4 //hv2 - data item hash target source partition

5 item * it_new ← NULL;

6 char temp [1MB]; // represents the thread buffer

7 item_lock(hv);

8 item *it ← assoc_find(key, nkey, hv,source);

9 if(it= NULL){

10 item_unlock(hv);

11 return -1;

12 }

13 int source_flag ← 0;

14 if (it->nsuffix !← 0)

15 source_flag ← *ITEM_suffix(it);

16 rel_time_t source_exp ← it->exptime;

17 int source_nbytes ← it->nbytes;

18 short lambda ← it->lambda;

19 memcpy(temp, ITEM_data(it), it->nbytes);

20 item_unlock(hv);
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21

22 item_lock(hv2);

23 it_new ← item_alloc(key, nkey,source_flag, source_exp, source_nbytes,target);

24 it_new->it_flags |= ITEM_ACTIVE;

25 memcpy(ITEM_data(it_new), temp, source_nbytes);

26 it_new->lambda ← lambda;

27 item_lock(hv2);

28

29 *it_recv ← it_new;

30 return source_nbytes;

31 }

At the end of the copy operation, the data item is not linked yet (not visible) to either the

HashMap or the LRU. Afterwards it will be, and when that happens, the data item will

enter the HOT queue as new data item, where if there was a previous it is removed. Due

to this, its flag is preemptively set to ACT IV E, this ensures that when a replicated data

item drops from the HOT queue, it will flow into the WARM queue, and not the COLD

queue.

At the same time, before removing the previous data item, we first copy its update

value and the sequence number to the newly created data item.

4.6 Summary

In this chapter we described the implementation details of our solution which is com-

posed by four main components: (1) memory partition, (2) load monitor, (3) Socket Shift,

and (4) Selective Internal Replication.

The memory partitioning is used to index each partition with O(1) time complexity

and low space overhead.

The load monitor is responsible for providing an heuristic on when to perform a load

relief method and which method to apply. The load monitor is supported by a pipe struc-

ture that resembles a mesh network. This is achieved by leveraging the already existing

pipe structure in Memcached to provide inter thread communication that supports our

algorithms.

The Socket Shift is initiated on the load monitor sub-routine which triggers a self

migration process, where the existing connections only change ownership by its own

initiative when being used. Furthermore, this algorithm is agnostic to the connection

type.

The Selective Replication process is strongly dependent on the internal eviction policy

to perform the replication, since it is a probabilistic model based on where the popular

data items may reside. The amount of relief and how fast it can be provided can be

regulated by the burst of data items, although higher bursts will result in higher miss ratio.

The miss ratio is decreased through the use of scatter function to spread the replicated

data items over the partitions.
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The following chapter presents the experimental assessment over the components

described in this chapter that composes our solution. In our evaluation we perform

various experiments that showcase the benefits of employing our solution against the

original Memcached system.
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5
Evaluation

This chapter presents a performance evaluation of our proposed modifications to Mem-

cached to take advantage of increased parallelism, and the mechanisms to deal with its

consequences, namely Socket Shift and Selective Internal Replication. Since the original

eviction policies are used in our proposal, the measurements discussed focus mostly on

throughput (operations per second), latency, and miss-ratio. The latency is correlated

with the throughput, where an increase in throughput typically arises from a decrease in

latency. However, the latency does not represent the end client, since the miss rate does

not imply the interaction with a slower primary storage.

The evaluation is divided in five distinct sections:

Data Placement: provides an insight on the effects of deviation from the normal distri-

bution for data distribution on caching systems.

Data Item Popularity specifies how the skew in item popularity is generated.

Partition Scheme: focus on measuring how the system deals with the partitioned scheme

under uniform, and skewed workloads.

File Descriptors and Polling: demonstrates measurements of the impact of increasing

the total number of open file descriptors to be monitored.

Socket Shift: presents experiments measuring the effects of load segmentation, and rear-

rangement.

Selective Internal Replication: presents the experimental assessment of the benefits

that derive from using selective internal replication in high saturation scenarios.
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5.1 Experimental Setup

The experimental setup for the experiments reported in this chapter were performed at

paravance and parasilo clusters in the Rennes site from grid50001, where the paravance

cluster is composed of 72 nodes split in two sections and the parasilo cluster of 28 nodes

in a single section, as illustrated in the network topology in Figure 5.1. All the nodes in

both cluster have the same specifications: 2 CPUs Intel Xeon E5-2630 v3, 8 cores/CPU,

20M Cache, 2.40/3.20 GHz, 128GB RAM, 5x558GB HDD, 186GB SSD, 10Gbps ethernet.

All disk I/O is very slow since it is performed over an NFS that resides in the parasilo

network segment. The NFS can be easily seen through netstat which contains parasilo −
srv − 3.renn : nf s as a Foreign Address in the Active Internet connections.

We try to run our experiments within a single section of the paravance cluster to

minimize network interference. However, booking the servers while striving for isolation

is not easy, and its hard to schedule the clusters for extended periods of time. As such

times we also perform tests on parasilo cluster, which is highly susceptible to interference,

as the network switch to which it is connected also serves the traffic from the paravance

cluster.

All experiments are repeated at least from 3 to 5 times (when ran more than 5 times,

the data with higher offsets is discarded), and to minimize the offsets in each experiment

before each run of our version, the original Memcached was run in the same conditions.

Figure 5.1: Section of Rennes network topology

Most of the performed experiments served to stress the system, using 17 nodes from

a single section, where one node was used to setup the experiment, one as the target

server executing the original Memcached or our version, and the remaining 15 are used

to generate clients operations.

The clients are synchronous and based on the standard version of Y ahoo!CloudSystem

Benchmark(YCSB), where the clients start executing incrementally every three minutes

launchingN client threads, whereN is a parameter of the experiment. In the experiments
1https://www.grid5000.fr/w/Grid5000:Home
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regarding replication, the clients were slightly modified to cope with the new server

protocol and its interaction.

The default Zipfian generator present in YCSB (ScrambledZipfianGenerator) provides

a Zipfian distribution on all client threads of a single process. However, when executing

in several separate machines it causes a close to Uniform Distribution on the targeted

server. This is due to each clients node having different subsets of ”hot” data items, and

operating over the same full data set. As such we redefined the Zipfian generator to have

a deterministic selection, so that the hot data items are the same in all clients.

All client operations are performed over a set of 2 million data items with size of 1Kb

(10 fields of 100 bytes), and a data item key configured to have 100 bytes. The Memcached

stores these data items within the Slabsclass 13, the smallest size where they fit, with a

chunk size of 1480 bytes.

During our experiments the Operating System version used in grid5000 was by de-

fault a pre-configured image of Debian 9-Stretch x86_64. However, half way through

the experiments, from the beginning of the Selective Replication experiments in Section

5.7 and forward, the default version changed to Debian-10-Stretch x86_64, which caused

a memory leak in the Libevent library that we were unable to isolate. The version of

Libevent 2.1.8 and 2.1.10 triggered warnings when compilling and even though the ver-

sion 2.1.11 (recently released) does not trigger warnings, it also displays the same memory

leak problem.

As such, the latter experiments were carried with a different (from the previous)

Debian-9-Stretch x86_64 image in deploy mode (required for none-default environments),

but we were not able to fully replicate our initial environment for the experiments pre-

sented in the first half of this chapter. This became visible since we carried some of the

initial tests where the overall performance was lower than expected, but with a similar

pattern in both our solution and Memcached alike.

5.2 Data Placement

Our experimental evaluation relies on a environment based on the standard balls into

bins model where the bins have a limit to the amount of balls they can hold. This cap is

the same for all bins since we are assuming an homogeneous systems.

The best outcome for this problem would be a perfect data placement by splitting

the set of balls over the set of bins, where all bins have the same number of balls. In the

case where we set the bin cap at the mean distribution of all balls, any deviation from

the perfect data placement implies that some balls will have to be discarded, and on the

other hand, some of the bins will not be filled.

Assuming the balls that have some popularity associated and a bin chooses to discard

balls based their popularity, a measurement on the impact of the misplacements can

be made. However, this impact will be greatly influenced by the skew in item popular-

ity. This example exposes the assumptions on the amount of misplacement’s of a data
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placement algorithms being strongly correlated with the miss-ratio of caching system, as

refered in section 2.4.1.

We provide a comparison between the Modulus applied to a static number of servers,

and fast lookup algorithms for data placement for dynamic environments, which are

mentioned and discussed bellow. In the first experiment depicted in Figure 5.2-a) we

increase the amount of data items proportionately to the amount of servers, as such

we distribute 500k data items per server, and measure data misplacement based on its

standard deviation. We note that, the experiments with the same amount of servers use

the same data item keys that were generated before hand with a java uuid generator. The

second experiment, reported in Figure5.2-b), also measures data misplacement over a

fixed set of data items, only varying the amount of servers, in this case we use 16 Million

data items.

a ) mean: 500K data items per server b ) 16M data items across servers

Figure 5.2: Evaluation of data misplacement on a finite set of servers

The Highest Random Weight Hashing (HRW) is only presented for completeness, since

its high computational requirements do not allow it to be applied to large environments,

even though it accomplishes very low data misplacement.

For the representation of the Consistent Hashing we use the Ketama variant that is

commonly applied to Memcached clients, where each server commonly has between 100

to 200 virtual buckets (values generated based on the hash of the server string), in this

case the amount was set to 150 for all servers, with a range of 232 values, commonly

referred as continuum.

As a representation of inline data placement, we use our own implementation of

Random Slicing, that is classified as a full line algorithm.

As expected, the Random Slicing algorithm is able to keep up with Highest Random

Weight Hashing and the Modulus. On the other hand, the Ketama hashing performs

several times more data misplacements than the second best in any test. This discrepancy

between Ketama and the remaining algorithms can be explained by the difference in the

sum of the virtual bucket intervals of each server, since itself resorts to these buckets to
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normalize their cumulative intervals. Increasing the number of virtual buckets, or adding

several more servers, should steadily improve the algorithm data misplacement.

Typically cache system pools do not tend to be composed by a very large set of servers.

Hence, the data placement algorithm selection is an important decision that is able to

minimize the impact on miss-ratio of data distribution in a dynamic environment. In our

case, it becomes even more relevant, since we are performing a two tier indexation.

It is relevant that both layers of indexation use different algorithms, or at least different

hash functions, to avoid bias in data placement, which could lead to worse results for

data misplacement, and inherently in miss-ratio.

5.3 Data Item Popularity

Data item popularity is typically defined by a Zipfian distribution that is regulated by a α

value that regulates the discrepancy of accesses relative to a normal distribution, applied

to a finite set of data items. As the α value increases, so does the access frequency, but

over a smaller sub-set of data items, as depicted in Figure5.3.

Figure 5.3: Zipfian generator for 2M keys with 20M accesses with varying α

The α values utilized in our experiments (0.7,0.81,0.9,0.99) are representative of

typical web scenarios according to [35] which states: "Most of the reported estimates of α lie
in the range between 0.6 and 1.0. Where this study demonstrates that the parameter α is ranged
between 0.75 and 0.85 for the Web servers, 0.64 and 0.83 for the Web proxies.". We also take

into consideration α values of 1 and 0.81 according to [1] based on traffic analysis, where

the former value is extracted from America Online(AOL) Internet Service Provider(ISP),

and the latter an Autonomous System (AS).

The plot in Figure 5.3 is an experiment ran in isolation with a single YCSB client. It

performs 20 millions operations over a set of 2 million data items utilizing the Zipfian

generator while varying the α value.
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Table 5.1: Zipfian generator for 2M keys with 20M accesses with varying α

Zipfian Constant 1st Key* 1st Key (%) * Unused keys ** Unused keys (%)**

α = 0.70 78k 0.39% 26937 1.35%
α = 0.81 256k 1.28% 86487 4.32%
α = 0.90 602k 3.01% 215460 10.78%
α = 0.99 1235k 6.18% 470751 23.54%

* Amount of accesses to the most popular key.
** Amount of keys that were not accessed.

Table 5.1 provides complementary information over Figure 5.3, which shows the

effects of increasing the α value of the Zipfian distribution. This causes a large incidence

of accesses on the most popular keys, where the highest α value points 6.18% of the 20

million accesses to a single key. On the other hand, this access discrepancy also implies a

larger amount of keys have very few accesses or are not being accessed at all.

Henceforward, an α value will be used to specify the skew in data item access fre-

quency. If not mentioned, a value of 0.99 is employed, which is also the default value

emplayed by YCSB.

5.4 Partition Scheme

The first component of our solution performs a memory division to provide the concept of

memory partitions through a socket interface, where each partition can only be accessed

by a single thread that is bound to a single CPU Core. The sockets exposed to the clients

create an abstraction for the server, as if it were composed by a set of servers. As such,

each partition will be required to deal with a sub set of the data items that are assigned

to the server.

The introduced overheads to achieve the partitioning scheme should be negligible:

(1) change to the hash function for data item lock acquisition, where each request has to

compute more 4 bytes than the original, and (2) indexing the respective partition which

is an O(1) lookup.

These experiments use a uniform distribution on the accesses to the data items, as it

normalizes the accesses that each CPU Core is subject to, while striving to achieve the

maximum usability of the CPU Cores.

Figure 5.4 provides a comparison between the original Memcached and the Parti-

tioned version with 4 worker threads, and different percentages of read and write opera-

tions.

In all sub-figures it is clear that the Memcached does not have a linear increase in

throughput as the load increases. However, due to the parallelism present in our solution,

we achieve a close to linear increase, where we stabilize at the same throughput as the

Memcached, when the CPUs enter a very high saturation state, depicted in figure 5.5.
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a ) 50 %reads /50 %writes b ) 70 %reads /30 %writes

c ) 90 %reads /10 %writes d ) 95 %reads /5 %writes

Figure 5.4: Comparison of Memcached vs its Partitioned version under a uniform data
distribution

It is also clear that as the percentage of read operations increases, so does the maxi-

mum throughput, since the write operations are slightly more computationally demand-

ing, also in all these experiments, our solution seems to reach the saturation point is

around 70 to 80 active clients using a single server.

Even though the normal distribution used in these experiments does not provide high

lock contention scenarios, it shows that our solution can at least match the original under

high saturation scenarios when the load among the CPU Cores is properly distributed.

As the amount of client threads increases, so does the amount of lock contention in

Memcached, which seem to be the main cause of the abnormal behaviour depicted in all

plots (from 40 to 90 clients). In our case we achieve higher throughput, and do not incur

in this behaviour since we reap the benefits of the increased parallelism, while accessing

data items, trading concurrency for request sequencing dealt by socket polling.

This is only maintained until the first CPU Core reaches a saturation state (around

70 to 80 client threads). Since we are dealing with synchronous clients, the maximum

that can be achieved is limited by the first CPU Core that becomes exhausted, where

afterwards, all the CPUs will tend to have more stable load.
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a ) Relative amount of accesses of each partition b ) CPU Core utilization

Figure 5.5: 0.08% maximum variability in data accesses for 4 server threads with 95%
read operations

At this point, the improvements granted by the increased parallelism will be relin-

quished, due to a bottleneck in the reception queue that deals with inbound traffic. Since

the CPU is not able to handle the current load, it will introduce delays in all accesses to

the partitions residing in that CPU Core. At this point, Memcached takes advantage of

concurrency to provide load balancing, allowing it to reach the same saturation state later

on ( around 90 active clients), and across all CPUs.

Furthermore, one of the reasons that limits the increase in throughput is the CPU

Core utilization. Even though we strive to normalize the amount of accesses to CPU

Cores through memory partitions, they do not translate to a constant amount of load,

since some CPU Core that executes a worker thread might incur in additional overhead

that the remaining CPU Cores might not experience.

This phenomena is visible in Figure 5.5 that depicts the CPU usage and load distribu-

tion in the experiment depicted on the Figure 5.4 d), where even though the accesses to

the partitions are uniformly distributed with a very low discrepancy (maximum variabil-

ity of 0,08%), CPU Core 2 reaches 100% utilization while the others have not (see Figure

5.5 b)).

5.4.1 SkewedWorkloads

The uniform distribution is not the typical access distribution for caching system in a

real world context. As such we use skewed workloads, in this particular case the Zipfian

distribution, to simulate a realistic execution environment.

In these experiments we focus on read mostly workloads using 95% read operations,

since it appears to be the most common scenario. We only vary the α value to understand

how the system behaves when focusing the accesses in increasingly smaller subsets of

data items.

The first two plots in Figure 5.6 report the measured throughput increase compared
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Table 5.2: Relative throughput Gain for N static partitions and 4 server threads

Zipfian Constant Throughput (Ops/s) * Stdev (Ops/s) ** Stdev (%)**

unif ormdist. 480k 384 0.08
α = 0.70 499k 675 0.14
α = 0.81 507k 1858 0.37
α = 0.90 485k 3489 0.72
α = 0.99 481k 7963 1.65

* Average highest values, after saturation is reached .
** Standard Deviation of the load distribution between the 4 server threads.

with the original Memcached, even under high saturation scenarios. This is different

than when we employ a uniform distribution, where both solutions were colinear under

high saturation, as raising the α value increases the access to smaller subsets of data item,

resulting in an increase of hit ratio in the L1, L2 and L3 Caches allowing faster data

retrieval.

a ) α = 0.70 b ) α = 0.81

c ) α = 0.90 d ) α = 0.99

Figure 5.6: Comparison of Memcached vs its Partitioned version under a Zipfian distri-
bution with α = 0.99.

The last two plots in Figure 5.6 report the throughput, with similar results from the

previous scenario. However, when reaching high saturation, the system can not keep up
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a ) α = 0.70 b ) α = 0.81

c ) α = 0.90 d ) α = 0.99

Figure 5.7: Comparison of Memcached vs its Partitioned version varying Zipfian distri-
bution with 95% read and 5% write operations.

with the unbalance caused by the skew in accesses that each partition is subject to. This

causes one of the CPUs to reach its maximum saturation sooner, imposing a limit on all

other CPUs. Hence, establishing a cap on the maximum throughput that can be achieved.

Since we are applying skew in access frequencies over the data items, it impacts each

partition in accordance, where higher α values cause greater load discrepancies. This

implicitly affects each CPU Core since its load can be extrapolated based on the sum of

all the partitions it owns, as shown in Figure 5.7

This phenomena is also clearly depicted in Table 5.2, where we can observe that as

the α value increases, so does the unbalance between partitions, and implicitly the load

that each CPU Core is subject to, represented by the standard deviation. Until reaching

α = 0.81 the system performs extremely well, since its gain from the CPU cache hits

out weight the load discrepancy. However, afterwards, the exact opposite occurs and the

system performance starts to decline after the first CPU reaches a saturation point. In

our last case (α = 0.99), it seems that the maximum throughput achieved is similar to the

uniform distribution.
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5.5 Open File Descriptors and Polling

In this section we evaluate the impact on increasing the amount of open file descriptors

and polling them for data, where we double the amount of partitions in each experiment.

In the end, a total of 15(servers) ∗ 10(clients) ∗ 64(sockets) = 9600 file descriptors are

open in our server ruining with 4 threads.

Each thread should have to deal with the respective file descriptors associated of

its assigned partitions (reaching a total of 2400 file descriptors per thread), with an

increasing amount of active connections (reaching 150) actively submitting requests.

To change the maximum number of open file descriptors, we modified the configura-

tion file "/etc/security/limits.conf"presented in greater detail on Annex II.

a ) Libevent benchmark on increasing the amount of
file descriptors.

b ) Zipfian distribution α = 0.99 and 95% reads.

Figure 5.8: Increase the amount of partitions with 4 server threads and similar increase
of file descriptors from Libevent.

The data item distribution per thread does not change as we increase the amount

of partitions, since we assign the partitions sequentially, where each thread keeps the

partitions that represent multiples of its identifier.

Libevent manages the file descriptors using the most suited library present in the

underlying system (select, poll, epoll or kpoll). In our case, epoll is used, since we are

using a linux distribution as our experimental environment, which provides a much more

efficient file descriptor management than standard select.

Event though it is well documented that epoll can maintain a close to constant time

on polling events, it is only true to large amount of file descriptors.

Thus, we seem to be caught in the beginning of the plot in Figure 5.8 a)2, where the

latency increases exponentially (linearly in a logarithmic scale) before stabilizing.

This impact is easily seen in our experiments reported on Figure 5.8 b) when reaching

core saturation, as the number of partitions increases. It also suggests that above two

2The Figure was taken from http://libevent.org/
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partitions per thread the performance will start to degrade just from managing the file

descriptors with more than 150 active connections.

Our experiments are focused on four threads due to the bottleneck caused by the

amount of open file descriptors when increasing the amount of threads. For more detail

the reader can see Appendix A.

5.6 Socket Shift

The Socket Shift is expected to delay core saturation by rearranging the partitions by the

available CPU Cores, this relief method only works in the presence of available computa-

tional power in the remaining CPUs.

a ) make span with N partitions with 95% reads b ) Memcached vs Best case (8-Partitions) with 95%
reads

c ) make span with N partitions with 50% reads d ) Memcached vs Best case (8-Partitions) with 50%
reads

Figure 5.9: Comparison of Memcached vs its Partitioned version with Socket Shift.

In these experiments we enable only the socket shift algorithm to redistribute the

partitions by the four worker threads.

However, having only four partitions would not change the current outcome since it

does not allow any kind of rebalancing. As such, we increase the amount of partition, al-

lowing a better load division, which strives to overlap or surpass the original Memcached
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as the number of partitions increases.

Increasing the amount of partitions, besides allowing a better load splitting, also

decreases the amount of data misplacements when indexing, as seen previously in Figure

5.2 from Section 5.2. However, it is followed by the down side of an increasing amount

of open file descriptor that have to be managed by each worker thread, as seen in the

previous section.

Figures 5.9 and 5.11 present an analysis over the partitioned version of the Mem-

cached with the socket shift algorithm in place, where the condition to trigger a socket

shift is a lower standard deviation after performing a simulation of the data placement

with the make span algorithm. After the socket shift is triggered there is always a grace

period of the same time of the sample window duration.

The four partition scenario provides a comparison on the overhead caused by the

socket shift algorithm, where the socket transition between threads disrupts the partition

availability reducing the throughput at each step.

Additionally, as the amount of partitions increases, so does the overall amount of file

descriptors open by the Memcached process, taking its toll on the performance, since a

larger set of file decriptors have to be migrated. This effect can be observed in Figure 5.9

c).

5.6.1 Exponential Moving Average (EMA)

Through careful observation of several samples of the internal state of our solution we

were able to infer that only taking the absolute value of the standard deviation under

consideration for the socket shift trigger is dangerous, since even though the clients

produce a Zipfian distribution in bounded time intervals, at specific points in time it

tends to have a high variance.

This behaviour was already expected, thus we use the Exponential Moving Average

(EMA) to reduce these spikes, as demonstrated in Fig.5.10, where we plot the accesses

count of a server with eight partitions with its current load (window = 1 second) and with

EMA applied (window = 5 seconds).

However, it seems that our window for the sample is not large enough to eliminate

the momentarily spikes that occur with a reasonable frequency. Thus, a larger window

should be used to mitigate the sensibility of the EMA.

Scenarios where at least two partitions have a similar access count can be disruptive,

as represented in Figures 5.10 c) and d) (notice the two overlapping partitions). It can

greatly increase the probability of a rebalance trigger if the standard deviation is reduced

in the make-span simulation.

In these cases, it will cause these partitions to switch owners or in the worst case, a

cascade effect that also affects the partitions with lower accesses.

The ideal scenario in our experiments would be for the socked shift operation to be

performed at most around 8 to 9 times, due to the entry of new clients in the systems
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a ) Accesses of to all partitions with window = 1 b ) Accesses of to all partitions with window = 5

c ) Similar accesses to partitions with window = 1 d )Similar accesses to partitions with window = 5

Figure 5.10: 30 second trace of to eight partitions with 95% read operations.

which can cause discrepancies in the access count of each partition. However, in our

experiments, the amount of socket shift varies, mostly from 28 to 172. Also, there are

still some outliers that have only performed 3 or 4 operations during the whole run, and

some have achieved close to 360 operations.

With an environment as unstable as ours, increasing the window indefinitely should

remove the load spikes. However this is not a viable solution to reduce the rebalance

triggers on its own. Additionaly, increasing the window and establishing a lower-bound

on the expected gain from performing the socket shift seems to constitute a more suitable

solution.

5.6.2 MakeSpan

The Makespan minimization algorithm is the core element in the partition rearrange-

ment, from which our solution derives, where instead of taking a set of task times, we

extrapolate the amount of accesses to a partition in a bounded time frame, which are then

distributed by a set of workers, in our case the threads.

Increasing the amount of partitions will also increase the load fragmentation, result-

ing on a better load distribution, since fundamentally it is a combinatorial optimization
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Table 5.3: Socket Shift relative throughput Gain for N Partitions and 4 server threads with 95%
read operations

Partitions Partitioned* Socket Shift * Rel. Growth (%) Stdev (Ops/s)** Stdev (%)**

8 Partitions 481k 517k 7.48% 6294 1.22%
16 Partitions 470k 498k 5.96% 5124 1.03%
32 Partitions 442k 474k 7.24% 3386 0.71%
64 Partitions 413k 441k 6.78% 1088 0.26%

* Average values, after saturation is reached .
** Standard Deviation of the load distribution between the 4 server threads.

problem.

a ) 50%read operations b ) 95%read operations

c ) Access distribution for 95%read operations

Figure 5.11: Throughput and Load Distribution of the Partitioned version with socket
Shift

This phenomena can be easily seen in Figure 5.11 c), which depicts the average load

distribution of all threads after saturation is reached, and where we can see that the load

discrepancies reduce as the amount of partitions increases.
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In Table 5.3, the same is also showed through the standard deviation and the per-

centage over the socket shift algorithm. However, even though we are reducing the load

discrepancy between threads, it seems that the relative growth to the partitioned ver-

sion does not increase beyond 7,48% in throughput. The four partition scenario is not

reported in Table 5.3 since it did not exhibit any performance improvements.

The gains achieved in load balancing are not truly visible, since the amount of file

descriptor that have to be moved at each socket shift operation also largely increases as

the amount of partitions increases, resulting in higher thread down time.

Figures 5.11 a) and b) show a comparison based on throughput latency of Memcached,

eight partition (best-scenario), and the four partition. It provides a reference of the weight

of performing several socket shift operations. In the case of the four partition version

this operation only occurs at most once, since the load is not divisible. However, we

can catch a glimpse of its effect in Figure 5.11 b), because the first measurement in the

four partitions scenario denotes higher latency then the following measurements in the

experiment.

Furthermore, the four partition scenario is used as a base comparison, and it shows

that even though the make span algorithm is being computed regularly (in the main

thread) it does not impact the overall system performance, since the results are similar

to all the previous experiments, and almost collinear with Memcached in the plots fist

segments.

5.7 Selective Internal Replication

The Selective Internal Replication (SIR) aims to surpass the limits imposed by the par-

titioned scheme by dividing the load of very popular data item among multiple worker

threads, promoting higher item availability for popular data items while discarding the

least popular, unlike the Socket Shift that tries to simply redistribute the load.

We remind the reader, that for these set of experiments the execution environment

changed.

Before we experimentally evaluate this algorithm, we conducted a simple validation

in the new deployment environment with the standard Memcached, the four partition

version, and eight partition version with socket shift algorithm to establish a base line for

comparison, depicted in Figure 5.12.

To have a clear understanding on how SIR behaves over time as the amount of clients

increases in our experiments, we also reduced to the total amount of available space to

1000MB so that we can have a miss ratio with higher significance, allowing a better grasp

on the impact of the eviction process.

Furthermore, changing the Soft limit allows a more aggressive or more passive repli-

cation burst, where lower values will allow truly popular data items to become more

replicated, while a higher value provides a faster partition relief with a higher number

of data item flushes. For these experiments the soft limit was to 5% of the warm queue,
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a ) Access distribution in 8 Partitions

Figure 5.12: Base Line comparison with Socket Shift

the hard limit to 5% of the overall memory, the γ value as the same as the amount of

partitions, and a grace period of 10 seconds.

It should also be taken into account that very high bursts of replication over potentially

several data items can happen and the pipe buffer might not be able to hold all of those

data objects when they are being replicated, leading some threads to block in writes on

these pipes. This happens since bursts are based on a fixed percentage over the warm

queues and each propagation should require a maximum of 300 bytes, based on the

header and maximum key size. The default pipe buffer size is 819200 bytes, which allows

at least around 2700 buffered frames. However, this value can be changed, for more

details see Annex II.

In the beginning of these experiments there is a warmup phase, which consists of

two clients performing separate roles: (1) data insertion, and (2) maintaining the data

distribution. The first performs 2 million data item insertions in a slow pace, we set it with

20 client threads, when finished it kills the other client and starts the normal procedure.

The second client is a normal client, but has a static amount of threads configured, in our

case we used 40 threads. The warmup phase ends with almost 9% avg miss rate, which

quickly decreases in all experiments (see Figure 5.14b)).

In Figure 5.13 we present the results of the SIR with four and eight partitions re-

spectively. The solution with four partition shows improvements relative to the its static

counterpart. However, it is not enough to reach the Memcached performance. The eight

partition scenario, provides the insight that increasing the number of partitions seems

to achieve better results, where some of the experiments have achieved a clearly higher

throughput than Memcached, even though the average still remains almost collinear.

Since the Selective Replication is a probabilistic model it was expected that the val-

ues should eventually converge to some clear throughput, but the discrepancy between

min and max (denoted by the vertical bar) is not enough to determine the convergence

value. This may be due to the frequent shrink and growth process that prevents Selective

Replication from stabilizing.
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a ) SIR Access distribution in 4 Partitions b ) SIR Access distribution in 8 Partitions

Figure 5.13: average SIR with Min-Max markers

a ) Throughput latency SIR with 4 and 8 partitions b ) Miss Ratio SIR with 4 and 8 partitions

Figure 5.14: SIR comparison based on Throughput, Latency and Miss ratio

The miss ratio loss in this processed when compared with Memcached is around 0,27%

which seems to be a good trade off, considering the gain in throughput from the four static

partitions. It is not obvious that there is a discrepancy in miss ratio from the four to the

eight partition scenario, since the initial samples are still affected by the warmup that

can cause abnormalities, and since after stabilizing, they seem to overlap. The cache size

was set at 1000MB to only be able to hold close to 35% of the 2M data items. However,

experiments with even smaller caches may provide more evidence to infer the miss ratio

behaviour in those scenarios.

The results reported in Table 5.4 shows that almost all data is retrieved successfully

by the clients, where each client keeps track of the amount of γ values it holds, and

the number of distinct γs. However, the number of chain overlaps is provided by the

server, through the sequence number verification where the frame is forwarded without

performing an update.

By increasing the amount of partitions, besides allowing longer chains, implicitly

provides a better load distribution, since the average throughput has greatly increased,
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Table 5.4: Socket Shift relative throughput Gain for N Partitions and 4 server threads with
95% read operations

Partitions TP* Max TP* Nr Chains* Nr Max Chains** Chain Overlaps (%)**

Memcached 475k 481k 0 0 0%
4-Partitions 428k 433k 0 0 0%
SIR (4 Part.) 461k 467k 24,2k 3891 38.71%
SIR (8 Part.) 483k 498k 21,4k 72 31.09%

TP is an abreviation of throughput
* Average values, after saturation is reached.
** Average values, of the amount of chains with the maximum size.

having a maximum achieved throughput of nearly 500K operations per second. The

reduction on the total amount of chains can be caused by longer chains, but also due

to lower burst sizes (nearly half) when compared to four partitions, which avoids the

creation of a very large amount of short temporary chains.

The amount of chain overlaps is much higher than expected, which is limited by

the scatter function in place. For the scatter function we used a variant of crc32 hash

algorithm, which seemed a good fit in the early stages of this thesis, which was validated

over a small set of keys. However, it seems that the cascade effect caused by the salt, was

not enough to minimize the impact of the reduction of an hash from a large integer to a

small interval.

5.8 Summary

In this chapter we presented and discussed our experimental evaluation validating the

proposed solution, analyzing each component separately, from the client to the server

internals.

Our first experiment confirmed that the Random Slicing is a suitable algorithm for

data placement with dynamic memberships, since it achieves low data misplacement,

which reduces the implicit miss ratio. The Modules and the Highest Random Weight

used in our experiment showed competitive results.

In all experiments, the increase in parallelism from the partition scheme is clearly

noticeable through the close to linear increase in throughput.

The method we choose to expose the partitions to the clients proved to be a bottleneck

on the performance severely crippling the overall performance gain.

The Socket Shift demonstrated promising increases in performance by fulfilling its

role to redistribute the load across workers.

The Selective Internal Replication also provided promising increases in performance,

since by slightly increasing the miss ratio we were able to achieve much higher throughput

than the partitioned version.
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Both these algorithms tend to improve as the amount of partitions increases. However,

due to the bottleneck in managing the file descriptors we were only able to validate its

tendency.

In the next chapter we conclude the document with final remarks and points direc-

tions for future work.
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Conclusion and Future Work

Conclusion

Providing Exclusive data access over a partitioned system has clear gains in the amount

of operations (independently from the amount of read an write operations) that can be

performed before reaching saturation providing a close to linear throughput increase,

since it benefits from very low lock contention.

However, by itself, this scheme is not able to cope with saturation scenarios, where

it start to under performed, when compared with a concurrent solution that inherently

allows load balancing.

As such, our contribution resides in the overload compensation mechanisms for

caching systems with reduced meta-data applied to a stand alone server model, namely

Socket Shift as a coarse method for load redistribution without memory waste, and Inter-

nal Selective Replication (SIR) based on controlled burst/shrink replication with a scatter

function.

These mechanisms rely on higher number of partitions for better results, where more

partitions provides a better load division.

The socket shift mechanism, even tough it redistributes the load segments though

the available CPU Cores, is not able to achieve high performance on its own with a large

number of partitions, mostly due to the overhead generated by the large amount of open

file descriptors, and also its effects on the amount of down time each thread experiences

during the migration.

The Selective Internal Replication is performed based on load spike discrepancies,

where more partitions result in a more fine grain burst replication per iteration. However,

it also suffers from overhead due to the large amount of open file descriptors.

Our experimented results, have shown an increase in throughput even under heavy
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high load scenarios, allowing each server to scale independently, which greatly impacts

when considering traditional web app deployments with clusters of many caching severs.

Future Work

The solution could be further improved by removing most locks. The existence of the

segmented LRU eviction policy causes a great interference with the partition isolation,

forcing the slabs and data items to be protected by locks.

The eviction policy choice, although outside the scope of this thesis, plays a crucial

role in the amount of improvements that can be achieved.

Memcached is able to scale due to two threads that manage the LRU policy that

have two main responsibilities: (1) avoid bumping item at each data items access, by

performing item bumping within, and between queues asynchronously; and (2) reclaim

space by discarding expired data item.

The designing of a LRU queue able to achieve the same functionality, without the need

for the auxiliary threads, while keeping the overhead per request very low, would remove

the need for locking, except when gathering statistics over the system information, since

it an aggregation of the local values is still required.

Furthermore, there is also an hypothesis for external load relief, based on external

replication, which could be designed to cooperate with the already existing SIR that could

be seen as a local detection mechanism besides it intended purpose, since data items with

high popularity will have a high γ value.

Finally, the results point out that a large amount of clients directly connected to the

cache degrades its performance since it does not allow a large amount of partitions to exist.

As such, mechanisms to perform unsharding of connections, for instance a middleware,

could be an interesting future direction to explore.
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Impact of File Descriptors

In Figure A.1 we can see the same experiments performed in Section 5.6 but with eight

server threads. In this figure we can see a similar pattern as previously seen in Mem-

cached, where the increase in throughput forms a ladder with increased clients. The

8 partition scenario hits a cap due to high access discrepancies as would be expected.

However, the sixteen partition scenario displays an odd behaviour, where even though

it increased in throughput due to the reduction imbalance, instead of reaching a cap in

throughput and stabilizing, it actually decreases after reaching its peak as the amount of

open connections increases. The values can be assessed in Table A.1.

a ) Memcached vs 8 partitions vs 16 partitions

Figure A.1: Comparison between Memcached and Socket Shift with 8 Sever Threads
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APPENDIX A. IMPACT OF FILE DESCRIPTORS

Table A.1: Socket Shift relative throughput Gain for N Partitions
and 4 server threads with 95% read operations

Partitions Socket Shift * Stdev (Ops/s)** Stdev (%)**

8 Partitions 624k 13446 2.16%
16 Partitions 662 9414 1.42%

* Maximum values, after saturation is reached .
** Standard Deviation of the load distribution between the 8

server threads.
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EMA CPU load

The values present in /proc/stat are incremental values since boot time. It requires two

reads in separated by a wait period in order to calculate a how much each component has

used during that period.

1 > cat /proc/stat

2 cpu 1748231 6396 621364 15472338 59772 0 18694 0 0 0

3 cpu0 446662 1527 158376 3861123 11050 0 5704 0 0 0

4 cpu1 418243 1659 136342 3900903 22398 0 4501 0 0 0

5 cpu2 449180 1494 164490 3840774 15069 0 5102 0 0 0

6 cpu3 434145 1715 162155 3869536 11254 0 3386 0 0 0

7 intr 190521331 48 52354 0 0 0 [... lots more numbers ...]

8 ctxt 338412791

9 btime 1551364793

10 [... other parameters ...]

The parameters we are interested are the first four of each cpu line:

(1)user normal processes executing in user mode

(2)nice niced processes executing in user mode

(3)system processes executing in kernel mode

(4)idle twiddling thumbs

1 /**

2 * Global variables:

3 * float weight

4 * int n_procs

5 * FILE* fp3;

6 *Description: Read Unix /proc/stat file, parse it and calculate the Exponential Moving

7 Average for each cpu
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ANNEX I. EMA CPU LOAD

8 **/

9 float* get_EMA_per_CPU(){

10

11 static float* EMA_cpu← NULL;

12 static unsigned long long int *old_fields← NULL;

13

14 if(!fp3){

15 fp3 ← fopen("/proc/stat","r");

16 }

17 if(!old_fields)

18 old_fields← calloc(4*n_procs,sizeof(unsigned long long int));

19

20 if(!EMA_cpu)

21 EMA_cpu← calloc(n_procs,sizeof(float));

22

23 /*** Discard the first line - overall CPU metrics***/

24 fseek (fp3, 0, SEEK_SET);

25 fflush(fp3);

26 unsigned long long int tmp;

27 int ret ← fscanf (fp3, "cpu�%llu�%llu�%llu�%llu�%llu�%llu�%llu�%llu�%llu�%llu\n",
28 &tmp,

29 &tmp,

30 &tmp,

31 &tmp,

32 &tmp,

33 &tmp,

34 &tmp,

35 &tmp,

36 &tmp,

37 &tmp);

38 if(ret<0){

39 printf("error\n");

40 }

41

42 float avg_EMA_CPU ← 0;

43

44 for(int cpus= 0;cpus<n_procs;cpus++){

45 int cpu;

46 int retval;

47 unsigned long long int tmp2;

48 unsigned long long int fields[4];

49 retval ← fscanf (fp3, "cpu%d�%llu�%llu�%llu�%llu�%llu�%llu�%llu�%llu�%llu�%llu\n",
50 &cpu,

51 &fields[0],

52 &fields[1],

53 &fields[2],

54 &fields[3],

55 &tmp2,

56 &tmp2,

57 &tmp2,
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58 &tmp2,

59 &tmp2,

60 &tmp2);

61 if (retval < 5) /* Atleast 4 fields need to be read */

62 {

63 printf ("Error�reading�/proc/stat�cpu�field\n");
64 }

65

66 int user_delta ← fields[0]- old_fields[4*cpu+0];

67 int nice_delta ← fields[1]- old_fields[4*cpu+1];

68 int system_delta ← fields[2]- old_fields[4*cpu+2];

69 int idle_delta ← fields[3]- old_fields[4*cpu+3];

70

71 float current_load ← (float)(user_delta+nice_delta+system_delta)/

72 (float)(user_delta+nice_delta+system_delta+idle_delta);

73

74 EMA_cpu[cpu]← (current_load-EMA_cpu[cpu])*weight+EMA_cpu[cpu];

75

76 old_fields[4*cpu+0]← fields[0];

77 old_fields[4*cpu+1]← fields[1];

78 old_fields[4*cpu+2]← fields[2];

79 old_fields[4*cpu+3]← fields[3];

80 }

81 return EMA_cpu;

82 }
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System Limits

The listing bellows provides the changes that need to be performed in the Unix file

/etc/security/limits.conf with root privileges, to change the maximum amount of open

file descriptors and the maximum pipe size that a process can have.

1 # /etc/security/limits.conf

2 #

3 #Each line describes a limit for a user in the form:

4 #

5 #<domain> <type> <item> <value>

6

7 // change the maximum number of open file descriptors

8 * soft nofile [value]

9 * hard nofile [value]

10

11 //change the POSIX msg queue size

12 * - msgqueue [value] eg:819200

These changes only become active after reboot. However, after performing the changes,

it is possible to enforce them through the ulimit command at run time.
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