
DEPARTMENT OF
COMPUTER SCIENCE

DIOGO DE ALMEIDA ESCALEIRA

BSc in Computer Science

ASSESSMENT OF OCTAVE’S OO FEATURES
BASED ON GOF PATTERNS

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
March, 2023

DEPARTMENT OF
COMPUTER SCIENCE

ASSESSMENT OF OCTAVE’S OO FEATURES BASED ON
GOF PATTERNS

DIOGO DE ALMEIDA ESCALEIRA

BSc in Computer Science

Adviser: Miguel Jorge Tavares Pessoa Monteiro
Assistant Professor, NOVA University Lisbon

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
March, 2023

Assessment of Octave’s OO features based on GoF patterns

Copyright © Diogo de Almeida Escaleira, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

Abstract

This thesis aims to evaluate the object-oriented (OO) features of the Octave program-

ming language, through the implementation of the popular Gang-of-Four (GoF) design

patterns. The study explores the fundamental principles of OO, including modularity,

inheritance, encapsulation, polymorphism, and abstraction, and investigates how these

concepts are supported by Octave. This research is conducted through the implemen-

tation of two complete collections of the GoF patterns originally coded in Java and the

subsequent analysis of the quality of the implementations thus derived. This evaluation

is based on comparisons with their Java counterparts as regards modularity and flexible

module composition. To our knowledge, no study of this nature has been made on Oc-

tave. This thesis is intended to contribute to a better understanding of Octave’s current

OO capabilities and limitations as well as its potential as a tool for developing complex

software systems.

Keywords: Octave, Object-Oriented Programming, Design Patterns, Gang-of-Four Pat-

terns, Language Assessment, Modularity, Module Composition, Separation of Concerns

iv

Resumo

Esta tese visa avaliar as características orientadas a objetos (OO) da linguagem de progra-

mação Octave, através da implementação dos populares design patterns dos Gang-of-Four
(GoF). O estudo explora alguns princípios fundamentais de OO, incluindo modularidade,

herança, encapsulamento, polimorfismo e abstração, e investiga o suporte de Octave a

estes conceitos. Esta investigação é conduzida através da implementação de duas coleções

completas dos padrões GoF originalmente desenvolvidos em Java e da análise subse-

quente à qualidade das implementações assim derivadas. Esta avaliação é baseada em

comparações com os seus equivalentes Java no que diz respeito à modularidade e compo-

sição de módulos flexível. Segundo a nossa pesquisa, ainda não foi feito qualquer estudo

desta natureza em Octave. Esta tese destina-se a contribuir para uma melhor compreen-

são das atuais capacidades e limitações do paradigma OO em Octave, bem como do seu

potencial como ferramenta para o desenvolvimento de sistemas de software complexos.

Palavras-chave: Octave, Programação Orientada a Objetos, Design Patterns, Padrões

Gang-of-Four, Avaliação de Linguagem, Modularidade, Composição de Módulos, Separa-

ção de Interesses

v

Contents

List of Figures ix

List of Tables x

List of Listings xi

Acronyms xiii

1 Introduction 1

1.1 Context and Description . 1

1.2 Motivation . 1

1.3 Objectives and Expected Contributions 2

1.4 Research Questions . 2

1.5 Terminology Used in This Thesis . 3

1.6 Document Structure . 3

2 Octave 5

2.1 Octave Introduction . 5

2.1.1 Introduction to Numerical Computation 5

2.1.2 Octave Overview and Capabilities 6

2.1.3 Octave Language Properties . 6

2.2 Basic Syntax . 7

2.2.1 Basic Input Guidelines . 7

2.2.2 Variables . 8

2.2.3 Data Types . 8

2.2.4 Functions and Arguments . 9

2.2.5 Errors and Warnings . 9

2.3 Octave’s Object-Oriented Features . 10

2.3.1 “Old Style” Classes and Classdef Classes 10

2.3.2 Creating a Class . 10

vi

CONTENTS

2.3.3 Class Member Access Rights . 12

2.3.4 Overloading and Object Precedence 12

2.3.5 Object Identity . 13

2.3.6 Inheritance . 13

2.4 Octave’s Graphics Features . 15

2.5 Helpful Information . 15

2.5.1 Packages and Extensions . 15

2.5.2 IDE/GUI Survey . 16

2.5.3 Forums and Other Sources of Information 16

3 Octave Design Patterns Implementations 17

3.1 Design Patterns . 17

3.1.1 Gang-of-Four Design Patterns . 18

3.2 Introduction to the Design Pattern Implementations 19

3.3 Interfaces and Abstract Classes . 20

3.3.1 Abstract Factory . 21

3.4 Polymorphism in Data Structures . 28

3.4.1 Observer . 29

3.5 Singleton and Static Properties . 33

3.6 Wrappers . 35

3.6.1 Adapter and Façade . 35

3.6.2 Decorator and Proxy . 36

3.7 Visitor and the Expression Problem . 39

3.7.1 The Expression Problem . 44

3.8 Noteworthy remarks . 45

3.8.1 Memento and Nested Classes . 45

3.8.2 Iterator and the For-loop . 46

3.8.3 Broader Notes on the Octave Implementations 47

4 Analysis on Object-Oriented Programming in Octave 49

4.1 Abstraction . 49

4.2 Encapsulation . 50

4.3 Polymorphism and Duck-Typing . 51

4.4 Modularity and Module Composition . 51

4.4.1 Modularity in Octave . 52

4.4.2 Modularity Mechanisms . 52

4.5 OO Feature Comparison with Java . 54

4.6 Summing Up . 54

5 Related Work 55

5.1 Design Patterns, Object-Oriented Programming Languages and Modularity 55

5.2 Design Pattern Implementation in Other Languages 56

vii

CONTENTS

Bibliography 58

viii

List of Figures

2.1 “Old style” class folder/file structure . 11

2.2 An example window showing some of the available UI elements like a textbox,

a slider, a listbox and various types of buttons [29] 15

2.3 The default GUI provided by Octave . 16

3.1 Diagram exemplifying a possible structure of implementation of the Abstract

Factory pattern [27] . 22

3.2 Class Diagram for the Java implementation of the “GardenMaker Factory”

scenario . 22

3.3 Abstract Factory implementation in Java UI 23

3.4 Class Diagram for the Octave implementation of the “GardenMaker Factory”

scenario . 26

3.5 Abstract Factory implementation in Octave UI 27

3.6 Diagram exemplifying a possible structure of implementation of the Observer
pattern [27] . 29

3.7 Observer implementation in Octave UI . 30

3.8 Class Diagram for the Java implementation of the “Color Observer” scenario

(graphical content omitted) . 30

3.9 Class Diagram for the Octave implementation of the “Color Observer” scenario 32

3.10 Class Diagram for the Octave implementation of the “MakeACuppa” Façade
scenario . 35

3.11 Decorator implementation in Octave UI . 37

3.12 Diagram exemplifying a possible structure of implementation of the Visitor

pattern [27] . 39

3.13 Class Diagram for the Java implementation of the “Vacation Visitor” scenario 40

3.14 Visitor implementation in Octave UI . 40

3.15 Class Diagram for the Octave implementation of the “Vacation Visitor” sce-

nario . 43

3.16 Class Diagram for the Java implementation of the “Dvd Memento” scenario 45

3.17 Class Diagram for the Octave implementation of the “Dvd Memento” scenario 46

ix

List of Tables

2.1 Variable types in Octave . 8

2.2 Argument and return value parameters . 9

2.3 Access Rights of Class Members in Octave 12

3.1 The GoF [11] design patterns by category . 19

3.2 Pattern scenario source distribution . 19

3.3 Adapter/Façade functionality comparison . 35

3.4 The decorated buttons and the functionality added to them 37

4.1 OO feature comparison between Java and Octave 54

x

List of Listings

2.1 Function definiton example . 9

2.2 “Old style” class constructor example . 11

2.3 Calling an “old style” class’ constructor example 11

2.4 Creating a classdef class example . 11

2.5 Setting the access rights of a classdef class’ properties and methods example 12

2.6 Setting a class as having precedence over another class example 13

2.7 Constructor of an “old style” child class example 13

2.8 Classdef inheritance examples . 14

2.9 Calling the superclass’ constructor from a child class example 14

3.1 Octave attempt at emulating an interface 21

3.2 Java AbstractGardenFactory interface . 23

3.3 Java VegetableGardenFactory class . 23

3.4 Java GardenFactory class . 24

3.5 Octave GardenFactory class . 25

3.6 Octave VegetableGardenFactory class . 25

3.7 Octave array usage . 28

3.8 ObjectWrapper class . 31

3.9 Array usage in WindowSubject class . 31

3.10 Java Printer class . 33

3.11 Octave Printer class . 34

3.12 Octave FacadeCuppaMaker class . 36

3.13 Octave Decorator class . 37

3.14 Octave PaintDecorator class . 38

3.15 Java Employee class . 41

3.16 Octave Employee class . 41

3.17 Java VacationVisitor class . 41

3.18 Octave VacationVisitor class . 42

3.19 Java BossVacationVisitor class . 42

3.20 Octave BossVacationVisitor class . 43

xi

LIST OF LISTINGS

3.21 Two ways of transversing a collection in Octave 47

xii

Acronyms

GoF Gang-of-Four x, 1, 2, 17, 18, 19, 48, 56, 57

GUI graphical user interface ix, 16

I/O Input/Output 15

IDE Integrated Development Environment 16

MSc Masters of Sciences 1, 2

OO object-oriented x, 1, 2, 4, 5, 10, 17, 18, 20, 48, 49, 52, 54

OOP object-oriented programming 1, 2, 3, 4, 7, 10, 20, 28, 49, 51, 52, 54

UI user interface ix, 15, 20, 22, 23, 26, 27, 29, 30, 36, 37, 40

xiii

1

Introduction

This chapter is an introduction to the topic to be approached in this work. Section 1.1 and

Section 1.2 start by explaining the context and motivation for this dissertation. Section 1.3

addresses the objectives and expected contributions for this MSc thesis, and in Section 1.4

some research questions this thesis aims to answer are presented. Section 1.5 clarifies

the intended meaning of some terms used in this thesis that could possibly lead to an

ambiguous interpretations. Finally, in Section 1.6, this document’s structure is described

by giving a short description of each subsequent chapter.

1.1 Context and Description

This thesis explores how the Octave programming language supports the object-oriented

(OO) paradigm.

GNU Octave [7] is a programming language mainly intended for numerical computa-

tions. It offers a free and open-source alternative to MATLAB, the most popular software

in the field. Octave supports object-oriented programming (OOP) [16]. However, to our

knowledge no studies have been made on Octave’s object-oriented features and capabili-

ties.

In the past, the well-known Gang-of-Four (GoF) design patterns [11] served as a basis

to assessments of languages in terms of their support for composition and modularity

mechanisms. The GoF patterns present a significant variety of composition and design

problems and have been implemented in numerous programming languages.

1.2 Motivation

Octave has been a rising force in the field of numerical computation. It benefits from

being mainly compatible with MATLAB and having similar syntax, making Octave easy to

pick up for those already familiar with MATLAB and, being free, it provides a good budget

alternative having become especially popular among students. As it would be expected

from a paid and licensed software as well as an industry leader, MATLAB still offers more

1

CHAPTER 1. INTRODUCTION

functionality but as Octave develops and catches up in both the variety and quality of

its features, it continues to establish itself as an alternative worth consideration. One of

said developments was the introduction of object-oriented programming to Octave which

brought about new possibilities. It gives its users the ability to manipulate data differently,

as classes can protect internal properties, and facilitates data encapsulation while also

providing OOP specific capabilities such as inheritance and function overloading.

Two important concepts to object-oriented programming are modularity [22] and

module composition. A system designed with modularity in mind increases productivity

in the software development process while also making software components reusable

and facilitating in the debugging and maintenance of large and complex software.

Building on the importance of modularity and composition in OOP, the motivation

behind this dissertation lies in the necessity of an assessment of Octave’s support for these

concepts as it is a matter that should be considered as Octave expands its object-oriented

programming features.

1.3 Objectives and Expected Contributions

Taking into account the aforementioned context, it is clear there is a void to be filled

in the available documentation relating to Octave, particularly to its OO features. This

MSc thesis will aim to provide an assessment of Octave by evaluating its support for

modularity and module composition through a complete implementation of the GoF

design patterns and consequent analysis. To our knowledge, no such assessment of Octave

exists yet and hopefully it can serve as a valuable contribution to the existing literature

on the language. Accordingly, the expected contributions of this work are the Octave

implementations of two complete collections of the GoF patterns and the mentioned

assessment.

1.4 Research Questions

This section presents some research questions that were considered during the writing of

this thesis:

• How effective is Octave’s implementation of object-oriented programming concepts

compared to other languages such as Java?

• What are the best practices for implementing the GoF design patterns in Octave,

and how do these practices compare to those in Java?

• What classic object-oriented language features that Octave does not support would

be useful when implementing the GoF design patterns?

• Does Octave provide the necessary mechanisms to support the principle of “separa-

tion of concerns” in software?

2

1.5. TERMINOLOGY USED IN THIS THESIS

• How can concepts like inheritance and polymorphism be emulated in Octave, and

what are the limitations of these approaches?

1.5 Terminology Used in This Thesis

This section aims to clarify the intended meaning of some of the terms used in this thesis.

• Scenario/Example - Following the example of Monteiro et al [17], this thesis uses

the term “scenario” to refer to the idea or metaphor used to set up a group of classes

comprising a given pattern example. For instance, Cooper’s scenario for Visitor is

based on the idea of computing the vacation days of employees [5] (Section 3.7).

The study by Hannemann et al [12] uses a very different scenario about traversing a

tree structure. Each implementation of a given pattern requires a suitable scenario.

We use the term example to refer to a specific implementation in a given language

of a scenario for a pattern. Each scenario gives rise to at least one example for each

different language.

• Interface - The word interface can assume different meanings in the context of

object-oriented programming. For the purposes of this thesis, it is important to

make the distinction between two of these definitions: “Interface” can be used to

refer to Java interfaces, like in Section 3.3, abstract classes that aim to increase

abstraction; it can also be used to refer to the set of methods available to be called

on an object by a client, like in Section 3.6.

• Arrays/Lists - In Java, the most notable difference between a list and an array is that

an array’s length cannot be revised (static) while a list is resizable (dynamic). On

the other hand, Octave’s arrays are not declared with a set length so, when arrays

are mentioned in this thesis, it is important to note that the term does not refer to

static arrays like in Java.

• Visibility/Access Rights - In the Octave documentation, the term “Access rights”

represents the same concept as the word “visibility” usually does in an object-

oriented programming context and is used throughout this thesis.

• Property/Variable - In Octave, a variable associated with a class is referred to as a

property.

1.6 Document Structure

The rest of this document is structured as follows:

• Chapter 2 (Octave) – This chapter provides an overview of Octave with a focus on

the features that play an important role in the current work (thesis).

3

CHAPTER 1. INTRODUCTION

• Chapter 3 (Octave Design Patterns Implementations) – In this chapter, a brief

introduction to the concept of Design Patterns is made and some of the Octave

implementations are illustrated. The chosen pattern implementations relate to

certain OO features.

• Chapter 4 (Analysis on Object-Oriented Programming in Octave) – Building on

the implementations shown in the previous chapter, chapter 4 examines object-

oriented programming in Octave, relating it to some essential OO concepts associ-

ated with modularity.

• Chapter 5 (Related Work) – In this chapter, a survey of relevant studies relating to

the topic of this thesis is presented.

4

2

Octave

This chapter provides an overview of the Octave programming language, an open-source

numerical computing environment. Section 2.1 provides some basic information and

context on Octave, followed by an overview of its basic syntax in Section 2.2. Section 2.3

highlights some of Octave’s most relevant object-oriented features and properties, which

are the focus of this thesis, and Section 2.4 gives a brief introduction to Octave’s graphic

capabilities. Finally, in Section 2.5 some helpful information on Octave is provided.

This chapter intends to provide readers with a solid foundation in Octave for a better

understanding of the following analysis.

2.1 Octave Introduction

2.1.1 Introduction to Numerical Computation

The solving of complex numerical problems can be greatly aided by the use of computers.

This is referred to as “Numerical Computation” and has long been widely used in many

fields of engineering and science. The exponential growth in computing power achieved

in the last 60 years has increased the capabilities of this technology allowing it to perform

more complex numerical analysis and provide detailed and realistic mathematical models

and consequently improved the relevance of this field of study.

In its early stages, numerical computation was implemented using languages such

as Fortran, C and Algol but it was far from an efficient process. The rise in importance

and usage of this technology made evident the need for a dedicated numerical computing

framework that could clearly and efficiently define a scientific problem. The definition of

library functions that can just be used as and when needed frees the user from having to

write them down each time for different problems. With this, the user-base, which mostly

consists of engineers and mathematicians, can use such libraries to focus on defining the

problems rather than writing efficient code.

With said framework in mind, a lot of new software was released over the years and the

one that garnered the most interest was MATLAB. However, being commercial software,

5

CHAPTER 2. OCTAVE

MATLAB comes with a price as well as with a restrictive license. There was a need for a

free, open-source alternative and that is the void Octave came to fill.

2.1.2 Octave Overview and Capabilities

First released in 1994, GNU Octave [8] is a programming language primarily intended

for numerical computations. It has extensive tools for solving common numerical linear

algebra problems, finding the roots of nonlinear equations, integrating ordinary func-

tions, manipulating polynomials, and integrating ordinary differential and differential-

algebraic equations. It also provides built-in visualization tools that allow users to create

plots, graphs and charts.

Octave is written in C++ and is easily extensible and customizable via user-defined

functions written in Octave’s own language, or using dynamically loaded modules written

in C++, C, Fortran, or other languages. There are various specialized packages available

as well. This deepens the capabilities of the main program and the large base of library

functions makes Octave a great choice for defining numerical problems.

The syntax of Octave resembles that of MATLAB and an Octave program usually

runs unmodified on MATLAB. However, because MATLAB has a larger function set, the

reverse does not always work, especially when the program makes use of its specialized

add-on toolboxes.

GNU Octave is free software under the terms of the GNU General Public License and

runs on GNU/Linux, macOS, BSD, and Microsoft Windows.

2.1.3 Octave Language Properties

• High-Level. Octave is a high-level language and as such has strong abstraction,

hiding a lot of its most complex logic to allow the users to concentrate on solving

the theoretical part of numerical problems, focusing on the definition of appropriate

matrixes, expressions and variables instead of concerns like memory management.

This makes it suitable to be used by those with less programming experience that

may come from different backgrounds such as engineering, science or mathematics.

• Structured. Like most modern programming languages, Octave adheres to the

structured programming paradigm which facilitates the creation of programs with

readable code and reusable components.

• Interpreted. Octave is an interpreted language, and in such languages interpreters

run through a program line by line and execute each command . This allows Octave

to offer advantages such as the possibility of dynamic typing and a generally smaller

program size.

6

2.2. BASIC SYNTAX

• Dynamic and Weakly Typed. As a dynamic language, Octave offers flexibility and

the need for less code by allowing many common programming behaviours to be

executed at runtime. Furthermore, as a weakly typed language, it lets the user work

around the type system. As mentioned in Octave’s documentation, “variables in

Octave do not have fixed types, so it is possible to first store a numeric value in

a variable and then to later use the same name to hold a string value in the same

program” and “it is possible to call a function with arguments, that probably cause

errors or might have undesirable side effects” [7].

• Duck Typing. Octave supports “Duck Typing” [6], a concept related to dynamic

programming and polymorphism. The term comes from the phrase “If it walks like

a duck and it quacks like a duck, then it must be a duck”. It implies that an object’s

type is less significant than the methods it defines. Duck typing does not use any

type-checking at all. The presence of a given method or attribute is verified instead.

2.2 Basic Syntax

Octave programs consist of a list of function calls or a script and are defined in m-files

(files with the suffix .m). The syntax is matrix-based and provides various functions for

matrix operations. It supports various data structures and allows for object-oriented

programming. It supports many common C standard library functions, and also certain

UNIX system calls and functions. However, it does not support passing arguments by

reference to avoid unnecessary duplication, although function arguments are copy-on-

write.

2.2.1 Basic Input Guidelines

With Octave, the operations to be executed can be typed in the prompt or read from

scripts, which are m-files. They are imported by calling the file name without the suffix

and behave as if their content was typed in line by line.

Commas (“,”) and semi-colons (“;”) are used to split commands within a line, the

difference being that when the latter is used, the result of the operation is not displayed.

Ellipses (“. . . ”) indicate that an expression continues into the next line and both the

percentage symbol (“%”) and the sharp sign character (“#”) mark a line comment. Any

text following the either of these characters is ignored by the Octave interpreter and not

executed.

It is also important to keep in mind that Octave is case sensitive.

7

CHAPTER 2. OCTAVE

2.2.2 Variables

As mentioned in Subsection 2.1.3, Octave is a dynamic language and therefore does not

require any type declaration or dimension statements for its variables.

Some variable naming rules are:

• The name of a variable must be a sequence of letters, digits or underscores, but it

may not begin with a digit.

• Octave does not enforce a limit on the length of variable names.

• Names that begin and end with two underscores are reserved for internal use by

Octave.

There is one automatically created variable with a special meaning. The ans variable

always contains the result of the last computation where the output was not assigned to

any variable.

Variables can be declared as:

Global Can be accessed anywhere within Octave

Persistent
Are local to a particular function and are not visible elsewhere
Maintain their values through multiple calls of that same function

Local Are only visible in their scope. The default status of variables

Table 2.1: Variable types in Octave

2.2.3 Data Types

Octave allows its users to define their own data types by writing a small amount of C++

code. It also provides built-in data types which are:

• Numeric Objects (real and complex scalars and matrices)

• Ranges

• Character Strings

• Data Structure Objects

• Cell Arrays

8

2.2. BASIC SYNTAX

2.2.4 Functions and Arguments

Functions in Octave follow the same naming conventions as variables and do not need to

be loaded every time they are used. The user just needs to save it in a m-file.

Functions are defined as such:

1 function name (arg-list)

2 ...

3 endfunction

Listing 2.1: Function definiton example

To assist in dealing with functions where the number of arguments and return values

may be unknown and problems that may arise from such situations, Octave provides four

very useful statements:

varargin
Parameter that indicates that a function takes a variable number
of input variables

varargout
Parameter that indicates that a function returns a variable number
of output arguments

nargin
Automatic variable that is initialized to the number of arguments
a function received when it was called

nargout
Automatic variable that is initialized to the number values that
are expected to be returned

Table 2.2: Argument and return value parameters

Finally, it is important to note that when calling methods belonging to a class, the first

argument of the function is always the object in which it was called as can be seen in the

code excerpts throughout Chapter 3.

2.2.5 Errors and Warnings

In Octave, to signal when a program reaches a state where it should not continue, the

error function is typically used. When the error function is called, it stops the execution

of all following code, prints the provided message and returns to the Octave prompt.

To detect, handle and properly fix errors the try/catch blocks and unwind_protect/ un-
wind_protect_cleanup blocks are the most useful. An example of use of the error function

can be found in Section 3.3.

Warnings are similar to errors but have less impact on the program and the execution

is not stopped. Since they are not fatal, warnings cannot be caught with the try statement.

Warnings are communicated through a warning function. Besides the warning message,

it is possible to assign an identifier string to the warning. Using said identifier makes it

possible to deactivate specific warnings if the user does not deem them to be worthy of

attention.

9

CHAPTER 2. OCTAVE

2.3 Octave’s Object-Oriented Features

Object-oriented programming (OOP) is the most popular programming paradigm and it

consists on the concept of classes, that contain data in the form of attributes and proce-

dures in the form of methods, and objects which are instantiations of said classes. This

allows for a simplification of structures that could otherwise be much more complex and

favours reusability (through the objects themselves). Since the release of version 3.2,

in 2009, Octave [7] has supported object-oriented programming, which is of particular

relevance to the study of design patterns and this thesis. Octave allows the creation of

user-defined classes. This section presents a basic summary of class handling in Octave

and some of OOP’s most common properties as supported by Octave.

2.3.1 “Old Style” Classes and Classdef Classes

There are two types of classes in Octave: “Old Style” classes (as referred to in Octave’s

own documentation) and classdef classes.

“Old style” classes are defined through a directory and its methods are represented

by separate m-files in that folder. This is further explained in Subsection 2.3.2.

Since version 4.0, released in 2015, Octave has limited support for classdef classes,

which have a much closer behaviour to classes in other object-oriented languages. Unlike

the aforementioned “old style” classes, classdef classes can be defined within a single

m-file. Other capabilities unique to classdef classes are the definition of static methods

and access rights for properties and methods.

Classdef classes can be further divided into value classes and handle classes and this

distinction is mainly based on their behaviour regarding variable assignment as discussed

in Subsection 2.3.5.

Finally, its important to note the implementation of classdef classes in Octave is in-

complete, resulting in several know bugs and missing features. A comprehensive list of

these shortcomings can be found in the appropriate section in Octave’s Wiki [20].

2.3.2 Creating a Class

• Creating an “old style” class

Classes in Octave are defined by a directory where the name is <@ + name of the

class>.

Methods of the class are files with extension <.m> in the directory.

The constructor is in a file with the same name of the class.

For example, class newClassDemo will be directory <@newClassDemo>, its construc-

tor will be in <@newClassDemo/newClassDemo.m> and methods of the class will be

in various <@newClassTest1/methodName.m> files as can be seen in Figure 2.1.

10

2.3. OCTAVE’S OBJECT-ORIENTED FEATURES

Figure 2.1: “Old style” class folder/file structure

Keep in mind that the output of the class function must be the constructor’s return

value. The class function takes two arguments: a structure whose fields will be used

as the class’ fields and the name of the class itself.

1 function p = newClassDemo (flds)

2 p = class (flds, "newClassDemo");

3 endfunction

4 # this function returns an object p of type newClassDemo whose properties

5 # are the same as the fields of structure flds

Listing 2.2: “Old style” class constructor example

1 p = newClassDemo (flds);

Listing 2.3: Calling an “old style” class’ constructor example

• Creating a classdef class

Classdef classes are much simpler to create than “old style” classes. They can be de-

fined in a single m-file and have a structure closer to classes used in other languages

as seen in Listing 2.4.

1 classdef newClassdefDemo

2 properties

3 ...

4 endproperties

5

6 methods

7 ...

8 endmethods

9 endclassdef

Listing 2.4: Creating a classdef class example

If no indication is given, a classdef class is set as a value class, like the one pre-

sented in Listing 2.4. To create a handle class, the new class should be declared as

derived from the abstract handle type with the inheritance notation displayed in

Subsection 2.3.6.

To create an object of a classdef class, the constructor is still called in the same

manner as shown in listing Listing 2.3.

11

CHAPTER 2. OCTAVE

2.3.3 Class Member Access Rights

In Octave, the access rights of properties and methods can be set to public, protected and

private:

public The properties/methods can be accessed from everywhere

private
The properties/methods can only be accessed from class methods
but not from from subclasses of that class

protected
The properties/methods can only be accessed from class methods
and from subclasses of that class

Table 2.3: Access Rights of Class Members in Octave

By default, access rights are set as public. To set the desired level of access security,

the notation seen in Listing 2.5 is used.

1 classdef classdefVisibilityDemo

2 properties (Access = private)

3 ...

4 endproperties

5

6 properties (Access = protected)

7 ...

8 endproperties

9

10 methods (Access = private)

11 ...

12 endmethods

13

14 methods (Access = public)

15 ...

16 endmethods

17 endclassdef

Listing 2.5: Setting the access rights of a classdef class’ properties and methods example

2.3.4 Overloading and Object Precedence

Octave supports function and operator overloading, the creation of separate functions

with the same name but with different implementations. Any function can be overloaded,

even Octave’s built-in functions.

The precedence of methods and objects to be called when there are mixed objects

passed to a function can be set with the use of two functions in the classes’ constructors:

superiorto and inferiorto.

12

2.3. OCTAVE’S OBJECT-ORIENTED FEATURES

1 function p = newClass ()

2 p = class (p, "newClass");

3 superiorto("someOtherClass");

4 endfunction

Listing 2.6: Setting a class as having precedence over another class example

2.3.5 Object Identity

To determine the class of an object, Octave provides functions such as the class(obj) func-

tion that returns the class of obj and the isa(obj, classname) function which returns true if

object obj is of type classname.
Concerning object comparison in Octave, this can be done with functions such as

isequal(). This function individually compares the fields of the provided structures but it

may fail if the structs contain NaN values. While Octave does not support an equivalent

of null references, as seen in other languages like Java, numerical attributes can have the

values of NA (“Not Available”) and NaN (“Not a Number”). To include the possibility of

NaN values in object comparison, the function isequaln() can be used.

Noteworthy to this topic, is the distintion between value or handle classes among

classdef classes. This separation is especially relevant for this topic of object identity as

they behave differently when the object is assigned to a new variable. When working with

value classes this assignment essentially creates a new object but if this is done with a

handle class, the variable refers to the same object.

2.3.6 Inheritance

• Inheritance in “old style” classes

“Old style” classes can be used to build new classes in Octave. The process is similar

to the creation of the classes demonstrated in Subsection 2.3.2, but the new class

creates the necessary fields from the given object instead of a structure.

To make a class a child of another existing class, the parent class must be passed as

the third argument of the class function as demonstrated in Listing 2.7.

1 function c = childClassDemo ()

2 p = @newClassDemo ();

3 c = class (c, "childClassDemo", p);

4 endfunction

Listing 2.7: Constructor of an “old style” child class example

13

CHAPTER 2. OCTAVE

• Inheritance in classdef classes

Classdef classes can also inherit from other classes. Here the syntax is much simpler

as seen in Listing 2.8. The properties and methods of the superclass are passed only

depending of their access rights.

Octave also supports multiple inheritance, allowing a class to inherit features from

more than one parent class. This is done by listing the desired superclasses with

the “&” character.

1 #Normal Inheritance

2 classdef childClassdefDemo < newClassdefDemo

3

4 #Multiple Inheritance

5 classdef childClassdefDemo < newClassdefDemo & newClassdefDemo2

Listing 2.8: Classdef inheritance examples

It is important to note that arguments passed to the subclass constructor do not

automatically carry over to the superclass constructor. Therefore, if the developer

wants the superclass constructor to receive specific arguments and perform opera-

tions on them, the child class must explicitly call the superclass constructor with

the appropriate notation as seen in Listing 2.9. This is demonstrated practically in

Listing 3.14.

1 #Constructor of Superclass

2 function self = superClassdefDemo (newArg1)

3 ... #operations using the argument newArg1

4 endfunction

5

6 #Constructor of Subclass

7 function self = childClassDemo (newArg1)

8 super_args{1} = newArg1; #create a structure containing the arguments

to pass to the superclass

9 self = self@superClassdefDemo(super_args{:}); #explicitly call the

superclass constructor

10 endfunction

Listing 2.9: Calling the superclass’ constructor from a child class example

14

2.4. OCTAVE’S GRAPHICS FEATURES

2.4 Octave’s Graphics Features

To properly analyse and interpret numerical computations, visualization is a requirement.

Producing valuable images of complex plots that aid in the understanding of numerical

results is one of the most important features for this type of software and, as expected,

Octave provides this functionality too.

Octave is capable of producing various types of plots in 2D and 3D formats while

allowing its users to interact with them to explore the data and decorate them with

additional material deemed relevant such as titles, labels, equations and other important

information.

Its graphics features are one of Octave’s standout points and plotting can be achieved

through a large number of different functions, relating to various combinations of types

of input data and desired outputs, with the plot function being the simplest one.

While Octave’s graphical capabilities are mostly focused on plotting and graphs, it

also offers some features for constructing graphical interfaces that interact with users. It

provides I/O dialogs, a progress bar, and some UI elements for plot windows such as

menus, panels, buttons and toolbars.

Figure 2.2: An example window showing some of the available UI elements like a textbox,
a slider, a listbox and various types of buttons [29]

2.5 Helpful Information

2.5.1 Packages and Extensions

While Octave’s core functionality is quite extensive on its own, there are many packages

available that can extend it further. Because Octave is open-source software, it encourages

its users to create and share their own extensions and programs. These packages are

developed and maintained by the community and can be quite useful.

The two most popular repositories of Octave packages can be found at:

15

CHAPTER 2. OCTAVE

• gnu-octave.github.io/packages/

• octave.sourceforge.io/

2.5.2 IDE/GUI Survey

While Octave can be run in the command line, update 3.8 (released in 2013) contained a

new graphical user interface (GUI) with an integrated development environment.

There are several available online Integrated Development Environment (IDE)s for

Octave, namely the cloud IDE OctaveOnline [19], and Visual Studio Code offers Octave

extensions for syntax checking, formatting and debugging.

Octave’s native GUI, seen in Figure 2.3, was selected as the main tool to be used for

this thesis.

Figure 2.3: The default GUI provided by Octave

2.5.3 Forums and Other Sources of Information

As a free and open-source software, Octave relies on its users to expand the available

information on the language. Interaction with other users can often bring benefits and,

much like most other software, Octave has forums across the internet which may prove

helpful to users, whether experienced or not.

Besides its own documentation, some of the other main sources of information on

Octave are:

• wiki.octave.org/GNU_Octave_Wiki

• octave.discourse.group/

• reddit.com/r/octave/

• savannah.gnu.org

16

gnu-octave.github.io/packages/
octave.sourceforge.io/
wiki.octave.org/GNU_Octave_Wiki
octave.discourse.group/
reddit.com/r/octave/
savannah.gnu.org

3

Octave Design Patterns

Implementations

This chapter concerns the Gang-of-Four design pattern implementations produced in

Octave. Section 3.1 provides an introduction on the concept of design patterns and, most

specifically, on the Gang-of-Four patterns. Section 3.2 introduces the collections used as

source for the implemented scenarios. Section 3.3 to Section 3.7 discuss eight pattern

implementations and respective associated OO features. Finally, Section 3.8 addresses

other observations relevant to the pattern implementations but not deemed worthy of its

own section.

3.1 Design Patterns

Software design patterns are certified solutions to common problems in software de-

sign. Unlike functions or libraries, design patterns are not specific pieces of code but

generalized concepts that can be implemented in different ways depending on the given

problem and environment. A pattern details the context where it can be used as well as

the relationships and interactions between the entities in which it relies.

Design patterns facilitate efficient communication between developers by providing

well-known terminology for specific scenarios. They can speed up the development pro-

cess by providing tested, proven development paradigms and improves code readability

for those familiar with the patterns. Learning these patterns also helps inexperienced

developers to learn software design in an easy and faster way.

Patterns are not really invented but instead gradually assert themselves as typical

solutions to common problems in software design. When a tried and tested practice gets

repeated often through various projects by the community, someone eventually puts a

name to it and describes the solution in detail. That’s how a pattern gets formalized. In

1987, Beck and Cunningham began experimenting with the idea of applying patterns to

programming [2]. Seven years later, in 1994, software design patterns saw a great rise in

popularity with the publishing of the book “Design Patterns: Elements of Reusable Object-

Oriented Software” by Gamma et al [11], commonly known as the Gang-of-Four (GoF).

17

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

It should be noted that the concept of a design pattern is dependent on the terminology

used as it could be argued that design patterns do not differ significantly from other

forms of abstraction and the Model-View-Controller paradigm is touted as an example of

a “pattern” which predates the concept of design patterns by several years.

Despite all its advantages, the concept of design patterns is not without flaws and has

been criticized by many in the field of computer science. In fact, at OOPSLA 1999, the

Gang-of-Four were (with their full cooperation) subjected to a mock trial, in which they

were “charged” with numerous crimes against computer science. It is argued that there is

an unjustified “over-use” of design patterns in situations where they are barely acceptable

over well-factored implementations, leading to code that can be harder to understand

and manage.

The fact remains that design patterns can be incredibly useful if used in the right

situations and for the right reasons but it is important to understand that they were

never meant to be shortcuts to be applied in a haphazard manner without regard for

context. There is ultimately no substitute for genuine problem-solving ability in software

engineering.

3.1.1 Gang-of-Four Design Patterns

The iconic book published by the Gang-of-Four [11] featured 23 unique patterns (exem-

plified in a C++ context) solving various problems of object-oriented design and is still

considered a best-seller today. Design patterns differ by their complexity, level of detail

and scale of applicability to the entire system being designed but, in the book, they are

divided into three categories based on their purpose:

• Creational Patterns – In certain situations, the basic form of object creation could

result in design problems or added complexity to the design. Creational design pat-

terns solve this problem by controlling class instantiation of single objects or groups

of related objects. Heavily relying on mechanisms such as inheritance, creational

design patterns aim to increase flexibility and reuse of existing code.

• Structural Patterns – Structural patterns focus on class and object composition.

They are intended to help define relationships between entities, as objects and

classes are assembled into larger structures, while keeping these structures flexible

and efficient and sometimes obtaining new functionality.

• Behavioural Patterns – Behavioural patterns concern communication and the as-

signment of responsibilities between objects. They address the way objects interact

at run-time, allowing the developer to concentrate on how the objects are intercon-

nected.

18

3.2. INTRODUCTION TO THE DESIGN PATTERN IMPLEMENTATIONS

Pattern Category Pattern

Creational

Factory Method
Abstract Factory
Builder
Prototype
Singleton

Structural

Adapter
Bridge
Composite
Decorator
Façade
Flyweight
Proxy

Behavioural

Adapter
Interpreter
Template Method
Chain of Responsability
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Table 3.1: The GoF [11] design patterns by category

3.2 Introduction to the Design Pattern Implementations

For this thesis, two complete collections of design patterns were implemented in Octave

adding up to 46 distinct pattern implementations. The scenarios were chosen from five

different sets of Java implementations, predominantly from the ones written by James

Cooper and Bruce Eckel and adapted and refactored by Monteiro as well as the Fluffycat

collection.

Author/Name Number of scenarios used Source
James Cooper 15 Java design patterns: a tutorial (2000) [5]
Bruce Eckel 14 Thinking in Patterns (2003) [9]

Fluffycat 14 www.fluffycat.com/Java-Design-Patterns

Vince Huston 2 www.vincehuston.org/dp

JavaCamp 1 javacamp.org

Table 3.2: Pattern scenario source distribution

19

www.fluffycat.com/Java-Design-Patterns
www.vincehuston.org/dp
javacamp.org

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

When selecting scenarios from the aforementioned sources, James Cooper’s and Bruce

Eckel’s collections were prioritized but it was impossible to fully adapt either collection to

Octave, as can be seen in Table 3.2. James Cooper’s collection was preferred for providing

user interface elements to help visualize the scenario however, in certain patterns, Octave

does not provide the graphical features to successfully reproduce the desired UI. As for

Bruce Eckel’s collection, it is not complete so the other three sources had to be considered

to fill in the gaps. It should also be noted that the website associated with Fluffycat’s

collection is unfortunately no longer accessible.

The first step in the analysis of the design pattern implementations is to compare

them to their Java counterparts. As such, it is important to highlight the important role

Java plays in this thesis, being one of the most widely known programming languages for

OOP and serving as an appropriate benchmark for the analysis of Octave’s object-oriented

features.

For the purposes of conciseness and facilitating reading comprehension, and because

the ultimate goal of this thesis is the evaluation of Octave as an object-oriented pro-

gramming language and not the patterns themselves, the implementations were grouped

according to certain topics. Section 3.3, Section 3.4 and Section 3.5 focus on valuable

object-oriented features offered by Java that Octave does not support, and the solutions

found to such shortcomings. Section 3.6 presents a group of four patterns that share a

similar practice in its implementation while having different goals and uses. Section 3.7

considers how certain characteristics of Octave programming can be used to tackle a

well-known subject in the software design community. Finally, Section 3.8 is a collection

of remarks on the pattern implementations or on Octave itself that were deemed worthy

of a mention in this chapter but not of its own section.

It is also noteworthy that, as explained throughout Section 2.3, classdef classes are

the superior variant in Octave, even despite its incomplete implementation, providing

much more flexibility and functionality and thus were used in all the design pattern

implementations in this chapter.

3.3 Interfaces and Abstract Classes

This section concerns the design patterns: Abstract Factory, Builder, Command, Composite,
Observer, State, Strategy and Visitor.

The concept of interfaces is crucial to object-oriented programming in Java, and conse-

quently, to the sets of design patterns used as templates for the Octave implementations

created in this thesis as well. However, Octave does not support this mechanism, prevent-

ing a more direct translation between languages. The “abstract class”, which is present

in other dynamic programming languages such as Python, is a concept similar to an in-

terface that might be used as an alternative, but while abstract classes are meant to be

20

3.3. INTERFACES AND ABSTRACT CLASSES

supported by Octave, its implementation is flawed and incomplete [20]. Presently, it does

not seem feasible to use them.

Searching for a solution, the answer found to be closest to successfully emulate the

concept of an interface was the ExampleInterface class displayed below, in Listing 3.1.

1 classdef ExampleInterface < handle

2 methods

3 function methodA (self)

4 error("SUPERCLASS METHOD THAT SHOULD NOT BE CALLED -> SHOULD BE

OVERRIDDEN");

5 endfunction

6

7 function methodB (self)

8 error("SUPERCLASS METHOD THAT SHOULD NOT BE CALLED -> SHOULD BE

OVERRIDDEN");

9 endfunction

10 endmethods

11 endclassdef

Listing 3.1: Octave attempt at emulating an interface

This is a simple class meant to be inherited that throws an error if its methods are

called directly. However, a class like this does not offer the abstraction and security

benefits a Java interface can, which brings its utility in the system into question . A

possible role these attempts at interfaces could fulfil was found in some of the design

pattern scenarios to be implemented. To exemplify this point, the Abstract Factory pattern

scenario present in Cooper’s collection will be used.

3.3.1 Abstract Factory

The Abstract Factory pattern provides an interface for creating families of related or de-

pendent objects without specifying their concrete classes. Different variants of products

may have different properties and the concrete class to be instantiated can be changed,

even at run-time, by using a different factory.

This pattern allows the creation of different types of objects without sharing the con-

crete classes’ implementation with the client, avoiding tight coupling between concrete

products and client code. By creating objects through an interface for a class of the prod-

uct family, the possibility of type mismatch is excluded which is also helpful when the

concrete class to be instantiated is not known in advance.

Finally, by isolating object creation with an Abstract Factory, new variants of products

can be easily introduced without breaking existing client code. However, it should be

noted that this pattern can sometimes make code more complex as it consists of the

creation of many new interfaces and classes.

21

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

Figure 3.1: Diagram exemplifying a possible structure of implementation of the Abstract
Factory pattern [27]

The scenario chosen for this section is the “GardenMaker Factory” by James Cooper

which uses the Abstract Factory pattern in the planning of a garden layout and provides a

user interface for better visualization.

In this scenario, there are three types of garden (perennial, annual and vegetable)

and, for each of these types of garden, it is required to know what types of plants would

do well in shade, as well as in the centre or the border of the garden. Accordingly, the

abstract factory class in this example is AbstractGardenFactory that is implemented by

three concrete factories corresponding to the types of garden and containing three meth-

ods that return the adequate centre, border or shade plant. The plants themselves are

represented by a simple Plant object that only contains the plant’s name. This setting is

illustrated in a class diagram in Figure 3.2.

Figure 3.2: Class Diagram for the Java implementation of the “GardenMaker Factory”
scenario

22

3.3. INTERFACES AND ABSTRACT CLASSES

Regarding the user interface, it consists of three parts: at the top a canvas representing

the garden layout, on the left the user can select the desired type of garden which creates

the corresponding garden factory and on the right the user chooses the plant category

which displays the name of the adequate plant in the corresponding space (Figure 3.3).

Figure 3.3: Abstract Factory implementation in Java UI

Because all the three concrete factories implement the AbstractGardenFactory interface,

and therefore implement methods with the same signatures, the GardenFactory class can

have a activeFactory variable declared with that interface that can be any of the factories

while calling the same methods on it.

1 public interface AbstractGardenFactory {

2 public abstract Plant makeShade();

3 public abstract Plant makeCenter();

4 public abstract Plant makeBorder();

5 }

Listing 3.2: Java AbstractGardenFactory interface

1 public class VegetableGardenFactory implements AbstractGardenFactory {

2 public Plant makeShade() {

3 return new Plant("Broccoli");

4 }

5

6 public Plant makeCenter() {

7 return new Plant("Corn");

8 }

9

10 public Plant makeBorder() {

23

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

11 return new Plant("Peas");

12 }

13

14 }

Listing 3.3: Java VegetableGardenFactory class

1 public class GardenFactory {

2 private AbstractGardenFactory activeFactory = null;

3 private AbstractGardenFactory annualFactory = new AnnualGardenFactory();

4 private AbstractGardenFactory perennialFactory = new PerennialGardenFactory

();

5 private AbstractGardenFactory vegetableFactory = new VegetableGardenFactory

();

6

7 public void setFactory(String gtype) {

8 if (gtype.equals("Perennial"))

9 activeFactory = perennialFactory;

10 else if (gtype.equals("Annual"))

11 activeFactory = annualFactory;

12 else activeFactory = vegetableFactory; // default

13

14 System.out.println("Garden factory set to " + gtype);

15 }

16 public boolean isActive() {

17 return activeFactory != null;

18 }

19 public Plant makeShade() {

20 return activeFactory.makeShade();

21 }

22 public Plant makeCenter() {

23 return activeFactory.makeCenter();

24 }

25 public Plant makeBorder() {

26 return activeFactory.makeBorder();

27 }

28 }

Listing 3.4: Java GardenFactory class

On the other hand, the lack of type-checking in Octave and the fact its variables do not

have a fixed type means that the activeFactory property in the GardenFactory class can still

be an object of any of the concrete factories without the presence of the AbstractFactory
interface (Figure 3.4).

24

3.3. INTERFACES AND ABSTRACT CLASSES

1 classdef GardenFactory < handle

2 properties (Access = private)

3 activeFactory

4 annualFactory = AnnualGardenFactory();

5 perennialFactory = PerennialGardenFactory();

6 vegetableFactory = VegetableGardenFactory();

7 endproperties

8

9 methods

10 function setFactory (self, gtype)

11 if (strcmp(gtype, "Perennial") == 1)

12 self.activeFactory = self.perennialFactory;

13 elseif (strcmp(gtype, "Annual") == 1)

14 self.activeFactory = self.annualFactory;

15 else

16 self.activeFactory = self.vegetableFactory;

17 endif

18 printf(cstrcat("Garden factory set to ", gtype, "\n"));

19 endfunction

20

21 function retBol = isActive (self)

22 if (isempty(self.activeFactory))

23 retBol = false;

24 else

25 retBol = true;

26 endif

27 endfunction

28

29 function retPlant = makeShade (self)

30 retPlant = self.activeFactory.makeShade();

31 endfunction

32

33 function retPlant = makeCenter (self)

34 retPlant = self.activeFactory.makeCenter();

35 endfunction

36

37 function retPlant = makeBorder (self)

38 retPlant = self.activeFactory.makeBorder();

39 endfunction

40 endmethods

41 endclassdef

Listing 3.5: Octave GardenFactory class

1 classdef VegetableGardenFactory < AbstractGardenFactory

2 methods

3 function retPlant = makeShade (self)

4 retPlant = Plant("Broccoli");

5 endfunction

6

7 function retPlant = makeCenter (self)

25

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

8 retPlant = Plant("Corn");

9 endfunction

10

11 function retPlant = makeBorder (self)

12 retPlant = Plant("Peas");

13 endfunction

14 endmethods

15 endclassdef

Listing 3.6: Octave VegetableGardenFactory class

Figure 3.4: Class Diagram for the Octave implementation of the “GardenMaker Factory”
scenario

In fact, the removal of the AbstractFactory interface has no impact in the functionality

of this implementation, questioning once more its usefulness. Figure 3.5 shows the UI

produced by the Octave implementation and the similar results achieved in comparison

with the Java implementation.

Taking this implementation as a study case for the utility of interface-like classes in

Octave, the inclusion of an AbstractFactory interface in the mould of the one presented in

Listing 3.1 would not offer any additional functionality. However, questioning the exten-

sibility of this program gives rise to the idea that these “interfaces” have documentation

value. Because the GardenFactory class calls methods on the activeFactory variable with-

out knowing its type of object, all the factories must implement those necessary methods.

As such, any new factories to be added to the system, a FruitGardenFactory for example,

must share the same method signatures. This is enforced in Java through compile errors

issued when a class does not contain a method from an interface it implements. How-

ever, because Octave does not offer the same safe behaviour, the previously demonstrated

interface-like classes can be helpful for the developer as blueprints of what new classes

to be added need to look like to assure consistency within the system.

While Abstract Factory was chosen for demonstrative purposes, this concept concerns

several other patterns that tend to implement an interface with many distinct classes that

26

3.3. INTERFACES AND ABSTRACT CLASSES

are essential to the pattern’s functioning. Composite is usually implemented in a tree-like

structure that requires its leaf and node object to implement certain identical method

signatures and, much like the factories in the Abstract Factory pattern, Builder, Command,

Observer, State, Strategy and Visitor also use elements sharing the patterns’ naming that

match this notion.

Figure 3.5: Abstract Factory implementation in Octave UI

27

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

3.4 Polymorphism in Data Structures

This section concerns the design patterns: Command, Composite and Observer.

As mentioned in Subsection 2.3.1, the implementation of classdef classes is flawed

and incomplete. One of the areas of object-oriented programming in Octave that causes

the most issues due to acknowledged but unaddressed bugs is the storage of classdef
objects in data structures (such as the bug solved by the objvcat function as explained

in Subsection 3.8.3). This section focuses on the lack of support for polymorphism in

Octave’s arrays, the obstacles this might cause and the proposed workaround.

When data structures in Java are created, the type of objects to be contained in the

structure is declared and, if this declaration is done through an interface, different object

types can be stored in the data structure as long as they implement said interface. The

same behaviour can also be verified in cases of inheritance.

On the other hand, an array in Octave is operated as such:

1 obj1 = Class1();

2 obj2 = Class2();

3 #both Class1 and Class2 are subclasses of the same class

4

5 arr = [];

6 #array declared without an associated type

7

8 arr = objvcat(obj1, arr);

9 #obj1 is inserted with success in the array

10

11 arr = objvcat(obj2, arr);

12 #an error is thrown stating that objects of type Class2 cannot be inserted in

an array of Class1 objects

Listing 3.7: Octave array usage

As shown in Listing 3.7, there is no declaration of type and the array simply assumes

that all its elements should be of the same class of the first object entered in the array.

Unlike Java, it does not recognize subclasses of the first element’s class as being of the

same type either, hence it does not accept them (no inheritance polymorphism).

Instances when objects of distinct but related types should be held in the same collec-

tion are hardly rare so this is a very useful feature in object-oriented programming and,

consequently, in the design pattern implementations in this thesis.

“Cell arrays” are Octave data structures worthy of a mention in this section as they

provide a way to store information of objects of any type. However, this is done by trans-

forming all the objects entered in the array into “cells”, struct-like objects that maintain

the class’ properties but do not allow for the calling of its methods, making them unfit

for use in OOP.

28

3.4. POLYMORPHISM IN DATA STRUCTURES

The solution found to this problem in Octave will be exemplified through the Observer
pattern.

3.4.1 Observer

The Observer design pattern aims to notify a set of related interested objects of events

that happen in a certain object. With this pattern, an object, defined as the “subject”,

maintains a list of interested objects, the “observers”, and alerts them when an event

occurs, usually by triggering one of their methods. The Observer pattern thus permits the

creation or removal of relationships between objects without having to alter the code, but

simply changing the list of observers.

Although Octave supports “listeners”, a mechanism with conceptual similarities to

the Observer pattern, they can only be used with graphical objects in this language and

not user defined classes, which makes them unsuitable for the purposes of this thesis.

Figure 3.6: Diagram exemplifying a possible structure of implementation of the Observer
pattern [27]

As the subject in this pattern is supposed to keep a record of its observers, which can

be different types of objects, this is an opportunity to address the problem of the lack of

polymorphism in Octave arrays.

Cooper’s Observer scenario consists of an user interface with three types of windows:

the first has three buttons corresponding to three colours (red, blue and green) to be

pressed by the user, the second is simply a panel that assumes the chosen colour and the

third is a written list that keeps track of the user’s choices. As such, in the context of the

Observer pattern, the first window plays the role of the subject and the other two are the

observers that get notified whenever the user presses a button and behave accordingly.

This UI is displayed in Figure 3.7.

29

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

Figure 3.7: Observer implementation in Octave UI

Figure 3.8: Class Diagram for the Java implementation of the “Color Observer” scenario
(graphical content omitted)

The initial problem found when implementing this scenario in Octave is the storage

of objects of both ColorFrameObserver and ColorListObserver objects in the WindowSubject
object. The most obvious answer to this problem could be to just split the observers array

into two for each type of observer. However, this is an inadequate workaround as it would

require code duplication, iteration through all data structures when notifying observers

and this technique does not scale to new types of observers, in case they are added to the

system.

The chosen solution consists of wrapping the objects before inserting them into the

array using a simple wrapper with only one property and the method to return it, as seen

in Listing 3.8. This practice makes use of the fact that Octave is a weakly typed language

so that the property obj in the ObjectWrapper class can be of any type. In this setting, the

array will only contain objects of type ObjectWrapper thus introducing polymorphism to

data structures in Octave through a middleman.

30

3.4. POLYMORPHISM IN DATA STRUCTURES

1 classdef ObjectWrapper < handle

2 properties (Access = private)

3 obj

4 endproperties

5 methods

6 function self = ObjectWrapper (obj)

7 self.obj = obj;

8 endfunction

9

10 function retObj = getObj (self)

11 retObj = self.obj;

12 endfunction

13 endmethods

14 endclassdef

Listing 3.8: ObjectWrapper class

With this mechanism, it becomes possible for the WindowSubject class to store and

manage the various types of observers in a single array while keeping the needed func-

tionality. This is true even if new classes of observers were to be introduced in the future.

1 classdef WindowSubject < handle

2 properties (Access = private)

3 ...

4 observers

5 endproperties

6 methods

7 function self = WindowSubject ()

8 ...

9 endfunction

10

11 function addObserver (self, obs)

12 self.observers = objvcat(self.observers, ObjectWrapper(obs));

13 endfunction

14

15 function addObserver (self, obs)

16 self.observers = objvcat(self.observers, ObjectWrapper(obs));

17 endfunction

18 endmethods

19 methods (Access = private)

20 function notifyObservers (self, ev, d)

21 if(get(ev, ’value’) != 0)

22 col = get(ev, ’string’);

23 for k = 1:numel(self.observers)

24 obi = self.observers(k).getObj();

25 obi.writeColorOnWindow(col);

26 endfor

27 endif

28 endfunction

29

30 function quitObservers (self, ev, d)

31

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

31 for k = 1:numel(self.observers)

32 obi = self.observers(k).getObj();

33 obi.closeSelf();

34 endfor

35 close(self.fig);

36 endfunction

37 endmethods

38 endclassdef

Listing 3.9: Array usage in WindowSubject class

It is noteworthy that the Octave implementation of this scenario also matches the

circumstances mentioned in the previous section and, accordingly, observer and subject

interface-like classes were deemed unnecessary and are not included.

Figure 3.9: Class Diagram for the Octave implementation of the “Color Observer” sce-
nario

Along with Observer, Command and Composite stand out as the prime candidates for

the application of this concept. It is typical when using the Command pattern for there to

be the need to store several command-type objects for the purposes of delayed execution

or record keeping. Similarly, when implementing the Composite pattern’s aforementioned

tree-like composition, the nodes of the structure often possess a data structure containing

objects that can be of different types (leaves or other nodes).

32

3.5. SINGLETON AND STATIC PROPERTIES

3.5 Singleton and Static Properties

This section concerns the design pattern: Singleton.

Singleton is a design pattern that aims to ensure a class has only one instance and

provide a global point of access to it.

The scenario provided by James Cooper for this pattern is quite simple. It consists of

a Printer class that only allows the creation of one instance of itself.

1 public class Printer {

2 static boolean instance_flag = false; // true if 1 instance

3

4 public Printer() throws SingletonException {

5 if (instance_flag)

6 throw new SingletonException("Only one printer allowed");

7 instance_flag = true; // set flag for 1 instance

8 System.out.println("printer opened");

9 }

10

11 public void finalize() {

12 instance_flag = false;

13 }

14 }

Listing 3.10: Java Printer class

This is done in the constructor by keeping a boolean static variable to indicate whether

an instance of the Printer class already exists. If there are no objects of this class the con-

structor call is successful, otherwise an exception is thrown. While this a straightforward

concept in Java, it cannot be directly replicated in Octave as it relies on static variables

and their capability to preserve their value regardless of scope, which this language does

not support. Octave does provide global variables which would produce the same results

but, being accessible from anywhere in the system, these type of variables present a major

security risk.

The workaround to this obstacle was provided by a user in the Octave Discourse

forum, mentioned in Subsection 2.5.3, makes use of persistent variables in static methods

[18] to emulate the behaviour of Java’s static variables.

A variable that has been declared persistent within a function will retain its contents

in memory between subsequent calls to the same function (Subsection 2.2.2). They differ

from the aforementioned global variables by being local in scope to a particular function

and not visible elsewhere. While it can be said that the behaviour of these variables is

quite close emulating Java’s static variables, an important distinction needs to be con-

sidered: while Java’s static variables belong to a class, Octave’s persistent variables can

only be contained within functions and, even though they can retain its value between

subsequent calls of said function, the variable does lose its value when the encapsulating

33

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

function is removed from memory even if the class itself was not. Fortunately, there is

a common practice in Octave used to prevent persistent variables from being removed

from memory. That is mlock, a function that locks the current function into memory so

that it cannot be removed when cleared.

1 classdef Printer < handle

2 methods (Access = private)

3 function self = Printer ()

4 ...

5 endfunction

6 endmethods

7

8 methods (Static)

9 function this = GetInstance (varargin)

10 persistent my_singleton_instance;

11 mlock ();

12

13 if isempty (my_singleton_instance)

14 my_singleton_instance = Printer (varargin{:});

15 printf("Printer opened\n");

16 else

17 error("Only one printer allowed");

18 endif

19

20 this = my_singleton_instance;

21 endfunction

22 endmethods

23 endclassdef

Listing 3.11: Octave Printer class

In this implementation (Listing 3.11), the default constructor is made private to pre-

vent other objects from calling it. Instead, a new static method is used as an intermediary

to handle the persistent variable and, if there are no other instances of the object, to call

the private constructor and return the created instance. It is important that the getInstance
method is declared as static so that it can be called directly from the class and not from

an object instance.

34

3.6. WRAPPERS

3.6 Wrappers

This section concerns the design patterns: Adapter, Decorator, Façade and Proxy.

This section relates to the patterns that are implemented through composition by

wrapping objects to affect their interaction with a client, while achieving different goals.

3.6.1 Adapter and Façade

Adapter and Façade change the methods available to the client. Adapter is a simple design

pattern intended to connect objects with class interfaces originally deemed incompatible.

The connection of the objects with mismatching interfaces can be done through an adapter

object that shares the desired interface and wraps the problematic object, making the

necessary conversions to preserve the intended behaviour.

On the other hand, the Façade pattern consists of using a class to offer the client a

simplified interface for a more complex subsystem. This façade class performs the needed

processes of calling several other classes while hiding these objects from the client and

providing it only with the features it desires. In doing so, it allows for the isolation of the

subsystem complexity from the client code.

Pattern Wrapped Objects Interface
Adapter One Transformed
Façade Multiple Reduced

Table 3.3: Adapter/Façade functionality comparison

FaçadeOctave Implementation

FluffyCat’s Façade scenario consists of the making of a cup of tea containing three

elements: a teacup, water and a teabag. Each of these components is represented by their

own class and has their own methods to be called to make the cup of tea.

Figure 3.10: Class Diagram for the Octave implementation of the “MakeACuppa” Façade
scenario

35

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

The façade class that ties them together is FacadeCuppaMaker, providing the client

with only the one necessary method, makeACuppa, and abstracting all the underlying

logic.

1 classdef FacadeCuppaMaker < handle

2 properties (Access = private)

3 ...

4 endproperties

5 methods

6 ...

7 function retCup = makeACuppa (self)

8 retCup = FacadeTeaCup();

9 teaBag = FacadeTeaBag();

10 water = FacadeWater();

11 retCup.addFacadeTeaBag(teaBag);

12 water.boilFacadeWater();

13 retCup.addFacadeWater(water);

14 retCup.steepTeaBag();

15 endfunction

16 endmethods

17 endclassdef

Listing 3.12: Octave FacadeCuppaMaker class

3.6.2 Decorator and Proxy

Similarly to Adapter, Decorator and Proxy also consist of the wrapping of a single object

but they differ from the two patterns in the previous section by providing the same

methods as the target object and delegating to it the requests they receive.

The Proxy pattern consists of using a wrapper class as a middleman between the

client and the target object. This proxy class can control access to the object, forwarding

requests to it as it sees fit, making this pattern useful for safety purposes and allowing

lazy initialization of the target object if necessary.

On the other hand, Decorator can be used to dynamically attach extra responsibilities

to a certain object. As such, this pattern provides a flexible way for extending functional-

ity, useful when subclassing is impossible or impractical, and allowing for this addition

of behaviour to be performed to individual objects without affecting other objects.

Decorator Octave Implementation

The chosen scenario to demonstrate the Decorator pattern is from Cooper’s collection.

It is a simple concept that consists of three decorators that add different characteristics

to a base button resulting in a user interface with four buttons (Figure 3.11).

36

3.6. WRAPPERS

Figure 3.11: Decorator implementation in Octave UI

“PButton” (top right placement) paints the button red
“DButton” (bottom left placement) disables the button
“Quit” (bottom right placement) when clicked, closes the UI

Table 3.4: The decorated buttons and the functionality added to them

The target object of this implementation is a simple button, represented by a BaseBut-
ton class. The Decorator class wraps this object and calls the decorate method.

1 classdef Decorator < handle

2 properties (Access = protected)

3 button

4 endproperties

5 methods

6 function self = Decorator (button)

7 self.button = button;

8 self.decorate();

9 endfunction

10

11 function decorate (self)

12 error("SUPERCLASS METHOD THAT SHOULD BE OVERRIDEN WAS CALLED");

13 endfunction

14 endmethods

15 endclassdef

Listing 3.13: Octave Decorator class

This class is then extended by the three actual decorators (PaintDecorator, DisableDeco-
rator and QuitDecorator) that override the decorate method providing it with the respective

desired new functionality.

37

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

1 classdef PaintDecorator < Decorator

2 methods

3 function self = PaintDecorator (button)

4 super_args{1} = button;

5 self = self@Decorator(super_args{:});

6 endfunction

7

8 function decorate (self)

9 set(self.button.getButton(), "backgroundcolor", [1 0 0]);

10 endfunction

11 endmethods

12 endclassdef

Listing 3.14: Octave PaintDecorator class

38

3.7. VISITOR AND THE EXPRESSION PROBLEM

3.7 Visitor and the Expression Problem

This section concerns the design pattern: Visitor.

The Visitor design pattern is a way of separating an algorithm from an object structure

on which it operates. It uses a visitor class that takes the instance reference as input

and implements all the needed variants of the new function, which correspond to all

target classes. This allows for the addition of new operations to existing object structures

without modifying their classes. Furthermore, this pattern can be of use when an object

structure contains many classes of objects with differing interfaces, and some operations

must be performed on these objects that depend on their concrete classes. However, a

notable shortcoming of the Visitor pattern is that all visitors need to be updated every

time a class gets added to or removed from the element hierarchy.

Figure 3.12: Diagram exemplifying a possible structure of implementation of the Visitor
pattern [27]

Regarding this pattern, the most noteworthy difference between its Octave and Java

implementations relates to Octave’s lack of type-checking. Cooper’s Visitor scenario is

used to exemplify this. This scenario consists of a system that displays the number of

vacation days of two types of employees, represented by classes Employee and Boss. Bosses

are employees as well, so the Boss class extends the former. In this case, the distinction

between the two roles is that bosses are allowed to have bonus days off. There are two

visitors: class VacationVisitor just sums the vacation data for all employees, and class

BossVacationVisitor also takes into account bosses’ bonus days.

39

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

Figure 3.13: Class Diagram for the Java implementation of the “Vacation Visitor” scenario

For better understanding, a user interface is provided consisting of a list of employees

and two panels, the top one displays the result obtained by the VacationVisitor and the

bottom one the value returned by the BossVacationVisitor. The user can select an employee

from the list and click the “Vacations” button to obtain these values. This UI can be seen

in Figure 3.14.

Figure 3.14: Visitor implementation in Octave UI

As is customary in the Visitor pattern, the target classes possess a method to receive

the visit of the visitors and, in this example, the accept method plays this role. In the

Java implementation, visitors implement the Visitor interface (in the same way discussed

in Section 3.3) and the accept method’s argument type is declared as such as seen in

Listing 3.15. In Octave, there is no type declaration so a generic argument is enough

(Listing 3.16).

40

3.7. VISITOR AND THE EXPRESSION PROBLEM

1 public class Employee {

2 ...

3 public Employee(String name, float salary, int vacdays, int sickdays) {

4 ...

5 }

6 ...

7 public void accept(Visitor v) {

8 v.visit(this);

9 }

10 }

Listing 3.15: Java Employee class

1 classdef Employee < handle

2 properties (Access = private)

3 ...

4 endproperties

5 methods

6 ...

7 function accept (self, v)

8 v.visit(self);

9 endfunction

10 endmethods

11 endclassdef

Listing 3.16: Octave Employee class

When implementing the visitors in Octave, a significant difference is clear: the various

visit methods in the VacationVisitor, which in Java are distinct depending on the type of

the argument (object of class Employee or class Boss), correspond to only one method in

the Octave implementation allowing for code reduction.

1 public class VacationVisitor implements Visitor {

2 protected int _total_days;

3

4 public VacationVisitor() {

5 _total_days = 0;

6 }

7

8 public void visit(Employee emp) {

9 _total_days += emp.getVacDays();

10 }

11

12 public void visit(Boss boss) {

13 _total_days += boss.getVacDays();

14 }

15

16 public int getTotalDays() {

17 return _total_days;

18 }

41

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

19 }

Listing 3.17: Java VacationVisitor class

1 classdef VacationVisitor < handle

2 properties (Access = private)

3 totalDays

4 endproperties

5 methods

6 function self = VacationVisitor ()

7 self.totalDays = 0;

8 endfunction

9

10 function visit (self, emp)

11 self.totalDays = self.totalDays + emp.getVacDays();

12 endfunction

13

14 function retTd = getTotalDays (self)

15 retTd = self.totalDays;

16 endfunction

17 endmethods

18 endclassdef

Listing 3.18: Octave VacationVisitor class

However, the same procedure is not possible when it comes to the BossVacationVisitor
as it adds new functionality when the object is of class Boss (adding the bonus days). The

Octave implementation of this class maintains only one visit method but checks the type

of the argument to determine whether the boss-specific calculations should be performed.

1 public class BossVacationVisitor implements Visitor {

2 private int _total_days;

3

4 public BossVacationVisitor() {

5 _total_days = 0;

6 }

7

8 public void visit(Boss boss) {

9 _total_days += boss.getVacDays();

10 _total_days += boss.getBonusDays();

11 ...

12 }

13

14 public void visit(Employee emp) {

15 _total_days += emp.getVacDays();

16 ...

17 }

18

19 public int getTotalDays() {

20 return _total_days;

21 }

42

3.7. VISITOR AND THE EXPRESSION PROBLEM

22 ...

23 }

Listing 3.19: Java BossVacationVisitor class

1 classdef BossVacationVisitor < handle

2 properties (Access = private)

3 totalDays

4 endproperties

5 methods

6 function self = BossVacationVisitor ()

7 self.totalDays = 0;

8 endfunction

9

10 function visit (self, emp)

11 self.totalDays = self.totalDays + emp.getVacDays();

12 if(isa(emp, "Boss"))

13 self.totalDays = self.totalDays + emp.getBonusDays();

14 endif

15 ...

16 endfunction

17

18 function retTd = getTotalDays (self)

19 retTd = self.totalDays;

20 endfunction

21 ...

22 endmethods

23 endclassdef

Listing 3.20: Octave BossVacationVisitor class

Figure 3.15: Class Diagram for the Octave implementation of the “Vacation Visitor” sce-
nario

43

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

3.7.1 The Expression Problem

The “Expression Problem” [28] is a renowned dilemma in the world of programming, and

it consists of the need to extend a program in both its set of operations and the set of data

types they act on without the need to modify existing code, code repetition or runtime

type errors.

Several attempts have been made at solving this problem and the Visitor pattern is a

recurring component in many of them. This pattern allows the approach of the expression

problem in a functional way as it facilitates the separation of data from the functionality

operating on it which would be encapsulated in visitor objects. However, while this

method makes it simple to add new operations through visitors, adding new data types

would still require the update of all visitor classes.

The Octave implementation of the Visitor pattern presented above could be proposed

as a partial solution to the “Expression Problem” in this language, although a conditional

one. The aforementioned condition would be that the operations the developer wants to

perform on different objects behave in the same way regardless of the specific data type.

Taking the VacationVisitor class as an example, any number of new data types could be

introduced along with Employee and Boss (Manager or Intern for example) without the

need to modify the visitor class, as long as their vacations days can be computed with

same code present in the visit method. Similarly, any new operations could be added to

the VacationVisitor class just by creating one new function (in non-dynamic programming

languages the number of functions to be created would be equal to the number of data

types).

Some other variants of the Visitor pattern have also been proposed as possibilities to

tackle this subject such as “Extensible Visitors” by Krishnamurti et al [14], further refined

as “Extensible Visitors with defaults” by Zenger and Odersky [30, 31] or “Generic Visitors”

by Palsberg and Jay [21], although all of them still cannot fully solve this problem.

44

3.8. NOTEWORTHY REMARKS

3.8 Noteworthy remarks

This section concerns the design patterns: Memento and Iterator

3.8.1 Memento and Nested Classes

The Memento design pattern consists of the use of a memento object to store the private

internal state of a target object, the “originator”, without revealing the details of its im-

plementation. By saving a certain state externally to the originator object, the saved state

can be restored later without compromising the object’s internal structure or breaking its

encapsulation. In Java, this pattern is usually implemented making the memento a nested

class, a class defined within another class, which allows the originator to set its state and

related methods as private while still being accessible to the memento. Consequently, the

memento class is protected and hidden inside the originator class, increasing safety and

encapsulation.

Figure 3.16: Class Diagram for the Java implementation of the “Dvd Memento” scenario

On the other hand, Octave does not support this feature so the Memento pattern could

only be implemented through simple object composition, which exposes the methods of

the memento class and makes it less safe and useful when compared to its Java counter-

part.

45

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

Figure 3.17: Class Diagram for the Octave implementation of the “Dvd Memento” sce-
nario

3.8.2 Iterator and the For-loop

Iterator is a behavioural design pattern aimed at optimizing the exploration of the ele-

ments of a collection. This pattern extracts the traversal behaviour of a collection into

a separate object called an iterator which implements the algorithm itself as well as all

the necessary details, such as the current position and how many elements are left till the

end. Consequently, it is possible for several iterators to iterate over the same collection

in parallel, independently of each other, because each iterator object contains its own

iteration state.

The Iterator pattern helps maintain the logic clean and understandable by extracting

complex traversal algorithms into separate classes. Furthermore, because all iterators

implement the same interface, the client code is compatible with any collection type as

long as there is a proper iterator which allows this pattern to only provide the clients with

simple methods of accessing the collection elements, allowing for the concealing of the

complexity of a data structure. This is not only convenient for the client as it simplifies

interactions, but it also protects the collection from careless or malicious actions which

the client would be able to perform if working with the collection directly.

The Octave implementation of the Iterator pattern is straightforward and very similar

to the Java equivalent. However, when the situation requires only one simple iterator, the

utility of this pattern is put into question as Octave’s for loop can be applied to structures

with the same results and better efficiency. Both iterations shown in Listing 3.21 achieve

the same behaviour, thus the Iterator pattern would only prove to be useful in Octave in

scenario where its desired behaviour is more complex, with capabilities such as two-way

iteration.

46

3.8. NOTEWORTHY REMARKS

1 #Iterating through a structure using the Iterator pattern

2 fiveShakespeareIterator = fiveShakespeareMovies.createIterator();

3 while (!fiveShakespeareIterator.isDone())

4 printf(strvcat(fiveShakespeareIterator.currentItem()));

5 fiveShakespeareIterator.next();

6 endwhile

7

8 #Iterating through a structure using the For loop

9 fiveShakespeareMoviesTitles = fiveShakespeareMovies.getTitles();

10 for [movieTitle] = fiveShakespeareMoviesTitles

11 printf(strvcat(movieTitle));

12 endfor

Listing 3.21: Two ways of transversing a collection in Octave

It should also be noted that modifications to the structure being transversed can be

immediately seen during the iteration when using the Iterator pattern but not with the

for loop.

3.8.3 Broader Notes on the Octave Implementations

• The objvcat function

A shortcoming of the classdef system in Octave is the existence of a bug that prevents

the concatenation of new objects to an object array using ordinary notation. This

fault is acknowledged in Octave’s wiki and an auxiliary function found in a related

forum thread is used as a workaround: the objvcat function (which can be seen in

use in Listing 3.9).

• Inheritance from graphical objects

Inheritance from graphical objects is a capability of Java often used in the pattern

implementations taken as reference for this thesis, especially in Cooper’s collection.

The same behaviour cannot be replicated in Octave so, in cases like this, classes did

not inherit from the graphical object but kept it as a property instead.

• The toString function

The toString function is a common Java function that returns a string representation

of an object. Octave offers some methods that allow the developer to inspect an

object such as display but none with the exact same behaviour. Because this was a

necessary function for many of the scenarios, various specific toString methods had

to be created.

47

CHAPTER 3. OCTAVE DESIGN PATTERNS IMPLEMENTATIONS

• Non-mentioned pattern implementations

From the 23 Gang-of-Four patterns, 7 of them are not mentioned in this chapter

because they were implemented in Octave in a straight-forward manner without

relevant distinctions to their Java implementations that could be used for a OO-

themed analysis. These patterns are Bridge, Factory Method, Flyweight, Interpreter,
Mediator, Prototype and Template Method.

48

4

Analysis on Object-Oriented

Programming in Octave

This chapter analyses Octave’s OO capabilities taking into account the observations made

in Chapter 3 and how they relate to some essential concepts to object-oriented program-

ming and modularity. These concepts are: Abstraction in Section 4.1, Encapsulation

in Section 4.2, Polymorphism in Section 4.3 and Modularity in Section 4.4. Section 4.5

presents a comparison table on OOP between Octave and Java and Section 4.6 sums up

the conclusions drawn throughout this thesis.

4.1 Abstraction

Abstraction is a fundamental concept in object-oriented programming that consists of

hiding the implementation details of an object from the client, revealing only the nec-

essary information, and is used to build complex software systems that are easy to use,

maintain and modify. Abstraction can be achieved in several ways, including through the

use of abstract classes, interfaces and encapsulation.

In other object-oriented programming languages, interfaces and abstract classes help

maintain a high-level abstraction by defining a set of methods and properties that a class

must implement, specifying to the client what the class can do, without exposing how it

does it. Section 3.3 assesses the related features provided by Octave in the context of the

Abstract Factory design pattern and presents an attempt to emulate these concepts to little

success. Octave does not provide built-in support to interfaces and its implementation of

abstract classes is flawed and unusable. The interface-like class presented in Listing 3.1

can be valuable in situations where it is efficient that several classes implement the same

method signatures, but it does not provide the abstraction benefits a Java interface can.

49

CHAPTER 4. ANALYSIS ON OBJECT-ORIENTED PROGRAMMING IN OCTAVE

4.2 Encapsulation

Encapsulation refers to the practice of grouping related data, functions and classes, pro-

viding several benefits such as data abstraction, information hiding, and modularity. In

this thesis, this was found to be one of the most difficult principles to preserve in Octave.

In comparison with Java, it is clear this complexity comes from how fundamentally

distinct the two languages’ goals are. Encapsulation is most beneficial in the structuring

and simplification of extensive and complex systems but, unlike Java, Octave’s most

common use is on smaller programs that can be used to aid the solution of specific

mathematical problems. This leads to a couple of relevant core differences. Java allows

for the structuring of larger systems with the use of packages, collections of related classes

and interfaces. On the other hand, to our knowledge Octave requires all necessary class

files to be in the same folder to successfully execute a program.

Another important mechanism to ensure proper encapsulation is the definition of

class member access rights. Octave and Java provide three levels of privacy with similar

application and nomenclature (private, protected and public as presented in Subsec-

tion 2.3.3). However, there is a crucial distinction to be made regarding protected access

rights: while in Octave this level of protection makes a class member accessible to its

own class and subclasses, in Java the class member is accessible to any class within the

same package. Evidently, this makes a big difference allowing for class members to be

reachable by certain classes that are not related through inheritance while still not being

globally available.

Regarding the design pattern implementations, the most notable loss of encapsulation

can be found in the Memento implementation, in Subsection 3.8.1. This relates to “nested

classes”, classes defined within other classes, a practice that allows the concealing of the

nested class with the enclosing class while still granting it access to its private members.

This mechanism is supported in Java but not in Octave.

50

4.3. POLYMORPHISM AND DUCK-TYPING

4.3 Polymorphism and Duck-Typing

Polymorphism is a fundamental concept in object-oriented programming. It allows pro-

grammers to write code that can work with objects of different classes in a generic way,

without having to know the specific details of each class, providing a mechanism for ab-

straction and code reuse, while increasing the flexibility and extensibility of the software.

Unfortunately, Octave does not provide built-in support for polymorphism.

A form of polymorphism can be achieved in Octave, like in other dynamic languages,

through duck-typing, a practice that permits objects to be handled based on their be-

haviour rather than their type (previously mentioned in Subsection 2.1.3). As such, while

Java’s polymorphism enables objects of different classes to be treated as if they were ob-

jects of a common superclass, duck-typing completely disregards the objects’ type, caring

only for whether it is capable of executing the operations required of it. The Octave

implementation of the Visitor pattern presented in Section 3.7 is a good example of how

helpful duck-typing can be in emulating polymorphism and enabling code reuse.

Another important use of polymorphism in Java, that duck-typing in Octave unfortu-

nately cannot replicate, is the existence of polymorphism of classdef objects in data struc-

tures. It is a common need in OOP to hold collections of related objects of distinct types,

but Octave does not allow this behaviour. In Section 3.4, a functioning workaround to

this issue is presented but it is noteworthy that a practice so often used in object-oriented

programming should have built-in support.

4.4 Modularity and Module Composition

Two essential concepts to this thesis are modularity and module composition. Modularity

[22] relies on the concept of “separation of concerns”, which in the context of software

engineering means to divide a system according to a consistent set of responsibilities that

we would like to localize in its own module (a concern). Performing this separation allows

developers to work on separate modules of the same system simultaneously , helps the

debugging and maintenance of code, as it is easier to test and develop smaller components

centered around the same concern and can facilitate software reuse as a focused module

is easier to integrate into new software.

Complementing modularity, module composition is a property which relates to the

relationships and interaction between the aforementioned modules. Through these two

properties and the language mechanisms that provide support for them, it possible to

get a clearer understanding of a given system. There are already established works on

evaluating these properties in certain systems, like the works by Sethi et al [26] or by

Cai et al [4], and the support certain languages offer to them, as can be seen in some the

works presented in Section 5.2.

51

CHAPTER 4. ANALYSIS ON OBJECT-ORIENTED PROGRAMMING IN OCTAVE

4.4.1 Modularity in Octave

Octave does not provide much support for the implementation of modularity with its

features. Encapsulation and Polymorphism are closely tied concepts to Modularity so,

looking back at Section 4.2 and Section 4.3, it is possible to point out two of Octave’s OO

features that can aid modularity:

• Duck-typing allows the programmer to write generic code that can work with ob-

jects of different types, thus reducing coupling between modules that do not have

to know what kind of object they are interacting with;

• The definition of Access Rights for class members also helps to isolate modules

from each other by limiting the information made available by objects.

These two features only allow the separation of modules at a lower-level and that pales

in comparison with the most popular OOP languages which mostly provide mechanisms

to implement modularity on a system-wide scope.

4.4.2 Modularity Mechanisms

This section concerns modularity mechanisms that relate to design patterns, either through

their purpose or implementation, and their feasibility in Octave.

Mixins

A concept first introduced by Bracha and Cook in 1990 [3], a mixin is a class that

contains methods for use by other classes without having to rely on the inheritance mech-

anism. As such, mixins can be used to avoid the inheritance ambiguity that multiple

inheritance can cause or to work around lack of support for multiple inheritance in a

language.

Mixin composition differs from inheritance in that the class who receives functionality

can still inherit the features of the mixin class but avoiding some effects that come from

a child class “being a kind of” the parent class. Mixins are usually referred to as being

“included” instead of “inherited”.

It can be said that the decorator design pattern emulates the mixin concept as they

both aim to encourage code reuse and share logic between components while avoiding

the inheritance mechanism’s shortcomings.

Octave does support multiple inheritance which would allow for the inheritance of

the class that carries the additional functionality. In the most simple examples, where

complications like the “diamond problem” [16] can be easily avoided, this would proba-

bly be the most efficient solution. However, in the development of more complex systems,

the programmer may prefer to avoid the potential complications of the inheritance mech-

anism. The Decorator pattern provides an alternative by adding functionality through

object composition (wrapping). On the other hand, the mixin class is implemented sep-

arately and then included but, while Octave’s documentation presents a way to include

52

4.4. MODULARITY AND MODULE COMPOSITION

the content of an external file, all attempts to replicate this mechanism during this thesis

were unsuccessful leading to an error where the interpreter does not recognize the given

syntax. Therefore, according to the aforementioned definition of mixins, Decorator is the

default choice for this purpose.

Family Polymorphism

Family polymorphism [10] is a programming language feature that allows us to express

and manage multi-object relations while ensuring both the flexibility of using any of

an unbounded number of families and the safety guarantee that families will not be

mixed. By providing an interface for creating families of related objects, it allows for

the use of several classes and several method implementations but still ensures that the

chosen method implementation is always appropriate for the actual object. In doing so,

it can be said that the family polymorphism mechanism shares the exact same purpose as

the Abstract Factory design pattern and. Octave does not have direct support for family
polymorphism however, similarly to what is observed in Section 3.3, its utility in this

language can be put into question.

Double Dispatch

The Visitor pattern emulates double dispatch [13], a feature based on dynamic binding

and the overloading of methods, which consists of the selection of different functions

dynamically based on the runtime types of two objects, the object where the method is

called and the object passed as argument.

Looking at Section 3.7 and the differences between the Java and Octave implementa-

tions of the Visitor pattern, it can be said that double dispatch is not a relevant concept

in Octave due to the lack of type-checking.

53

CHAPTER 4. ANALYSIS ON OBJECT-ORIENTED PROGRAMMING IN OCTAVE

4.5 OO Feature Comparison with Java

This section presents a table presenting some object-oriented features mentioned in this

thesis and whether Octave and Java have direct support for it.

OO Feature Java Octave
Interfaces Yes No
Abstract Classes Yes No
Method Overloading Yes Yes
Static Methods Yes Yes
Static Variables Yes No
Class Member Access Rights Yes Yes
Nested Classes Yes No
Inheritance Yes Yes
Multiple Inheritance No Yes
Mixins Yes No
Polymorphism Yes No
Data Structure Polymorphism Yes No
Duck-typing No Yes
Class/File Packaging Yes No
Exception/Error Handling Yes Yes

Table 4.1: OO feature comparison between Java and Octave

4.6 Summing Up

Throughout Chapter 3, the design pattern implementations point out various missing

features in the OO aspect of Octave. While Octave does provide some support for object-

oriented programming, clearly that is not the primary focus of the language, and it is

unsuited for complex OOP applications.

Java is present throughout this thesis, as the standard that Octave is being compared

to regarding object-oriented programming and, as one of the most widely known pro-

gramming languages for OOP, it serves as an appropriate benchmark for the analysis of

Octave’s object-oriented features, as can be seen in Section 4.5.

The introduction of classdef classes was a great improvement over the “old style”

classes, having a much closer behaviour to the classes found in full-fledged OOP lan-

guages, but Octave still has too limited support for classes and objects. As a programming

language, Octave is a good study case for the object-oriented paradigm and presents some

interesting possibilities, especially for its behaviour as a dynamic language and its use of

“duck-typing” but, as seen in this chapter from Section 4.1 to Section 4.4, its implementa-

tion of essential OOP concepts is not extensive enough and it would be challenging to use

Octave to develop an elegant and efficient system that can comply with the “separation

of concerns” principle.

54

5

Related Work

In this section, relevant studies related to the topic addressed in this thesis are presented,

either by sharing the same concept of using design pattern implementation to evaluate

the capabilities of a programming language, as seen in Section 5.1, or providing im-

portant and helpful information about design patterns, object-oriented programming or

modularity and composition like the works mentioned in Section 5.2.

5.1 Design Patterns, Object-Oriented Programming Languages

and Modularity

Baumgartner et al [1] focus on the connection between the efficiency of design patterns

and the available mechanisms in the programming languages used to implement them.

Starting from the observation that when a language lacks the necessary supporting con-

structs to implement a design pattern, said implementation may become distorted or

overly complicated, and this paper attempts to find idiomatic ways of working around

constraints of the implementation language. In this work, the features they indicate as

particularly useful for object-oriented languages are the language constructs interface,

object, and class and the mechanisms interface conformance, code reuse, lexical scoping,

and multimethod dispatch. As well as the separation of the subtyping and code-reuse

aspects of inheritance.

Lopez-Herrejon et al [15] evaluate five technologies considering their support for

modularization and composition of features, namely AspectJ, Hyper/J, Jiazzi, Scala and

AHEAD. Taking the concept of product-line design and a variant of the expression prob-

lem as base, they propose a set of technology-independent properties that feature modules

should exhibit and suggest an abstract model of feature composition that is technology-

independent and that relates compositional reasoning with algebraic reasoning.

55

CHAPTER 5. RELATED WORK

Pedersen [23] aims to determine the impact of implementation language on code qual-

ity for implementations based on the GoF design patterns by comparing the implementa-

tions of the Composite, Prototype, Adapter and Decorator patterns in Python, JavaScript,

C#, Go and Smalltalk. Evaluating these cases with a wide set of software quality metrics,

Petersen found differences in the quality of the implementation amongst languages and

similarities between Python and JavaScript as well as between C#, Go and Smalltalk, al-

though for the latter set of languages only the size metrics showed resemblance. In this

paper, it is also determined that there are mechanisms capable of increasing the quality

of a design pattern implementation, namely flexible typing and inheritance schemes, low

notation and/or definition overhead, protected attribute visibility and the possession of

a toolkit capable of solving the same issues that the design patterns address.

5.2 Design Pattern Implementation in Other Languages

Hannemann et al [12] (HK) present AspectJ implementations of the GoF design patterns,

achieving modularity improvements, in comparison with their Java counterparts, in 17

of 23 cases through the chosen criteria of code locality, reusability, composability, and

(un)pluggability. The level of improvement varies and is directly correlated to the pres-

ence of crosscutting structure in the patterns. These improvements are demonstrated

through the observations that the pattern implementations are more localized and there-

fore more comprehensible and, in several cases reusable. AspectJ implementations of

the patterns are also sometimes composable. In addition, they provide an anchor for

improved documentation of the code.

Using a different aspect-oriented language, Rajan [24] describes the implementations

in the Eos language of all 23 GoF patterns to analyse the effect of new programming lan-

guage constructs on these implementations, taking as reference the scenarios provided by

Hannemann and Kiczales in the aforementioned work and presents a comparative anal-

ysis of results using the same modularity properties. The Eos implementation showed

improvement in the case of 7 out of 23 design patterns compared to the AspectJ imple-

mentation while performing at the same level for the remaining 16 patterns. Rajan claims

the improvements concerning his implementations are mainly manifested in being able

to realize the intent of the design patterns more clearly.

Building on the two previous studies, the paper by Monteiro et al [17] presents the

implementation of the GoF patterns in the Object Teams programming language (OT/J),

an aspect-oriented language backwards compatible with Java. They proceed to compare

it with Java and AspectJ collections of implementations, namely the ones provided by

Hannemann et al for both languages and a Java collection written by James Cooper [5].

The results show that OT/J achieves notably better results in regard to flexible module ex-

tensibility, composition at the instance level and enclosing multiple pattern participants

into a larger, cohesive module.

56

5.2. DESIGN PATTERN IMPLEMENTATION IN OTHER LANGUAGES

Schmager et al [25] also aim to evaluate language through the implementation of

design patterns, in this case the Go language when it was still in its early stages (only

one year after release). While also using the framework HotDraw, this study highlights

Go-specific features such as embedding and interface inference and how they can be used

to successfully implement all the 23 GoF patterns, despite the differences in object model

between Go and most object-oriented languages.

57

Bibliography

[1] G. Baumgartner, K. Laufer, and V. J. Rego. “On the interaction of object-oriented

design patterns and programming languages”. In: (1996) (cit. on p. 55).

[2] K. Beck. “Using pattern languages for object-oriented programs”. In: http://c2.
com/doc/oopsla87. html (1987) (cit. on p. 17).

[3] G. Bracha and W. Cook. “Mixin-based inheritance”. In: ACM Sigplan Notices 25.10

(1990), pp. 303–311 (cit. on p. 52).

[4] Y. Cai and S. Huynh. “An evolution model for software modularity assessment”. In:

Fifth International Workshop on Software Quality (WoSQ’07: ICSE Workshops 2007).
IEEE. 2007, pp. 3–3 (cit. on p. 51).

[5] J. W. Cooper. “Java design patterns: a tutorial”. In: (2000) (cit. on pp. 3, 19, 56).

[6] Duck typing. Last Accessed: 2023-03-27. Feb. 2023. url: https://en.wikipedia.

org/wiki/Duck_typing (cit. on p. 7).

[7] J. W. Eaton, D. Bateman, and S. Hauberg. “Gnu octave”. In: GNU Octave (2013)

(cit. on pp. 1, 7, 10).

[8] J. W. Eaton, D. Bateman, S. Hauberg, et al. Gnu octave. Network thoery London,

1997 (cit. on p. 6).

[9] B. Eckel. “Thinking in Patterns Revision 0.9”. In: http://www. pythoncriticalmass.
com/downloads/TIPatterns-0.9. zip (2003) (cit. on p. 19).

[10] E. Ernst. “Family polymorphism”. In: European Conference on Object-Oriented
Programming. Springer. 2001, pp. 303–326 (cit. on p. 53).

[11] E. Gamma et al. Design patterns: elements of reusable object-oriented software. Pearson

Deutschland GmbH, 1995 (cit. on pp. 1, 17–19).

[12] J. Hannemann and G. Kiczales. “Design pattern implementation in Java and As-

pectJ”. In: Proceedings of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications. 2002, pp. 161–173 (cit. on pp. 3,

56).

58

https://en.wikipedia.org/wiki/Duck_typing
https://en.wikipedia.org/wiki/Duck_typing

BIBLIOGRAPHY

[13] D. H. Ingalls. “A simple technique for handling multiple polymorphism”. In:

Conference proceedings on Object-oriented programming systems, languages and appli-
cations. 1986, pp. 347–349 (cit. on p. 53).

[14] S. Krishnamurthi, M. Felleisen, and D. P. Friedman. “Synthesizing object-oriented

and functional design to promote re-use”. In: European Conference on Object-
Oriented Programming. Springer. 1998, pp. 91–113 (cit. on p. 44).

[15] R. E. Lopez-Herrejon, D. Batory, and W. Cook. “Evaluating support for features in

advanced modularization technologies”. In: European Conference on Object-Oriented
Programming. Springer. 2005, pp. 169–194 (cit. on p. 55).

[16] B. Meyer. Object-oriented software construction. Vol. 2. Prentice hall Englewood

Cliffs, 1997 (cit. on pp. 1, 52).

[17] M. P. Monteiro and J. Gomes. “Implementing design patterns in Object Teams”. In:

Software: Practice and Experience 43.12 (2013), pp. 1519–1551 (cit. on pp. 3, 56).

[18] M. Mützel. Octave Discourse Forum - Static properties in classdef objects. Last Ac-

cessed: 2022-11-14. Oct. 2022. url: https://octave.discourse.group/t/

static-properties-in-classdef-objects/3442 (cit. on p. 33).

[19] Octave Online. Last Accessed: 2022-07-14. url: https://octave-online.net/

(cit. on p. 16).

[20] Octave Wiki - Classdef. Last Accessed: 2023-02-14. url: https://wiki.octave.

org/Classdef (cit. on pp. 10, 21).

[21] J. Palsberg and C. B. Jay. “The essence of the visitor pattern”. In: Proceedings. The
Twenty-Second Annual International Computer Software and Applications Conference
(Compsac’98)(Cat. No. 98CB 36241). IEEE. 1998, pp. 9–15 (cit. on p. 44).

[22] D. L. Parnas. “On the criteria to be used in decomposing systems into modules”. In:

Pioneers and their contributions to software engineering. Springer, 1972, pp. 479–498

(cit. on pp. 2, 51).

[23] K. B. Pedersen. “How Implementation Language Affects Design Patterns: A Com-

parison of Gang of Four Design Pattern Implementations in Different Languages”.

MA thesis. 2019 (cit. on p. 56).

[24] H. Rajan. “Design pattern implementations in Eos”. In: Proceedings of the 14th
Conference on Pattern Languages of Programs. 2007, pp. 1–11 (cit. on p. 56).

[25] F. Schmager, N. Cameron, and J. Noble. “GoHotDraw: Evaluating the Go program-

ming language with design patterns”. In: Evaluation and usability of programming
languages and tools. 2010, pp. 1–6 (cit. on p. 57).

[26] K. Sethi et al. “From retrospect to prospect: Assessing modularity and stabil-

ity from software architecture”. In: 2009 Joint Working IEEE/IFIP Conference on
Software Architecture & European Conference on Software Architecture. IEEE. 2009,

pp. 269–272 (cit. on p. 51).

59

https://octave.discourse.group/t/static-properties-in-classdef-objects/3442
https://octave.discourse.group/t/static-properties-in-classdef-objects/3442
https://octave-online.net/
https://wiki.octave.org/Classdef
https://wiki.octave.org/Classdef

BIBLIOGRAPHY

[27] A. Shvets. “Dive Into Design Patterns”. In: Refactoring. Guru (2018) (cit. on pp. 22,

29, 39).

[28] P. Wadler et al. “The expression problem”. In: Posted on the Java Genericity mailing
list (1998) (cit. on p. 44).

[29] A. Weber. Octave Wiki - UIcontrols. Last Accessed: 2022-10-14. Aug. 2017. url:

https://wiki.octave.org/Uicontrols (cit. on p. 15).

[30] M. Zenger and M. Odersky. “Extensible algebraic datatypes with defaults”. In:

Proceedings of the sixth ACM SIGPLAN international conference on Functional pro-
gramming. 2001, pp. 241–252 (cit. on p. 44).

[31] M. Zenger and M. Odersky. “Implementing extensible compilers”. In: ECOOP
workshop on multiparadigm programming with object-oriented languages. Citeseer.

2001 (cit. on p. 44).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 60).

60

https://wiki.octave.org/Uicontrols
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	Front Matter
	Cover
	Front Page
	Copyright
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms

	1 Introduction
	1.1 Context and Description
	1.2 Motivation
	1.3 Objectives and Expected Contributions
	1.4 Research Questions
	1.5 Terminology Used in This Thesis
	1.6 Document Structure

	2 Octave
	2.1 Octave Introduction
	2.1.1 Introduction to Numerical Computation
	2.1.2 Octave Overview and Capabilities
	2.1.3 Octave Language Properties

	2.2 Basic Syntax
	2.2.1 Basic Input Guidelines
	2.2.2 Variables
	2.2.3 Data Types
	2.2.4 Functions and Arguments
	2.2.5 Errors and Warnings

	2.3 Octave’s Object-Oriented Features
	2.3.1 ``Old Style'' Classes and Classdef Classes
	2.3.2 Creating a Class
	2.3.3 Class Member Access Rights
	2.3.4 Overloading and Object Precedence
	2.3.5 Object Identity
	2.3.6 Inheritance

	2.4 Octave's Graphics Features
	2.5 Helpful Information
	2.5.1 Packages and Extensions
	2.5.2 IDE/GUI Survey
	2.5.3 Forums and Other Sources of Information

	3 Octave Design Patterns Implementations
	3.1 Design Patterns
	3.1.1 Gang-of-Four Design Patterns

	3.2 Introduction to the Design Pattern Implementations
	3.3 Interfaces and Abstract Classes
	3.3.1 Abstract Factory

	3.4 Polymorphism in Data Structures
	3.4.1 Observer

	3.5 Singleton and Static Properties
	3.6 Wrappers
	3.6.1 Adapter and Façade
	3.6.2 Decorator and Proxy

	3.7 Visitor and the Expression Problem
	3.7.1 The Expression Problem

	3.8 Noteworthy remarks
	3.8.1 Memento and Nested Classes
	3.8.2 Iterator and the For-loop
	3.8.3 Broader Notes on the Octave Implementations

	4 Analysis on Object-Oriented Programming in Octave
	4.1 Abstraction
	4.2 Encapsulation
	4.3 Polymorphism and Duck-Typing
	4.4 Modularity and Module Composition
	4.4.1 Modularity in Octave
	4.4.2 Modularity Mechanisms

	4.5 OO Feature Comparison with Java
	4.6 Summing Up

	5 Related Work
	5.1 Design Patterns, Object-Oriented Programming Languages and Modularity
	5.2 Design Pattern Implementation in Other Languages

	Bibliography
	Back Matter
	Back Cover

