
A Work Project, presented as part of the requirements for the award of a Master's degree in

Business Analytics from the Nova School of Business and Economics.

FORECASTING OIL & GAS ETFS’ PRICE MOVEMENTS

USING CONVOLUTIONAL NEURAL NETWORKS

44832 - Marc Serafin

Work project carried out under the supervision of:

Patrícia Xufre Gonçalves da Silva Casqueiro

17-12-2021

Abstract

Thanks to advances in processing power, we have seen the revival of artificial intelligence after

the 1980s, and algorithmic trading has become quite popular in the last two decades. In this

paper, a convolutional neural network for image recognition was constructed. The CNN

recognises patterns in 2D images generated from financial data and classifies them as BUY,

SELL or HOLD. The analysed ETF, XLE, is from the Oil & Gas sector. The results are

evaluated computationally and financially and compared to other industries. Overall, the CNN

approach seems promising but generally, it was not possible to outperform the Buy&Hold

strategy.

Keywords: Forecasting, Deep Learning, Technical Analysis, Convolutional Neural Networks, Oil & Gas Industry

Table of Content

List of Figures .. vii

List of Tables ... viii

List of Abbreviations .. v

1 Introduction ... 6

2 Trading and Time-Series Forecasting ... 8

2.1 Trading.. 8

2.2 Introduction Financial Time Series Forecasting ... 10

2.3 Technical Analysis with CNNs .. 13

3 Fundamentals and Methodology ... 15

3.1 Introduction to CNNs ... 15

3.1.1 Definitions.. 15

3.1.2 Key Components of CNNs .. 17

3.2 Labelling Approach .. 19

3.3 Feature Engineering .. 20

3.3.1 Feature Creation ... 21

3.5 Image construction ... 24

3.5.1 Sezer’s feature pixelation .. 24

3.6 Generic Model Architecture ... 24

3.7 Performance Evaluation ... 35

3.7.1 Computational Evaluation ... 35

3.7.2 Financial Evaluation .. 38

4 Industry implementation ... 41

4.1 Industry analysis ... 41

4.1.2 Influences ... 41

iv

4.1.3 O&G ETFs ... 42

4.1.4 ETF Selection... 43

4.2 Data Prepocessing, feature engineering and image encoding 45

4.2.2 Labelling .. 46

4.2.3 Feature engineering .. 46

4.2.4 Image creation .. 49

4.3 Final Model architecture ... 50

4.4 Performance evaluation .. 51

4.4.1 Test data ... 51

4.4.2 Model performance .. 51

4.4.3 Financial Performance ... 53

4.5 Limitations and Implications .. 54

5 Performance Comparison and Discussion... 56

6. Limitations and Outlook... 59

6.1 Limitations .. 59

6.2 Outlook ... 60

References .. 61

Appendix .. 73

v

List of Abbreviations

Abbreviation Meaning

ADF Augmented Dickey-Fuller test

ANN Artificial Neural Network

B&H Buy & Hold

CNN Convolutional Neural Network

ETF Exchange Traded Funds

GAF Gramian Angular Fields

GADF Gramian Angular Differentiation Field

GASF Gramian Angular Summation Field

MTF Markov Transition Fields

NN Neural Network

PXL (method) Sezer’s feature pixelation (method)

RF Random Forest

SVR Support Vector Regression

 6

1 Introduction

For technical traders, i.e. practitioners of technical analysis, image analysis plays a vital role in

their day-to-day decision-making, given that many decision are based on patterns and trends

that can be observed in the stock charts (Drakopoulou 2015, 4). However, when looking at how

algorithmic trading, i.e. trading supported by computational resources, is done in practice, one

can see very little use of image recognition; instead, other algorithmic trading techniques are

primarily in use. Due to various factors, such as the emergence of significantly better hardware

and new computational approaches, the last 10 to 15 years have seen critical advances in Deep

Learning, especially recently in the field of image recognition and analysis using convolutional

neural networks (CNNs). CNNs have proven increasingly good at recognising and

distinguishing objects.

Thus, a critical question that needs to be asked is how these advances can be leveraged as

applications to trading, simulating the trader's decision process based on image analysis with

the help of CNNs. There has already been research on the application of CNNs to forecasting

stock price movements, however, within a limited scope. The objective of this paper is to apply

CNNs to different industries to determine whether there are differences in the performance and

usability of CNNs used for stock price predictions across various industries

For this purpose, image recognition with CNNs will be applied to the following six industries

and comparisons be made:

o Information Technology

o Healthcare

o Industrials

o Energy

o Oil & gas

o Financial Services

7

To achieve a high degree of representativeness for each sector and reduce idiosyncratic factors

inherent to individual companies, industry ETFs consisting of a large variety of companies will

be used as assets to forecast on, instead of using individual company shares. Moreover, only

ETFs covering the U.S. market will be used to increase comparability across the industries,

avoiding differences in geographic factors as much as possible.

The paper is structured in the following way:

Firstly, an introduction to trading and stock analysis approaches is given to provide context on

how CNNs fit into the scope of stock analysis and time-series forecasting.

Secondly, a high-level introduction to CNNs will be given, and the general methodology used

in this paper will be explained.

The third part focuses on applying an established methodology to the specific industries,

respective adjustments to the methods to account for particular characteristics of the industries

and the results obtained for each sector.

In the fourth, the best-performing hyperparameters as well as model performances across the

different industries will be compared and discussed and conclusions on the added value of the

application of CNNs to price movement forecasts will be drawn.

The fifth and last part focuses on limitations faced by the taken approach and provides an

outlook on potential further research topics.

8

2 Trading and Time-Series Forecasting

The following section will provide a brief introduction to trading and its two essential stock

analysis approaches and a high-level overview of time-series forecasting methods, in order to

place CNNs in the context of trading and price forecasting.

2.1 Trading

There are several types of trading that can be distinguished based on factors such as the

frequency of executed trades, the period of an asset and the underlying method used to

determine which assets to buy and sell (Banton 2021). However, regardless of the trading type

they are applying, traders have the common key objective of maximising their profits.

Traditionally, the most common groups of traders are so-called technical and fundamental

traders, based on the stock analysis approach they use: technical and fundamental analysis, the

most important general analysis tools in the realm of investing and trading (Petrusheva and

Jordanoski 2016, 30). They represent two approaches to determining what shares investors

should buy or sell to maximise their profit. Technical analysis also gives indications on the

optimal time to execute the transaction (Petrusheva and Jordanoski 2016, 31). Although their

overall objective is identical, they differ significantly in the assumptions they are based on, the

methods they employ and the time horizons for which they are used (Petrusheva and Jordanoski

2016, 30). While fundamental analysis focuses on the economic forces of supply and demand

that cause prices to change (Murphy 1999, 5) and aims at determining the fair value of corporate

securities by studying company-specific key value-drivers, so-called fundamentals, such as a

company's earnings, its risks factors, growth rates and competitive positioning (Lev and

Thiagarajan 1993, 190), technical analysis focuses solely on the share price and trading

volumes as the two key determinants to forecast future price developments (Petrusheva and

Jordanoski 2016, 28).

9

The main premise of fundamental analysis is that each asset has a fair value that it will always

converge to in the long run, but it may not always reflect this fair value due to temporary

mispricing in the markets (Lev and Thiagarajan 1993, 191). The fair value can be determined

by an investor through the analysis of the underlying fundamentals, such as the company's

financial statements, the overall economic state of the markets the company operates in as well

as developments of the industry the company belongs to. An investor can then generate profits

by identifying mispriced assets, capitalising on the eventual price corrections that will take

place in the market according to the basic premise of fundamental analysis (Abad, Thore and

Laffarga 2004, 231).

The core belief of technical analysis, on the other hand, is that all factors affecting the stock

price (fundamentals, political factors, environmental factors, etc.) are already reflected in the

price of that stock, which results in the reasoning that only price and volume data need to be

analysed to forecast future price movements (Murphy 1999, 2).

A second and third concept essential to technical analysis are the assumptions that prices move

in trends and that history repeats itself (Murphy 1999, 2). With these two assumptions in place,

an investor can take investment decisions based on patterns that worked well in the past (history

repeats itself) and can generate profits by identifying trends in early stages of their development

to trade in accordance with the direction of these trends (Murphy 1999, 3).

Regarding the time horizons for which the two methods are used, it can be stated that

fundamental analysis commonly uses longer periods when analysing the underlying data and is

mostly used for longer-term investment decisions, and as such, is often used by investors

focusing on value investing (Petrusheva and Jordanoski 2016, 27). Technical analysis, on the

other hand, focuses stronger on short-term data (price and volume data for single a day, few

days or few weeks) and is often used for the identification of assets that can be traded to generate

10

profits in the short term, i.e., stocks whose prices will experience significant changes in the near

future (Petrusheva and Jordanoski 2016, 28).

Fama’s Efficient Market Theory (1970) states that none of the investment analysis approaches

will allow an investor to generate returns that exceed the market return, given that any new

information entering the market will be immediately included in the asset price. Following this

statement, technical analysis, i.e. forecasting future price movements based on past price

developments, will not generate excess returns above the market. This paper will analyse to

which degree the Efficient Market Theory holds true when applying CNNs to the general

technical analysis approach, given that they are potentially able to recognise patterns that

traditional technical analysis methods miss.

2.2 Introduction Financial Time Series Forecasting

While technical and fundamental analysis have traditionally been the two most widely used

approaches to stock price forecasting, emerging technologies have opened up new possibilities

to stock price analysis, a type of data that is difficult to predict as financial markets are volatile,

representing non-linear, fluctuating, and high noise data (Thakkar & Chaudhari 2021, 1). The

use of machine learning and deep learning approaches has gained increasing attention due to

their ability to detect localised data features at multiple levels. This trend also opens new

possibilities for investment strategies and changes the nature of investing. Relying on deep

learning for investment makes trading and investment decisions more rational than investment

decisions based on human knowledge and experience, with the latter tending to result in more

subjective and biased decisions (Yang et al. 2019, 387). Different forecasting types which

might be of prediction interest include either the movement direction of the stock market to

predict local extreme values or turning points to recognise the perfect point to either sell or

11

buy (classification problem) or the magnitude of change of the market movement including

future prices (regression problem) (Peng et al. 2021, 10).

Before the rise of deep learning applications for financial problems, conservative statistical

methods were used. The logistic regression as one popular classification model provides an

easy understanding and interpretation of the results. However, these traditional statistic models

assume linearity – thus, representing a crucial limitation (Peng et al. 2021,14).

Deep Artificial neural networks as linear models with pieces of nonlinearity bypass these

problems by permitting the learning of more abstract knowledge representations. Nonetheless,

by working with more complex structures and hence more features, they are more prone to

overfitting. (Peng et al. 2021, 15).

Extensive research has been conducted about possible other approaches

for making predictions in trading. Among others, popular approaches include Artificial Neural

Networks (ANNs), Support Vector Regressions (SVRs), Logistic regressions and Decision

Trees (Huang et al. 2019, 134). Examples of extensive research conducted in this area can be

found in several research papers. An overview is presented in Table 1.

Even though all these approaches seem promising, CNN’s have a big advantage: They are able

to work well with data having a spatial relationship (Brownlee 2018).

A necessary requirement to fulfill is the transformation of data into images before being able to

make predictions though, as information is retrieved via multi-scale localized spatial features

(Chen et al. 2021, 69) (Xu et al. 2015). They have proven themselves to be highly successful

for stock predictions, as stock data can be illustrated as a 2D matrix (Chen and He 2018).

12

Authors Goal Approach Main Results

Moghaddam
and Esfandyari (2016)

Predict daily
NASDAQ
stock
exchange
returns

ANN R² values above 0.9

Nayak et al. (2016,
441 et sqq.)

Predict daily
and monthly
movements of
the stock
(whether they
go up or
down)

Decision Boosted
Tree

Outperformed a SVM and a
Logistic Regression Model

Henrique et al. (2018,
183)

Predict stock
prices from
different
markets

Support Vector
Regression

Performed especially well
for market periods with lower
market volatility and for a
strategy with updating the
model periodically

Patel et al. (2015,
2171)

Predict Indian
Stock market
indices

Two-stage fusion
approach between
ANNs, Random
Forest Models
and SVRs combined
to hybrid models:
SVR–ANN, SVR–
RF and SVR–SVR.
They were
afterwards compared
to single models

Results of this study have
shown ANNs and RFs
to better perform in a hybrid
model including
SVRs rather than as single
models. The best overall
performance was shown by
the SVR-ANN model

Vijh et al. (2020, 605) Forecast next
day stock
closing prices

Random Forests
and an ANN

They indicate strong results.
Overall, in this case, the ANN
performed better than the RF

Table 1 Overview Financial Time Series Research

Source: Own illustration

Within the last years, different approaches to financial time series forecasting with CNNs have

been addressed. Cohen, Balch, and Veloso (2020) have created various charts based on open,

high, low, and closing prices to forecast trading signals using a CNN. The results demonstrate

that the transformation of the time series into images is beneficial for the recognition of trading

signals. Sezer and Ozbayoglu (2018) on the other hand create images based on 15 technical

13

indicators over a period of 15 days (15x15 image). Using these images and a CNN-TA

architecture, the research team was able to forecast entry and exit points (buy, hold, sell)

comparatively better than with other models. Arratia and Sepúlveda (2020) make use of

recurrence plots and data of 12-month periods to predict the direction of the S&P 500 the

following month. Their CNN model attains an accuracy of 63 percent. The most promising and

cited methods were proposed by Wang and Oates (2015). They used Gramian Angular Fields

and Markov Transition Fields to transform time series into images and ran a tiled CNN for

classification. Due to the promising results, the method was adapted and further developed in

other research papers.

2.3 Technical Analysis with CNNs

While there has already been research on the applications of CNNs to stock price prediction, a

status review shows that there is still hardly any practical use of this approach. This paper will

focus on expanding the state of current research, evaluating if there are differences across

industries in terms of computational and financial performance of investment strategies based

on CNNs. Before going into details on CNNs and the applied methodology, it is important to

understand why CNNs are highly applicable to technical analysis. There are two key factors

making the combination of technical analysis with the usage of convolutional neural networks

an attractive investment research topic: Firstly, the assumption that no knowledge about factors

and trends affecting the markets is necessary as they are already included in the price (Murphy

1999, 4). Technicians know that there are many reasons why markets move, but do not assume

it necessary to know these reasons in the forecasting process (Murphy 1999, 4). Based on these

assumptions, it is sufficient to use visual representations (such as charts) of past price

movements as a base to predict future price developments. Consequently, it appears reasonable

to use CNNs to analyse the information contained in these visual representations without having

14

to include further external information that might be difficult to represent in an appropriate

visual input for a CNN.

Secondly, experienced technicians increasingly take intuitive decisions based on the patterns

they see in the charts (Murphy 1999, 6). They learn to intuitively recognise the meaning of a

variety of patterns, i.e., what price movements tend to be preceded by what type of patterns in

the charts. Seen from a high level, CNN's have a very similar approach to learning. Through

different layers within the neural network, a CNN learns to recognise patterns in the images it

is trained on, giving it the tools to make inferences from these patterns to the classification of

that image, in order to be able to classify unknown images. Thus, it seems reasonable to assume

that a CNN can be trained to predict future price movements based on patterns in past data in

the same way that a human technician would.

15

3 Fundamentals and Methodology

This chapter provides the theoretical and methodological basis for the thesis. First, an

understanding of the concepts of neural and convolutional neural networks is given. Then,

several preprocessing methods are considered, and an overview of the generic model

architecture and its evaluation methods are presented. The approach in this chapter is to outline

widely established perspectives regarding the concepts presented in the current research. It is

continuously reasoned which methodology is used for this work. Definitions that are

appropriate for this thesis are also provided.

3.1 Introduction to CNNs

The following section provides an introduction to the deep learning algorithms used in this

work. The terminology related to neural and convolutional neural networks and their essential

structure are described. The associated components are presented to provide a deeper

understanding of how the systems operate.

3.1.1 Definitions

Definition Neural Network

Neural networks (NNs) are ‘computerised intelligent systems’ (Thakkar and Chaudhari

2021, 2) that aim to recognise patterns and learn relationships in data by

simulating the signal exchange between biological neurons in the human brain. A neural

network consists of different layers of artificial neurons, also called units, which are

interconnected and can be divided into input units, hidden units, and output units (Kröse and

Van der Smagt 1993, 15). A set of input units receives information and applies certain

weights, which are translated into an output by the network through an activation function

(Kröse and Van der Smagt 1993, 15). Output units signal how the network reacts to the learned

and processed information. Between input and output units there are one or more layers

16

of hidden units, which perform nonlinear transformations of the inputs (Kröse and Van der

Smagt 1993, 15). A neural network is considered fully connected if each hidden unit is

connected to each unit in the layers on both sides of the network. Supervised neural networks

learn continuously through a feedback process called backpropagation (Chollet 2017, 11). In

this iterative process, the actual output is compared to the expected output of the network. The

difference is used to adjust the weights between the units in the network, that is, the strength of

the connections, so that inputs match the correct output (Chollet 2017, 52). Neural networks

continuously learn and improve with examples enabling it to respond accordingly to an entirely

new set of inputs. They are particularly popular when modeling highly nonlinear systems or

when unexpected changes in input data may occur. Many applications have employed neural

networks to simulate unknown relationships between various parameters based on a vast set of

examples. Classifications of handwritten digits, speech recognition, and stock price prediction

are examples of effective neural network applications (Keijsers 2010).

Neural networks are usually divided into artificial neural network (ANN) and deep neural

network (DNN). A deep neural network is a type of artificial neural network, with multiple

hidden layers between the input and output layers (Thakkar and Chaudhari 2021, 2). The

increasing volumes of structured and unstructured data, cause deep learning systems, i.e., neural

networks with many layers, to become increasingly popular.

Definition Convolutional Neural Network

According to Dertat (2017), convolutional neural networks (CNN) are the most popular type of

deep neural networks. They are mainly applied in pattern and image

recognition problems since they are specifically designed to process pixel

data (Sezer and Ozbayoglu 2018). However, they are also useful for natural language

processing and prediction purposes. A convolutional neural network comprises five types of

17

layers: input, convolution, pooling, fully connected, and output layers. Each layer serves a

specific purpose and is explained in more detail in Section 3.1.2.

CNNs are generally considered superior to regular NNs due to their automatic feature selection

strategy. Using CNNs, it is now possible to build larger models to solve more complex

problems, which was infeasible with conventional NNs (Albawi, Mohammed, and Al-

Zawi 2017, 1). Their deep learning structure with multiple hidden layers allows them to abstract

a larger number of features (Dertat 2017). By analysing the data in greater detail, a higher

accuracy of the output can be achieved. The automatic feature extraction of CNNs, achieved by

mapping input data to output, is especially useful for extracting complex patterns from non-

linear data (Thakkar and Chaudhari 2021, 2). This property is particularly relevant for stock

market predictions, since stock-based data is highly complex and non-linear (Thakkar and

Chaudhari, 2021, 2,7). A CNN uses convolution to learn the local features of the image, and

thus manages to preserve the local connectivity or spatial relationships between pixels, making

them particularly suitable for extracting relevant information at low computational cost (Arratia

and Sepúlveda, 2020).

3.1.2 Key Components of CNNs

Convolutional layer

The convolutional layers are the most important building block in a CNN. Mathematically,

convolution refers to an integration function that indicates the amount of overlap of a function

shifting over another function. In other words, the convolution describes filters that slide

horizontally and vertically over the input array (our picture) and calculate the dot product at

each taken step. In this context, the filter, also called kernel, refers to a set of weights, usually

a 3*3 matrix, that extracts features (Chollet 2018, 127-128). The so-called stride describes the

step size, with which the filter slides over the picture, meaning that increasing the stride will

18

result in a lower-dimensional output (Ghosh et al. 2020, 8). The output of the convolution is a

feature map which stores information about the occurrence of features in a matrix along with

how well it complements the kernel. In Figure 1 the convolution operation is demonstared. In

this example a 3*3 filter is applied on a 6*6 input array with stride equaling one which results

in a 4*4 feature map. Applying zero-padding, i.e., padding the input array with zeros, can be

used to further control the size of the output array (O'Shea and Nash 2015, 7).

Figure 1 Illustration of the Convolution Operation.

Source: Own illustration

The CNN can contain one or more convolutional layers, each of them allowing through filters

to identify local patterns, which can later be recognised all over unseen pictures. The filters

behave similarly to the human eye and learn patterns hierarchically. The deeper the

convolution layer, i.e., the more convolutional layers applied, the more detailed and higher-

level features can be extracted from the image (Tsai, Chen, and Wang 2018, 942).

Pooling Layer

The pooling layer has the purpose to reduce the dimensionality of the convolved feature map.

This reduces the number of features and the complexity of the model while persevering the

most dominant features. For the pooling operation a kernel, usually of dimensionality 2*2,

slides over the feature maps and applies a pooling technique. The most used pooling technique

is max pooling, meaning to extract the maximum value for each window. Similar to the

convolutional layer, the stride size can be adapted. In the pooling layer the usual stride size is

19

two (Chollet 2018, 127). An example of the max pooling operation with a 2*2 window and

stride two is shown in Figure 2.

Figure 2 Exemplary Max Pooling Operation

Source: Own illustration

Fully connected layer

Before the created feature can be fed to a fully connected layer, the outputs of the final

convolution or pooling operation are flattened. The following fully-connected layer is analogue

to a simple feed-forward ANN, meaning that each neuron in this layer is connected with each

neuron in the adjacent layers (Ghosh et al. 2020, 9). This step is essential to allow the model to

generalise local patterns. The output of the fully connected layer is a representation of the

likelihood of an input belonging to a certain class.

Descriptions of hyperparameters used for the CNN in this paper can be found in section 3.6.

3.2 Labelling Approach

To train the CNN, labelled training images are required. The approach used in this project opts

to frame the predictions as a multi-class classification instead of a regression (i.e., predicting

continuous return values). The three classes used to label observations in this project are BUY

(label = 1), SELL (label = 2) and HOLD (label = 0), based on the price movement during the

period after the observation.

3.2.1 Sezer’s hill-valley labelling method

20

Following the approach of Sezer et al. (2018) for financial time series forecasting, the same

labelling method will be applied hereafter. The method is directly derived from the pseudocode

published in the paper. Essentially, the algorithm considers a sliding window of the close price.

Whenever the close price of the middle day of the sliding window (here window = 11 days,

middle day = day 6) is at the lowest point - in a valley - the label is classified as BUY. Similarly,

if the price of the middle day is on a hill, the label is classified as SELL. Any other data point

is classified as HOLD (Sezer and Ozbayoglu 2018, 528).

A notable feature of this labelling approach is that it is more generous than other transaction

labelling approaches: On a test dataset, it produced close to 80 % HOLD classifications. That

means that the model would trade about once every week. Generally, this is a transaction-

intensive strategy and more suitable for swing trading. Similar to day trading, swing trading

involves trading strategies that require trades every few days, instead of intra-day trades (Pan

2004, 476). If we extended the length of the sliding window this would most likely change. But

the generosity of the algorithm has an advantage. Since there are a few percent more BUY and

SELL samples, the class imbalance is not quite as high. A few more samples can help the CNN

make a more accurate classification. Also, the CNN should be able to classify easier since the

labelling algorithm is relatively simple and therefore should not be quite as difficult for the

network to approximate.

3.3 Feature Engineering

Feature Engineering is essential to improve Machine Learning or AI models. In the following

all pre-processing steps are explained and the reasoning for the applied methodologies

provided.

21

3.3.1 Feature Creation

Technical Analysis is confined to the analysis of trends and movements in the market (Yang

et al. 2019). These indicators are used to predict future stock movements.

In principle, a distinction is made between two categories of technical indicators: leading and

lagging indicators. Leading indicators lead the price movement as they attempt to predict the

trend in a time series (Fernández-Blanco et al. 2008, 1851). Lagging indicators are trend-

following indicators that provide delayed feedback as they lag the market (Bogullu, Dagli, and

Enke 2002, 722).

Indicators from both categories belong to one of four following types of technical indicators

(Salkar et al. 2021, 2).

1. Trend indicators show the direction in which the market is moving along with the

strength of the trend by comparing historical prices to a baseline (Salkar et al. 2021, 2).

They typically move between low and high values. The trend can be either downward

(bearish), upward (bullish), or sideways (no clear direction) (Peachavanish 2016, 2).

2. Momentum indicators assess the speed of price fluctuations in a time series by

comparing current and previous closing prices (Salkar et al. 2021, 2).

3. Volatility indicators measure the speed of price movement and provide information on

how much the price changes in a given period (Salkar et al. 2021, 2).

4. Volume indicators measures the number of shares traded in a stock and thus provide

an indication of the strength of the market (Salkar et al. 2021, 2).

The use of technical analysis indicators as input features for neural network systems is

established in research (Arratia and Sepúlveda 2020; Sezer, Ozbayoglu, and Dogdu 2017; Sezer

and Ozbayoglu 2018; Sim, Kim, and Ahn 2019; Thakkar and Chaudhari 2021). The selection

of technical indicators was primarily based on their frequency in related studies as analyzed in

literature (Chen et al. 2021, 69; Peng et al. 2021, 5–6; Sezer and Ozbayoglu 2018, 529). In this

22

paper, three trend, sixteen momentum indicators and one volume indicator are combined with

different parameter settings. Most technical indicators possess a user defined interval as input,

affecting the indicators output (Shynkevich et al., 2017, 72). The interval typically refers to the

number of raw observations or periods processed by the indicator (Shynkevich et al., 2017, 72).

The higher the interval, the more data will be processed. For the three trend indicators, i.e., the

moving averages, three different window sizes were chosen respectively. For the sixteen

momentum indicators and the volume indicator, one set of parameters was chosen for each. A

total of 20 technical indicators are calculated based on the prices of the used ETF. Table 1

provides an overview of the selected technical indicators. Definitions and calculations for each

indicator can be found in Appendix A.

23

Technical Indicator

Type No. of

Features calculated

Parameters:

interval (in days) = [6, 7, 8, …,

27]

Tr
en

d

M
om

en
tu

m

V
ol

um
e

Simple moving average (SMA) x 21 interval

Exponential moving average (EMA) x 21 interval
Hull moving average (HMA) x 21 interval

Rate of change (ROC) x 21 interval

Relative Strength Index (RSI) x 21 interval

Know Sure Thing Oscillator (KST) x 21 As defined in appendix.

Williams % Range x 21 interval

Commodity Channel Index (CCI) x 21 interval
Directional Movement Index (DMI) x 21 interval

Stochastic Oscilator (SO) x 21 interval

Smoothed Relative Strength Index (SRSI) x 21 interval

Internal Bar Strength (IBS) x 1 None

Triple exponential average (TRIX) x 21 interval
Force index (FI) x 21 interval

Bollinger Bands x 21 interval

Chaikin Money Flow CMF x 21 interval

Detrend Price Oscillator (DPO) x 21 interval

Money Flow Index (MFI) x 21 interval
Ease of Movement (EOM) x 21 interval

Chande Momentum Oscillator (CMO) x 21 interval

Table 2 Technical Indicators and their Parameter Settings

Source: Own illustration

Along with the technical indicators, a set of additional variables are included in the set of

predictors for the convolutional neural network. Those include the high, low, opening and

closing prices along with the volume traded of the respective ETF, the closing prices of the

crude oil price and the exchange rate of Euro and U.S. Dollar.

24

3.5 Image construction

3.5.1 Sezer’s feature pixelation

Following Sezer et al. (2018), the images are constructed according to their pixelation method.

Similar to their labelling approach, the concept is quite intuitive. First, the values of the 225

technical indicators are scaled between 0 and 1. Afterwards, they are transformed from a 1-D

array per data point to a 2-D array of the form 15 x 15 per data point. Since images have three

channels, one for each RGB channel, we copy the array twice and stack the copies along the

third axis, resulting in a greyscale image with a shape of 15 x 15 x 3 per data point. Now each

feature represents one pixel.

The features must be organised to create interpretable images in the last step. All selected

features are arranged side by side according to their name and interval. Moreover, trend

indicators are close to each other, momentum and volume indicators likewise. This way, the

images can form non-random shapes that the CNN can detect. (Sezer and Ozbayoglu 2018,

529).

3.6 Generic Model Architecture

Data set splitting and cross validation for time-series data

An important focus when developing any machine learning model is the generalisation of the

model, i.e. how well it deals with data it has not been trained on (Bergmeir and Benítez 2012,

197). To evaluate the performance of a model on unknown data, parts of the available data set

will be held back as validation and test sets, such that the model will not be trained on all

available data. This produces two problems: firstly, the model would most likely show a better

performance if trained on the full data set, and secondly, by just evaluating the performance on

sample, this performance measurement might not be representative of the true model

performance. To solve these problems, in most cases k-fold cross-validation will be used for

25

training and performance evaluation. All available data is randomly split into k sets. The model

training and performance evaluation is carried k times, where every set is used once as the test

set, and the other sets being used for model training. This way, the method produces k

independent performance measurements, while all available data is used for both training and

testing. By averaging the performance measurement across the k iterations, a relatively robust

measurement can be obtained, which is much more representative of the true model

performance than a single measurement (Bergmeir and Benítez 2012, 197).

However, the standard k-fold cross-validation cannot be applied to time-series data. The data

set cannot be split at random into training and validation sets as there is no sense to using data

from the future to forecast data from the past (Herman-Safar 2021). In other words, the temporal

dependency betweens data points needs to be preserved during training and testing. A solution

to this is Rolling Forward Cross-Validation, also referred to as Time Series Split Cross-

Validation.

The data set is split into k consecutive subsets, while preserving the continuity of the data, i.e.

the data set is not split at random, but based on its temporal order. Then, rolling forward cross-

validation method will iterate consecutively over the k subsets. In the first iteration, the first

subset will be used for training and the second one for validation. In the second iteration, the

first subsets will be used for training and the third one for validation. These iterations continue

until the first k-1 subsets are used for training and the k-th subset for validation (Herman-Safar

2021).

Figure 3 Rolling Forward Cross-Validation

26

Source: Own illustration

The described cross validation approach is applied to find the best model architecture with the

respective optimal hyper-parameters as specified below. After estimating the best model, the

chosen model is evaluated with the test set. To retain the temporal dependencies, the test set

constitutes consecutive data points like the validation sets used for the cross validation. This

test set includes 20% of all data, accounting for approximately the last two years of data.

Model Architecture

As a Convolutional Neural Network this paper proposes a rather simple CNN architecture as

displayed in Figure 4. This basic architecture includes the input layer, two convolutional layers

with 64 and 128 filters, one pooling layer, one fully connected layer as well as one output layer.

Figure 4 Model Architecture

Source: Own illustration

In order to make the network more flexible to adapt to different ETFs and industries, a

hyperparameter search is added. Since a gridsearch would be computationally too expensive, a

randomized hayperparameter search is utilized. The search includes an optional dropout layer

as well as an optional batch normalization layer and optional class weights. Regarding the

convolutional operation different hyperparameter settings for the kernel size, the activation

function (output layer exluded due to multiclass classification problem softmax is used in each

model) and padding are included. For the pooling operation a parameter to control the type of

pooling, either use max or average pooling, is used. Lastly, the optimizer, learning rate,

27

batchsize, the number of epochs and weather balanced class weights should be used are

included in the randomized search (Table 3). The following section explains the parameters in

more detail.

Category Hyperparameter Parameter distribution

Additional
Layer

Batch Normalization include; exclude

Drop Out (incl. Rate) exclude; include with rate 0.25; include with rate 0.5

Convolution Kernel Size 3*3; 5*5

Activation Function relu; sigmoid; softmax

Padding same; valid

Pooling Pooling Type max pooling, average pooling

Compilation Optimizer Adam; RMSprop; SGD

Learning Rate 0.0001; 0.001; 0.01

Training Epochs 100, 200

Batch Size 16; 32; 64

Table 3 Parameter Distribution for Randomized Search

28

Activation functions

Activation functions in neural networks essentially take a single value and perform a

mathematical operation on it. When the function converges to a specific value, the neuron

'triggers' the next one, hence the name activation function. This concept derives from neurons

in the human brain and is also the reason for the framework's name: neural network.

ReLu is the most commonly used activation function, introduced by LeCun et al. (1998). Its

purpose is to increase the non-linearity of the neural network. Despite being simple, ReLu is a

non-linear function. Because there is no parameter inside ReLu (the formula can be seen in

Table 4), it also does not require parameter-backpropagation. By setting all negative values to

0, a neuron only actives for images that actually possess the pattern (Wu 2017, 10).

As a result, this particular activation function is well suited for recognising objects and complex

patterns. The introduction of ReLu in CNNs significantly reduced the difficulty of learning and

improved the accuracy of the networks (Wu 2017, 9).

Before ReLu, Sigmoid was one of the most used non-linear transformations. Sigmoid

transforms to values between 0 and 1 and is best suited for input data that itself is between 0

and 1 (Ittiyavirah 2013, 312). However in many cases, it performs poorer than ReLu (Wu 2017,

11). A commonly used activation function for the output layer is Softmax, which is a

combination of many Sigmoid functions. Even in networks with ReLu in the inner layer, this is

often the preferred output layer for probabilities or multi-class-classifications. In the latter,

probability for each class will be the output (Ittiyavirah 2013, 314)

Tanh looks quite similar to sigmoid; however, it is centred around the origin of the coordinate

system. That is why it can depict values between -1 and 1 instead of 0 and 1. Its gradient is also

steeper in comparison since it has to reach twice as many y values for the same x value.

Generally, Tanh is preferred to sigmoid because here, the gradient is not as restricted in one

direction and also because it is origin-centred (Sharma 2020, 313). Even though ReLu is the

29

standard in most CNNs nowadays, it can only outperform Tanh in deeper neural networks. That

means when there are many layers, and problems such as the vanishing gradients occur (Godin

2018, 8).

Activation Function Formula
ReLu f(x) = max⁡(0,𝑥) (1.1)

Sigmoid
𝑓(𝑥) =

1
1 + exp⁡(−𝑥)

(1.2)

Tanh
𝑓(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(1.3)

Table 4 Activation Functions and Formulas

Source: Sharma 2020, 313

As depicted in Figure 5, sigmoid and tanh both converge towards specific values, either -1, 0

or 1. This convergence leads to 'vanishing gradients' if the absolute values are too large. ReLu,

on the other hand, erases all negative values and keeps the positive ones as they are, leading to

'exploding gradients' (Lee and Song 2019, 593).

Figure 5 Activation Functions

Source: Own illustration based on Lee and Song 2019, 594

Padding

(Zero) padding allows to control the spatial size of the output of a CNN by adding an appropriate

number of pixels (with zero values) to the outer edges of the input feature map before it is

processed by the kernel (Chollet 2017, 126). Padding is used when it is desirable to obtain an

output feature map with the same spatial dimensions as the input. Therefore, the padding

30

parameter is set to same (Chollet 2017, 126; Lee and Song 2019, 608). Otherwise, valid means

that no padding is performed and that the size of the feature maps gradually decreases along the

convolutional layers (Lee and Song 2019, 599). In case the input feature map has a size of (n,n)

and the filters have a size of (m,m), then a single output feature map is of size (n-m+1, n-m+1)

(Lee and Song 2019, 599).

Pooling

Pooling layers are used to reduce model complexity, limit computation in the network and

control issues of overfitting by reducing the spatial size of a feature map. The pooling layer

partitions the input into a set of non-overlapping two-dimensional spaces. The pixel values of

each subregion are then mapped according to the type of downsampling operator chosen: In

max pooling, the values are summarized into one maximum value, whereas in case of average

pooling the mean of the activations in the previous layer is computed for each subregion. (Lee

and Song 2019, 598).

Batch Normalization

Normalization methods are used to increase the similarity of samples and hence, to improve

generalization, i.e., the models’ ability to perform well to unseen data. However, it is

insufficient to normalize the data in the preprocessing stage, before feeding it into the model,

only. Normalization is not guaranteed for each output after each transformation operated by the

CNN since the mean and variance can change over time. (Chollet 2017, 260). The batch

normalization layer, typically used after a convolutional layer (Chollet 2017, 261), ensures to

continuously normalize the data during the training process by standardizing the values in each

layer to mean 0 and variance 1 before the activation layers (Ioffe and Szegedy 2015). By making

data standardization an integral part of the model architecture, faster and more stable training

is possible, allowing the model to improve prediction accuracy (Lee and Song 2019, 609;

Santurkar et al. 2018). Due to the implementation of batch normalization layers, higher learning

31

rates can be used (Ioffe and Szegedy 2015; V. Thakkar, Tewary, and Chakraborty 2018, 2) and

deeper networks can be built (Chollet 2017, 260).

Dropout

Regularisation is a method that is particularly relevant for preventing overfitting and improving

generalization of deep learning models. Dropout is one of the most frequently applied

regularisation techniques for CNNs (Srivastava et al. 2014). It randomly drops out input

features during the training process, meaning it sets some of the weights connected to a given

percentage of nodes in a CNN to zero (Chollet 2017, 109; 216). The dropout rate refers to the

fraction of features that are replaced with zero during training and lies usually between 0.2 and

0.5. For each update in each training epoch, the removed units are not included in the

calculations of the current step (Krizhevsky, Sutskever, and Hinton 2017). Dropout is not

applied to the test or validation set. In this case, the output of a layer is scaled down by a factor

equal to the dropout rate to account for the fact that there are more units than during training.

(Chollet 2017, 109).

Epochs

An epoch refers to the one-time training of the CNN with the entire dataset (Sharma 2017).

However, since the size of an epoch is usually too large to be fed to the network in a single

batch, it is divided into several smaller batches (Chollet 2017, 34). To improve the training

process of the model, the number of epochs is increased, i.e., the data is passed to the same

CNN multiple times (Sharma 2017). This way, the average loss on the training set is decreased

until the optimal curve is met, more precisely, until the network begins to overfit the training

data (Wu 2017, 7).

32

Optimisers

Optimisers are used to tweak the model’s parameters during training. In Table 5, the used

optimisers and their respective formulas can be inspected.

Adam, short for Adaptive Momentum Estimation, is one of the most widely used optimisation

algorithms in CNNs. Adam is an iterative algorithm that adapts the model variables. Research

has shown that Adam is effective for optimizing large groups of problems (Zhang and Gouza

2018, 1). However, for non-convex objective functions, it has shortcomings as Adam cannot

promise to find a global optimum, as its iterative optimization might get stuck in a local

optimum. Therefore it cannot be described as a particular robust optimizer for noisy data (Zhang

and Gouza 2018, 2).

Stochastic gradient descent (SGD) is probably the most widely used optimizer for CNNs (Wu

2017, 7). Generally, it is a fast algorithm that only performs small computations at each descent.

As many image recognition problems are based on noisy data, it is a fitting choice. Choosing

the correct learning rate offers a solution to the problem of getting stuck in local optima. When

the dataset is heterogenous it can get unstable, and the loss decreases on average. SGD chooses

samples at random throughout an epoch, so some samples might get chosen twice and some not

at all (Lee and Song 2019, 597).

RMSProp or Root Mean Squared Propagation has become one of the more popular gradient

algorithms beyond SGD. It has been used for very deep CNNs for computer vision and in some

notable cases, outperformed SGD and Adam (Mukkamala and Hein 2017, 3). Even though it

was designed for deep neural networks, it performs quite well with noisy data in deep learning

and hence for CNNs. It also offers opportunities like SGD to escape the local optima and

contains the Adagrad optimiser when tuned with the correct parameters (Mukkamala and Hein

2017, 2)

33

Activation Function Formula

RMSProp

𝐸(𝑔2) = ⁡𝛽𝐸(𝑔2)𝑡−1 + (1 − 𝛽)(
𝐶
𝑤)

2

𝑤𝑡 = ⁡𝑤𝑡−1 −
𝜂

√𝐸(𝑔2)
𝐶
𝑤

𝑤ℎ𝑒𝑟𝑒⁡𝐸(𝑔2) = 𝑀𝑜𝑣𝑖𝑛𝑔⁡𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑜𝑓⁡𝑠𝑞𝑢𝑎𝑟𝑒𝑑⁡𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠

⁡𝐶
𝑤
=gradient of cost function with respect to the weight

𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑒⁡

𝛽 = 𝑚𝑜𝑣𝑖𝑛𝑔⁡𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟⁡

𝑎𝑛𝑑⁡𝜃 = 𝑐𝑜𝑠𝑡⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

Adam

𝑚𝑡 = ⁡𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

𝑣𝑡 = ⁡ 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2
𝑡

𝑀𝑡 = ⁡
𝑚𝑡

1 − 𝛽1𝑡

𝑉𝑡 = ⁡
𝑣𝑡

1 − 𝛽2𝑡

𝜃𝑡+1 = ⁡𝜃𝑡 −
𝜂

√𝑉𝑡 + 𝜖
𝑀𝑡

𝑊𝑖𝑡ℎ⁡𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑒,𝑚 = 𝑝𝑎𝑠𝑡⁡𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

⁡𝑣 = 𝑝𝑎𝑠𝑡⁡𝑠𝑞𝑢𝑎𝑟𝑒⁡𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝛽 = 𝑑𝑒𝑐𝑎𝑦⁡𝑟𝑎𝑡𝑒

⁡𝜖 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔⁡𝑡𝑒𝑟𝑚⁡⁡𝑎𝑛𝑑⁡𝜃 = 𝑐𝑜𝑠𝑡⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Stochastic Gradient

Descent

𝑤 = 𝑤 − 𝜂Δ𝑄(𝑤)

⁡𝑄(𝑤) =⁡
1
𝑛∑Δ𝑄𝑖(𝑤)

𝑛

𝑖=1

𝑤ℎ𝑒𝑟𝑒⁡𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑒

(𝑤) = 𝑙𝑜𝑠𝑠⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛⁡

𝑄𝑤 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

(2.16)

(2.27)

(2.18)

(2.19)

(2.20)

Table 5 Optimisers and Formulas

Source: (Zhang and Gouza 2018, 2); (Kingma and Ba 2014, 2); Hinton, Srivastava, and Swersky 2012, 20

Batch size

Batch size denotes the number of input samples in a single batch used for a training iteration

(Lee and Song 2019, 595). The choice of batch size affects the batch normalization process as

34

the technique depends on the number of samples in a batch. In general, smaller batch sizes have

been found to provide a faster training process and a better generalization compared to larger

batch sizes (Shen 2018).

Learning rate

The learning rate describes the extent to how much the model weights are changed during the

training process (Brownlee 2019). It takes on a small positive value. The smaller the learning

rate, the smaller the changes made at each iteration and thus the higher the number of training

epochs necessary. Vice versa, a higher learning rate implies a more rapid adaptation and

therefore requires less training epochs. Tuning this hyperparameter is essential as a too high

learning rate can cause the model to converge quickly on a suboptimal solution, whereas a too

low learning rate can cause the training process to become unstable and time-consuming

(Brownlee 2019; Lee and Song 2019, 596).

Kernel size

The kernel_size is a key hyperparameter of the convolutional layer referring to the size of the

kernel, a matrix moving over the input data, as explained in section 3.1.2. The input image is

separated into sub-regions by the convolutional layer to have a fixed size set by the kernel size.

The kernel size refers to the height x width of the filter mask. (Lee and Song 2019, 597 – 598).

Sample weights

The sample weights are used for computation between layers in a model. The algorithm

computes the amounts of true values in the test set and adjusts the weights accordingly. The

aim is to find an optimal set of weights ensuring a minimum loss during the network’s learning.

Sample or class weights are commonly used for imbalanced datasets. (Lee and Song 2019, 593).

35

3.7 Performance Evaluation

To evaluate our model, computational and financial performance measures need to be

distinguished.

3.7.1 Computational Evaluation

As the stock price movement prediction represents a classification problem, evaluation for

computational performance is feasible with the means of common evaluation metrics derived

from the confusion matrix (Chen et al. 2021, 77). For assessing and comparing the

computational performance of the constructed models, six performance metrics will be

considered.

Accuracy

Accuracy as the first metric being used represents one of the simplest and most intuitive

methods, showing how many classes have been predicted correctly.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + ⁡𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(3.1)

The accuracy metric can convey false impression of the performance of a model if classes are

unbalanced. However, high accuracy is very important in the context of trading since every

misclassification should be seen as a wrong trading decision and thus implying loss.

Precision

Precision is the second metric being used. Class-specific precision measures for each class

separately the percentage of correct predictions, i.e. the percentage of instances predicted as the

respective class that actually belong to the class. Precision values are bound between 0 and 1.

Moreover, the macro-averaged and weighted-averaged precision show the average model

precision across all classes.

36

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (3.2)

The type I error is penalized by the precision metric, resulting in lower values with a high type

I error. Applied to trading, precision puts more emphasis on risk aversion, showing how many

bad investment choices were impeded or how many trading decisions were predicted correctly.

For buying transactions to prevent the trader to falsely buy although the asset might not further

rise in value, resulting in a loss of value if the price goes down. Falsely predicting to sell will

lead to missing out on possible returns if the asset is further rising in value.

Recall

Recall is a measure of how well the model identifies instances of a specific class in the data set.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (3.3)

A high recall means that the model is strong at identifying actual instances of its respective

class, whereas a low recall means that the model is only able to identify a small percentage of

instances of the class. Recall values are bound between 0 and 1. Recall is related to the presence

of type II error (Peng et al. 2021, 23). In the context of trading, a higher recall implies not

missing out on potentially profitable trading opportunities, indicating how many truly positive

instances were marked as such and to decrease the number of false positives (Peng et al. 2021,

23). Related to a real-world trading scenario, a high recall leads to less falsely not-buying

decisions although it would have been profitable. In terms of selling triggers, it denotes to not

overlooking selling opportunities, preventing to hold the asset when the price will decrease.

37

F1-score

The F1-score balances precision and recall and provides a harmonic mid-point between recall

and precision as it is granting a high value only if both values are performing well (Peng et al.

2021, 23–24). It harmonises indications on how precise the model is as a classifier, i.e. how

many instances are correctly predicted, and how robust the model is, i.e. how good it is at

identifying instances of the class.This metric can be very useful for strongly unbalanced

predictions as the accuracy measure can indicate misleading results (Peng et al. 2021, 24).

However, it is less intuitive as it is combining two metrics and is representing a poor resource

allocation in this trading context. To gain detailed insights into the quality of the model,

precision and recall should be checked separately and relative importance should be placed on

recall and precision based on the specific underlying problem (Peng et al. 2021, 24).

Application of the performance measures

In the context of computational efficiency, the focus will lie on accuracy, since each prediction

represents a trading decision that results in financial loss if misclassified. Since the datasets are

unbalanced (Hold class is dominating each ETF) it is important to make sure that all classes

will be predicted while minimizing the false positive rate. Therefore, the precision, recall and

F1-score will help to get more insights into the models' prediction behaviour.

To ensure cross-industry comparability, a similar methodology including a similar labelling and

model approach is used, except for the Oil and Gas sector. The acquired results will be

compared and analysed based on the previously mentioned computational common

performance measures, as well as on the basis of financial evaluation approaches which will be

discussed in the next part.

38

3.7.2 Financial Evaluation

General approach

As the general approach to the financial evaluation of the model performance, a method

suggested by Sezer, Ozbayoglu and Dogdu (2017) will be used. In this approach, the asset is

bought, sold or held in accordance with its predicted label:

• If the prediction is Buy, the asset will be bought at current market price.

• If the prediction is Sell, the asset will be sold at current market price. Any existing long

position will be closed, i.e. held shares sold, and a short position will be entered, i.e.

shares will be short-sold.

• If the prediction is Hold, no operation is performed at that point in time.

Equal to Sezer, Ozbayoglu and Dogdu's approach, a starting capital of 10,000 USD will be used

and each transaction (Buy and Sell) will be made using the full capital available at that moment.

If the same label is repeated directly after one another in a sequence, only the first label will be

considered as a trigger and the respective transaction executed. Repeat labels will be ignored

until a new label comes up. At every executed transaction, trading fees will be considered to

achieve a near-real scenario.

For the evaluation, the total return over the test period will be used. Given that each individual

industry analysis will be applied to the same time period, and as such the test period will be

equal, the comparability of industries with this metric is given.

Basic premises and assumptions

For the approach to be consistent, a number of clear assumptions need to be stated:

1. Trading fees: Trading fees stay constant during the whole test period.

2. Execution price: As the prediction will be based made on the data available at the end

of day t for day t +1, the closing price of day t will be used as execution price.

39

3. Fractional shares: The approach assumes that fractional shares can be purchased. As

such, the number of shares purchased or sold in transaction is equal to the total available

capital divided by the execution price.

4. Short-sell limit: A short-sell limit of 20% of available capital is set, such that in a short-

sell transaction, the short position cannot exceed 20% of the total capital available after

closing the long position at the moment of a sell signal.

Benchmarks strategies

As benchmarks to compare the financial performance of the model to, the following strategies

will be used:

1. Simple, passive Buy & Hold strategy: the asset is bought at the beginning of the test

period and held until its end. The total return is determined by comparing the value of

the investment at the end of the observation period to the start capital.

2. Simple Moving Average Cross-over Strategy: One shorter-term simple moving

average and one longer-term simple moving average will be applied. In line with

technical trading rules, it is considered a buy signal when the shorter-term moving

average exceeds, i.e. crosses over, the longer-term moving average (Mitchell 2021). On

the other hand, it is considered a sell signal when the shorter-term moving average

crosses below the longer-term moving average (Mitchell 2021). For the application in

this methodology, in case of a buy signal, the asset will be bought at market price. In

case of a sell signal, any existing long position will be closed at market price and a short

position in line with the short-selling limit will be entered.

The best performing moving average combination will be found through a‘simplified

randomised search based on the training data set.

40

3. Mean-Reversion Strategy: The mean-reversion trading strategy is built on the premise

that prices eventually will revert back towards their mean (Chen 2021). Upper and lower

Bollinger bands are built around the asset price in a distance that is a function of the

assets volatility measured as its standard deviation and a simple moving average is

constructed (Chen 2021). On the one hand, if the asset price is below the Lower

Bollinger Band, the asset is considered oversold and as such undervalued and expected

to increase, reverting back towards its mean. This results in a buy signal, meaning that

a long position should be built. On the other hand, the if the asset price is above the

Upper Bollinger Band, the asset is considered overbought and overvalued and expected

to decrease (Chen 2021). This results in a sell signal, meaning that any long position

should be exited and a short position opened. In addition, for the strategy approach used

in this paper moments where the price crosses the SMA are considered as unclear

signals, signalling the investor to go neutral, i.e. to close any long or short position.

41

4 Industry implementation

4.1 Industry analysis

The oil and gas industry (in the following referred to as the O&G) can be described as a sub-

sector of the energy industry, which also includes renewable energy. O&G companies are active

in various fields of energy production: Exploration, production, refining, shipping, and

wholesale.The large companies operate in all areas, while smaller companies usually focus on

one part of the chain. For this study we will deal exclusively with American companies to make

comparisons across industries uniform (Longwell 2002, 2).

In the U.S., the most significant companies, Exxon Mobil Corp and Chevron Corp, are almost

twice the size of the next biggest player in terms of market capitalization (Statista 2021).

4.1.2 Influences

The dependency of O&G companies on global oil demand is demonstrated by the negative oil

price during the COVID-19 pandemic, when the entire global economy was forced to shut down

its production. During this time, oil price had a drop to a negative value in April 2020. Since

then, the oil price has recovered and is now at a six-year high. This trend has been influenced

primarily by the OPEC, the Organization of Petroleum Exporting Countries, which has curbed

its supply throughout the year (EIA 2021). OPEC and other oil producing companies are

another factor to consider for the U.S. O&G industry. Besides global demand, global supply

also affects oil prices. When prices are high, even fracking is very economical. On the other

hand, high prices accelerate the transition to electric vehicles and other energy sources in the

near future. Therefore, the industry keeps the price between these certain thresholds (Mittal

2021, 3).

42

For O&G companies looking to engage in mergers and acquisitions, ESG scores are becoming

increasingly important. Investors in the industry prefer low-carbon barrels, but only a small

percentage of transactions to date show the ESG trend (Enverus 2021).

Today, O&G business models are evolving to empower the new energy era and diversification

of revenue streams. Some oilfield service providers have already moved to cloud computing

and other digital services (Peuch 2020, 1). Other companies are diversifying their revenues by

up to 40% by serving renewable energy producers (Bagga 2021, 1). However, given

decarbonization targets, oil producers need to focus on and expand in the low-emissions sector.

This shift could also bring opportunities. In fuel retail, a new generation of motorists is moving

away from brand and price toward user-friendly and convenience-oriented retailers (Mittal

2021, 6). These customers happily engage with services beyond refueling and are willing to pay

for the added convenience.

A challenge for the industry is attracting talent. After the price drop in 2020, many workers lost

their jobs. Today, only 50% of those lost jobs have been filled. These types of developments

damages the industry reputation for job security, while the current core workforce blocks

positions for younger talent (Mittal 2021, 6).

4.1.3 O&G ETFs

Three exchange-traded funds were selected for further analysis to find the best fit for

forecasting. These ETFs are XLE, IYE and VDN. The shortlist was based on country,

composition, and sheer size. These exchange traded funds are american, consist of only O&G

companies, and are the largest available within these constraints. After high-level shortlisting,

the ETF with the best statistical characteristics is selected for forecasting, taking into account

43

level of asset, trade volume, return, flow and underlying index or asset class. In general, higher

numbers for these variables mean better conditions.

4.1.4 ETF Selection

ETFs should have a reasonable amount of assets for other investors to consider them a good

choice. If there is limited demand from other investors, liquidity will be tight and large spreads

may occur. This is highly undesirable, especially for algorithmic trading, which is best suited

for day or swing trading. These types of trading tend demand frequent transactions and require

reliable numbers and low transaction costs (Puelz, Carvalho, and Hahn 2015, 2). Therefore, it

seems safe to say that the higher the assets of an ETF, the better. As shown in Table 6, XLE

has the most assets at $27.8 billion, compared to $3 billion and $6 billion.

In general, higher trading volume in an exchange-traded fund means it is more liquid and more

likely to have a tighter bid-ask spread, regardless of asset class. For popular ETFs, trading

volume amounts to millions of shares per day. High volume means there are many buyers and

sellers and it is easier to exit the desired price. Again, XLE has the highest trading volume.

As depicted in Table 7, the highest average daily return is offered by XLE, although not by a

large margin. In terms of standard deviations, minimums and maximums, all ETFs offer very

similar performance.

Having a much higher average volume, it is not surprising that XLE has the highest average

daily flow. Only the standard deviation is higher, but that is expected with a much higher

average. In addition, XLE is also the oldest exchange traded fund with the most data points.

The underlying asset class ideentical for all three ETFs, and in general, the composites are for

the most part identical, although their individual proportions vary. Addressing diversification,

all ETFs are focused on a specific industry (oil and gas) and a specific country (USA). This is

not ideal from an investor's point of view, but necessary for the comparison.

44

In all statistics, XLE had the best prerequisites for a forecast. Therefore, it is used for the CNN.

Since all ETFs offer large volumes and good prerequisites, any of them would be a suitable

choice, nevertheless.

Symbol Name Net Assets
90-day Avg.

Volume

Largest

composite

2nd largest

composite

3rd largest

composite

XLE

Energy

Select Sector

SPDR Fund

$27.8B 29,498,182
Exxon Mobil

Corp 22.54%

Chevron Corp

20.27%

Schlumberger

NV 4.61%

IYE
iShares U.S.

Energy ETF
$2.4B 2,394,910

Exxon Mobil

Corp 20.29%

Chevron Corp

16.53%

ConocoPhillips

7.74%

VDE
Vanguard

Energy ETF
$6.0B 1,183,901

Exxon Mobil

Corp 20.30%

Chevron Corp

16.39%

ConocoPhillips

7.02%

Table 6: Overview of possible Oil & Gas ETFs

Symbol Mean Std. Dev. Min Max Start year End year

Flows in 1000s

XLE 14816.82 12870.16 7.40 99356.70 1998 2021

IYE 713.96 1211.55 0,00 42603.50 2000 2021

VDE 320.29 440.99 0.40 5786.70 2004 2021

Returns

XLE 0.000239 0.018454 -0.224910 0.152503 1998 2021

IYE 0.000189 0.018530 -0.231433 0.218133 2000 2021

VDE 0.000187 0.019400 -0.220964 0.157834 2004 2021

Table 7: Summary statistics of Oil and Gas ETFS

daily Flows (daily trading volumes in 1000 shares as flows) and daily log returns of closing prices (logPt - logPt-1)

45

4.2 Data Prepocessing, feature engineering and image encoding

Figure 6: Overview of the implemented methodology

As shown in Figure 6, six steps are performed for the classification model. Retrieving the data,

labelling, feature engineering, image generation, training the CNN, and performance

evaluation.

4.2.1 XLE Dataset

The XLE data set was retrieved from Fidelity, accessed 11/21/2021. The data points range from

the inception date of 1998 to 2021, and consist of daily data points of opening, closing,

minimum and maximum prices, and trading volume per day. The data was divided into a

training set and a test set. The training data ranged from 2004 to 2018 and was later used for

46

rolling forward cross validation. The test set covered one year (2019) to provide a reasonable

time frame for measuring financial performance.

4.2.2 Labelling

As previously described, Sezer’s valley-hill method is used for labelling. Here, valleys of a

window of 11 days are classified as SELL, hills as BUY and all other data points as HOLD.

One problem with this approach is that the CNN has problems differentiating between the valley

data points and points close to the valleys, resulting in many BUY signals when it should be

HOLD. This might be specific to the XLE dataset but it is a problem when we want the same

amount of SELL and BUY signals. On the test set, the true HOLD signals amount to

approximately 90% which seems much but in practice, this still means one transaction every

10 days. Therefore this ratio seems adequate.

4.2.3 Feature engineering

Figure 7: Index Closing prices

47

Feature calculation

To forecast the XLE ETF, the data was supplemented with the crude oil price CL=F and the

Euro/USD exchange rate EURUSD=X. The choice for these indexes was based on the strong

dependency of the industry on oil in general, and the strong internationality of the market. The

closing prices of the three indices are illustrated in Figure 7. Instead of using only the open and

close prices, the same technical indicators were calculated for CL=F and EURUSD=X as for

the XLE itself. The full list of indicators can be found in Appendix A. Ultimately, this resulted

in a 3% increase in accuracy compared to the model relying only on the XLE data and the

open/close prices of the other two indices. The additional data sets are the most notable

difference from the approach of Sezer et al. (2018).

Feature selection

The feature selection algorithm mentioned in 3.3.3 selected the best 225 features from the 1212

features for the image, as shown in Table 8. 157 of the 225 features were selected from the XLE

dataset. The strongest indicators here are RSI, WR, CCI, FI, and EOM, with all 21 features

included in the image. 75 features originate from the CL=F dataset, with FI and EOM being the

strongest indicators. For the EURUSD=X dataset, only two DMI features were included in the

algorithm. More information can be found in Table 8.

Assuming that an O&G ETF is dependent on the oil price, this distribution is not surprising.

Intuitively, O&G stock prices would be more responsive to a decline in oil prices than vice

versa, so there may be a slight lag following oil price movements that justifies using this data

set for O&G forecasting. Looking at the last data set, it is interesting to see that the exchange

rate indicators are almost completely negligible in terms of statistical significance.

After selecting the characteristics, the features are re-sorted. Indicators of the same type but of

different intervals are next to each other. Moreover, they are also sorted by their category. This

48

means that trend, momentum and volume indicators are next to their type, e.g. trend next to

another trend indicator.

Features
Selected Features

from index

No. of features

calculated per

 index

 XLE EURUSD=X CL=F

Simple moving average (SMA) - - - 21

Exponential moving average (EMA) - - - 21

Hull moving average (HMA) - - - 21

Rate of change (ROC) 12 - - 21

Relative Strength Index (RSI) 21 - 11 21

Know Sure Thing Oscillator (KST) - - - 21

Williams % Range (WR) 21 - 11 21

Commodity Channel Index (CCI) 21 - 9 21

Directional Movement Index (DMI) - 2 - 21

Stochastic Oscilator (SO) 8 - - 21

Smoothed Relative Strength Index (SRSI) 4 - - 21

Internal Bar Strength (IBS) - - - 1

Triple exponential average (TRIX) - - - 21

Force index (FI) 21 - 21 21

Bollinger Bands - - - 21

Chaikin Money Flow (CMF) 6 - 2 21

Detrend Price Oscillator (DPO) 5 - - 21

Money Flow Index (MFI) 13 - - 21

Ease of Movement (EOM) 21 - 21 21

Chande Momentum Oscillator (CMO) 4 - - 21

Close - - - Raw data

Open - - - Raw data

Low - - - Raw data

High - - - Raw data

Volume - - - Raw data

Table 8: Selected features

Source: Own illustration

49

4.2.4 Image creation

Sezer's feature pixelation method described in 3.5.1 is used to create the images. Examples can

be seen in Figure 8.

The images in Figure 8 are good representations of how each class looks as an image. It is easy

to recognise lines and shapes formed by the indicators. For example, BUY usually has many

black areas, HOLD is mostly gray, and SELL has many white areas. However, not all data

points look like these representations - and this is where the difficulty for the CNN lies.

Another difficulty for the CNN is recognizing the shapes. This is addressed by sorting the pixels

in a meaningful order. From experiments with the images, one could observe that the

performance of the CNN significantly drops when we break up these shapes by shuffling the

order of the indicators.

These images are always in greyscale. This is the case because for every pixel and any given

value 𝐫, 𝐠, 𝐛⁡in the RGB channels, if 𝒓 = 𝒈 = 𝒃, the displayed colour is going to be

monochrome. Because we are simply copying the red values to the other two channels, that is

exactly the case for each pixel. Hence, the hues will not deviate from the monochrome palette.

HOLD SELL BUY

Figure 8: 15 x 15 images with features encoded in the pixels

Source: Own illustration

50

4.3 Final Model architecture

A randomised search created the model architecture with the parameters from Table 3. The final

model with the best parameters had the architecture from Figure 9:

Figure 9: Final model architecture with parameter settings, Source: Own illustration

Two convolutional layers with dimensions 15 x 15 x 32 and 15 x 15 x 64 were implemented

for iterations of the grid search. The rate for the dropout layers was 0.25, and the Max method

was chosen for pooling. Finally, a fully connected layer was added as the penultimate hidden

layer. As an activation function, ‘ReLu’ showed the inner layers' best performance, and

‘Softmax’ was chosen for the output layer. In addition, the learning rate was initialized with a

value of 0.001 but can be lowered during training by ReduceLRonPlateau. More information

about the final model architecture can be found in Appendix B. The model losses and

improvements during training can be seen in Figure 10.

Figure 10 Model loss chart

51

4.4 Performance evaluation

4.4.1 Test data

The test data consists of the year 2019 with 248 data points for each business day. A period of

one year is reasonable for financial performance evaluation. From the financial point of view,

it is crucial to have a consecutive dataset. This is due to the fact that we measure the

performance within one year. For computational model performance, these constraints would

not have been as tight. However, the same test data is used for both performance measures.

4.4.2 Model performance

 Predicted

 SELL BUY HOLD

 SELL 4 0 16

Actual BUY 0 13 3

 HOLD 16 47 198

Table 9: Confusion Matrix of test data

Total accuracy: 0.72

 SELL BUY HOLD

Recall 0.2 0.81 0.76

Precision 0.2 0.22 0.91

F1 Score 0.2 0.35 0.83

Table 10: Computational evaluation of test data

Analysing the predictive model, the first score to look at is the total accuracy. Although not

extremely high, 0.72 (as seen in Table 10) is a useful accuracy that is certainly better than a

random distribution. As expected, the model classifies the HOLD labels particularly well. This

52

is the largest class and thus should be the easiest to predict, especially since the data set is so

unbalanced.

The model is also acceptably good at predicting BUY signals. The recall value is very high at

0.81, which means that it almost never misclassifies a true BUY signal. However, it tends to

classify a disproportionate number of HOLD signals as BUY with a precision of 0.2. On closer

insepection, it seems as if it is hard for the CNN to differentiate the days close to a valley from

the valley (as previously explained in 3.5.1). That is the reason for the low precision score.

For the SELL signals, the model performs equally poorly with a value of 0.2 for Recall and

Precision. It is however at par with the BUY precision score. Again, the model has difficulty

distinguishing between data points close to the hill and the hill. This time it also misclassifies a

lot of SELLs as HOLDs, that is why it has three times fewer exit than entry signals.

For algorithmic trading, it is important to have accurate entry points, i.e. BUY and SELL. Here

it is especially important that these two are not confused with each other. Fortunately, the model

is very good at distinguishing between BUY and SELL. A look at the confusion matrix in Figure

9 shows that it can distinguish these two without any error. Thinking about real-world

applications, this fact would prevent many of the worst-case scenarios.

If we tried to catch more true positives of the BUY signals (and improve our Recall), we have

to accept that additional HOLD signals would also be classified as entry points. The problem is

that the true entry points are so few. This makes them extremely difficult to capture accurately

without creating false alarms, reducing the precision score (Sezer and Ozbayoglu 2018, 534).

Considering that stock data is predicted, the model has decent performance overall.

53

4.4.3 Financial Performance

Figure 11: Closing Prices of test set data

To measure the financial performance of the CNN, the algorithm explained in 3.7.2 is applied

to the test set, the year 2019. Figure 11 above shows the closing prices of XLE for this year.

In Table 11, we see that the Buy & Hold strategy is the clear winner with a return of 10.0%.

Typically, this strategy is hard to beat in the long run. However, over the medium term, e.g.,

one year, other strategies usually have a chance to outperform it. With SMA and MR's returns

below 5%, one could argue that this year may have been a tough year for swing trading and

non-B&H strategies. CNN came in second, and while not the best strategy, a 5.2% return is still

a good return when the asset is not on an uptrend.

The problem with this test is that the start and end dates are critical. For example, if we had

started in April 2019, Buy and Hold would have a slightly negative return and the other

algorithms, including CNN, would have a positive return.

To really test the model's performance, we would need to test many years separately and use

summary statistics on those measures to get a better idea of how robust the CNN is compared

to regular algorithms. The dilemma is that we do not have enough data to test for many years

and still have sufficient data for training.

54

CNN‘s Financial
Performance Buy & Hold Return SMA Return MR Return

5.2% 10.0% 4.8% 0,0%

Table 11: Financial performance comparison

4.5 Limitations and Implications

This approach, inspired largely by Sezer et al. (2018), shows potential but has some

shortcomings in the current implementation. The model itself needs to be optimized or trained

with additional data to improve the recall value for the SELL signals. Of course, other

improvements would also be desirable. In addition, one could argue that the underlying

labelling algorithm could also be improved. It seems to work for the data used in the original

paper by Sezer et al. (2018), but for the XLE test set, it was not the best. This could also be due

to the model making incorrect predictions. Unfortunately, this cannot be said with certainty

because there are two sources of error in this chain: the labelling algorithm itself and the model

that replicates the labels.

Furthermore, we could think about adding more datasets to the features. Using the oil price has

worked remarkably well, and perhaps other assets can help make predictions, e.g. gold. Also,

it would be helpful to train the model with more than one ETF, so we could also use more years

for backtesting the strategy. Another option would be to use minute data, which is usually not

as readily available. The XLE ETF seems to be a good choice for predictions. It is not very

volatile, and the model's accuracy suggests that modelling the labels for the CNN is a

manageable task. It would be interesting to see how this model performs on other ETFs, or how

it would perform if we trained it with data from other ETFs and tested it again on XLE. IYE or

VDE would be obvious choices, but perhaps ETFs from other sectors could benefit from this

55

model. However, the auxiliary data from the oil price and exchange rate would need to be

adjusted.

In addition, the deep learning approach to technical analysis could be combined with other

strategies. For example, natural language processing models from tweets or Reddit forums

could help identify the sentiment of other traders. Since the stock market is very psychologically

driven nowadays, this aspect should not be neglected in a successful trading strategy (Yao and

Luo 2009, 669).

Evaluating financial performance still seems to be one of the most challenging parts, so adding

more years to the test would be of limited advantage. A more advanced test strategy that

includes both long and short positions would further improve the evaluation of the model (Sezer

and Ozbayoglu 2018, 535).

56

5 Performance Comparison and Discussion

In the following section, key findings from the individual analyses conducted in part 4. will be

summarised, focusing on common findings regarding the model hyperparameters, the

computational performance of the models, and the financial performance of the models.

Common findings hyperparameters

Comparing the best-performing model parameters across the three model types (GADF, GASF

and MTF) and across the six analysed industries, several findings can be made.

Firstly, for the MTF-based models, a 5*5 kernel achieves the best performance across all

industries. For the majority of GAF-based models, i.e. GADF and GASF, a 3*3 kernel leads to

the best performance, with the exception of the Energy sector, for which a 5*5 leads to the best

performance for all three models. This tendency can be supported by the PXL-based model,

which also uses a 3*3 kernel.

Secondly, in the majority of models (17 out of 19), the Softmax and Sigmoid activation function

achieve the best performance. The ReLu activation function only leads to the best performance

for 2 of the 19 models.

Thirdly, for 5 out of the 6 ETFs applying the proposed image encoding types, average pooling

achieves the best performance for the GADF model.

Fourthly, for the majority of analysed ETFs (5 out of 6), including the class weights does not

have a positive impact on the model accuracy, i.e. models without class weights achieve a better

accuracy for these ETFs. However, this tendency is not supported by the PXL-based model.

Common findings computational performance

For the majority of industries, i.e. Information Technology, Healthcare, Energy and Financial

Services, the GADF-based model achieves a better accuracy compared to the GASF- and MTF-

based models. Moreover, for 5 out of 7 analysed ETFs, GADF achieves better weight-averaged

and macro-averaged F1-scores than both GASF and MTF.

57

For the Energy industry, it can be noted that GADF performs above the average of the other

industries, whereas the GASF and MTF perform poorly compared to the other ETF’s in terms

of computational performance. The worst model across all industries can be found within the

Healthcare models, where the MTF showed the worst performance from a computational

perspective with a weighted average F1-score of 0.34 and an accuracy of 0.3706. Among all

models and industries, predictions of the Hold class showed the most promising results, with

the only outlier found for the GASF model of the energy sector. It is also worth mentioning that

within all industries and ETF’s, with the VGT (IT sector) as an exception, class predictions

show huge discrepancies in predicting the correct class. Hence it is not possible to conclude

that a certain image encoding technique works better to predict a specific signal.

The performance evaluation of the random choice models didn’t produce any important

insights. For all industries, similar scores can be observed. Moreover, they are less performant

than all other models when comparing weighted averages with each other.

Common findings financial performance

For comparing and assessing the financial performances of the models across industries, excess

returns calculated as the absolute difference between the model return and the benchmark

strategy are being used to ensure comparability of the obtained results. Considering the average

of these excess returns, only the GADF models are able to achieve returns that exceed the Buy

& Hold strategy, i.e. to beat the return generated by the general price development of the

considered ETF. Both the GASF and MTF models have negative excess returns compared to

Buy & Hold, leaving the investor with better returns by just buying and holding the asset

compared to using a trading strategy based on the models’ predictions.

For 4 out of the 6 ETFs to which the common methodology was applied, the GADF models

outperform the Buy & Hold return, with the exception of Healthcare and Industrials. The GASF

models only outperforms the Buy & Hold return for 2 out the 6 ETFs, i.e. Healthcare and

58

Energy. Only for the Energy sector, the MTF model outperforms the Buy & Hold return.

Returns are also positive in the Oil & Gas sector, where the PXL-based method is applied.

Despite being a subset of the energy industry, the model used on the Oil & Gas sector cannot

outperform the Buy & Hold return. It is also the Energy sector where the model generates the

most impact; despite the negative price development of -8% over the test data period, all three

models are able to generate positive return between 3% and 10%. Lastly, the CNN approach

shows the poorest performance in the Industrials sector where all three models underperform

compared to the Buy & Hold strategy.

59

6. Limitations and Outlook

6.1 Limitations

Predictions for the stock market are challenging, as the stock market represents a dynamic,

volatile and very complex market based on historical data and influenced by unpredictable

events. In this research we face the problem of imbalanced classes, where the largest class is

Hold across all sectors. As a result, the predictions are dominated by the largest class -

predictions of the minor classes turn out worse, which negatively affects the overall model

performance. In addition, a comparatively small train set in combination with complex features

further complicates model development. This makes the models prone to overfitting - whereas

the inclusion of multiple train data would be advantageous. In the present approach of this

research accuracy was chosen as the most important performance measure, which is also used

for model selection. However, there are other evaluation methods that could be considered. In

particular, it is important to consider in which cases more emphasis should be placed on either

computational or financial performance. Especially with respect to the financial performance it

is important to mention that only the decisions of the next day are considered. Hence, the

prediction is related to a very short future period and makes no specific statements about longer

term behavior. A further limitation lies in the assessment of the severity in the case of

mislabeling. A wrong Buy/Sell decision has more serious negative effects than a wrong

buy/hold or sell/hold decision. In the present research a suitable performance measure is

missing - here a suitable loss function would be necessary. A further remark is to be mentioned

in the simplification of the labeling approach. If the upper and lower limits are exceeded on the

same day, the first labeling trigger decides on the label allocated to the trading day. Another

limitation can be found in the Efficient Market Theory (Fama 1970, 383). As mentioned in

section 2.1, the theory states that stock prices already reflect and have priced in all relevant

60

information. This would make a deeper analysis with additional features, such as technical

indicators, redundant, as no investment analysis technique allows investors to generate

significant excess returns above the market. However, this is refuted by the thesis that financial

markets in most cases do not react immediately to changes and new information which in turn

makes profits above the market average still possible through sufficient analysis.

6.2 Outlook

Forecasting Financial Time Series Movements using CNNs is a recent research field. For this

reason many different topics can be addressed in future research.

First, it would be interesting to test if the proposed methodology can achieve better results with

regard to different prediction horizons. These could include the prediction of price movements

within the next week or month, alternatively intraday data can be used for short-term

forecasting.

This work focuses on using technical indicators along with foreign exchange, commodity and

indices as features to feed into the CNN. However, future work could incorporate different

types of features. These could, among others, include data from the news, social media and

market segments. Moreover, machine-learning-based fundamental analysis approaches as

suggest by Cao and You (2020), e.g. for forecasting company earnings, could be included to

provide a more holistic impression on the underlying companies’ situation.

Furthermore, within the current research not all papers propose to transform the data into

stationary time series. Therefore, research regarding the necessity of stationary time series in

the context of forecasting financial time series with CNNs can be conducted. This is particularly

interesting since methods to transform non-stationary data imply information loss within the

used variables.

61

References

Abad, Cristina, Sten A. Thore, and Joaquina Laffarga. 2004. ‘Fundamental Analysis Of Stocks

By Two-Stage DEA’. Managerial And Decision Economics 25 (5): 231-241.

doi:10.1002/mde.1145.

Abdi, Hervé, and Lynne J. Williams. 2010. ‘Principal Component Analysis’. Wiley

interdisciplinary reviews: computational statistics 2(4): 433-459.

Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi. 2017. ‘Understanding of a

Convolutional Neural Network’. In 2017 International Conference on Engineering and

Technology (ICET), 1–6.

Arratia, Argimiro, and Eduardo Sepúlveda. 2020. ‘Convolutional Neural Networks, Image

Recognition and Financial Time Series Forecasting’. In Mining Data for Financial

Applications, 60–69. Cham: Springer International Publishing.

https://doi.org/10.1007/978-3-030-37720-5_5.

Bagga, Binny. 2021. ‘Rystad Energy: Emerging opportunities and challenges for oilfieldservice

players.’

Banton, Caroline. 2021. ‘An Introduction To Trading Types: Fundamental Traders’.

Investopedia. Accessed December 10, 2021.

https://www.investopedia.com/articles/trading/02/100102.asp.

Barra, Silvio, Salvatore Mario Carta, Andrea Corriga, Alessandro Sebastian Podda, and Diego

Reforgiato Recupero. 2020. ‘Deep learning and time series-to-image encoding for

financial forecasting’. IEEE/CAA Journal of Automatica Sinica 7 (3): 683–692.

https://doi.org/10.1109/JAS.2020.1003132.

https://doi.org/10.1109/JAS.2020.1003132

62

Bergmeir, Christoph, and José M. Benítez. 2012. ‘On The Use Of Cross-Validation For Time

Series Predictor Evaluation’. Information Sciences 191: 192-213.

doi:10.1016/j.ins.2011.12.028.

Bogullu, Vamsi Krishna, Cihan H. Dagli, and David Lee Enke. 2002. ‘Using Neural Networks

and Technical Indicators for Generating Stock Trading Signals’. Intelligent Engineering

Systems Through Artificial Neural Networks 12: 721–726.

Brownlee, Jason. 2018. ‘When to Use MLP, CNN, and RNN Neural Networks’. Machine

Learning Mastery. Accessed December 10, 2021.

https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/.

Brownlee, Jason. 2019. ‘Understand the Impact of Learning Rate on Neural Network

Performance’. Machine Learning Mastery. Accessed December 10, 2021.

https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-

deep-learning-neural-networks/.

Cao, Kai, and Haifeng You. 2020. ‘Fundamental Analysis Via Machine Learning’. SSRN

Electronic Journal 2020 (009). doi:10.2139/ssrn.3706532.

Chen, Sheng, and Hongxiang He. 2018. ‘Stock Prediction Using Convolutional Neural

Network’. IOP Conference Series: Materials Science and Engineering 435 (1).

https://doi.org/10.1088/1757-899X/435/1/012026.

Chen, Wei, Manrui Jiang, Wei-Guo Zhang, und Zhensong Chen. 2021. ‘A Novel Graph Con-

volutional Feature Based Convolutional Neural Network for Stock Trend Prediction’.

Information Sciences 556 (May): 67–94. https://doi.org/10.1016/j.ins.2020.12.068.

https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/

63

Cheung, Yin-Wong, and Kon S. Lai. 1995. ‘Lag Order and Critical Values of the Augmented

Dickey–Fuller Test’. Journal of Business & Economic Statistics 13 (3): 277–280.

https://doi.org/10.1080/07350015.1995.10524601.

Chollet, Francois. 2017. Deep Learning with Python. New York, NY: Manning Publications.

Chollet, François. 2018. Deep Learning with Python. Shelter Island, New York: Manning

Publications Co.

Cohen, Naftali, Tucker Balch, and Manuela Veloso. 2020. ‘Trading via Image Classification’.

In Proceedings of the First ACM International Conference on AI in Finance, 1–6.

https://doi.org/10.1145/3383455.3422544.

Drakopoulou, Veliota. 2016. ‘A Review Of Fundamental And Technical Stock Analysis

Techniques’. Journal Of Stock & Forex Trading 05 (01): 1-8.

Dertat, Arden. 2017. ‘Applied Deep Learning - Part 4: Convolutional Neural Networks’.

Towards Data Science. Accessed November 8, 2021.

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-

networks-584bc134c1e2.

Desconfio, Josh. 2018. ‘A Beginner's Guide to Technical Indicators’. Scanz.com. Accessed

December 3, 2021. https://scanz.com/technical-indicators-guide/.

EIA. 2021. ‘Cushing, OK WTI Spot Prices FOB.’

Enverus. 2021. ‘Enverus intelligence.’

Fama, Eugene F. 1970. ‘Efficient Capital Markets: A Review of Theory and Empirical Work’.

The Journal of Finance, 25(2), 383–417. https://doi.org/10.2307/2325486

64

Fernández-Blanco, Pablo, Diego J. Bodas-Sagi, Francisco J. Soltero, and J. Ignacio Hidalgo.

2008. ‘Technical Market Indicators Optimization Using Evolutionary Algorithms’. In

Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary

Computation.

Ghosh, Anirudha, Abu Sufian, Farhana Sultana, Amlan Chakrabarti, and Debashis De. 2020.

‘Fundamental Concepts of Convolutional Neural Network’. In Recent Trends and

Advances in Artificial Intelligence and Internet of Things, 172:519–67.

https://doi.org/10.1007/978-3-030-32644-9_36.

Godin, Fréderic, Jonas Degrave, Joni Dambre, and Wesley De Neve. 2018. ‘Dual Rectified

Linear Units (DReLUs): A Replacement for Tanh Activation Functions in Quasi-

Recurrent Neural Networks’. Pattern Recognition Letters. 10.1016/j.patrec.2018.09.006

Haq, Anwar Ul, Adnan Zeb, Zhenfeng Lei, and Defu Zhang. 2021. ‘Forecasting Daily Stock

Trend Using Multi-Filter Feature Selection and Deep Learning‘. Expert Systems with

Applications 168 (April): 114444. https://doi.org/10.1016/j.eswa.2020.114444.

Hayes, Adam. 2021. ‘Know Sure Thing (KST)’. StockCharts. Accessed December 10, 2021.

https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:know_su

re_thing_kst.

Henrique, Bruno Miranda, Vinicius Amorim Sobreiro, and Herbert Kimura. 2018. ‘Stock Price

Prediction Using Support Vector Regression on Daily and up to the Minute Prices’.

Journal of Finance and Data Science 4 (3): 183–201.

https://doi.org/10.1016/j.jfds.2018.04.003.

Herman-Safar, Or. 2021. ‘Time Based Cross Validation’. Blog. Towards Data Science.

https://towardsdatascience.com/time-based-cross-validation-d259b13d42b8.

https://doi.org/10.1016/j.eswa.2020.114444
https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:know_sure_thing_kst
https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:know_sure_thing_kst

65

Hinton, Geoffrey, Nitish Srivastava, and Kevin Swersky. 2012. "Neural networks for machine

learning lecture 6a overview of mini-batch gradient descent." Neural Networks for

Machine Learning 14.

Huang, Boming, Yuxiang Huan, Li Da Xu, Lirong Zheng, and Zhuo Zou. 2019. ‘Automated

trading systems statistical and machine learning methods and hardware implementation:

a survey’. Enterprise Information Systems 13 (1): 132–144.

https://doi.org/10.1080/17517575.2018.1493145.

Hyndman, Rob J., and George Athanasopoulos. 2018. Forecasting: Principles and Practice.

OTexts.

Ioffe, Sergey, and Christian Szegedy. 2015. ‘Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift’. In: International conference on machine

learning. PMLR, 2015. S. 448-456.

Ittiyavirah, Sibi, S. Jones and P. Siddarth. 2013. ‘Analysis of different activation functions

using Backpropagation Neural Networks’. Journal of Theoretical and Applied

Information Technology 47: 1344-1348.

Keijsers, N. L. W. 2010. ‘Neural Networks’. In Encyclopedia of Movement Disorders, 257–

259. Elsevier.

Kingma, Diederik P, and Jimmy Ba. 2014. ‘Adam: A method for stochastic optimization’. arXiv

preprint arXiv:1412.6980.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 2017. ‘ImageNet Classification with

Deep Convolutional Neural Networks’. Communications of the ACM 60 (6): 84–90.

https://doi.org/10.1080/17517575.2018.1493145

66

Kröse, Ben, and Patrick Van der Smagt. 1993. ‘An Introduction to Neural Networks’. Journal

of Computer Science 48 (January).

Lee, Hagyeong, and Jongwoo Song. 2019. ‘Introduction to Convolutional Neural Network

Using Keras; an Understanding from a Statistician’. Communications for Statistical

Applications and Methods 26 (6): 591–610.

Lev, Baruch, and S. Ramu Thiagarajan. 1993. ‘Fundamental Information Analysis’. Journal Of

Accounting Research 31 (2): 190. doi:10.2307/2491270.

Liu, Shiyu, Shutao Wang, Chunhai Hu, and Weihong Bi. 2022. ‘Determination of Alcohols-

Diesel Oil by near Infrared Spectroscopy Based on Gramian Angular Field Image Coding

and Deep Learning’. Fuel 309 (February): 122121.

https://doi.org/10.1016/j.fuel.2021.122121.

Lopez de Prado, Marcos. 2018. Advances In Financial Machine Learning. 2nd ed. New Jersey:

John Wiley & Sons.

Longwell, Harry J. 2002. "The future of the oil and gas industry: past approaches, new

challenges." World Energy 5 (3): 100-104.

Mittal, Anshu. 2021. ‘Deloitte: 2022 oil and gas industry outlook.’

Mitchell, Cory. 2021. ‘How To Use A Moving Average To Buy Stocks’. Investopedia.

https://www.investopedia.com/articles/active-trading/052014/how-use-moving-average-

buy-stocks.asp.

Moghaddam, Amin Hedayati, Moein Hedayati Moghaddam, and Morteza Esfandyari. 2016.

‘Stock Market Index Prediction Using Artificial Neural Network’. Journal of Economics,

Finance and Administrative Science 21 (41): 89–93.

https://doi.org/10.1016/j.jefas.2016.07.002.

https://doi.org/10.1016/j.fuel.2021.122121

67

Mukkamala, Mahesh Chandra, and Matthias Hein. 2017. "Variants of RMSProp and Adagrad

with Logarithmic Regret Bounds." Proceedings of the 34th International Conference on

Machine Learning, Proceedings of Machine Learning Research.

https://proceedings.mlr.press/v70/mukkamala17a.html.

Murphy, John J. 1999. Technical Analysis of the Financial Markets: A Comprehensive Guide

to Trading Methods and Applications. New York: New York Institute of Finance.

Nayak, Aparna, M. M.Manohara Pai, and Radhika M. Pai. 2016. ‘Prediction Models for Indian

Stock Market’. Procedia Computer Science 89: 441–449.

https://doi.org/10.1016/j.procs.2016.06.096.

O'Shea, Keiron, and Ryan Nash. 2015. 'An Introduction to Convolutional Neural Networks'.

arXiv preprint arXiv:1511.08458.

Pan, HP. 2004. "A Swingtum theory of intelligent finance for swing trading and momentum

trading." 2004). A revised version submitted to a finance journal.

Peuch, Oliver Le. 2020. "JP Morgan 2020 Energy, Power, and Renewables Conference."

Schlumberger.

Patel, Jigar, Sahil Shah, Priyank Thakkar, and K. Kotecha. 2015. ‘Predicting Stock and Stock

Price Index Movement Using Trend Deterministic Data Preparation and Machine

Learning Techniques’. Expert Systems with Applications 42 (1): 259–268.

https://doi.org/10.1016/j.eswa.2014.07.040.

Peachavanish, Ratchata. 2016. ‘Stock Selection and Trading Based on Cluster Analysis of

Trend and Momentum Indicators’. In Proceedings of the International MultiConference

of Engineers and Computer Scientists 2016. Vol. 1. IMECS 2016.

http://www.iaeng.org/publication/IMECS2016/IMECS2016_pp317-321.pdf.

http://www.iaeng.org/publication/IMECS2016/IMECS2016_pp317-321.pdf

68

Peng, Yaohao, Pedro Henrique Melo Albuquerque, Herbert Kimura, and Cayan Atreio Portela

Bárcena Saavedra. 2021. ‘Feature Selection and Deep Neural Networks for Stock Price

Direction Forecasting Using Technical Analysis Indicators ‘. Machine Learning with

Applications 5 (September): 100060. https://doi.org/10.1016/j.mlwa.2021.100060.

Petrusheva, Nada, and Igor Jordanoski. 2016. ‘Comparative Analysis between the Fundamental

and Technical Analysis of Stocks’. Journal of Process Management. New Technologies

4: 26–31. https://doi.org/10.5937/JPMNT1602026P.

Puelz, David, Carlos M Carvalho, and P Richard Hahn. 2015. ‘Optimal ETF selection for

passive investing.’

Rahoma, Abdalhamid, Syed Imtiaz, and Salim Ahmed. 2021. ‘Sparse Principal Component

Analysis Using Bootstrap Method’. Chemical Engineering Science 246: 116890.

https://doi.org/10.1016/j.ces.2021.116890.

Romero, Luis, Joaquim Blesa, Vicenç Puig, Gabriela Cembrano, and Carlos Trapiello. 2020.

‘First Results in Leak Localization in Water Distribution Networks Using Graph-Based

Clustering and Deep Learning‘. IFAC-PapersOnLine, 21st IFAC World Congress, 53 (2):

16691–96. https://doi.org/10.1016/j.ifacol.2020.12.1104

Salkar, Tanishq, Aditya Shinde, Neelaya Tamhankar, and Narendra Bhagat. 2021. ‘Algorithmic

Trading Using Technical Indicators’. In 2021 International Conference on

Communication Information and Computing Technology (ICCICT), 1–6.

https://doi.org/10.1109/ICCICT50803.2021.9510135.

Santurkar, Shibani, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. 2018. ‘How Does

Batch Normalization Help Optimization?’.

https://doi.org/10.1016/j.mlwa.2021.100060

69

https://proceedings.neurips.cc/paper/2018/file/905056c1ac1dad141560467e0a99e1cf-

Paper.pdf.

Scott, Gordon. 2021. "Technical Indicators." Investopedia US.

Sezer, Omer Berat, and Ahmet Murat Ozbayoglu. 2018. ‘Algorithmic Financial Trading with

Deep Convolutional Neural Networks: Time Series to Image Conversion Approach’.

Applied Soft Computing 70: 525–538. https://doi.org/10.1016/j.asoc.2018.04.024.

Sezer, Omer Berat, Murat Ozbayoglu, and Erdogan Dogdu. 2017. ‘A Deep Neural-Network

Based Stock Trading System Based on Evolutionary Optimized Technical Analysis

Parameters’. Procedia Computer Science, 114: 473–80.

https://doi.org/10.1016/j.procs.2017.09.031.

Sharma, Sagar. 2017. ‘Epoch vs Batch Size vs Iterations - towards Data Science’. Towards

Data Science. Accessed December 10, 2021. https://towardsdatascience.com/epoch-vs-

iterations-vs-batch-size-4dfb9c7ce9c9.

Sharma, Siddharth & Sharma, Simone & Athaiya, Anidhya. . 2020. ‘Activation Functions In

Neural Networks’. International Journal of Engineering Applied Sciences and

Technology: 310-316. 10.33564/IJEAST.2020.v04i12.054.

Shen, Kevin. 2018. ‘Effect of Batch Size on Training Dynamics.’ Mini Distill. Accessed

Dezember 3, 2021. https://medium.com/mini-distill/effect-of-batch-size-on-training-

dynamics-21c14f7a716e.

Shynkevich, Yauheniya, T. M. McGinnity, Sonya A. Coleman, Ammar Belatreche, and

Yuhua Li. 2017. ‘Forecasting Price Movements Using Technical Indicators:

Investigating the Impact of Varying Input Window Length’. Neurocomputing,

Machine learning in finance, 264: 71–88.

https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9
https://towardsdatascience.com/epoch-vs-iterations-vs-batch-size-4dfb9c7ce9c9

70

https://doi.org/10.1016/j.neucom.2016.11.095.

Sim, Hyun, Hae Kim, and Jae Ahn. 2019. ‘Is Deep Learning for Image Recognition Applicable

to Stock Market Prediction?’ Complexity 2019: 1–10.

https://doi.org/10.1155/2019/4324878.

Speiser, Jaime Lynn, Michael E. Miller, Janet Tooze, and Edward Ip. 2019. ‘A Comparison of

Random Forest Variable Selection Methods for Classification Prediction Modeling‘.

Expert Systems with Applications 134: 93–101.

https://doi.org/10.1016/j.eswa.2019.05.028.

Statista. 2021. ‘Leading oil and gas companies in the United States based on market

capitalization as of October 2021 (in billion U.S. dollars)’ Financial Times: p. 1.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. ‘Dropout: A Simple Way to Prevent Neural Networks from

Overfitting’. Journal of Machine Learning Research: JMLR 15 (56): 1929–1258.

Thakkar, Ankit, and Kinjal Chaudhari. 2021. ‘A Comprehensive Survey on Deep Neural

Networks for Stock Market: The Need, Challenges, and Future Directions’. Expert

Systems with Applications 177: 114800. https://doi.org/10.1016/j.eswa.2021.114800.

Thakkar, Vignesh, Suman Tewary, and Chandan Chakraborty. 2018. ‘Batch Normalization in

Convolutional Neural Networks — A Comparative Study with CIFAR-10 Data’. In 2018

Fifth International Conference on Emerging Applications of Information Technology

(EAIT), 1–5. https://doi.org/10.1109/EAIT.2018.8470438.

Tharwat, Alaa. 2016. ‘Principal Component Analysis - a Tutorial’. International Journal of

Applied Pattern Recognition 3: 197. https://doi.org/10.1504/IJAPR.2016.079733

71

Tsai, Yun-Cheng, Jun-Hao Chen, and Jun-Jie Wang. 2018. ‘Predict Forex Trend via

Convolutional Neural Networks’. Journal of Intelligent Systems 29 (1): 941–958.

https://doi.org/10.1515/jisys-2018-0074.

Vijh, Mehar, Deeksha Chandola, Vinay Anand Tikkiwal, and Arun Kumar. 2020. ‘Stock

Closing Price Prediction Using Machine Learning Techniques’. Procedia Computer

Science 167 (2019): 599–606. https://doi.org/10.1016/j.procs.2020.03.326.

Walasek, Rafał, and Janusz Gajda. 2021. ‘Fractional Differentiation and Its Use in Machine

Learning’. International Journal of Advances in Engineering Sciences and Applied

Mathematics 13 (2–3): 270–277.

Wang, Zhiguang, and Tim Oates. 2015. ‘Encoding Time Series as Images for Visual Inspection

and Classification Using Tiled Convolutional Neural Networks’. Workshops at the

Twenty-Ninth AAAI Conference on Artificial Intelligence, 40–46.

Wu, J. ‘Introduction to convolutional neural networks.’ National Key Lab for Novel Software

Technology. Nanjing University. China 5 (2017): 495.

Xu, Kelvin, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. 2015. ‘Show, Attend and Tell:

Neural Image Caption Generation with Visual Attention’. 32nd International Conference

on Machine Learning, ICML 2015 3: 2048–2057.

Yang, Chao-Lung, Chen-Yi Yang, Zhi-Xuan Chen, and Nai-Wei Lo. 2019. ‘Multivariate Time

Series Data Transformation for Convolutional Neural Network‘. In 2019 IEEE/SICE

International Symposium on System Integration (SII), 188–192. Paris, France: IEEE.

https://doi.org/10.1109/SII.2019.8700425.

https://doi.org/10.1016/j.procs.2020.03.326

72

Yang, Zhenhua, Kuangrong Hao, Xin Cai, Lei Chen, and Lihong Ren. 2019. ‘Prediction of

Stock Trading Signal Based on Multi-Indicator Channel Convolutional Neural

Networks’. In 2019 IEEE 8th Data Driven Control and Learning Systems Conference

(DDCLS), 912–917. IEEE.

Yao, Shujie, and Dan Luo. 2009. ‘The economic psychology of stock market bubbles in China.’

World Economy 32 (5): 667-691.

Zhang, Jiawei, and Fisher B Gouza. 2018. ‘GADAM: genetic-evolutionary ADAM for deep

neural network optimization’. arXiv preprint arXiv:1805.07500.

73

Appendix

Apendix A

The table below displays the technical indicators used in the Oil & Gas industry. Along with a

description, the formulas for calculationg the indicator is provided.

Type Technical Indicator Formula (Sezer and Ozbayoglu 2018, 535; Sim, Kim, and Ahn

2019, 7)

Trend Simple moving average

(SMA) calculates the

average price over a given

period. The indicator is

widely used to detmine price

trends (Sezer and Ozbayoglu

2018, 535).

𝑆𝑀𝐴 =⁡
𝐶1 + 𝐶2 + ⋯+⁡𝐶𝑛

𝑛

where:

𝐶𝑖 = price of an asset at period i

n = the number of periods used for moving average

(4.1)

(4.2)

(4.3)

Trend Exponential moving

average (EMA) calculates a

moving average such that

greater weights are assigned

to more recent values (Sezer

and Ozbayoglu 2018, 535).

𝐸𝑀𝐴⁡ = ⁡𝐶𝑡 ∗ 𝑘 + 𝐸𝑀𝐴(𝑦) ∗ (1 − 𝑘)

where:

k = 2÷(n+1)

n = number of days in EMA

Ct = closing price of an asset today

y = yesterday

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

Momentum Rate of change (ROC) is a

momentum oscillator

measuring the speed of

changes in price over a given

period (Sezer and

Ozbayoglu 2018, 536). The

indicator is calculated by

comparing the current

closing price with the

closing price n periods ago.

𝑅𝑂𝐶 = ⁡
(𝐶𝑡 − 𝐶𝑡−𝑛)
(𝐶𝑡−𝑛)

∗ 100

where:

Ct = closing price of an asset today

n = number of periods

(6.1)

(6.2)

(6.3)

Momentum The Relative Strength

Index (RSI) is an oscillating

indicator measuring the

strength and weaknesses of

stock prices or the

magnitude of historical price

changes, indicating whether

𝑅𝑆𝐼 = 100 −
100

1 + (𝑔𝑛𝑙𝑛
)

where:

n = number of periods

gn = average percentage gain during a period of length n

ln = average percentage loss during a period of length n

(7.1)

(7.2)

(7.3)

(7.4)

74

stock prices are in the

"overbought" or "oversold"

region (Sezer, Ozbayoglu,

and Dogdu 2017a,2;

Corporate Finance Institute

2020, 4)

Momentum Know Sure Thing

Oscillator (KST) is a

momentum oscillator to

make rate-of-change

readings easier for traders to

interpret (Hayes 2021).

KST = (RCMA #1×1) + (RCMA #2×2) + (RCMA #3×3)

+ (RCMA #4×4)

where:

RCMA #1 = 10-period SMA of 10-period ROC

RCMA #2 = 10-period SMA of 15-period ROC

RCMA #3 = 10-period SMA of 20-period ROC

RCMA #4 = 15-period SMA of 30-period ROC

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

Momentum Williams % Range is a

momentum-based indicator

determining overbought and

oversold conditions for stock

prices (Sezer and Ozbayoglu

2018, 535).

𝑅 =⁡
max(𝐻) −𝐶

max(𝐻) − min⁡(𝐿)
∗ −100

where:

C = Closing price today.

max(H) = Highest price in the lookback period n.

min(L) = Lowest price in the lookback period n.

n = number of periods

(9.1)

(9.2)

(9.3)

(9.4)

(9.5)

Momentum Commodity Channel

Index (CCI) compare the

current price with the

average price over a given

period of time (Sezer and

Ozbayoglu 2018, 536).

𝐶𝐶𝐼 =
𝑇𝑦𝑝𝑖𝑐𝑎𝑙⁡𝑃𝑟𝑖𝑐𝑒 − 𝑀𝐴

0.015 ∗ 𝑀𝑒𝑎𝑛⁡𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

where:

Typical Price = ∑ ((𝐻+𝐿+𝐶)
3

)𝑛
𝑖=1

n= number of periods

H = High price today

L = Low price today

C = Closing price today

MA = (∑ 𝑇𝑦𝑝𝑖𝑐𝑎𝑙⁡𝑃𝑟𝑖𝑐𝑒)𝑛
𝑖=1

𝑛

Mean Deviation = (∑ |⁡𝑇𝑦𝑝𝑖𝑐𝑎𝑙⁡𝑃𝑟𝑖𝑐𝑒−𝑀𝐴⁡|)𝑛
𝑖=1

𝑛

(10.1)

(10.2)

(10.3)

(10.4)

(10.5)

(10.6)

(10.7)

(10.8)

Momentum Directional Movement

Index (DMI) is a momentum

indicator that shows in

which direction the price is

moving. It does this by

comparing prior highs and

+𝐷𝐼 =
𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 + 𝐷𝑀

𝐴𝑇𝑅
∗ 100

−𝐷𝐼 =
𝑆𝑚𝑜𝑜𝑡ℎ𝑒 − +𝐷𝑀

𝐴𝑇𝑅
∗ 100

𝐷𝑋 =
|+𝐷𝐼 −⁡−𝐷𝐼|
|+𝐷𝐼 +⁡−𝐷𝐼|

∗ 100

where:

(11.1)

(11.2)

(11.3)

75

lows and drawing two lines,

a positive and a negative.

+DM (Directional Movement) = Current High – PH

PH = Previous high

-DM = Previous Low – Current Low

Smoothed +/-DM = ∑ 𝐷𝑀− (∑ 𝐷𝑀14
𝑡=1
14

) + 𝐶𝐷𝑀14
𝑡=1

CDM = Current DM

ATR = Average True Range

(11.4)

(11.5)

(11.6)

(11.7)

(11.8)

(11.9)

Momentum The Stochastic Oscillator

(%K) is a momentum

indicator that compares the

closing price of a security to

a range of its prices over a

certain period of time.

%𝐾 = 100 ∗
(𝐶 − 𝐿14)

(𝐻14 − 𝐿14)

where:
C = The most recent closing price
L14 = The lowest price traded of the 14 previous trading
sessions
H14 = The highest price traded during the same 14-day
period
%K = The current value of the stochastic indicator

(12.1)

(12.2)

(12.3)

(12.4)

(12.5)

Momentum Smoothed Relative

Strength Index (SRSI) is a

momentum indicator that is

essentially a simple moving

average of the RSI.

𝑆𝑅𝑆𝐼 = ⁡
𝑅𝑆𝐼1 + 𝑅𝑆𝐼2 +⋯+⁡𝑅𝑆𝐼𝑛

𝑛

where:

𝐶𝑖 = RSI at period i

n = the number of periods used for moving average

(13.1)

(13.2)

(13.3)

Momentum Internal Bar Strength

(IBS) is a momentum

oscillator that measure the

position of the close price

relative to the highs and

lows.

𝐼𝐵𝑆 =⁡
𝐶𝑙𝑜𝑠𝑒 − 𝐿𝑜𝑤
𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤

(14.1)

Momentum Triple exponential average

(TRIX) is a momentum

indicator that shows the

change in a moving average

(in %) that has been triple-

smoothed exponentially.

The smoothing is supposed

to filter out insignificant

price movements.

𝐸𝑀𝐴1(𝑖) = 𝐸𝑀𝐴(𝑃𝑟𝑖𝑐𝑒, 𝑁, 1)⁡
 TRIX(i) = EMA3(i−1)EMA3(i)−EMA3(i−1)
where:
Price(i) = Current price
EMA1(i) = The current value of the Exponential Moving
Average

(15.1)
(15.2)

(15.3)
(15.4)

Momentum Force Index (FI) is a

momentum oscillator and

uses price and volume to

determine the amount of

strength behind a price

𝐹𝐼(1) = (𝐶𝐶𝑃⁡ − ⁡𝑃𝐶𝑃) ∗ 𝑉𝐹𝐼(13) =

13 − 𝑃𝑒𝑟𝑖𝑜𝑑⁡𝐸𝑀𝐴⁡𝑜𝑓⁡𝐹𝐼(1)

where:
FI = Force index

(16.1)

(16.2)

(16.3)

76

move. The index fluctuatwa

between positive and

negative territory. It is

unbounded meaning the

index can go up or down

indefinitely.

CCP = Current close price
PCP = Prior close price
VFI = Volume force index
EMA = Exponential moving average

(16.4)

(16.5)

(16.6)

Momentum Chaikin Money Flow

(CMF) is a momentum

indicator that measures

Money Flow Volume over a

set period of time. Money

Flow Volume is a metric

used to measure the buying

and selling pressure of a

security.

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = ⁡
((𝐶𝑙𝑜𝑠𝑒 − 𝐿𝑜𝑤) − (𝐻𝑖𝑔ℎ − 𝑐𝑙𝑜𝑠𝑒))

(𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤)

𝑀𝑜𝑛𝑒𝑦⁡𝐹𝑙𝑜𝑤⁡𝑉𝑜𝑙𝑢𝑚𝑒⁡(𝑀𝐹𝑉) = 𝑉𝑜𝑙𝑢𝑚𝑒 ∗ 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

21⁡𝑃𝑒𝑟𝑖𝑜𝑑⁡𝐶𝑀𝐹 = ⁡
21⁡𝑃𝑒𝑟𝑖𝑜𝑑⁡𝑆𝑢𝑚⁡𝑜𝑓⁡𝑀𝐹𝑉

21⁡𝑃𝑒𝑟𝑖𝑜𝑑⁡𝑆𝑢𝑚⁡𝑜𝑓⁡𝑉𝑜𝑙𝑢𝑚𝑒

(17.1)

(17.2)

(17.3)

Tren

Detrended Price Oscillator

(DPO) is an trend oscillator

that attempts to estimate the

length of cycles in price

movements from hills to

hills and valleys to valleys. It

highlights peaks and troughs

in price, which are used to

estimate buy and sell points

in line with the historical

cycle.

𝐷𝑃𝑂 = ⁡𝑃𝑟𝑖𝑐𝑒⁡𝑓𝑟𝑜𝑚
𝑋
2
+ 1⁡𝑝𝑒𝑟𝑖𝑜𝑑𝑠⁡𝑎𝑔𝑜

− 𝑋⁡𝑝𝑒𝑟𝑖𝑜𝑑⁡𝑆𝑀𝐴
where:
X = Number of periods used for the look-back period

SMA = Simple Moving Average

(18.1)

(18.2)

(18.3)

Momentum Money Flow Index (MFI)

is a technical oscillator that

uses price and volume data

for identifying overbought

or oversold signals in an

asset. It can also be used to

spot divergences which warn

of a trend change in price.

The oscillator moves

between 0 and 100.

𝑀𝐹𝐼 = 100 −
100

1 +𝑀𝑜𝑛𝑒𝑦⁡𝐹𝑙𝑜𝑤⁡𝑅𝑎𝑡𝑖𝑜⁡(𝑀𝐹𝑅)
⁡

where:

𝑀𝐹𝑅 =⁡
14⁡𝑃𝑒𝑟𝑖𝑜𝑑⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑀𝑜𝑛𝑒𝑦⁡𝐹𝑙𝑜𝑤
14⁡𝑃𝑒𝑟𝑖𝑜𝑑⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒⁡𝑀𝑜𝑛𝑒𝑦⁡𝐹𝑙𝑜𝑤

𝑅𝑎𝑤⁡𝑀𝑜𝑛𝑒𝑦⁡𝐹𝑙𝑜𝑤 = ⁡𝑇𝑦𝑝𝑖𝑐𝑎𝑙⁡𝑃𝑟𝑖𝑐𝑒 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒

𝑇𝑦𝑝𝑖𝑐𝑎𝑙⁡𝑃𝑟𝑖𝑐𝑒 = ⁡
𝐻𝑖𝑔ℎ + 𝐿𝑜𝑤 + 𝐶𝑙𝑜𝑠𝑒

3

(19.1)

(19.2)

(19.3)

(19.4)

77

Volume Ease of movement (EoM,

EMV) is a volume indicator

that attempts to merge a mix

of momentum and volume

data into one value. The

intention is to use this value

to discern whether prices are

able to rise, or fall, with little

resistance in the directional

movement.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑚𝑜𝑣𝑒𝑑 =

(
𝐻𝑖𝑔ℎ + 𝐿𝑜𝑤

2
−
𝐻𝑖𝑔ℎ + 𝐿𝑜𝑤

2
⁡)

𝐵𝑜𝑥⁡𝑅𝑎𝑡𝑖𝑜 =
𝑉𝑜𝑙𝑢𝑚𝑒
𝑆𝑐𝑎𝑙𝑒

𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤

1 − 𝑃𝑒𝑟𝑖𝑜𝑑⁡𝐸𝑀𝑉 = ⁡
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑚𝑜𝑣𝑒𝑑

𝐵𝑜𝑥⁡𝑅𝑎𝑡𝑖𝑜

(20.1)

(20.2)

(20.3)

Momentum Chande Momentum

Oscillator (CMO) is a

momentum oscillator that is

calculates a volume

weighted moving average of

higher and lower closing

prices.

𝐶𝑀𝑂 =
𝑠𝐻 − 𝑠𝐿
𝑠𝐻 + 𝑠𝐿

∗ 100
where:

𝑠𝐻 = ⁡𝑠𝑢𝑚⁡𝑜𝑓⁡ℎ𝑖𝑔ℎ𝑡𝑒𝑟⁡𝑐𝑙𝑜𝑠𝑒𝑠⁡𝑜𝑣𝑒𝑟⁡𝑛⁡𝑝𝑒𝑟𝑖𝑜𝑑𝑠

𝑠𝐿 = ⁡𝑠𝑢𝑚⁡𝑜𝑓⁡𝑙𝑜𝑤𝑒𝑟⁡𝑐𝑙𝑜𝑠𝑒𝑠⁡𝑜𝑣𝑒𝑟⁡𝑛⁡𝑝𝑒𝑟𝑖𝑜𝑑𝑠

(21.1)

(21.2)

(21.3)

 Bollinger Bands is a

momentum indicator that

consists of a set of trendlines

located two std. dev.

(positively and negatively)

away from a SMA of a

security's price. They can be

adjusted to preference,

however.

𝐵𝑂𝐿𝑈 = 𝑀𝐴(𝑇𝑃, 𝑛) + 𝑚 ∗ 𝜎[𝑇𝑃, 𝑛]

𝐵𝑂𝐿𝐷 = 𝑀𝐴(𝑇𝑃, 𝑛) − 𝑚 ∗ 𝜎[𝑇𝑃, 𝑛]
where:
BOLU = Upper Bollinger Band

BOLD = Lower Bollinger Band

MA = Moving average

TP (typical price) = (High+Low+Close)÷3

n = Number of days in smoothing period (typically 20)

m = Number of standard deviations (typically 2)

σ[TP,n] = Standard Deviation over last n periods of TP

(22.1)

(22.2)

(22.3)

(22.4)

(22.5)

(22.6)

(22.7)

(22.8)

(22.9)

Source: (Scott 2021)

 78

Appendix B

The table below shows the selected model parameters chosen through the randomized search for each ETF and image encoding type.

Sector ETF Image
type

Batch
Norm.

Drop-
out Activation Kernel Padding Pooling Optimizer Learning

rate Epochs Batch
size

Class
weight

Information
Technology

VGT
GADF True 0.25 softmax 3,3 valid average RMSprop 0.0001 150 16 None
GASF True None sigmoid 3,3 valid max SGD 0.001 10 16 None
MTF True 0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None

XSD
GADF True 0.5 softmax 3,3 valid average Adam 0.001 50 32 None
GASF False None sigmoid 3,3 same average RMSprop 0.0001 75 64 None
MTF True 0.25 sigmoid 5,5 valid max SGD 0.001 50 16 None

Healthcare IYH
GADF False None softmax 3,3 same average RMSprop 0.001 75 64 balanced
GASF False None relu 3,3 valid max Adam 0.0001 100 16 balanced
MTF True None sigmoid 5,5 same average SGD 0.01 10 32 balanced

Energy
S&P
500

Energy

GADF False None sigmoid 5,5 same average RMSprop 0.0001 100 64 None
GASF True None sigmoid 5,5 same max SGD 0.001 50 16 None
MTF True None softmax 5,5 valid max Adam 0.001 10 32 balanced

Financial
Services IYG

GADF True 0.25 softmax 3,3 valid average RMSprop 0.0001 100 16 None
GASF True None sigmoid 3,3 valid max RMSprop 0.0001 50 16 None
MTF True None sigmoid 5,5 valid average SGD 0.001 100 16 None

Industrials VIS
GADF True None softmax 3,3 same max RMSprop 0.001 25 16 None
GASF False 0.25 softmax 3,3 valid max Adam 0.0001 75 16 None
MTF False 0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None

Oil & Gas XLE PXL False 0.25 relu 3,3 same max Adam 0.001 200 64 balanced

79

Appendix C

The table below summarizes the computational and financial performance on the test set for each ETF and image encoding type.

 Benchmark Labeling (on test set)

Sector ETF Image
Type Accuracy Macro

Average (F1)
Weighted

Average (F1)
Financial

Performance
Buy & Hold

Return
SMA

Return
MR

Return % Buy % Hold % Sell

Information
Technology

VGT
GADF 0.5055 0.34 0.42 55.48% 50.0% 27.57% -8.17% 26.29% 50.19% 23.53%
GASF 0.4890 0.31 0.39 36.03% 50.0% 27.57% -8.17% 26.29% 50.19% 23.53%
MTF 0.4945 0.33 0.41 16.11% 50.0% 27.57% -8.17% 26.29% 50.19% 23.53%

XSD
GADF 0.5018 0.28 0.37 53.43% 51.00% 6.66% 6.10% 26.10% 49.45% 24.45%
GASF 0.4412 0.33 0.39 40.23% 51.00% 6.66% 6.10% 26.10% 49.45% 24.45%
MTF 0.4816 0.28 0.36 19.72% 51.00% 6.66% 6.10% 26.10% 49.45% 24.45%

Healthcare IYH
GADF 0.5028 0.28 0.37 07.45% 25.00% 20.51% 11.08% 25.31% 47.77% 26.92%
GASF 0.4655 0.26 0.35 28.59% 25.00% 20.51% 11.08% 25.31% 47.77% 26.92%
MTF 0.3706 0.29 0.34 24,64% 25.00% 20.51% 11.08% 25.31% 47.77% 26.92%

Energy S&P 500 Energy
GADF 0.5102 0.46 0.49 10.66% -8.00% -3.90% 0.06% 29.00% 44.00% 27.00%
GASF 0.4119 0.34 0.37 2.84% -8.00% -3.90% 0.06% 29.00% 44.00% 27.00%
MTF 0.3655 0.31 0.34 3.35% -8.00% -3.90% 0.06% 29.00% 44.00% 27.00%

Financial
Services

iShares U.S.
Financial

Services ETF
(IYG)

GADF 0.49 0.36 0.43 18.78%
16.0% 16.88% 21.76% 26.52% 48.99% 24.49% GASF 0.48 0.26 0.35 -12.75%

MTF 0.47 0.31 0.39 -6.25%

Industrials VIS
GADF 0.41 0.38 0.40 2.98%

7.00% 3.76% 19.61% 27.54% 47.16% 25.30% GASF 0.42 0.32 0.37 4.64%
MTF 0.47 0.31 0.37 5.53%

Oil & Gas XLE PXL 0.72 0.46 0.76 5.20% 10.00% 4.80% 0,00% 5,38% 88,88% 6,74%

Average 5
industries

 GADF 0.48 0,41

 GASF 0.44 0,36

 MTF 0.43 0,36

	List of Abbreviations
	1 Introduction
	2 Trading and Time-Series Forecasting
	2.1 Trading
	2.2 Introduction Financial Time Series Forecasting
	2.3 Technical Analysis with CNNs

	3 Fundamentals and Methodology
	3.1 Introduction to CNNs
	3.1.1 Definitions
	3.1.2 Key Components of CNNs

	3.2 Labelling Approach
	3.3 Feature Engineering
	3.3.1 Feature Creation

	3.5 Image construction
	3.5.1 Sezer’s feature pixelation
	3.6 Generic Model Architecture
	3.7 Performance Evaluation
	3.7.1 Computational Evaluation
	3.7.2 Financial Evaluation

	4 Industry implementation
	4.1 Industry analysis
	4.1.2 Influences
	4.1.3 O&G ETFs
	4.1.4 ETF Selection

	4.2 Data Prepocessing, feature engineering and image encoding
	4.2.2 Labelling
	4.2.3 Feature engineering
	4.2.4 Image creation

	4.3 Final Model architecture
	4.4 Performance evaluation
	4.4.1 Test data
	4.4.2 Model performance
	4.4.3 Financial Performance

	4.5 Limitations and Implications

	5 Performance Comparison and Discussion
	6. Limitations and Outlook
	6.1 Limitations
	6.2 Outlook

	References
	Appendix

