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Abstract  

Thanks to advances in processing power, we have seen the revival of artificial intelligence after 

the 1980s, and algorithmic trading has become quite popular in the last two decades. In this 

paper, a convolutional neural network for image recognition was constructed. The CNN 

recognises patterns in 2D images generated from financial data and classifies them as BUY, 

SELL or HOLD. The analysed ETF, XLE, is from the Oil & Gas sector. The results are 

evaluated computationally and financially and compared to other industries. Overall, the CNN 

approach seems promising but generally, it was not possible to outperform the Buy&Hold 

strategy. 
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1 Introduction 

For technical traders, i.e. practitioners of technical analysis, image analysis plays a vital role in 

their day-to-day decision-making, given that many decision are based on patterns and trends 

that can be observed in the stock charts (Drakopoulou 2015, 4). However, when looking at how 

algorithmic trading, i.e. trading supported by computational resources, is done in practice, one 

can see very little use of image recognition; instead, other algorithmic trading techniques are 

primarily in use. Due to various factors, such as the emergence of significantly better hardware 

and new computational approaches, the last 10 to 15 years have seen critical advances in Deep 

Learning, especially recently in the field of image recognition and analysis using convolutional 

neural networks (CNNs). CNNs have proven increasingly good at recognising and 

distinguishing objects. 

Thus, a critical question that needs to be asked is how these advances can be leveraged as 

applications to trading, simulating the trader's decision process based on image analysis with 

the help of CNNs. There has already been research on the application of CNNs to forecasting 

stock price movements, however, within a limited scope. The objective of this paper is to apply 

CNNs to different industries to determine whether there are differences in the performance and 

usability of CNNs used for stock price predictions across various industries 

For this purpose, image recognition with CNNs will be applied to the following six industries 

and comparisons be made: 

o Information Technology 

o Healthcare 

o Industrials 

o Energy 

o Oil & gas 

o Financial Services 
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To achieve a high degree of representativeness for each sector and reduce idiosyncratic factors 

inherent to individual companies, industry ETFs consisting of a large variety of companies will 

be used as assets to forecast on, instead of using individual company shares. Moreover, only 

ETFs covering the U.S. market will be used to increase comparability across the industries, 

avoiding differences in geographic factors as much as possible. 

The paper is structured in the following way: 

Firstly, an introduction to trading and stock analysis approaches is given to provide context on 

how CNNs fit into the scope of stock analysis and time-series forecasting. 

Secondly, a high-level introduction to CNNs will be given, and the general methodology used 

in this paper will be explained. 

The third part focuses on applying an established methodology to the specific industries, 

respective adjustments to the methods to account for particular characteristics of the industries 

and the results obtained for each sector. 

In the fourth, the best-performing hyperparameters as well as model performances across the 

different industries will be compared and discussed and conclusions on the added value of the 

application of CNNs to price movement forecasts will be drawn. 

The fifth and last part focuses on limitations faced by the taken approach and provides an 

outlook on potential further research topics. 
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2 Trading and Time-Series Forecasting  

The following section will provide a brief introduction to trading and its two essential stock 

analysis approaches and a high-level overview of time-series forecasting methods, in order to 

place CNNs in the context of trading and price forecasting. 

2.1 Trading   

There are several types of trading that can be distinguished based on factors such as the 

frequency of executed trades, the period of an asset and the underlying method used to 

determine which assets to buy and sell (Banton 2021). However, regardless of the trading type 

they are applying, traders have the common key objective of maximising their profits. 

Traditionally, the most common groups of traders are so-called technical and fundamental 

traders, based on the stock analysis approach they use: technical and fundamental analysis, the 

most important general analysis tools in the realm of investing and trading (Petrusheva and 

Jordanoski 2016, 30). They represent two approaches to determining what shares investors 

should buy or sell to maximise their profit. Technical analysis also gives indications on the 

optimal time to execute the transaction (Petrusheva and Jordanoski 2016, 31). Although their 

overall objective is identical, they differ significantly in the assumptions they are based on, the 

methods they employ and the time horizons for which they are used (Petrusheva and Jordanoski 

2016, 30). While fundamental analysis focuses on the economic forces of supply and demand 

that cause prices to change (Murphy 1999, 5) and aims at determining the fair value of corporate 

securities by studying company-specific key value-drivers, so-called fundamentals, such as a 

company's earnings, its risks factors, growth rates and competitive positioning (Lev and 

Thiagarajan 1993, 190), technical analysis focuses solely on the share price and trading 

volumes as the two key determinants to forecast future price developments (Petrusheva and 

Jordanoski 2016, 28).   
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The main premise of fundamental analysis is that each asset has a fair value that it will always 

converge to in the long run, but it may not always reflect this fair value due to temporary 

mispricing in the markets (Lev and Thiagarajan 1993, 191). The fair value can be determined 

by an investor through the analysis of the underlying fundamentals, such as the company's 

financial statements, the overall economic state of the markets the company operates in as well 

as developments of the industry the company belongs to. An investor can then generate profits 

by identifying mispriced assets, capitalising on the eventual price corrections that will take 

place in the market according to the basic premise of fundamental analysis (Abad, Thore and 

Laffarga 2004, 231). 

The core belief of technical analysis, on the other hand, is that all factors affecting the stock 

price (fundamentals, political factors, environmental factors, etc.) are already reflected in the 

price of that stock, which results in the reasoning that only price and volume data need to be 

analysed to forecast future price movements (Murphy 1999, 2).  

A second and third concept essential to technical analysis are the assumptions that prices move 

in trends and that history repeats itself (Murphy 1999, 2). With these two assumptions in place, 

an investor can take investment decisions based on patterns that worked well in the past (history 

repeats itself) and can generate profits by identifying trends in early stages of their development 

to trade in accordance with the direction of these trends (Murphy 1999, 3).  

Regarding the time horizons for which the two methods are used, it can be stated that 

fundamental analysis commonly uses longer periods when analysing the underlying data and is 

mostly used for longer-term investment decisions, and as such, is often used by investors 

focusing on value investing (Petrusheva and Jordanoski 2016, 27). Technical analysis, on the 

other hand, focuses stronger on short-term data (price and volume data for single a day, few 

days or few weeks) and is often used for the identification of assets that can be traded to generate 
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profits in the short term, i.e., stocks whose prices will experience significant changes in the near 

future (Petrusheva and Jordanoski 2016, 28).  

Fama’s Efficient Market Theory (1970) states that none of the investment analysis approaches 

will allow an investor to generate returns that exceed the market return, given that any new 

information entering the market will be immediately included in the asset price. Following this 

statement, technical analysis, i.e. forecasting future price movements based on past price 

developments, will not generate excess returns above the market. This paper will analyse to 

which degree the Efficient Market Theory holds true when applying CNNs to the general 

technical analysis approach, given that they are potentially able to recognise patterns that 

traditional technical analysis methods miss. 

2.2 Introduction Financial Time Series Forecasting   

While technical and fundamental analysis have traditionally been the two most widely used 

approaches to stock price forecasting, emerging technologies have opened up new possibilities 

to stock price analysis, a type of data that is difficult to predict as financial markets are volatile, 

representing non-linear, fluctuating, and high noise data (Thakkar & Chaudhari 2021, 1). The 

use of machine learning and deep learning approaches has gained increasing attention due to 

their ability to detect localised data features at multiple levels.  This trend also opens new 

possibilities for investment strategies and changes the nature of investing. Relying on deep 

learning for investment makes trading and investment decisions more rational than investment 

decisions based on human knowledge and experience, with the latter tending to result in more 

subjective and biased decisions (Yang et al. 2019, 387). Different forecasting types which 

might be of prediction interest include either the movement direction of the stock market to 

predict local extreme values or turning points to recognise the perfect point to either sell or 
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buy (classification problem) or the magnitude of change of the market movement including 

future prices (regression problem) (Peng et al. 2021, 10).  

Before the rise of deep learning applications for financial problems, conservative statistical 

methods were used. The logistic regression as one popular classification model provides an 

easy understanding and interpretation of the results. However, these traditional statistic models 

assume linearity – thus, representing a crucial limitation (Peng et al. 2021,14).   

Deep Artificial neural networks as linear models with pieces of nonlinearity bypass these 

problems by permitting the learning of more abstract knowledge representations. Nonetheless, 

by working with more complex structures and hence more features, they are more prone to 

overfitting. (Peng et al. 2021, 15).   

Extensive research has been conducted about possible other approaches 

for making predictions in trading. Among others, popular approaches include Artificial Neural 

Networks (ANNs), Support Vector Regressions (SVRs), Logistic regressions and Decision 

Trees (Huang et al. 2019, 134).  Examples of extensive research conducted in this area can be 

found in several research papers. An overview is presented in Table 1. 

Even though all these approaches seem promising, CNN’s have a big advantage: They are able 

to work well with data having a spatial relationship (Brownlee 2018). 

A necessary requirement to fulfill is the transformation of data into images before being able to 

make predictions though, as information is retrieved via multi-scale localized spatial features 

(Chen et al. 2021, 69) (Xu et al. 2015). They have proven themselves to be highly successful 

for stock predictions, as stock data can be illustrated as a 2D matrix (Chen and He 2018).  
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Authors Goal Approach Main Results 

Moghaddam 
and Esfandyari (2016)  

Predict daily 
NASDAQ 
stock 
exchange 
returns 

ANN R² values above 0.9 

Nayak et al. (2016, 
441 et sqq.)  

Predict daily 
and monthly 
movements of 
the stock 
(whether they 
go up or 
down) 

Decision Boosted 
Tree  

Outperformed a SVM and a 
Logistic Regression Model  

Henrique et al. (2018, 
183) 

Predict stock 
prices from 
different 
markets  

Support Vector 
Regression  

Performed especially well 
for market periods with lower 
market volatility and for a 
strategy with updating the 
model periodically 

Patel et al. (2015, 
2171) 

Predict Indian 
Stock market 
indices 

Two-stage fusion 
approach between 
ANNs, Random 
Forest Models 
and SVRs combined 
to hybrid models: 
SVR–ANN, SVR–
RF and SVR–SVR. 
They were 
afterwards compared 
to single models 

Results of this study have 
shown ANNs and RFs 
to better perform in a hybrid 
model including 
SVRs rather than as single 
models. The best overall 
performance was shown by 
the SVR-ANN model 

Vijh et al. (2020, 605)  Forecast next 
day stock 
closing prices 

Random Forests 
and an ANN  

They indicate strong results. 
Overall, in this case, the ANN 
performed better than the RF 

Table 1 Overview Financial Time Series Research 

Source: Own illustration 

Within the last years, different approaches to financial time series forecasting with CNNs have 

been addressed. Cohen, Balch, and Veloso (2020) have created various charts based on open, 

high, low, and closing prices to forecast trading signals using a CNN. The results demonstrate 

that the transformation of the time series into images is beneficial for the recognition of trading 

signals. Sezer and Ozbayoglu (2018) on the other hand create images based on 15 technical 
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indicators over a period of 15 days (15x15 image). Using these images and a CNN-TA 

architecture, the research team was able to forecast entry and exit points (buy, hold, sell) 

comparatively better than with other models. Arratia and Sepúlveda (2020) make use of 

recurrence plots and data of 12-month periods to predict the direction of the S&P 500 the 

following month. Their CNN model attains an accuracy of 63 percent. The most promising and 

cited methods were proposed by Wang and Oates (2015). They used Gramian Angular Fields 

and Markov Transition Fields to transform time series into images and ran a tiled CNN for 

classification. Due to the promising results, the method was adapted and further developed in 

other research papers.  

2.3 Technical Analysis with CNNs  

While there has already been research on the applications of CNNs to stock price prediction, a 

status review shows that there is still hardly any practical use of this approach. This paper will 

focus on expanding the state of current research, evaluating if there are differences across 

industries in terms of computational and financial performance of investment strategies based 

on CNNs. Before going into details on CNNs and the applied methodology, it is important to 

understand why CNNs are highly applicable to technical analysis. There are two key factors 

making the combination of technical analysis with the usage of convolutional neural networks 

an attractive investment research topic: Firstly, the assumption that no knowledge about factors 

and trends affecting the markets is necessary as they are already included in the price (Murphy 

1999, 4). Technicians know that there are many reasons why markets move, but do not assume 

it necessary to know these reasons in the forecasting process (Murphy 1999, 4). Based on these 

assumptions, it is sufficient to use visual representations (such as charts) of past price 

movements as a base to predict future price developments. Consequently, it appears reasonable 

to use CNNs to analyse the information contained in these visual representations without having 
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to include further external information that might be difficult to represent in an appropriate 

visual input for a CNN.  

Secondly, experienced technicians increasingly take intuitive decisions based on the patterns 

they see in the charts (Murphy 1999, 6). They learn to intuitively recognise the meaning of a 

variety of patterns, i.e., what price movements tend to be preceded by what type of patterns in 

the charts. Seen from a high level, CNN's have a very similar approach to learning. Through 

different layers within the neural network, a CNN learns to recognise patterns in the images it 

is trained on, giving it the tools to make inferences from these patterns to the classification of 

that image, in order to be able to classify unknown images. Thus, it seems reasonable to assume 

that a CNN can be trained to predict future price movements based on patterns in past data in 

the same way that a human technician would.  
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3 Fundamentals and Methodology 

This chapter provides the theoretical and methodological basis for the thesis. First, an 

understanding of the concepts of neural and convolutional neural networks is given. Then, 

several preprocessing methods are considered, and an overview of the generic model 

architecture and its evaluation methods are presented. The approach in this chapter is to outline 

widely established perspectives regarding the concepts presented in the current research. It is 

continuously reasoned which methodology is used for this work. Definitions that are 

appropriate for this thesis are also provided. 

3.1 Introduction to CNNs   

The following section provides an introduction to the deep learning algorithms used in this 

work. The terminology related to neural and convolutional neural networks and their essential 

structure are described. The associated components are presented to provide a deeper 

understanding of how the systems operate. 

3.1.1 Definitions 

Definition Neural Network 

Neural networks (NNs) are ‘computerised intelligent systems’ (Thakkar and Chaudhari 

2021, 2) that aim to recognise patterns and learn relationships in data by 

simulating the signal exchange between biological neurons in the human brain. A neural 

network consists of different layers of artificial neurons, also called units, which are 

interconnected and can be divided into input units, hidden units, and output units (Kröse and 

Van der Smagt 1993, 15). A set of input units receives information and applies certain 

weights, which are translated into an output by the network through an activation function 

(Kröse and Van der Smagt 1993, 15). Output units signal how the network reacts to the learned 

and processed information. Between input and output units there are one or more layers 
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of hidden units, which perform nonlinear transformations of the inputs (Kröse and Van der 

Smagt 1993, 15). A neural network is considered fully connected if each hidden unit is 

connected to each unit in the layers on both sides of the network. Supervised neural networks 

learn continuously through a feedback process called backpropagation (Chollet 2017, 11). In 

this iterative process, the actual output is compared to the expected output of the network. The 

difference is used to adjust the weights between the units in the network, that is, the strength of 

the connections, so that inputs match the correct output (Chollet 2017, 52). Neural networks 

continuously learn and improve with examples enabling it to respond accordingly to an entirely 

new set of inputs. They are particularly popular when modeling highly nonlinear systems or 

when unexpected changes in input data may occur. Many applications have employed neural 

networks to simulate unknown relationships between various parameters based on a vast set of 

examples. Classifications of handwritten digits, speech recognition, and stock price prediction 

are examples of effective neural network applications (Keijsers 2010).  

Neural networks are usually divided into artificial neural network (ANN) and deep neural 

network (DNN). A deep neural network is a type of artificial neural network, with multiple 

hidden layers between the input and output layers (Thakkar and Chaudhari 2021, 2). The 

increasing volumes of structured and unstructured data, cause deep learning systems, i.e., neural 

networks with many layers, to become increasingly popular.  

Definition Convolutional Neural Network 

According to Dertat (2017), convolutional neural networks (CNN) are the most popular type of 

deep neural networks. They are mainly applied in pattern and image 

recognition problems since they are specifically designed to process pixel 

data (Sezer and Ozbayoglu 2018). However, they are also useful for natural language 

processing and prediction purposes. A convolutional neural network comprises five types of 
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layers: input, convolution, pooling, fully connected, and output layers. Each layer serves a 

specific purpose and is explained in more detail in Section 3.1.2. 

CNNs are generally considered superior to regular NNs due to their automatic feature selection 

strategy. Using CNNs, it is now possible to build larger models to solve more complex 

problems, which was infeasible with conventional NNs (Albawi, Mohammed, and Al-

Zawi 2017, 1). Their deep learning structure with multiple hidden layers allows them to abstract 

a larger number of features (Dertat 2017). By analysing the data in greater detail, a higher 

accuracy of the output can be achieved. The automatic feature extraction of CNNs, achieved by 

mapping input data to output, is especially useful for extracting complex patterns from non-

linear data (Thakkar and Chaudhari 2021, 2). This property is particularly relevant for stock 

market predictions, since stock-based data is highly complex and non-linear (Thakkar and 

Chaudhari, 2021, 2,7). A CNN uses convolution to learn the local features of the image, and 

thus manages to preserve the local connectivity or spatial relationships between pixels, making 

them particularly suitable for extracting relevant information at low computational cost (Arratia 

and Sepúlveda, 2020).   

3.1.2 Key Components of CNNs 

Convolutional layer 

The convolutional layers are the most important building block in a CNN. Mathematically, 

convolution refers to an integration function that indicates the amount of overlap of a function 

shifting over another function. In other words, the convolution describes filters that slide 

horizontally and vertically over the input array (our picture) and calculate the dot product at 

each taken step. In this context, the filter, also called kernel, refers to a set of weights, usually 

a 3*3 matrix, that extracts features (Chollet 2018, 127-128). The so-called stride describes the 

step size, with which the filter slides over the picture, meaning that increasing the stride will 
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result in a lower-dimensional output (Ghosh et al. 2020, 8). The output of the convolution is a 

feature map which stores information about the occurrence of features in a matrix along with 

how well it complements the kernel. In Figure 1 the convolution operation  is demonstared. In 

this example a 3*3 filter is applied on a 6*6 input array with stride equaling one which results 

in a 4*4 feature map. Applying zero-padding, i.e., padding the input array with zeros, can be 

used to further control the size of the output array (O'Shea and Nash 2015, 7).  

  

Figure 1 Illustration of the Convolution Operation. 

Source: Own illustration 

The CNN can contain one or more convolutional layers, each of them allowing through filters 

to identify local patterns, which can later be recognised all over unseen pictures.  The filters 

behave similarly to the human eye and learn patterns hierarchically. The deeper the 

convolution layer, i.e., the more convolutional layers applied, the more detailed and higher-

level features can be extracted from the image (Tsai, Chen, and Wang 2018, 942).  

Pooling Layer 

The pooling layer has the purpose to reduce the dimensionality of the convolved feature map. 

This reduces the number of features and the complexity of the model while persevering the 

most dominant features. For the pooling operation a kernel, usually of dimensionality 2*2, 

slides over the feature maps and applies a pooling technique. The most used pooling technique 

is max pooling, meaning to extract the maximum value for each window.  Similar to the 

convolutional layer, the stride size can be adapted. In the pooling layer the usual stride size is 
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two (Chollet 2018, 127). An example of the max pooling operation with a 2*2 window and 

stride two is shown in Figure 2. 

  

Figure 2 Exemplary Max Pooling Operation 

Source: Own illustration 

Fully connected layer 

Before the created feature can be fed to a fully connected layer, the outputs of the final 

convolution or pooling operation are flattened. The following fully-connected layer is analogue 

to a simple feed-forward ANN, meaning that each neuron in this layer is connected with each 

neuron in the adjacent layers (Ghosh et al. 2020, 9). This step is essential to allow the model to 

generalise local patterns. The output of the fully connected layer is a representation of the 

likelihood of an input belonging to a certain class.   

Descriptions of hyperparameters used for the CNN in this paper can be found in section 3.6. 

3.2 Labelling Approach  

To train the CNN, labelled training images are required. The approach used in this project opts 

to frame the predictions as a multi-class classification instead of a regression (i.e., predicting 

continuous return values). The three classes used to label observations in this project are BUY 

(label = 1), SELL (label = 2) and HOLD (label = 0), based on the price movement during the 

period after the observation.  

3.2.1 Sezer’s hill-valley labelling method 
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Following the approach of Sezer et al. (2018) for financial time series forecasting, the same 

labelling method will be applied hereafter. The method is directly derived from the pseudocode 

published in the paper. Essentially, the algorithm considers a sliding window of the close price. 

Whenever the close price of the middle day of the sliding window (here window = 11 days, 

middle day = day 6) is at the lowest point - in a valley - the label is classified as BUY.  Similarly, 

if the price of the middle day is on a hill, the label is classified as SELL. Any other data point 

is classified as HOLD (Sezer and Ozbayoglu 2018, 528).  

A notable feature of this labelling approach is that it is more generous than other transaction 

labelling approaches: On a test dataset, it produced close to 80 % HOLD classifications. That 

means that the model would trade about once every week. Generally, this is a transaction-

intensive strategy and more suitable for swing trading. Similar to day trading, swing trading 

involves trading strategies that require trades every few days, instead of intra-day trades (Pan 

2004, 476). If we extended the length of the sliding window this would most likely change. But 

the generosity of the algorithm has an advantage. Since there are a few percent more BUY and 

SELL samples, the class imbalance is not quite as high. A few more samples can help the CNN 

make a more accurate classification. Also, the CNN should be able to classify easier since the 

labelling algorithm is relatively simple and therefore should not be quite as difficult for the 

network to approximate. 

3.3 Feature Engineering 

Feature Engineering is essential to improve Machine Learning or AI models. In the following 

all pre-processing steps are explained and the reasoning for the applied methodologies 

provided. 
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3.3.1 Feature Creation 

Technical Analysis is confined to the analysis of trends and movements in the market (Yang 

et al. 2019). These indicators are used to predict future stock movements.   

In principle, a distinction is made between two categories of technical indicators: leading and 

lagging indicators. Leading indicators lead the price movement as they attempt to predict the 

trend in a time series (Fernández-Blanco et al. 2008, 1851). Lagging indicators are trend-

following indicators that provide delayed feedback as they lag the market (Bogullu, Dagli, and 

Enke 2002, 722).  

Indicators from both categories belong to one of four following types of technical indicators 

(Salkar et al. 2021, 2).  

1. Trend indicators show the direction in which the market is moving along with the 

strength of the trend by comparing historical prices to a baseline (Salkar et al. 2021, 2). 

They typically move between low and high values. The trend can be either downward 

(bearish), upward (bullish), or sideways (no clear direction) (Peachavanish 2016, 2). 

2. Momentum indicators assess the speed of price fluctuations in a time series by 

comparing current and previous closing prices (Salkar et al. 2021, 2).  

3. Volatility indicators measure the speed of price movement and provide information on 

how much the price changes in a given period (Salkar et al. 2021, 2).  

4. Volume indicators measures the number of shares traded in a stock and thus provide 

an indication of the strength of the market (Salkar et al. 2021, 2). 

The use of technical analysis indicators as input features for neural network systems is 

established in research (Arratia and Sepúlveda 2020; Sezer, Ozbayoglu, and Dogdu 2017; Sezer 

and Ozbayoglu 2018; Sim, Kim, and Ahn 2019; Thakkar and Chaudhari 2021). The selection 

of technical indicators was primarily based on their frequency in related studies as analyzed in 

literature (Chen et al. 2021, 69; Peng et al. 2021, 5–6; Sezer and Ozbayoglu 2018, 529). In this 
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paper, three trend, sixteen momentum indicators and one volume indicator are combined with 

different parameter settings. Most technical indicators possess a user defined interval as input, 

affecting the indicators output (Shynkevich et al., 2017, 72). The interval typically refers to the 

number of raw observations or periods processed by the indicator (Shynkevich et al., 2017, 72). 

The higher the interval, the more data will be processed. For the three trend indicators, i.e., the 

moving averages, three different window sizes were chosen respectively. For the sixteen 

momentum indicators and the volume indicator, one set of parameters was chosen for each. A 

total of 20 technical indicators are calculated based on the prices of the used ETF. Table 1 

provides an overview of the selected technical indicators. Definitions and calculations for each 

indicator can be found in Appendix A.  

  



 

 

23  

Technical Indicator 

Type No. of 

Features calculated 

Parameters: 

interval (in days) = [6, 7, 8, …, 

27] 

Tr
en

d 

M
om

en
tu

m
 

V
ol

um
e 

Simple moving average (SMA) x   21 interval  

Exponential moving average (EMA)  x   21 interval 
Hull moving average (HMA) x   21 interval 

Rate of change (ROC)   x  21 interval 

Relative Strength Index (RSI)   x  21 interval 

Know Sure Thing Oscillator (KST)  x  21 As defined in appendix. 

Williams % Range  x  21 interval 

Commodity Channel Index (CCI)  x  21 interval 
Directional Movement Index (DMI)  x  21 interval 

Stochastic Oscilator (SO)  x  21 interval 

Smoothed Relative Strength Index (SRSI)  x  21 interval 

Internal Bar Strength (IBS)  x  1 None 

Triple exponential average (TRIX)  x  21 interval 
Force index (FI)  x  21 interval 

Bollinger Bands  x  21 interval 

Chaikin Money Flow CMF  x  21 interval 

Detrend Price Oscillator (DPO)  x  21 interval 

Money Flow Index (MFI)  x  21 interval 
Ease of Movement (EOM)   x 21 interval 

Chande Momentum Oscillator (CMO)  x  21 interval 

Table 2 Technical Indicators and their Parameter Settings 

Source: Own illustration 

Along with the technical indicators, a set of additional variables are included in the set of 

predictors for the convolutional neural network. Those include the high, low, opening and 

closing prices along with the volume traded of the respective ETF, the closing prices of the 

crude oil price and the exchange rate of Euro and U.S. Dollar. 
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3.5 Image construction 

3.5.1 Sezer’s feature pixelation 

Following Sezer et al. (2018), the images are constructed according to their pixelation method. 

Similar to their labelling approach, the concept is quite intuitive. First, the values of the 225 

technical indicators are scaled between 0 and 1. Afterwards, they are transformed from a 1-D 

array per data point to a 2-D array of the form 15 x 15 per data point. Since images have three 

channels, one for each RGB channel, we copy the array twice and stack the copies along the 

third axis, resulting in a greyscale image with a shape of 15 x 15 x 3 per data point. Now each 

feature represents one pixel.  

The features must be organised to create interpretable images in the last step. All selected 

features are arranged side by side according to their name and interval. Moreover, trend 

indicators are close to each other, momentum and volume indicators likewise. This way, the 

images can form non-random shapes that the CNN can detect. (Sezer and Ozbayoglu 2018, 

529). 

3.6 Generic Model Architecture 

Data set splitting and cross validation for time-series data 

An important focus when developing any machine learning model is the generalisation of the 

model, i.e. how well it deals with data it has not been trained on (Bergmeir and Benítez 2012, 

197). To evaluate the performance of a model on unknown data, parts of the available data set 

will be held back as validation and test sets, such that the model will not be trained on all 

available data. This produces two problems: firstly, the model would most likely show a better 

performance if trained on the full data set, and secondly, by just evaluating the performance on 

sample, this performance measurement might not be representative of the true model 

performance. To solve these problems, in most cases k-fold cross-validation will be used for 
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training and performance evaluation. All available data is randomly split into k sets. The model 

training and performance evaluation is carried k times, where every set is used once as the test 

set, and the other sets being used for model training. This way, the method produces k 

independent performance measurements, while all available data is used for both training and 

testing. By averaging the performance measurement across the k iterations, a relatively robust 

measurement can be obtained, which is much more representative of the true model 

performance than a single measurement (Bergmeir and Benítez 2012, 197).  

However, the standard k-fold cross-validation cannot be applied to time-series data. The data 

set cannot be split at random into training and validation sets as there is no sense to using data 

from the future to forecast data from the past (Herman-Safar 2021). In other words, the temporal 

dependency betweens data points needs to be preserved during training and testing. A solution 

to this is Rolling Forward Cross-Validation, also referred to as Time Series Split Cross-

Validation.  

The data set is split into k consecutive subsets, while preserving the continuity of the data, i.e. 

the data set is not split at random, but based on its temporal order. Then, rolling forward cross-

validation method will iterate consecutively over the k subsets. In the first iteration, the first 

subset will be used for training and the second one for validation. In the second iteration, the 

first subsets will be used for training and the third one for validation. These iterations continue 

until the first k-1 subsets are used for training and the k-th subset for validation (Herman-Safar 

2021). 

 

Figure 3 Rolling Forward Cross-Validation 
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Source: Own illustration 

The described cross validation approach is applied to find the best model architecture with the 

respective optimal hyper-parameters as specified below. After estimating the best model, the 

chosen model is evaluated with the test set. To retain the temporal dependencies, the test set 

constitutes consecutive data points like the validation sets used for the cross validation. This 

test set includes 20% of all data, accounting for approximately the last two years of data. 

Model Architecture 

As a Convolutional Neural Network this paper proposes a rather simple CNN architecture as 

displayed in Figure 4. This basic architecture includes the input layer, two convolutional layers 

with 64 and 128 filters, one pooling layer, one fully connected layer as well as one output layer.  

 

Figure 4 Model Architecture 

Source: Own illustration 

In order to make the network more flexible to adapt to different ETFs and industries, a 

hyperparameter search is added. Since a gridsearch would be computationally too expensive, a 

randomized hayperparameter search is utilized. The search includes an optional dropout layer 

as well as an optional batch normalization layer and optional class weights. Regarding the 

convolutional operation different hyperparameter settings for the kernel size, the activation 

function (output layer exluded due to multiclass classification problem softmax is used in each 

model) and padding are included. For the pooling operation a parameter to control the type of 

pooling,  either use max or average pooling, is used. Lastly, the optimizer, learning rate, 
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batchsize, the number of epochs and weather balanced class weights should be used are 

included in the randomized search (Table 3). The following section explains the parameters in 

more detail. 

  

Category Hyperparameter Parameter distribution 

Additional 
Layer 

Batch Normalization include; exclude 

Drop Out (incl. Rate) exclude; include with rate 0.25; include with rate 0.5 

Convolution Kernel Size 3*3;  5*5 

Activation Function relu; sigmoid; softmax 

Padding same; valid  

Pooling Pooling Type max pooling, average pooling 

Compilation Optimizer Adam; RMSprop; SGD 

Learning Rate 0.0001; 0.001; 0.01 

Training  Epochs 100, 200 

Batch Size 16; 32; 64 

Table 3 Parameter Distribution for Randomized Search 
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Activation functions  

Activation functions in neural networks essentially take a single value and perform a 

mathematical operation on it. When the function converges to a specific value, the neuron 

'triggers' the next one, hence the name activation function. This concept derives from neurons 

in the human brain and is also the reason for the framework's name: neural network.  

ReLu is the most commonly used activation function, introduced by LeCun et al. (1998). Its 

purpose is to increase the non-linearity of the neural network. Despite being simple, ReLu is a 

non-linear function. Because there is no parameter inside ReLu (the formula can be seen in 

Table 4), it also does not require parameter-backpropagation. By setting all negative values to 

0, a neuron only actives for images that actually possess the pattern (Wu 2017, 10). 

As a result, this particular activation function is well suited for recognising objects and complex 

patterns. The introduction of ReLu in CNNs significantly reduced the difficulty of learning and 

improved the accuracy of the networks (Wu 2017, 9).  

Before ReLu, Sigmoid was one of the most used non-linear transformations. Sigmoid 

transforms to values between 0 and 1 and is best suited for input data that itself is between 0 

and 1 (Ittiyavirah 2013, 312). However in many cases, it performs poorer than ReLu (Wu 2017, 

11).  A commonly used activation function for the output layer is Softmax, which is a 

combination of many Sigmoid functions. Even in networks with ReLu in the inner layer, this is 

often the preferred output layer for probabilities or multi-class-classifications. In the latter, 

probability for each class will be the output (Ittiyavirah 2013, 314) 

Tanh looks quite similar to sigmoid; however, it is centred around the origin of the coordinate 

system. That is why it can depict values between -1 and 1 instead of 0 and 1. Its gradient is also 

steeper in comparison since it has to reach twice as many y values for the same x value. 

Generally, Tanh is preferred to sigmoid because here, the gradient is not as restricted in one 

direction and also because it is origin-centred (Sharma 2020, 313). Even though ReLu is the 
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standard in most CNNs nowadays, it can only outperform Tanh in deeper neural networks. That 

means when there are many layers, and problems such as the vanishing gradients occur (Godin 

2018, 8). 

 

Activation Function Formula 
ReLu f(x) = max⁡(0,𝑥) (1.1) 

Sigmoid 
𝑓(𝑥) =

1
1 + exp⁡(−𝑥) 

 

(1.2) 

Tanh 
𝑓(𝑥) =

𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥 
(1.3) 

Table 4 Activation Functions and Formulas 

Source: Sharma 2020, 313 

As depicted in Figure 5, sigmoid and tanh both converge towards specific values, either -1, 0 

or 1. This convergence leads to 'vanishing gradients' if the absolute values are too large. ReLu, 

on the other hand, erases all negative values and keeps the positive ones as they are, leading to 

'exploding gradients' (Lee and Song 2019, 593). 

 
Figure 5 Activation Functions 

Source: Own illustration based on Lee and Song 2019, 594 

Padding 

(Zero) padding allows to control the spatial size of the output of a CNN by adding an appropriate 

number of pixels (with zero values) to the outer edges of the input feature map before it is 

processed by the kernel (Chollet 2017, 126). Padding is used when it is desirable to obtain an 

output feature map with the same spatial dimensions as the input. Therefore, the padding 
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parameter is set to same (Chollet 2017, 126; Lee and Song 2019, 608). Otherwise, valid means 

that no padding is performed and that the size of the feature maps gradually decreases along the 

convolutional layers (Lee and Song 2019, 599). In case the input feature map has a size of (n,n) 

and the filters have a size of (m,m), then a single output feature map is of size (n-m+1, n-m+1) 

(Lee and Song 2019, 599). 

Pooling  

Pooling layers are used to reduce model complexity, limit computation in the network and 

control issues of overfitting by reducing the spatial size of a feature map. The pooling layer 

partitions the input into a set of non-overlapping two-dimensional spaces. The pixel values of 

each subregion are then mapped according to the type of downsampling operator chosen: In 

max pooling, the values are summarized into one maximum value, whereas in case of average 

pooling the mean of the activations in the previous layer is computed for each subregion. (Lee 

and Song 2019, 598). 

Batch Normalization 

Normalization methods are used to increase the similarity of samples and hence, to improve 

generalization, i.e., the models’ ability to perform well to unseen data. However, it is 

insufficient to normalize the data in the preprocessing stage, before feeding it into the model, 

only. Normalization is not guaranteed for each output after each transformation operated by the 

CNN since the mean and variance can change over time. (Chollet 2017, 260). The batch 

normalization layer, typically used after a convolutional layer (Chollet 2017, 261), ensures to 

continuously normalize the data during the training process by standardizing the values in each 

layer to mean 0 and variance 1 before the activation layers (Ioffe and Szegedy 2015). By making 

data standardization an integral part of the model architecture, faster and more stable training 

is possible, allowing the model to improve prediction accuracy (Lee and Song 2019, 609; 

Santurkar et al. 2018). Due to the implementation of batch normalization layers, higher learning 
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rates can be used (Ioffe and Szegedy 2015; V. Thakkar, Tewary, and Chakraborty 2018, 2) and 

deeper networks can be built (Chollet 2017, 260).  

Dropout  

Regularisation is a method that is particularly relevant for preventing overfitting and improving 

generalization of deep learning models. Dropout is one of the most frequently applied 

regularisation techniques for CNNs (Srivastava et al. 2014). It randomly drops out input 

features during the training process, meaning it sets some of the weights connected to a given 

percentage of nodes in a CNN to zero (Chollet 2017, 109; 216). The dropout rate refers to the 

fraction of features that are replaced with zero during training and lies usually between 0.2 and 

0.5. For each update in each training epoch, the removed units are not included in the 

calculations of the current step (Krizhevsky, Sutskever, and Hinton 2017). Dropout is not 

applied to the test or validation set. In this case, the output of a layer is scaled down by a factor 

equal to the dropout rate to account for the fact that there are more units than during training. 

(Chollet 2017, 109). 

Epochs  

An epoch refers to the one-time training of the CNN with the entire dataset (Sharma 2017). 

However, since the size of an epoch is usually too large to be fed to the network in a single 

batch, it is divided into several smaller batches (Chollet 2017, 34). To improve the training 

process of the model, the number of epochs is increased, i.e., the data is passed to the same 

CNN multiple times (Sharma 2017). This way, the average loss on the training set is decreased 

until the optimal curve is met, more precisely, until the network begins to overfit the training 

data (Wu 2017, 7). 
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Optimisers 

Optimisers are used to tweak the model’s parameters during training. In Table 5, the used 

optimisers and their respective formulas can be inspected. 

Adam, short for Adaptive Momentum Estimation, is one of the most widely used optimisation 

algorithms in CNNs. Adam is an iterative algorithm that adapts the model variables. Research 

has shown that Adam is effective for optimizing large groups of problems  (Zhang and Gouza 

2018, 1). However, for non-convex objective functions, it has shortcomings as Adam cannot 

promise to find a global optimum, as its iterative optimization might get stuck in a local 

optimum. Therefore it cannot be described as a particular robust optimizer for noisy data (Zhang 

and Gouza 2018, 2). 

Stochastic gradient descent (SGD) is probably the most widely used optimizer for CNNs (Wu 

2017, 7). Generally, it is a fast algorithm that only performs small computations at each descent. 

As many image recognition problems are based on noisy data, it is a fitting choice. Choosing 

the correct learning rate offers a solution to the problem of getting stuck in local optima. When 

the dataset is heterogenous it can get unstable, and the loss decreases on average. SGD chooses 

samples at random throughout an epoch, so some samples might get chosen twice and some not 

at all (Lee and Song 2019, 597). 

RMSProp or Root Mean Squared Propagation has become one of the more popular gradient 

algorithms beyond SGD. It has been used for very deep CNNs for computer vision and in some 

notable cases, outperformed SGD and Adam (Mukkamala and Hein 2017, 3). Even though it 

was designed for deep neural networks, it performs quite well with noisy data in deep learning 

and hence for CNNs. It also offers opportunities like SGD to escape the local optima and 

contains the Adagrad optimiser when tuned with the correct parameters (Mukkamala and Hein 

2017, 2) 
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Activation Function Formula 

RMSProp 

𝐸(𝑔2) = ⁡𝛽𝐸(𝑔2)𝑡−1 + (1 − 𝛽)(
𝐶
𝑤)

2

 

𝑤𝑡 = ⁡𝑤𝑡−1 −
𝜂

√𝐸(𝑔2)
𝐶
𝑤 

𝑤ℎ𝑒𝑟𝑒⁡𝐸(𝑔2) = 𝑀𝑜𝑣𝑖𝑛𝑔⁡𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑜𝑓⁡𝑠𝑞𝑢𝑎𝑟𝑒𝑑⁡𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠  

⁡𝐶
𝑤
=gradient of cost function with respect to the weight 

𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑒⁡ 

𝛽 = 𝑚𝑜𝑣𝑖𝑛𝑔⁡𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟⁡ 

𝑎𝑛𝑑⁡𝜃 = 𝑐𝑜𝑠𝑡⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

(2.1) 

(2.2) 

 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Adam 

𝑚𝑡 = ⁡𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = ⁡ 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2
𝑡 

𝑀𝑡 = ⁡
𝑚𝑡

1 − 𝛽1𝑡
 

𝑉𝑡 = ⁡
𝑣𝑡

1 − 𝛽2𝑡
 

𝜃𝑡+1 = ⁡𝜃𝑡 −
𝜂

√𝑉𝑡 + 𝜖
𝑀𝑡 

𝑊𝑖𝑡ℎ⁡𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑒,𝑚 = 𝑝𝑎𝑠𝑡⁡𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

⁡𝑣 = 𝑝𝑎𝑠𝑡⁡𝑠𝑞𝑢𝑎𝑟𝑒⁡𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡, 𝛽 = 𝑑𝑒𝑐𝑎𝑦⁡𝑟𝑎𝑡𝑒 

⁡𝜖 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔⁡𝑡𝑒𝑟𝑚⁡⁡𝑎𝑛𝑑⁡𝜃 = 𝑐𝑜𝑠𝑡⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

(2.8) 

(2.9) 

(2.10) 
 

(2.11) 
 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Stochastic Gradient 

Descent 

𝑤 = 𝑤 − 𝜂Δ𝑄(𝑤) 

⁡𝑄(𝑤) =⁡
1
𝑛∑Δ𝑄𝑖(𝑤)

𝑛

𝑖=1

 

 

𝑤ℎ𝑒𝑟𝑒⁡𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑒 

 

(𝑤) = 𝑙𝑜𝑠𝑠⁡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛⁡ 

 

𝑄𝑤 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

(2.16) 

(2.27) 

(2.18) 
 

(2.19) 
 

(2.20) 

Table 5 Optimisers and Formulas 

Source:  (Zhang and Gouza 2018, 2); (Kingma and Ba 2014, 2); Hinton, Srivastava, and Swersky 2012, 20 

 

Batch size  

Batch size denotes the number of input samples in a single batch used for a training iteration 

(Lee and Song 2019, 595). The choice of batch size affects the batch normalization process as 
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the technique depends on the number of samples in a batch. In general, smaller batch sizes have 

been found to provide a faster training process and a better generalization compared to larger 

batch sizes (Shen 2018). 

Learning rate  

The learning rate describes the extent to how much the model weights are changed during the 

training process (Brownlee 2019). It takes on a small positive value. The smaller the learning 

rate, the smaller the changes made at each iteration and thus the higher the number of training 

epochs necessary. Vice versa, a higher learning rate implies a more rapid adaptation and 

therefore requires less training epochs. Tuning this hyperparameter is essential as a too high 

learning rate can cause the model to converge quickly on a suboptimal solution, whereas a too 

low learning rate can cause the training process to become unstable and time-consuming 

(Brownlee 2019; Lee and Song 2019, 596). 

Kernel size 

The kernel_size is a key hyperparameter of the convolutional layer referring to the size of the 

kernel,  a matrix moving over the input data, as explained in section 3.1.2. The input image is 

separated into sub-regions by the convolutional layer to have a fixed size set by the kernel size. 

The kernel size refers to the height x width of the filter mask. (Lee and Song 2019, 597 – 598). 

Sample weights 

The sample weights are used for computation between layers in a model. The algorithm 

computes the amounts of true values in the test set and adjusts the weights accordingly. The 

aim is to find an optimal set of weights ensuring a minimum loss during the network’s learning. 

Sample or class weights are commonly used for imbalanced datasets. (Lee and Song 2019, 593).  
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3.7 Performance Evaluation 

To evaluate our model, computational and financial performance measures need to be 

distinguished.   

3.7.1 Computational Evaluation 

As the stock price movement prediction represents a classification problem, evaluation for 

computational performance is feasible with the means of common evaluation metrics derived 

from the confusion matrix (Chen et al. 2021, 77). For assessing and comparing the 

computational performance of the constructed models, six performance metrics will be 

considered. 

Accuracy 

Accuracy as the first metric being used represents one of the simplest and most intuitive 

methods, showing how many classes have been predicted correctly.   

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + ⁡𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

(3.1) 

The accuracy metric can convey false impression of the performance of a model if classes are 

unbalanced. However, high accuracy is very important in the context of trading since every 

misclassification should be seen as a wrong trading decision and thus implying loss.  

Precision 

Precision is the second metric being used. Class-specific precision measures for each class 

separately the percentage of correct predictions, i.e. the percentage of instances predicted as the 

respective class that actually belong to the class. Precision values are bound between 0 and 1. 

Moreover, the macro-averaged and weighted-averaged precision show the average model 

precision across all classes.  
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (3.2) 

 

The type I error is penalized by the precision metric, resulting in lower values with a high type 

I error. Applied to trading, precision puts more emphasis on risk aversion, showing how many 

bad investment choices were impeded or how many trading decisions were predicted correctly. 

For buying transactions to prevent the trader to falsely buy although the asset might not further 

rise in value, resulting in a loss of value if the price goes down. Falsely predicting to sell will 

lead to missing out on possible returns if the asset is further rising in value. 

Recall 

Recall is a measure of how well the model identifies instances of a specific class in the data set.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (3.3) 

 

A high recall means that the model is strong at identifying actual instances of its respective 

class, whereas a low recall means that the model is only able to identify a small percentage of 

instances of the class. Recall values are bound between 0 and 1. Recall is related to the presence 

of type II error (Peng et al. 2021, 23). In the context of trading, a higher recall implies not 

missing out on potentially profitable trading opportunities, indicating how many truly positive 

instances were marked as such and to decrease the number of false positives (Peng et al. 2021, 

23). Related to a real-world trading scenario, a high recall leads to less falsely not-buying 

decisions although it would have been profitable. In terms of selling triggers, it denotes to not 

overlooking selling opportunities, preventing to hold the asset when the price will decrease. 
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F1-score 

The F1-score balances precision and recall and provides a harmonic mid-point between recall 

and precision as it is granting a high value only if both values are performing well (Peng et al. 

2021, 23–24). It harmonises indications on how precise the model is as a classifier, i.e. how 

many instances are correctly predicted, and how robust the model is, i.e. how good it is at 

identifying instances of the class.This metric can be very useful for strongly unbalanced 

predictions as the accuracy measure can indicate misleading results (Peng et al. 2021, 24). 

However, it is less intuitive as it is combining two metrics and is representing a poor resource 

allocation in this trading context. To gain detailed insights into the quality of the model, 

precision and recall should be checked separately and relative importance should be placed on 

recall and precision based on the specific underlying problem (Peng et al. 2021, 24).  

Application of the performance measures 

In the context of computational efficiency, the focus will lie on accuracy, since each prediction 

represents a trading decision that results in financial loss if misclassified. Since the datasets are 

unbalanced (Hold class is dominating each ETF) it is important to make sure that all classes 

will be predicted while minimizing the false positive rate. Therefore, the precision, recall and 

F1-score will help to get more insights into the models' prediction behaviour.  

To ensure cross-industry comparability, a similar methodology including a similar labelling and 

model approach is used, except for the Oil and Gas sector. The acquired results will be 

compared and analysed based on the previously mentioned computational common 

performance measures, as well as on the basis of financial evaluation approaches which will be 

discussed in the next part.  
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3.7.2 Financial Evaluation 

General approach 

As the general approach to the financial evaluation of the model performance, a method 

suggested by Sezer, Ozbayoglu and Dogdu (2017) will be used. In this approach, the asset is 

bought, sold or held in accordance with its predicted label: 

• If the prediction is Buy, the asset will be bought at current market price. 

• If the prediction is Sell, the asset will be sold at current market price. Any existing long 

position will be closed, i.e. held shares sold, and a short position will be entered, i.e. 

shares will be short-sold. 

• If the prediction is Hold, no operation is performed at that point in time. 

Equal to Sezer, Ozbayoglu and Dogdu's approach, a starting capital of 10,000 USD will be used 

and each transaction (Buy and Sell) will be made using the full capital available at that moment. 

If the same label is repeated directly after one another in a sequence, only the first label will be 

considered as a trigger and the respective transaction executed. Repeat labels will be ignored 

until a new label comes up. At every executed transaction, trading fees will be considered to 

achieve a near-real scenario.  

For the evaluation, the total return over the test period will be used. Given that each individual 

industry analysis will be applied to the same time period, and as such the test period will be 

equal, the comparability of industries with this metric is given. 

Basic premises and assumptions 

For the approach to be consistent, a number of clear assumptions need to be stated: 

1. Trading fees: Trading fees stay constant during the whole test period. 

2. Execution price: As the prediction will be based made on the data available at the end 

of day t for day t +1, the closing price of day t will be used as execution price. 
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3. Fractional shares: The approach assumes that fractional shares can be purchased. As 

such, the number of shares purchased or sold in transaction is equal to the total available 

capital divided by the execution price. 

4. Short-sell limit: A short-sell limit of 20% of available capital is set, such that in a short-

sell transaction, the short position cannot exceed 20% of the total capital available after 

closing the long position at the moment of a sell signal. 

 

Benchmarks strategies 

As benchmarks to compare the financial performance of the model to, the following strategies 

will be used: 

1. Simple, passive Buy & Hold strategy: the asset is bought at the beginning of the test 

period and held until its end. The total return is determined by comparing the value of 

the investment at the end of the observation period to the start capital. 

2. Simple Moving Average Cross-over Strategy: One shorter-term simple moving 

average and one longer-term simple moving average will be applied. In line with 

technical trading rules, it is considered a buy signal when the shorter-term moving 

average exceeds, i.e. crosses over, the longer-term moving average (Mitchell 2021). On 

the other hand, it is considered a sell signal when the shorter-term moving average 

crosses below the longer-term moving average (Mitchell 2021). For the application in 

this methodology, in case of a buy signal, the asset will be bought at market price. In 

case of a sell signal, any existing long position will be closed at market price and a short 

position in line with the short-selling limit will be entered. 

The best performing moving average combination will be found through a‘simplified 

randomised search based on the training data set. 
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3. Mean-Reversion Strategy: The mean-reversion trading strategy is built on the premise 

that prices eventually will revert back towards their mean (Chen 2021). Upper and lower 

Bollinger bands are built around the asset price in a distance that is a function of the 

assets volatility measured as its standard deviation and a simple moving average is 

constructed (Chen 2021). On the one hand, if the asset price is below the Lower 

Bollinger Band, the asset is considered oversold and as such undervalued and expected 

to increase, reverting back towards its mean. This results in a buy signal, meaning that 

a long position should be built. On the other hand, the if the asset price is above the 

Upper Bollinger Band, the asset is considered overbought and overvalued and expected 

to decrease (Chen 2021). This results in a sell signal, meaning that any long position 

should be exited and a short position opened. In addition, for the strategy approach used 

in this paper moments where the price crosses the SMA are considered as unclear 

signals, signalling the investor to go neutral, i.e. to close any long or short position. 
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4 Industry implementation  

4.1 Industry analysis 

The oil and gas industry (in the following referred to as the O&G) can be described as a sub-

sector of the energy industry, which also includes renewable energy. O&G companies are active 

in various fields of energy production: Exploration, production, refining, shipping, and 

wholesale.The large companies operate in all areas, while smaller companies usually focus on 

one part of the chain. For this study we will deal exclusively with American companies to make 

comparisons across industries uniform (Longwell 2002, 2).  

In the U.S., the most significant companies, Exxon Mobil Corp and Chevron Corp, are almost 

twice the size of the next biggest player in terms of market capitalization (Statista 2021). 

 

4.1.2 Influences 

The dependency of O&G companies on global oil demand is demonstrated by the negative oil 

price during the COVID-19 pandemic, when the entire global economy was forced to shut down 

its production. During this time, oil price had a drop to a negative value in April 2020. Since 

then, the oil price has recovered and is now at a six-year high. This trend has been influenced 

primarily by the OPEC, the Organization of Petroleum Exporting Countries, which has curbed 

its supply throughout the year (EIA 2021). OPEC and other oil producing companies are 

another factor to consider for the U.S. O&G industry. Besides global demand, global supply 

also affects oil prices. When prices are high, even fracking is very economical. On the other 

hand, high prices accelerate the transition to electric vehicles and other energy sources in the 

near future. Therefore, the industry keeps the price between these certain thresholds (Mittal 

2021, 3). 
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For O&G companies looking to engage in mergers and acquisitions, ESG scores are becoming 

increasingly important. Investors in the industry prefer low-carbon barrels, but only a small 

percentage of transactions to date show the ESG trend (Enverus 2021).  

Today, O&G business models are evolving to empower the new energy era and diversification 

of revenue streams. Some oilfield service providers have already moved to cloud computing 

and other digital services (Peuch 2020, 1). Other companies are diversifying their revenues by 

up to 40% by serving renewable energy producers (Bagga 2021, 1). However, given 

decarbonization targets, oil producers need to focus on and expand in the low-emissions sector. 

This shift could also bring opportunities. In fuel retail, a new generation of motorists is moving 

away from brand and price toward user-friendly and convenience-oriented retailers (Mittal 

2021, 6). These customers happily engage with services beyond refueling and are willing to pay 

for the added convenience.  

A challenge for the industry is attracting talent. After the price drop in 2020, many workers lost 

their jobs. Today, only 50% of those lost jobs have been filled. These types of developments 

damages the industry reputation for job security, while the current core workforce blocks 

positions for younger talent (Mittal 2021, 6). 

 

4.1.3 O&G ETFs 

Three exchange-traded funds were selected for further analysis to find the best fit for 

forecasting. These ETFs are XLE, IYE and VDN. The shortlist was based on country, 

composition, and sheer size. These exchange traded funds are american, consist of only O&G 

companies, and are the largest available within these constraints. After high-level shortlisting, 

the ETF with the best statistical characteristics is selected for forecasting, taking into account 
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level of asset, trade volume, return, flow and underlying index or asset class. In general, higher 

numbers for these variables mean better conditions. 

4.1.4 ETF Selection 

ETFs should have a reasonable amount of assets for other investors to consider them a good 

choice. If there is limited demand from other investors, liquidity will be tight and large spreads 

may occur. This is highly undesirable, especially for algorithmic trading, which is best suited 

for day or swing trading. These types of trading tend demand frequent transactions and require 

reliable numbers and low transaction costs (Puelz, Carvalho, and Hahn 2015, 2). Therefore, it 

seems safe to say that the higher the assets of an ETF, the better. As shown in Table 6, XLE 

has the most assets at $27.8 billion, compared to $3 billion and $6 billion.  

In general, higher trading volume in an exchange-traded fund means it is more liquid and more 

likely to have a tighter bid-ask spread, regardless of asset class. For popular ETFs, trading 

volume amounts to millions of shares per day. High volume means there are many buyers and 

sellers and it is easier to exit the desired price. Again, XLE has the highest trading volume.  

As depicted in Table 7, the highest average daily return is offered by XLE, although not by a 

large margin. In terms of standard deviations, minimums and maximums, all ETFs offer very 

similar performance.  

Having a much higher average volume, it is not surprising that XLE has the highest average 

daily flow. Only the standard deviation is higher, but that is expected with a much higher 

average. In addition, XLE is also the oldest exchange traded fund with the most data points. 

The underlying asset class ideentical for all three ETFs, and in general, the composites are for 

the most part identical, although their individual proportions vary. Addressing diversification, 

all ETFs are focused on a specific industry (oil and gas) and a specific country (USA). This is 

not ideal from an investor's point of view, but necessary for the comparison. 
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In all statistics, XLE had the best prerequisites for a forecast. Therefore, it is used for the CNN. 

Since all ETFs offer large volumes and good prerequisites, any of them would be a suitable 

choice, nevertheless. 

 

Symbol Name Net Assets 
90-day Avg. 

Volume 

Largest 

composite 

2nd largest 

composite 

3rd largest 

composite 

XLE 

Energy 

Select Sector 

SPDR Fund 

$27.8B 29,498,182 
Exxon Mobil 

Corp 22.54% 

Chevron Corp 

20.27% 

Schlumberger 

NV 4.61% 

IYE 
iShares U.S. 

Energy ETF 
$2.4B 2,394,910 

Exxon Mobil 

Corp 20.29% 

Chevron Corp 

16.53% 

ConocoPhillips 

7.74% 

VDE 
Vanguard 

Energy ETF 
$6.0B 1,183,901 

Exxon Mobil 

Corp 20.30% 

Chevron Corp 

16.39% 

ConocoPhillips 

7.02% 
 

Table 6: Overview of  possible Oil & Gas ETFs 

 

Symbol Mean Std. Dev. Min Max Start year End year 

Flows in 1000s   

XLE 14816.82 12870.16 7.40 99356.70 1998 2021 

IYE 713.96 1211.55 0,00 42603.50 2000 2021 

VDE 320.29 440.99 0.40 5786.70 2004 2021 

Returns   

XLE 0.000239 0.018454 -0.224910 0.152503 1998 2021 

IYE  0.000189 0.018530 -0.231433 0.218133 2000 2021 

VDE 0.000187 0.019400 -0.220964 0.157834 2004 2021 
 

Table 7: Summary statistics of Oil and Gas ETFS 

daily Flows (daily trading volumes in 1000 shares as flows) and daily log returns of closing prices (logPt  - logPt-1) 
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4.2 Data Prepocessing, feature engineering and image encoding  

 

Figure 6: Overview of the implemented methodology 

 

As shown in Figure 6, six steps are performed for the classification model. Retrieving the data, 

labelling, feature engineering, image generation, training the CNN, and performance 

evaluation.  

 

4.2.1 XLE Dataset 

The XLE data set was retrieved from Fidelity, accessed 11/21/2021. The data points range from 

the inception date of 1998 to 2021, and consist of daily data points of opening, closing, 

minimum and maximum prices, and trading volume per day. The data was divided into a 

training set and a test set. The training data ranged from 2004 to 2018 and was later used for 
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rolling forward cross validation. The test set covered one year (2019) to provide a reasonable 

time frame for measuring financial performance. 

 

4.2.2 Labelling 

As previously described, Sezer’s valley-hill method is used for labelling. Here, valleys of a 

window of 11 days are classified as SELL, hills as BUY and all other data points as HOLD. 

One problem with this approach is that the CNN has problems differentiating between the valley 

data points and points close to the valleys, resulting in many BUY signals when it should be 

HOLD. This might be specific to the XLE dataset but it is a problem when we want the same 

amount of SELL and BUY signals. On the test set, the true HOLD signals amount to 

approximately 90% which seems much but in practice, this still means one transaction every 

10 days. Therefore this ratio seems adequate. 

 

4.2.3 Feature engineering 

 

Figure 7: Index Closing prices 
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Feature calculation 

To forecast the XLE ETF, the data was supplemented with the crude oil price CL=F and the 

Euro/USD exchange rate EURUSD=X. The choice for these indexes was based on the strong 

dependency of the industry on oil in general, and the strong internationality of the market. The 

closing prices of the three indices are illustrated in Figure 7. Instead of using only the open and 

close prices, the same technical indicators were calculated for CL=F and EURUSD=X as for 

the XLE itself. The full list of indicators can be found in Appendix A. Ultimately, this resulted 

in a 3% increase in accuracy compared to the model relying only on the XLE data and the 

open/close prices of the other two indices. The additional data sets are the most notable 

difference from the approach of Sezer et al. (2018). 

Feature selection 

The feature selection algorithm mentioned in 3.3.3 selected the best 225 features from the 1212 

features for the image, as shown in Table 8. 157 of the 225 features were selected from the XLE 

dataset. The strongest indicators here are RSI, WR, CCI, FI, and EOM, with all 21 features 

included in the image. 75 features originate from the CL=F dataset, with FI and EOM being the 

strongest indicators. For the EURUSD=X dataset, only two DMI features were included in the 

algorithm. More information can be found in Table 8. 

Assuming that an O&G ETF is dependent on the oil price, this distribution is not surprising. 

Intuitively, O&G stock prices would be more responsive to a decline in oil prices than vice 

versa, so there may be a slight lag following oil price movements that justifies using this data 

set for O&G forecasting. Looking at the last data set, it is interesting to see that the exchange 

rate indicators are almost completely negligible in terms of statistical significance.  

After selecting the characteristics, the features are re-sorted. Indicators of the same type but of 

different intervals are next to each other. Moreover, they are also sorted by their category. This 
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means that trend, momentum and volume indicators are next to their type, e.g. trend next to 

another trend indicator.  

 

Features 
Selected Features 

from index 

No. of features 

calculated per 

 index 

 XLE EURUSD=X CL=F  

Simple moving average (SMA) - - - 21 

Exponential moving average (EMA)  - - - 21 

Hull moving average (HMA) - - - 21 

Rate of change (ROC)  12 - - 21 

Relative Strength Index (RSI)  21 - 11 21 

Know Sure Thing Oscillator (KST) - - - 21 

Williams % Range (WR) 21 - 11 21 

Commodity Channel Index (CCI) 21 - 9 21 

Directional Movement Index (DMI) - 2 - 21 

Stochastic Oscilator (SO) 8 - - 21 

Smoothed Relative Strength Index (SRSI) 4 - - 21 

Internal Bar Strength (IBS) - - - 1 

Triple exponential average (TRIX) - - - 21 

Force index (FI) 21 - 21 21 

Bollinger Bands - - - 21 

Chaikin Money Flow (CMF) 6 - 2 21 

Detrend Price Oscillator (DPO) 5 - - 21 

Money Flow Index (MFI) 13 - - 21 

Ease of Movement (EOM) 21 - 21 21 

Chande Momentum Oscillator (CMO) 4 - - 21 

Close - - - Raw data 

Open - - - Raw data 

Low - - - Raw data 

High - - - Raw data 

Volume - - - Raw data 

Table 8: Selected features 

Source: Own illustration  
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4.2.4 Image creation 

 

 

 

 

 

 

 

 

Sezer's feature pixelation method described in 3.5.1 is used to create the images. Examples can 

be seen in Figure 8. 

The images in Figure 8 are good representations of how each class looks as an image. It is easy 

to recognise lines and shapes formed by the indicators. For example, BUY usually has many 

black areas, HOLD is mostly gray, and SELL has many white areas. However, not all data 

points look like these representations - and this is where the difficulty for the CNN lies.  

Another difficulty for the CNN is recognizing the shapes. This is addressed by sorting the pixels 

in a meaningful order. From experiments with the images, one could observe that the 

performance of the CNN significantly drops when we break up these shapes by shuffling the 

order of the indicators. 

These images are always in greyscale. This is the case because for every pixel and any given 

value 𝐫, 𝐠, 𝐛⁡in the RGB channels, if 𝒓 = 𝒈 = 𝒃, the displayed colour is going to be 

monochrome. Because we are simply copying the red values to the other two channels, that is 

exactly the case for each pixel. Hence, the hues will not deviate from the monochrome palette. 

 

HOLD SELL BUY 

Figure 8: 15 x 15 images with features encoded in the pixels  

Source: Own illustration 
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4.3 Final Model architecture  

A randomised search created the model architecture with the parameters from Table 3. The final 

model with the best parameters had the architecture from Figure 9: 

 

Figure 9: Final model architecture with parameter settings, Source: Own illustration 

Two convolutional layers with dimensions 15 x 15 x 32 and 15 x 15 x 64 were implemented 

for iterations of the grid search. The rate for the dropout layers was 0.25, and the Max method 

was chosen for pooling. Finally, a fully connected layer was added as the penultimate hidden 

layer. As an activation function, ‘ReLu’ showed the inner layers' best performance, and 

‘Softmax’ was chosen for the output layer. In addition, the learning rate was initialized with a 

value of 0.001 but can be lowered during training by ReduceLRonPlateau. More information 

about the final model architecture can be found in Appendix B. The model losses and 

improvements during training can be seen in Figure 10. 

 

Figure 10 Model loss chart    
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4.4 Performance evaluation 

4.4.1 Test data 

The test data consists of the year 2019 with 248 data points for each business day.  A period of 

one year is reasonable for financial performance evaluation. From the financial point of view, 

it is crucial to have a consecutive dataset. This is due to the fact that we measure the 

performance within one year. For computational model performance, these constraints would 

not have been as tight. However, the same test data is used for both performance measures. 

4.4.2 Model performance 

 Predicted    

  SELL BUY HOLD 

 SELL 4 0 16 

Actual BUY 0 13 3 

 HOLD 16 47 198 

 

Table 9: Confusion Matrix of test data 

 

Total accuracy: 0.72 

 SELL BUY HOLD 

Recall 0.2 0.81 0.76 

Precision 0.2 0.22 0.91 

F1 Score 0.2 0.35 0.83 

 

Table 10: Computational evaluation of test data 

 

Analysing the predictive model, the first score to look at is the total accuracy. Although not 

extremely high, 0.72 (as seen in Table 10) is a useful accuracy that is certainly better than a 

random distribution. As expected, the model classifies the HOLD labels particularly well. This 
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is the largest class and thus should be the easiest to predict, especially since the data set is so 

unbalanced.  

The model is also acceptably good at predicting BUY signals. The recall value is very high at 

0.81, which means that it almost never misclassifies a true BUY signal. However, it tends to 

classify a disproportionate number of HOLD signals as BUY with a precision of 0.2. On closer 

insepection, it seems as if it is hard for the CNN to differentiate the days close to a valley from 

the valley (as previously explained in  3.5.1). That is the reason for the low precision score.  

For the SELL signals, the model performs equally poorly with a value of 0.2 for Recall and 

Precision. It is however at par with the BUY precision score. Again, the model has difficulty 

distinguishing between data points close to the hill and the hill. This time it also misclassifies a 

lot of SELLs as HOLDs, that is why it has three times fewer exit than entry signals. 

For algorithmic trading, it is important to have accurate entry points, i.e. BUY and SELL. Here 

it is especially important that these two are not confused with each other. Fortunately, the model 

is very good at distinguishing between BUY and SELL. A look at the confusion matrix in Figure 

9 shows that it can distinguish these two without any error. Thinking about real-world 

applications, this fact would prevent many of the worst-case scenarios.  

If we tried to catch more true positives of the BUY signals (and improve our Recall), we have 

to accept that additional HOLD signals would also be classified as entry points. The problem is 

that the true entry points are so few. This makes them extremely difficult to capture accurately 

without creating false alarms, reducing the precision score (Sezer and Ozbayoglu 2018, 534).  

Considering that stock data is predicted, the model has decent performance overall. 
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4.4.3 Financial Performance 

 

Figure 11: Closing Prices of test  set data 

 

To measure the financial performance of the CNN, the algorithm explained in 3.7.2 is applied 

to the test set, the year 2019. Figure 11 above shows the closing prices of XLE for this year.  

In Table 11, we see that the Buy & Hold strategy is the clear winner with a return of 10.0%. 

Typically, this strategy is hard to beat in the long run. However, over the medium term, e.g., 

one year, other strategies usually have a chance to outperform it. With SMA and MR's returns 

below 5%, one could argue that this year may have been a tough year for swing trading and 

non-B&H strategies. CNN came in second, and while not the best strategy, a 5.2% return is still 

a good return when the asset is not on an uptrend.  

The problem with this test is that the start and end dates are critical. For example, if we had 

started in April 2019, Buy and Hold would have a slightly negative return and the other 

algorithms, including CNN, would have a positive return. 

To really test the model's performance, we would need to test many years separately and use 

summary statistics on those measures to get a better idea of how robust the CNN is compared 

to regular algorithms. The dilemma is that we do not have enough data to test for many years 

and still have sufficient data for training. 
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CNN‘s Financial 
Performance Buy & Hold Return SMA Return MR Return  

5.2% 10.0% 4.8% 0,0% 

 

Table 11: Financial performance comparison 

 

4.5 Limitations and Implications  

This approach, inspired largely by Sezer et al. (2018), shows potential but has some 

shortcomings in the current implementation. The model itself needs to be optimized or trained 

with additional data to improve the recall value for the SELL signals. Of course, other 

improvements would also be desirable. In addition, one could argue that the underlying 

labelling algorithm could also be improved. It seems to work for the data used in the original 

paper by Sezer et al. (2018), but for the XLE test set, it was not the best. This could also be due 

to the model making incorrect predictions. Unfortunately, this cannot be said with certainty 

because there are two sources of error in this chain: the labelling algorithm itself and the model 

that replicates the labels.  

Furthermore, we could think about adding more datasets to the features. Using the oil price has 

worked remarkably well, and perhaps other assets can help make predictions, e.g. gold. Also, 

it would be helpful to train the model with more than one ETF, so we could also use more years 

for backtesting the strategy. Another option would be to use minute data, which is usually not 

as readily available. The XLE ETF seems to be a good choice for predictions. It is not very 

volatile, and the model's accuracy suggests that modelling the labels for the CNN is a 

manageable task. It would be interesting to see how this model performs on other ETFs, or how 

it would perform if we trained it with data from other ETFs and tested it again on XLE. IYE or 

VDE would be obvious choices, but perhaps ETFs from other sectors could benefit from this 
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model. However, the auxiliary data from the oil price and exchange rate would need to be 

adjusted. 

In addition, the deep learning approach to technical analysis could be combined with other 

strategies. For example, natural language processing models from tweets or Reddit forums 

could help identify the sentiment of other traders. Since the stock market is very psychologically 

driven nowadays, this aspect should not be neglected in a successful trading strategy (Yao and 

Luo 2009, 669).  

Evaluating financial performance still seems to be one of the most challenging parts, so adding 

more years to the test would be of limited advantage. A more advanced test strategy that 

includes both long and short positions would further improve the evaluation of the model (Sezer 

and Ozbayoglu 2018, 535). 
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5 Performance Comparison and Discussion 

In the following section, key findings from the individual analyses conducted in part 4. will be 

summarised, focusing on common findings regarding the model hyperparameters, the 

computational performance of the models, and the financial performance of the models. 

Common findings hyperparameters 

Comparing the best-performing model parameters across the three model types (GADF, GASF 

and MTF) and across the six analysed industries, several findings can be made.  

Firstly, for the MTF-based models, a 5*5 kernel achieves the best performance across all 

industries. For the majority of GAF-based models, i.e. GADF and GASF, a 3*3 kernel leads to 

the best performance, with the exception of the Energy sector, for which a 5*5 leads to the best 

performance for all three models. This tendency can be supported by the PXL-based model, 

which also uses a 3*3 kernel. 

Secondly, in the majority of models (17 out of 19), the Softmax and Sigmoid activation function 

achieve the best performance. The ReLu activation function only leads to the best performance 

for 2 of the 19 models. 

Thirdly, for 5 out of the 6 ETFs applying the proposed image encoding types, average pooling 

achieves the best performance for the GADF model. 

Fourthly, for the majority of analysed ETFs (5 out of 6), including the class weights does not 

have a positive impact on the model accuracy, i.e. models without class weights achieve a better 

accuracy for these ETFs. However, this tendency is not supported by the PXL-based model.  

Common findings computational performance 

For the majority of industries, i.e. Information Technology, Healthcare, Energy and Financial 

Services, the GADF-based model achieves a better accuracy compared to the GASF- and MTF-

based models. Moreover, for 5 out of 7 analysed ETFs, GADF achieves better weight-averaged 

and macro-averaged F1-scores than both GASF and MTF. 
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For the Energy industry, it can be noted that GADF performs above the average of the other 

industries, whereas the GASF and MTF perform poorly compared to the other ETF’s in terms 

of computational performance. The worst model across all industries can be found within the 

Healthcare models, where the MTF showed the worst performance from a computational 

perspective with a weighted average F1-score of 0.34 and an accuracy of 0.3706. Among all 

models and industries, predictions of the Hold class showed the most promising results, with 

the only outlier found for the GASF model of the energy sector. It is also worth mentioning that 

within all industries and ETF’s, with the VGT (IT sector) as an exception, class predictions 

show huge discrepancies in predicting the correct class. Hence it is not possible to conclude 

that a certain image encoding technique works better to predict a specific signal.  

The performance evaluation of the random choice models didn’t produce any important 

insights. For all industries, similar scores can be observed. Moreover, they are less performant 

than all other models when comparing weighted averages with each other. 

Common findings financial performance 

For comparing and assessing the financial performances of the models across industries, excess 

returns calculated as the absolute difference between the model return and the benchmark 

strategy are being used to ensure comparability of the obtained results. Considering the average 

of these excess returns, only the GADF models are able to achieve returns that exceed the Buy 

& Hold strategy, i.e. to beat the return generated by the general price development of the 

considered ETF. Both the GASF and MTF models have negative excess returns compared to 

Buy & Hold, leaving the investor with better returns by just buying and holding the asset 

compared to using a trading strategy based on the models’ predictions. 

For 4 out of the 6 ETFs to which the common methodology was applied, the GADF models 

outperform the Buy & Hold return, with the exception of Healthcare and Industrials. The GASF 

models only outperforms the Buy & Hold return for 2 out the 6 ETFs, i.e. Healthcare and 
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Energy. Only for the Energy sector, the MTF model outperforms the Buy & Hold return. 

Returns are also positive in the Oil & Gas sector, where the PXL-based method is applied. 

Despite being a subset of the energy industry, the model used on the Oil & Gas sector cannot 

outperform the Buy & Hold return. It is also the Energy sector where the model generates the 

most impact; despite the negative price development of -8% over the test data period, all three 

models are able to generate positive return between 3% and 10%. Lastly, the CNN approach 

shows the poorest performance in the Industrials sector where all three models underperform 

compared to the Buy & Hold strategy. 
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6. Limitations  and Outlook 

6.1 Limitations 

Predictions for the stock market are challenging, as the stock market represents a dynamic, 

volatile and very complex market based on historical data and influenced by unpredictable 

events. In this research we face the problem of imbalanced classes, where the largest class is 

Hold across all sectors. As a result, the predictions are dominated by the largest class - 

predictions of the minor classes turn out worse, which negatively affects the overall model 

performance. In addition, a comparatively small train set in combination with complex features 

further complicates model development. This makes the models prone to overfitting - whereas 

the inclusion of multiple train data would be advantageous. In the present approach of this 

research accuracy was chosen as the most important performance measure, which is also used 

for model selection. However, there are other evaluation methods that could be considered. In 

particular, it is important to consider in which cases more emphasis should be placed on either 

computational or financial performance. Especially with respect to the financial performance it 

is important to mention that only the decisions of the next day are considered. Hence, the 

prediction is related to a very short future period and makes no specific statements about longer 

term behavior. A further limitation lies in the assessment of the severity in the case of 

mislabeling. A wrong Buy/Sell decision has more serious negative effects than a wrong 

buy/hold or sell/hold decision. In the present research a suitable performance measure is 

missing - here a suitable loss function would be necessary. A further remark is to be mentioned 

in the simplification of the labeling approach. If the upper and lower limits are exceeded on the 

same day, the first labeling trigger decides on the label allocated to the trading day. Another 

limitation can be found in the Efficient Market Theory (Fama 1970,  383). As mentioned in 

section 2.1, the theory states that stock prices already reflect and have priced in all relevant 
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information. This would make a deeper analysis with additional features, such as technical 

indicators, redundant, as no investment analysis technique allows investors to generate 

significant excess returns above the market. However, this is refuted by the thesis that financial 

markets in most cases do not react immediately to changes and new information which in turn 

makes profits above the market average still possible through sufficient analysis. 

6.2 Outlook 

Forecasting Financial Time Series Movements using CNNs is a recent research field. For this 

reason many different topics can be addressed in future research.  

First, it would be interesting to test if the proposed methodology can achieve better results with 

regard to different prediction horizons. These could include the prediction of price movements 

within the next week or month, alternatively intraday data can be used for short-term 

forecasting.  

This work focuses on using technical indicators along with foreign exchange, commodity and 

indices as features to feed into the CNN. However, future work could incorporate different 

types of features. These could, among others, include data from the news, social media and 

market segments. Moreover, machine-learning-based fundamental analysis approaches as 

suggest by Cao and You (2020), e.g. for forecasting company earnings, could be included to 

provide a more holistic impression on the underlying companies’ situation.  

Furthermore, within the current research not all papers propose to transform the data into 

stationary time series. Therefore, research regarding the necessity of stationary time series in 

the context of forecasting financial time series with CNNs can be conducted. This is particularly 

interesting since methods to transform non-stationary data imply information loss within the 

used variables. 
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Appendix 

Apendix A 

The table below displays the technical indicators used in the Oil & Gas industry. Along with a 

description, the formulas for calculationg the indicator is provided. 

Type Technical Indicator Formula (Sezer and Ozbayoglu 2018, 535; Sim, Kim, and Ahn 

2019, 7) 

Trend Simple moving average 

(SMA) calculates the 

average price over a given 

period. The indicator is 

widely used to detmine price 

trends (Sezer and Ozbayoglu 

2018, 535). 

𝑆𝑀𝐴 =⁡
𝐶1 + 𝐶2 + ⋯+⁡𝐶𝑛

𝑛
 

where: 

𝐶𝑖 = price of an asset at period i  

n = the number of periods used for moving average 

 

(4.1) 

 
 

(4.2) 

(4.3) 

Trend Exponential moving 

average (EMA) calculates a 

moving average such that 

greater weights are assigned 

to more recent values (Sezer 

and Ozbayoglu 2018, 535). 

𝐸𝑀𝐴⁡ = ⁡𝐶𝑡 ∗ 𝑘 + 𝐸𝑀𝐴(𝑦) ∗ (1 − 𝑘) 

where: 

k = 2÷(n+1) 

n = number of days in EMA 

Ct = closing price of an asset today 

y = yesterday 

(5.1) 

 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Momentum Rate of change (ROC) is a 

momentum oscillator 

measuring the speed of 

changes in price over a given 

period (Sezer and 

Ozbayoglu 2018, 536). The 

indicator is calculated by 

comparing the current 

closing price with the 

closing price n periods ago. 

𝑅𝑂𝐶 = ⁡
(𝐶𝑡 − 𝐶𝑡−𝑛)
(𝐶𝑡−𝑛)

∗ 100 

where: 

Ct = closing price of an asset today 

n = number of periods 

 

(6.1) 

 
 

(6.2) 

(6.3) 

Momentum The Relative Strength 

Index (RSI) is an oscillating 

indicator measuring the 

strength and weaknesses of 

stock prices or the 

magnitude of historical price 

changes, indicating whether 

𝑅𝑆𝐼 = 100 −
100

1 + (𝑔𝑛𝑙𝑛
)
 

where:  

n = number of periods 

gn = average percentage gain during a period of length n  

ln = average percentage loss during a period of length n 

(7.1) 

 

 
 

(7.2) 

(7.3) 

(7.4) 
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stock prices are in the 

"overbought" or "oversold" 

region (Sezer, Ozbayoglu, 

and Dogdu 2017a,2; 

Corporate Finance Institute 

2020, 4) 

Momentum Know Sure Thing 

Oscillator (KST) is a 

momentum oscillator to 

make rate-of-change 

readings easier for traders to 

interpret (Hayes 2021). 

 

KST = (RCMA #1×1) + (RCMA #2×2) + (RCMA #3×3) 

+ (RCMA #4×4) 

where: 

RCMA #1 = 10-period SMA of 10-period ROC  

RCMA #2 = 10-period SMA of 15-period ROC 

RCMA #3 = 10-period SMA of 20-period ROC 

RCMA #4 = 15-period SMA of 30-period ROC 

(8.1) 

 

 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

Momentum Williams % Range is a 

momentum-based indicator 

determining overbought and 

oversold conditions for stock 

prices (Sezer and Ozbayoglu 

2018, 535). 

𝑅 =⁡
max(𝐻) −𝐶

max(𝐻) − min⁡(𝐿)
∗ −100 

where: 

C = Closing price today. 

max(H) = Highest price in the lookback period n. 

min(L) = Lowest price in the lookback period n.  

n = number of periods 

(9.1) 

 

 

(9.2) 

(9.3) 

 

(9.4) 

 

(9.5) 

Momentum Commodity Channel 

Index (CCI) compare the 

current price with the 

average price over a given 

period of time (Sezer and 

Ozbayoglu 2018, 536). 

𝐶𝐶𝐼 =
𝑇𝑦𝑝𝑖𝑐𝑎𝑙⁡𝑃𝑟𝑖𝑐𝑒 − 𝑀𝐴

0.015 ∗ 𝑀𝑒𝑎𝑛⁡𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

where: 

Typical Price = ∑ ((𝐻+𝐿+𝐶)
3

)𝑛
𝑖=1  

n= number of periods 

H = High price today 

L = Low price today 

C = Closing price today 

MA = (∑ 𝑇𝑦𝑝𝑖𝑐𝑎𝑙⁡𝑃𝑟𝑖𝑐𝑒)𝑛
𝑖=1

𝑛
 

Mean Deviation = (∑ |⁡𝑇𝑦𝑝𝑖𝑐𝑎𝑙⁡𝑃𝑟𝑖𝑐𝑒−𝑀𝐴⁡|)𝑛
𝑖=1

𝑛
 

(10.1) 

 
 

(10.2) 

(10.3) 

(10.4) 

(10.5) 

(10.6) 
 

(10.7) 
 

(10.8) 

Momentum Directional Movement 

Index (DMI) is a momentum 

indicator that shows in 

which direction the price is 

moving. It does this by 

comparing prior highs and 

+𝐷𝐼 =
𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 + 𝐷𝑀

𝐴𝑇𝑅
∗ 100 

−𝐷𝐼 =
𝑆𝑚𝑜𝑜𝑡ℎ𝑒 − +𝐷𝑀

𝐴𝑇𝑅
∗ 100 

𝐷𝑋 =
|+𝐷𝐼 −⁡−𝐷𝐼|
|+𝐷𝐼 +⁡−𝐷𝐼|

∗ 100 

where: 

(11.1) 

 

(11.2) 

 

(11.3) 
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lows and drawing two lines, 

a positive and a negative. 

+DM (Directional Movement) = Current High – PH 

PH = Previous high 

-DM = Previous Low – Current Low 

Smoothed +/-DM = ∑ 𝐷𝑀− (∑ 𝐷𝑀14
𝑡=1
14

) + 𝐶𝐷𝑀14
𝑡=1  

CDM = Current DM 

ATR = Average True Range 

(11.4) 

(11.5) 

(11.6) 

(11.7) 
 

(11.8) 

(11.9) 

Momentum The Stochastic Oscillator 

(%K) is a momentum 

indicator that compares the 

closing price of a security to 

a range of its prices over a 

certain period of time.  

%𝐾 = 100 ∗
(𝐶 − 𝐿14)

(𝐻14 − 𝐿14)
 

where: 
C = The most recent closing price 
L14 = The lowest price traded of the 14 previous trading 
sessions 
H14 = The highest price traded during the same 14-day 
period 
%K = The current value of the stochastic indicator 
 

(12.1) 

 
 

(12.2) 

(12.3) 
 

(12.4) 
 

(12.5) 

Momentum Smoothed Relative 

Strength Index (SRSI) is a 

momentum indicator that is 

essentially a simple moving 

average of the RSI. 

𝑆𝑅𝑆𝐼 = ⁡
𝑅𝑆𝐼1 + 𝑅𝑆𝐼2 +⋯+⁡𝑅𝑆𝐼𝑛

𝑛
 

where: 

𝐶𝑖 = RSI at period i  

n = the number of periods used for moving average 

(13.1) 

 
 

(13.2) 

(13.3) 

Momentum Internal Bar Strength 

(IBS) is a momentum 

oscillator that measure the 

position of the close price 

relative to the highs and 

lows. 

𝐼𝐵𝑆 =⁡
𝐶𝑙𝑜𝑠𝑒 − 𝐿𝑜𝑤
𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤

 
(14.1) 

Momentum Triple exponential average 

(TRIX) is a momentum 

indicator that shows the 

change in a moving average 

(in %) that has been triple-

smoothed exponentially. 

The smoothing is supposed 

to filter out insignificant 

price movements. 

𝐸𝑀𝐴1(𝑖) = 𝐸𝑀𝐴(𝑃𝑟𝑖𝑐𝑒, 𝑁, 1)⁡ 
 TRIX(i) = EMA3(i−1)EMA3(i)−EMA3(i−1) 
where: 
Price(i) = Current price 
EMA1(i) = The current value of the Exponential Moving 
Average 
 

(15.1) 
(15.2) 
 
(15.3) 
(15.4) 

Momentum Force Index (FI) is a 

momentum oscillator and 

uses price and volume to 

determine the amount of 

strength behind a price 

 
𝐹𝐼(1) = (𝐶𝐶𝑃⁡ − ⁡𝑃𝐶𝑃) ∗ 𝑉𝐹𝐼(13) = 

13 − 𝑃𝑒𝑟𝑖𝑜𝑑⁡𝐸𝑀𝐴⁡𝑜𝑓⁡𝐹𝐼(1) 
 
where: 
FI = Force index 

 

(16.1) 

 

(16.2) 

(16.3) 
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move. The index fluctuatwa 

between positive and 

negative territory. It is 

unbounded meaning the 

index can go up or down 

indefinitely.  

CCP = Current close price 
PCP = Prior close price 
VFI = Volume force index 
EMA = Exponential moving average 
 

(16.4) 

(16.5) 

(16.6) 

 

 

 

Momentum Chaikin Money Flow 

(CMF) is a momentum 

indicator that measures 

Money Flow Volume over a 

set period of time. Money 

Flow Volume is a metric 

used to measure the buying 

and selling pressure of a 

security. 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = ⁡
((𝐶𝑙𝑜𝑠𝑒 − 𝐿𝑜𝑤) − (𝐻𝑖𝑔ℎ − 𝑐𝑙𝑜𝑠𝑒))

(𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤)
 

𝑀𝑜𝑛𝑒𝑦⁡𝐹𝑙𝑜𝑤⁡𝑉𝑜𝑙𝑢𝑚𝑒⁡(𝑀𝐹𝑉) = 𝑉𝑜𝑙𝑢𝑚𝑒 ∗ 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

21⁡𝑃𝑒𝑟𝑖𝑜𝑑⁡𝐶𝑀𝐹 = ⁡
21⁡𝑃𝑒𝑟𝑖𝑜𝑑⁡𝑆𝑢𝑚⁡𝑜𝑓⁡𝑀𝐹𝑉

21⁡𝑃𝑒𝑟𝑖𝑜𝑑⁡𝑆𝑢𝑚⁡𝑜𝑓⁡𝑉𝑜𝑙𝑢𝑚𝑒
 

(17.1) 
 

(17.2) 

(17.3) 

Tren 

 

Detrended Price Oscillator 

(DPO) is an trend oscillator 

that attempts to estimate the 

length of cycles in price 

movements from hills to 

hills and valleys to valleys. It 

highlights peaks and troughs 

in price, which are used to 

estimate buy and sell points 

in line with the historical 

cycle. 

𝐷𝑃𝑂 = ⁡𝑃𝑟𝑖𝑐𝑒⁡𝑓𝑟𝑜𝑚
𝑋
2
+ 1⁡𝑝𝑒𝑟𝑖𝑜𝑑𝑠⁡𝑎𝑔𝑜

− 𝑋⁡𝑝𝑒𝑟𝑖𝑜𝑑⁡𝑆𝑀𝐴 
where: 
X = Number of periods used for the look-back period 
 
SMA = Simple Moving Average 

(18.1) 

 

 

(18.2) 
 

(18.3) 

Momentum Money Flow Index (MFI) 

is a technical oscillator that 

uses price and volume data 

for identifying overbought 

or oversold signals in an 

asset. It can also be used to 

spot divergences which warn 

of a trend change in price. 

The oscillator moves 

between 0 and 100. 

𝑀𝐹𝐼 = 100 −
100

1 +𝑀𝑜𝑛𝑒𝑦⁡𝐹𝑙𝑜𝑤⁡𝑅𝑎𝑡𝑖𝑜⁡(𝑀𝐹𝑅)
⁡ 

where: 

𝑀𝐹𝑅 =⁡
14⁡𝑃𝑒𝑟𝑖𝑜𝑑⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑀𝑜𝑛𝑒𝑦⁡𝐹𝑙𝑜𝑤
14⁡𝑃𝑒𝑟𝑖𝑜𝑑⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒⁡𝑀𝑜𝑛𝑒𝑦⁡𝐹𝑙𝑜𝑤

 

 
𝑅𝑎𝑤⁡𝑀𝑜𝑛𝑒𝑦⁡𝐹𝑙𝑜𝑤 = ⁡𝑇𝑦𝑝𝑖𝑐𝑎𝑙⁡𝑃𝑟𝑖𝑐𝑒 ∗ 𝑉𝑜𝑙𝑢𝑚𝑒 

 

𝑇𝑦𝑝𝑖𝑐𝑎𝑙⁡𝑃𝑟𝑖𝑐𝑒 = ⁡
𝐻𝑖𝑔ℎ + 𝐿𝑜𝑤 + 𝐶𝑙𝑜𝑠𝑒

3
 

 

(19.1) 

 
 

(19.2) 

 
(19.3) 
 
 
(19.4) 
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Volume Ease of movement (EoM, 

EMV) is a volume indicator 

that attempts to merge a mix 

of momentum and volume 

data into one value. The 

intention is to use this value 

to discern whether prices are 

able to rise, or fall, with little 

resistance in the directional 

movement. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑚𝑜𝑣𝑒𝑑 = 

(
𝐻𝑖𝑔ℎ + 𝐿𝑜𝑤

2
−
𝐻𝑖𝑔ℎ + 𝐿𝑜𝑤

2
⁡) 

𝐵𝑜𝑥⁡𝑅𝑎𝑡𝑖𝑜 =
𝑉𝑜𝑙𝑢𝑚𝑒
𝑆𝑐𝑎𝑙𝑒

𝐻𝑖𝑔ℎ − 𝐿𝑜𝑤
 

 

1 − 𝑃𝑒𝑟𝑖𝑜𝑑⁡𝐸𝑀𝑉 = ⁡
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑚𝑜𝑣𝑒𝑑

𝐵𝑜𝑥⁡𝑅𝑎𝑡𝑖𝑜
 

 

(20.1) 

 

 

(20.2) 

 
 
(20.3) 

Momentum Chande Momentum 

Oscillator (CMO) is a 

momentum oscillator that is 

calculates a volume 

weighted moving average of 

higher and lower closing 

prices. 

 

𝐶𝑀𝑂 =
𝑠𝐻 − 𝑠𝐿
𝑠𝐻 + 𝑠𝐿

∗ 100 
where: 

𝑠𝐻 = ⁡𝑠𝑢𝑚⁡𝑜𝑓⁡ℎ𝑖𝑔ℎ𝑡𝑒𝑟⁡𝑐𝑙𝑜𝑠𝑒𝑠⁡𝑜𝑣𝑒𝑟⁡𝑛⁡𝑝𝑒𝑟𝑖𝑜𝑑𝑠 
 

𝑠𝐿 = ⁡𝑠𝑢𝑚⁡𝑜𝑓⁡𝑙𝑜𝑤𝑒𝑟⁡𝑐𝑙𝑜𝑠𝑒𝑠⁡𝑜𝑣𝑒𝑟⁡𝑛⁡𝑝𝑒𝑟𝑖𝑜𝑑𝑠 
 

 

(21.1) 

 
 

(21.2) 
 

(21.3) 

 

 Bollinger Bands is a 

momentum indicator that 

consists of a set of trendlines 

located two std. dev. 

(positively and negatively) 

away from a SMA of a 

security's price. They can be 

adjusted to preference, 

however. 

𝐵𝑂𝐿𝑈 = 𝑀𝐴(𝑇𝑃, 𝑛) + 𝑚 ∗ 𝜎[𝑇𝑃, 𝑛] 
 

𝐵𝑂𝐿𝐷 = 𝑀𝐴(𝑇𝑃, 𝑛) − 𝑚 ∗ 𝜎[𝑇𝑃, 𝑛] 
where: 
BOLU = Upper Bollinger Band 

BOLD = Lower Bollinger Band 

MA = Moving average 

TP (typical price) = (High+Low+Close)÷3 

n = Number of days in smoothing period (typically 20) 

m = Number of standard deviations (typically 2) 

σ[TP,n] = Standard Deviation over last n periods of TP 

 

(22.1) 
 

(22.2) 
 

(22.3) 

(22.4) 

(22.5) 

(22.6) 

(22.7) 

(22.8) 

(22.9) 

 

Source: (Scott 2021) 
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Appendix B  

The table below shows the selected model parameters chosen through the randomized search for each ETF and image encoding type.  

 

 

Sector ETF Image 
type 

Batch 
Norm. 

Drop- 
out Activation Kernel Padding  Pooling Optimizer Learning 

rate Epochs Batch 
size 

Class 
weight 

Information 
Technology 

VGT 
GADF True  0.25 softmax 3,3 valid average RMSprop 0.0001 150 16 None 
GASF True  None sigmoid 3,3 valid max SGD 0.001 10 16 None 
MTF True  0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None 

XSD 
GADF True  0.5 softmax 3,3 valid average Adam 0.001 50 32 None 
GASF False None sigmoid 3,3 same average RMSprop 0.0001 75 64 None 
MTF True  0.25 sigmoid 5,5 valid max SGD 0.001 50 16 None 

Healthcare IYH 
GADF False None softmax 3,3 same average RMSprop 0.001 75 64 balanced 
GASF False None relu 3,3 valid max Adam 0.0001 100 16 balanced 
MTF True None sigmoid 5,5 same average SGD 0.01 10 32 balanced 

Energy 
S&P 
500 

Energy 

GADF False None sigmoid 5,5 same average RMSprop 0.0001 100 64 None 
GASF True  None sigmoid 5,5 same max SGD 0.001 50 16 None 
MTF True  None softmax 5,5 valid max Adam 0.001 10 32 balanced 

Financial 
Services IYG 

GADF True 0.25 softmax 3,3 valid average RMSprop 0.0001 100 16 None 
GASF True None sigmoid 3,3 valid max RMSprop 0.0001 50 16 None 
MTF True None sigmoid 5,5 valid average SGD 0.001 100 16 None 

Industrials VIS 
GADF True  None softmax 3,3 same max RMSprop 0.001 25 16 None 
GASF False 0.25 softmax 3,3 valid max Adam 0.0001 75 16 None 
MTF False 0.25 softmax 5,5 same average RMSprop 0.0001 100 16 None 

Oil & Gas XLE PXL False 0.25 relu 3,3 same max Adam 0.001 200 64 balanced 
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Appendix C 

The table below summarizes the computational and financial performance on the test set for each ETF and image encoding type.  

              Benchmark Labeling (on test set)  

Sector ETF Image 
Type Accuracy Macro 

Average (F1) 
Weighted 

Average (F1) 
Financial 

Performance 
Buy & Hold 

Return 
SMA 

Return 
MR 

Return  % Buy % Hold % Sell 

Information 
Technology 

VGT 
GADF 0.5055 0.34 0.42 55.48% 50.0% 27.57% -8.17% 26.29% 50.19% 23.53% 
GASF 0.4890 0.31 0.39 36.03% 50.0% 27.57% -8.17% 26.29% 50.19% 23.53% 
MTF 0.4945 0.33 0.41 16.11% 50.0% 27.57% -8.17% 26.29% 50.19% 23.53% 

XSD 
GADF 0.5018 0.28 0.37 53.43% 51.00% 6.66% 6.10% 26.10% 49.45% 24.45% 
GASF 0.4412 0.33 0.39 40.23% 51.00% 6.66% 6.10% 26.10% 49.45% 24.45% 
MTF 0.4816 0.28 0.36 19.72% 51.00% 6.66% 6.10% 26.10% 49.45% 24.45% 

Healthcare IYH 
GADF 0.5028 0.28 0.37 07.45% 25.00% 20.51% 11.08% 25.31% 47.77% 26.92% 
GASF 0.4655 0.26 0.35 28.59% 25.00% 20.51% 11.08% 25.31% 47.77% 26.92% 
MTF 0.3706 0.29 0.34 24,64% 25.00% 20.51% 11.08% 25.31% 47.77% 26.92% 

Energy S&P 500 Energy 
GADF 0.5102 0.46 0.49 10.66% -8.00% -3.90% 0.06% 29.00% 44.00% 27.00% 
GASF 0.4119 0.34 0.37 2.84% -8.00% -3.90% 0.06% 29.00% 44.00% 27.00% 
MTF 0.3655 0.31 0.34 3.35% -8.00% -3.90% 0.06% 29.00% 44.00% 27.00% 

Financial 
Services 

iShares U.S. 
Financial 

Services ETF 
(IYG) 

GADF 0.49 0.36 0.43 18.78% 
16.0% 16.88% 21.76% 26.52% 48.99% 24.49% GASF 0.48 0.26 0.35 -12.75% 

MTF 0.47 0.31 0.39 -6.25% 

Industrials VIS 
GADF 0.41 0.38 0.40 2.98% 

7.00% 3.76% 19.61% 27.54% 47.16% 25.30% GASF 0.42 0.32 0.37 4.64% 
MTF 0.47 0.31 0.37 5.53% 

Oil & Gas XLE PXL 0.72 0.46 0.76 5.20% 10.00% 4.80% 0,00% 5,38% 88,88% 6,74% 

Average 5 
industries  

 GADF 0.48  0,41  
      

 GASF 0.44  0,36  
      

 MTF 0.43  0,36  
      


	List of Abbreviations
	1 Introduction
	2 Trading and Time-Series Forecasting
	2.1 Trading
	2.2 Introduction Financial Time Series Forecasting
	2.3 Technical Analysis with CNNs

	3 Fundamentals and Methodology
	3.1 Introduction to CNNs
	3.1.1 Definitions
	3.1.2 Key Components of CNNs

	3.2 Labelling Approach
	3.3 Feature Engineering
	3.3.1 Feature Creation

	3.5 Image construction
	3.5.1 Sezer’s feature pixelation
	3.6 Generic Model Architecture
	3.7 Performance Evaluation
	3.7.1 Computational Evaluation
	3.7.2 Financial Evaluation


	4 Industry implementation
	4.1 Industry analysis
	4.1.2 Influences
	4.1.3 O&G ETFs
	4.1.4 ETF Selection

	4.2 Data Prepocessing, feature engineering and image encoding
	4.2.2 Labelling
	4.2.3 Feature engineering
	4.2.4 Image creation

	4.3 Final Model architecture
	4.4 Performance evaluation
	4.4.1 Test data
	4.4.2 Model performance
	4.4.3 Financial Performance

	4.5 Limitations and Implications

	5 Performance Comparison and Discussion
	6. Limitations and Outlook
	6.1 Limitations
	6.2 Outlook

	References
	Appendix

