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Abstract: Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known
to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes
catalysing the insertion of an oxygen atom into the substrate. Although some family members
are known to catalyse the “reverse” reaction, the capability to abstract an oxygen atom from the
substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and
scepticism that the “molybdenum community” noticed the reports on the mammalian XO capability
to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent
for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle
contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on
enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have
wide recognition of the molybdoenzymes’ ability to form NO from nitrite. Herein, integrated in
a collection of “personal views” edited by Professor Ralf Mendel, is an overview of my personal
journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research
findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed.
The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism
is also discussed.

Keywords: xanthine oxidase; aldehyde oxidase; molybdenum enzyme; nitrite; hypoxia; nitric oxide;
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1. Context—I: The Molybdenum Side

Molybdenum is essential to the great majority of organisms [1–4], from archaea and
bacteria to higher plants and mammals, being present in the active site of enzymes that
catalyse redox reactions targeting nitrogen, sulfur and carbon atoms of key metabolites [5–8].
Molybdenum-containing enzymes are responsible for the biological handling of dinitrogen
(Nitrogenase, Equation (1)), nitrate (Nitrate reductase (NaR), Equation (2)), sulfite (Sulfite
oxidase (SO), Equation (3)), dimethylsulfoxide (dimethylsulfoxide reductase (DMSOR),
Equation (4)), aldehydes (Aldehyde oxidase (AO), Equation (5)), xanthine (Xanthine oxidase
(XO), Equation (6)) and carbon dioxide (Carbon dioxide dehydrogenase, Equation (7), and
Formate dehydrogenase, Equation (8)), just to mention a few examples from the more than
50 enzymes presently known.

N≡N + 8H+ + 8e− + 16MgATP→ 2NH3 + H2 + 16MgADP + 16Pi (1)

ONO2
− + 2e− + 2H+ → NO2

− + H2O (2)

SO2
2− + H2O→ OSO2

2− + 2e− + 2H+ (3)
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With the single (as far as is presently known) exception of nitrogenase [9–12], molybde-
num is found coordinated by the cis-dithiolene group (–S–C=C–S–) of one or two molecules
of a pyranopterin cofactor (Figure 1). In a parallel situation to the haem ring, this unique
cofactor is not an “innocent scaffold” and it is considered to be co-responsible to modulate
the active site reactivity, besides acting as a “wire” to conduct the electrons to, or from, the
other redox-active centres of the enzyme (intramolecular electron transfer, when this is the
case) [13–20]. In addition to the pyranopterin cofactor, the molybdenum ion is coordinated
by oxygen and/or sulfur and/or selenium terminal atoms and/or by enzyme-derived
amino acid residues (Figure 1), which are also expected to have key roles in catalysis
(although their individual roles are not yet understood in many molybdoenzymes). To
introduce order in such a diversity of molybdenum compositions and (try to) rationalise
the catalytic features, the molybdoenzymes were classified into three large families, denom-
inated after one benchmark enzyme, as indicated in Figure 1 [5]: XO family, SO family and
DMSOR family.

These molybdenum centres have been exploited by living organisms to carry out
different reaction types [5–8], many of which are oxygen atom transfer reactions (OAT),
where an oxygen atom is transferred from water to product -oxygen atom insertion (OAT-I)
(Figure 2, violet arrows)- or from substrate to water -oxygen atom abstraction (OAT-A)
(Figure 2, red arrows).

The reaction mechanism of molybdoenzymes-catalysed OAT-I and OAT-A is presently
well established and can be illustrated with the eukaryotic SO (Equation (3)) and NaR
(Equation (2)) catalytic cycles (two enzymes from the SO family). Briefly, in SO [21–34]
(Figure 3a), catalysis is initiated at the oxidised molybdenum centre, where its equatorial
labile oxido group (Mo6+=Oequatorial) is (nucleophilically) attacked by the sulfite lone-pair
of electrons, resulting in the formation of a reduced, covalent Mo4+-O-SO3 intermediate.
After cleavage of the Mo-O(substrate)equatorial bond, sulfate is released (oxidation half-
reaction). The Mo4+-OH(2) centre thus formed is then re-oxidised by two electrons (with
the eventual reduction of the SO physiological partner—reduction half-reaction) to regen-
erate the initial Mo6+=O centre. The mechanism of OAT-A of NaR is suggested to be the
reverse of the SO one (Figure 3b) [35–41], starting with the reduction of the molybdenum
centre (two electrons provided by the NaR physiological partner—oxidation half-reaction).
Nitrate binding yields the covalent intermediate Mo4+-O-NO2, which, after cleavage of
the O-N bond and release of nitrite (reduction half-reaction), regenerates the Mo6+=O core.
Hence, in a simplistic way, the molybdenum role in OAT is to accept/donate the necessary
electrons for these redox reactions and to act as the direct oxygen donor to substrate/oxygen
acceptor from product (Figure 2).
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Figure 1. Structures of the molybdenum centres of the three families of molybdoenzymes. (a) 
Pyranopterin cofactor structure. The molecule is formed by pyrano (green)-pterin (blue)-dithiolene 
(orange) moieties. In eukaryotes, the cofactor is found in the simplest monophosphate form (R is a 
hydrogen atom; in gray), while in prokaryotes, it is most often found esterified with several 
nucleotides (R can be one cytidine monophosphate, guanosine monophosphate or adenosine 
monophosphate). (b) Structures of the molybdenum centres, in the oxidised form, of the three 
families of molybdoenzymes. For simplicity, only the cis-dithiolene group of the pyranopterin 
cofactor is represented. The labile oxygen position is indicated in red. It should be noted that the 
XO family member carbon monoxide dehydrogenase (X = S-Cu-S(Cys)) is suggested to harbour a 
labile Mo=O group and not Mo-OH. (c) Selected examples of enzymes from each family (mARC, 
mitochondrial amidoxime reducing component). 
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Figure 2. General mechanism of molybdoenzymes-catalysed OAT. The molybdenum role as 
electron acceptor/donor and as direct oxygen donor to substrate/oxygen acceptor from product is 
highlighted. OAT-I is represented in violet; e.g., for SO (Equation (3)), R would be sulfite and RO is 
sulfate; reduction of the enzyme physiological partner/regeneration of the enzyme active site is 
represented in dashes. OAT-A is represented in red; e.g., for NaR (Equation (2)), QO would be 
nitrate and Q is nitrite; oxidation of the enzyme physiological partner/regeneration of the enzyme 
active site is represented in dashes. It should be noted that catalysis can take place without the 
occurrence of the dashed reduction/oxidation. 

Figure 1. Structures of the molybdenum centres of the three families of molybdoenzymes.
(a) Pyranopterin cofactor structure. The molecule is formed by pyrano (green)-pterin (blue)-dithiolene
(orange) moieties. In eukaryotes, the cofactor is found in the simplest monophosphate form (R is a hy-
drogen atom; in gray), while in prokaryotes, it is most often found esterified with several nucleotides
(R can be one cytidine monophosphate, guanosine monophosphate or adenosine monophosphate).
(b) Structures of the molybdenum centres, in the oxidised form, of the three families of molybdoen-
zymes. For simplicity, only the cis-dithiolene group of the pyranopterin cofactor is represented. The
labile oxygen position is indicated in red. It should be noted that the XO family member carbon
monoxide dehydrogenase (X = S-Cu-S(Cys)) is suggested to harbour a labile Mo=O group and not
Mo-OH. (c) Selected examples of enzymes from each family (mARC, mitochondrial amidoxime
reducing component).
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Figure 2. General mechanism of molybdoenzymes-catalysed OAT. The molybdenum role as electron
acceptor/donor and as direct oxygen donor to substrate/oxygen acceptor from product is highlighted.
OAT-I is represented in violet; e.g., for SO (Equation (3)), R would be sulfite and RO is sulfate;
reduction of the enzyme physiological partner/regeneration of the enzyme active site is represented
in dashes. OAT-A is represented in red; e.g., for NaR (Equation (2)), QO would be nitrate and Q
is nitrite; oxidation of the enzyme physiological partner/regeneration of the enzyme active site is
represented in dashes. It should be noted that catalysis can take place without the occurrence of the
dashed reduction/oxidation.
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Figure 3. Simplified mechanism of OAT catalysed by eukaryotic SO (a), NaR (b), XO (c) and 
prokaryotic DMSOR (d). See text for details. 
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This general OAT mechanism (Figure 2) is suggested to be followed by other molyb-
doenzymes, from other families, but with some variations imposed by the respective
substrate nature. This is the case of the XO-catalysed xanthine hydroxylation to urate
(Equation (6); OAT-I) a reaction more “complex” than the “simple” OAT of SO and NaR,
because it requires the cleavage of the stable C(8)-H bond of xanthine for the oxygen
to be inserted. To catalyse the xanthine hydroxylation, the molybdenum active site of
XO holds an equatorial labile oxido group that is the direct source of the oxygen atom
to be inserted into the xanthine C(8) (in parallel to SO). However, in the place of the
S-coordinated cysteine residue of SO, XO active site harbours a terminal sulfido group
to accept the xanthine H(8) and make its labile oxide group capable of carrying out a
nucleophilic attack (instead of undergo a nucleophilic attack as in SO). Briefly, XO catalysis
(Figure 3c) [42–56] is initiated with the activation of the equatorial labile oxido group by
a conserved glutamate residue, to form the catalytically competent Mo6+(=S)-O− centre.
This makes a nucleophilic attack into xanthine C(8), while the sulfido group accepts the
xanthine H(8) as a hydride, leading to the formation of a reduced, covalent intermediate
Mo4+-O-C-R(-SH) (where R represents the remainder of the xanthine molecule). After
hydrolysis of the Mo-O(xanthine)equatorial bond, urate is released (oxidation half-reaction)
and the Mo4+(SH)-OH(2) centre formed is re-oxidised by two electrons (with the eventual
reduction of the XO physiological partner—reduction half-reaction) to regenerate the initial
Mo6+(=S)-O− centre.

The enzymes from the DMSOR family, in spite of having its active site molybdenum ion
coordinated by two molecules of the pyranopterin cofactor (Figure 1), are also suggested
to follow the same general OAT mechanism (Figure 2), as illustrated, for example, by
bacterial DMSOR itself (Figure 3d) [57–67] or bacterial NaRs [64,66–81]. Bacterial nitrite
oxidoreductases, that catalyse the oxidation of nitrite to nitrate (NaR reverse reaction), also
follow a typical OAT-A mechanism [82–92]. Noteworthy, to date, no parallel molybdenum-
dependent nitrite reductase has been identified.

2. Context—II: The Nitric Oxide Side

Nitric oxide radical (·NO, herein abbreviated as NO) is a signalling molecule in-
volved in several physiological processes and, consequently, its deficit or excess is as-
sociated with many pathological conditions. In humans, NO is produced, in a tightly
regulated manner, by three isoforms of NO synthase (NOS; neuronal, endothelial and
inducible NOS), using L-arginine and dioxygen as the source of the NO nitrogen and
oxygen atoms, respectively (Equation in Figure 4) [93–96]. The “NO signal” is transmit-
ted intra- and extracellularly mainly through post-translational modifications of transi-
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tion metal centres and thiols. The targets are mostly labile [4Fe-4S] centres and hemes
(as is the case of the well-known activation of guanylate cyclase) and cysteine residues,
that are converted into the respective nitrosyl (–metal-N=O) and nitrosothiol (-S-N=O)
derivates. In addition, to limit the NO toxicity and ensure the fast “on/off signal” response,
the NO life time is controlled through its rapid oxidation to nitrate (by reaction with
oxy-hemoglobin and oxy-myoglobin [97–104]) and also to nitrite (by ceruloplasmin [105],
cytochrome c oxidase [98,106,107] or dioxygen [108–110]) (Figure 4).

Molecules 2023, 28, x FOR PEER REVIEW 5 of 23 
 

 

electrons (with the eventual reduction of the XO physiological partner—reduction 
half-reaction) to regenerate the initial Mo6+(=S)-O− centre. 

The enzymes from the DMSOR family, in spite of having its active site molybdenum 
ion coordinated by two molecules of the pyranopterin cofactor (Figure 1), are also 
suggested to follow the same general OAT mechanism (Figure 2), as illustrated, for 
example, by bacterial DMSOR itself (Figure 3d) [57–67] or bacterial NaRs [64,66–81]. 
Bacterial nitrite oxidoreductases, that catalyse the oxidation of nitrite to nitrate (NaR 
reverse reaction), also follow a typical OAT-A mechanism [82–92]. Noteworthy, to date, 
no parallel molybdenum-dependent nitrite reductase has been identified. 

2. Context—II: The Nitric Oxide Side 
Nitric oxide radical (•NO, herein abbreviated as NO) is a signalling molecule 

involved in several physiological processes and, consequently, its deficit or excess is 
associated with many pathological conditions. In humans, NO is produced, in a tightly 
regulated manner, by three isoforms of NO synthase (NOS; neuronal, endothelial and 
inducible NOS), using L-arginine and dioxygen as the source of the NO nitrogen and 
oxygen atoms, respectively (Equation in Figure 4) [93–96]. The “NO signal” is 
transmitted intra- and extracellularly mainly through post-translational modifications of 
transition metal centres and thiols. The targets are mostly labile [4Fe-4S] centres and 
hemes (as is the case of the well-known activation of guanylate cyclase) and cysteine 
residues, that are converted into the respective nitrosyl (–metal-N=O) and nitrosothiol 
(-S-N=O) derivates. In addition, to limit the NO toxicity and ensure the fast “on/off 
signal” response, the NO life time is controlled through its rapid oxidation to nitrate (by 
reaction with oxy-hemoglobin and oxy-myoglobin [97–104]) and also to nitrite (by 
ceruloplasmin [105], cytochrome c oxidase [98,106,107] or dioxygen [108–110]) (Figure 4). 

signal signal 
transmissiontransmission

metals   −metal-N=O
(haems, [4Fe-4S])
thiols  −S-N=O

NOS regulation

NOS

L-citrulineL-arginine Nω-hydroxyl-L-arginine

NADP+NADPH

2O
H2O

••NNOO

NNOO33


NNOO22


hypoxia
acidosis

"Non-dedicated nitrite reductases"
 haem proteins (Hb,Mb,Cb,Nb,Cc,CcO)
 molybdoenzymes (XOR, AO, SO, mARC)
 and other proteins signal signal 

transmissiontransmission

metals   −metal-N=O
(haems, [4Fe-4S])
thiols  −S-N=O

NOS regulation

NOS

L-citrulineL-citrulineL-arginineL-arginine Nω-hydroxyl-L-arginineNω-hydroxyl-L-arginine

NADP+NADPH

2O
H2O

••NNOO

NNOO33


NNOO22


hypoxia
acidosis

"Non-dedicated nitrite reductases"
 haem proteins (Hb,Mb,Cb,Nb,Cc,CcO)
 molybdoenzymes (XOR, AO, SO, mARC)
 and other proteins

 
Figure 4. Schematic summary of NO formation–function–extinction. NO formation through NOS 
and nitrate and nitrite-dependent pathways (black arrows/gray shadowed area and violet arrows, 
respectively). NO consumption in signalling/function (arrow and shadowed area in green). NO 
extinction in reactions to limit its toxicity and control the signal specificity (oxidation to nitrate and 
nitrite; indigo arrows). Hb, haemoglobin; Mb, myoglobin; Cb, cytoglobin; Nb, neuroglobin; Cc, 
cytochrome c; CcO, Cc oxidase. See text for details. Adapted from [111] with permission. 

Figure 4. Schematic summary of NO formation–function–extinction. NO formation through NOS
and nitrate and nitrite-dependent pathways (black arrows/gray shadowed area and violet arrows,
respectively). NO consumption in signalling/function (arrow and shadowed area in green). NO
extinction in reactions to limit its toxicity and control the signal specificity (oxidation to nitrate and
nitrite; indigo arrows). Hb, haemoglobin; Mb, myoglobin; Cb, cytoglobin; Nb, neuroglobin; Cc,
cytochrome c; CcO, Cc oxidase. See text for details. Adapted from [111] with permission.

This NO metabolic flux, formation–function–extinction (Figure 4), where nitrate and
nitrite are considered end-products, with no physiological function, was firmly established
by the end of the 20th century, when new ideas emerged. It began to become clear that
nitrite can be reduced back to NO under anoxic conditions (Equation (9)) and exert a
cytoprotective role during in vivo ischaemia and other pathological conditions [112–146].
In accordance, nitrite began to stop being seen as a useless end-metabolite, to become a
“storage form” of NO. This new, alternative, NO source would be key to maintain the NO
formation and ensure cell functioning under conditions of hypoxia/anoxia, precisely when
the dioxygen-dependent NOS activity is impaired (Equation in Figure 4) and a “rescue”
pathway is needed.

ONO− + 1e− + 2H+ → ·NO + H2O (9)

At the same time, numerous studies began to be carried out to identify the pathway(s)
responsible for nitrite reduction in mammals (humans), and, later, also in higher plants. The
quest did not lead to the identification of any mammalian NO-forming nitrite reductase.
Instead, the mammalian nitrite reduction activity was assigned to (already well-known)
proteins that are present in cells to perform other (well-known) functions [147–176], in-
cluding, at first, mainly the haem proteins haemoglobin (Hb) and myoglobin (Mb) and
the molybdoenzyme XO (Figure 4). However, like all new ideas, the ability of those and
other proteins to use nitrite to form and deliver NO faced severe criticism. Many authors
questioned the physiological relevance of the NO fluxes generated from the physiologically
available (very low) nitrite and called attention to the inhibition by other metabolites. For
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the “haem community”, the hurdle was the NO delivery, because of the (for long) known
ability of haems to easily bind NO and hardly dissociate it. With XO, the main problem
was its ability to form NO. The reaction feasibility was controversial, because XO is a
well-established OAT-I enzyme (Equation (6)), rather than the OAT-A catalyst needed
to reduce nitrite to NO (Equation (9)), and dioxygen was believed to completely inhibit
the reaction.

3. How it Began. . .

During my PhD, working with mammalian liver XO, its dehydrogenase form (XD)
and AO on “free radicals” and their pathological implications, I had the chance to learn
about the biological versatility of molybdoenzymes and their fascinating chemistry (briefly
reviewed above). By that time, the nitrite reduction to NO by XO had already been de-
scribed and contested by several authors of the “more medical-oriented community”, who
argued that (i) it would need a high, non-physiological concentration of nitrite to promote
a significant generation of NO and (ii) it should be completely inhibited by dioxygen
(the physiological oxidising substrate of XO and AO). Discussing the state-of-the-art on
mammalian molybdoenzymes with my (already then) good friend José Moura, I realised
that the “molybdenum community” would also have reservations and would find the XO
ability to reduce nitrite questionable. The lack of precedent for a molybdenum- (or tung-
sten) containing nitrite reductase on the nitrogen biogeochemical cycle (Figure 5) [177–183]
also contributed to the general scepticism about the XO, or other molybdoenzyme, nitrite
reductase activity.
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reduction and oxidation. In the “respiratory” pathways denitrification (blue arrows) and anaerobic
ammonium oxidation (AnAmmOx; gray arrows), nitrite is reduced to NO by copper type 2 centre
or d1 haem-dependent nitrite reductases (the active site metal centres structures are also shown).
On the other hand, nitrite is reduced to ammonium in both assimilatory ammonification (nitrogen
assimilatory pathway; orange arrows) and dissimilatory nitrate reduction to ammonium (“respira-
tory” pathway; green arrows), by nitrite reductases dependent on sirohaem and c haem, respectively.
During nitrification or complete ammonium oxidation (ComAmmOx; two “respiratory” pathways;
black arrows), nitrite is oxidised to nitrate by a molybdoenzyme from the DMSOR family, nitrite oxi-
doreductase. Although not involving nitrite, the dinitrogen fixation (nitrogen assimilatory pathway,
catalysed by nitrogenases; yellow arrow) and the “organic nitrogen pool” (where the ammonium
fluxes are controlled by glutamine synthase, glutamate synthase and glutamate dehydrogenase; pink
arrows) are also represented. Adapted from [178] with permission.
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Knowing that molybdenum centres are excellent “oxygen atom exchangers” [184–194]
and that molybdoenzymes are very versatile, I did not quite understand the reason for so
many doubts. At least from a purely chemical perspective (that is, in vitro), the reaction
seemed to me worthy of being studied! Its physiological occurrence and relevance (the
in vivo) was a completely different story and I shared other authors’ concerns, particu-
larly regarding dioxygen inhibition. Therefore, when I finished my PhD and José Moura
invited me to join his research group (Bioinorganic Lab, FCT NOVA, Lisboa, Portugal), I
immediately accepted the challenge and set out to answer three key questions:

(1) are mammalian XO/XD and AO able to generate NO? with what magnitude and
kinetics? (aiming to confirm the enzymes’ ability to reduce nitrite to NO and study
the kinetics and magnitude of NO generation);

(2) how is it possible for XO (and similar enzymes) to catalyse an OAT-A reaction?
(aiming to establish the reaction mechanism of nitrite-derived NO formation);

(3) if no other organism is known to use a “true” molybdenum-dependent nitrite reduc-
tase to reduce nitrite to NO, why would a mammalian cell be able to do so? (aiming
to assess the reaction physiological feasibility and significance).

4. My Journey on the Molybdenum-Dependent, “Non-Dedicated” Nitrite Reductases

I was very well received in both José Moura and Isabel Moura research groups and
I have to thank them and their collaborators for all the doubts and questions they raised
about the molybdenum-dependent nitrite reduction. They pushed me to go further and also
to learn more about the enzymes of the nitrogen biogeochemical cycle, which was essential
to put the molybdenum reactivity into the context of the chemical strategies biology uses to
handle nitrite.

4.1. Are Mammalian XO/XD and AO Able to Generate NO?

First and foremost, it was mandatory to confirm, beyond any doubt, that nitrite is
reduced by XO/XD and AO and that NO is the product of the reaction and it is released
from the enzymes (necessary condition for NO to be physiologically available to exert its
function). Most studies were carried out with XO/XD and AO purified from rat liver, using
a simple procedure that I had implemented during my PhD studies [195]. Small quantities
of real human enzymes were also purified to corroborate all main results obtained with the
rat enzymes. The bacterial aldehyde oxidoreductase (AOR), an enzyme structurally and
functionally very similar to the mammalian counterparts, identified for the first time by
José Moura [196–201], was also studied to enlarge the sampling of potential molybdenum-
dependent nitrite reductases.

Showing the enzymes’ ability to reduce nitrite was not difficult. The observation of
catalytic oxidation of diverse XO/XD and AO reducing substrates, in the absence of any
oxidising substrate (assays under anaerobic conditions), but presence of nitrite, was the
proof that nitrite was being concomitantly catalytically reduced (Figure 6a) (if nitrite was not
acting as a catalytic co-substrate, then there would be no oxidation of the oxidising substrate
or, at the most, there would be only single-turnover oxidation) [202,203]. Moreover and
most important, the reaction rate was found to be dependent on the nitrite concentration
(besides the enzyme and reducing substrate concentrations).

That set of kinetic assays also demonstrated that the nitrite reduction is independent of
the nature of the reducing substrate assayed [203,204]. The reaction (in vitro) is achievable
with substrates having different chemical structures and reacting at the different enzyme
sites (molybdenum centre or FAD; Figure 6a), which suggests that the nitrite reduction
should be feasible with the physiologically available reducers in vivo.
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Figure 6. Experimental evidences of the XO/XD and AO-catalysed nitrite reduction to NO. (a) 
Schematic representation of the kinetic assays performed with different reducing substrates (with 
different chemical structures), in the presence of nitrite, under anaerobic conditions, in which the 

Figure 6. Experimental evidences of the XO/XD and AO-catalysed nitrite reduction to NO.
(a) Schematic representation of the kinetic assays performed with different reducing substrates
(with different chemical structures), in the presence of nitrite, under anaerobic conditions, in which
the catalytic oxidation of the reducing substrate was used as proof of the enzymes’ ability to catalyti-
cally reduce nitrite. Also illustrated are the enzymes’ redox active-centres involved in each reaction
(molybdenum centre (Mo), two [2Fe-2S] (Fe/S) and FAD). See text for details. (b) Representative EPR
spectra, using the spin-trap (MGD)2-Fe, represented in the structure on top, showing the characteristic
triplet signal (g ≈ 2.04, AN = 1.27 mT) arising from (MGD)2-Fe-NO. See text for details.

The nature of the product of nitrite reduction was a more complex question to address.
The biological reduction of nitrite to NO was already known, but only in prokaryotic “respi-
ratory” pathways, where it is catalysed by copper-containing or d1 haem-containing nitrite
reductases (Figure 5) [178,180,183,204]. However, nitrite can be also reduced to nitroxyl
(NO−) or ammonium (NH4

+; Figure 5). To unequivocally confirm the nitrite reduction
to NO, a radical species, electron paramagnetic resonance (EPR) spectroscopy was key.
The EPR spectrum provides quantitative and qualitative information regarding the nature,
structure and environment of the paramagnetic species and, therefore, unquestionable
information about the concentration and identity of the radical species. Therefore, we, like
other authors [147,148,150–152,160,161], turned to EPR and, using the spin-trap iron-N-
methyl-D-glucamine dithiocarbamate ((MGD)2-Fe) [205], successfully demonstrated the
formation of a mononitrosyl-iron complex (MGD)2-Fe-NO), with its clear-cut triplet signal
(g≈ 2.04, AN = 1.27 mT; Figure 6b), and, in this way, the XO/XD and AO-catalysed NO gen-
eration [202,203]. Parallel assays with NO scavengers (that do not inhibit these enzymes)
gave further support to the enzymes’ ability to release NO. We complemented these EPR
assays with detailed polarographic studies, employing a NO-selective electrode, while
other authors used chemiluminescence NO detection. Collectively, these three independent
methodologies were essential to prove that it is NO that is being formed and released by
these enzymes.
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We went further and demonstrated that the enzymes are not inactivated or inhibited
by NO [202,203]. NO can react with cysteine residues and metal centres (in the case of
XO/XD and AO, their molybdenum and iron/sulfur centres and XD surface cysteine
residues), affecting the enzymes’ activity. In addition, because the nitrite reduction to
NO is a one-electron reduction process (Equation (9)), there was also the concern that the
molybdenum centre got arrested in a Mo5+ oxidation state (Mo4+→Mo5+) and, thus, unable
to be regenerated back to the catalytically competent oxidised form (Mo6+; Figures 2 and 3).
Analysis of the reaction time courses obtained with NO-selective electrode (that exhibit the
expected exponential shape) confirmed the absence of inactivation or inhibition events or
of non-enzymatic processes. Additional experimental evidence was provided by the EPR
spectra of the enzymes’ redox centres, which exhibit the characteristic EPR signals during
and after the nitrite reduction catalysis [202,203,206,207].

The above reaction time courses were also analysed to quantify the total NO gener-
ated. The curves showed that approximately two NO molecules are formed per reducing
substrate molecule consumed [202,203], which can be taken as additional evidence of the
catalytic competence of XO and AO to generate NO (note that XO and AO oxidise their
reducing substrates by two electrons (Equations (5) and (6)), while the nitrite reduction to
NO is a one-electron process (Equation (9)), so, a 1:2 relation would be expected).

4.2. Kinetics and Magnitude of XO/XD- and AO-Generated NO

Once the enzymes’ ability to reduce nitrite to NO was confirmed, it was necessary to
assess the kinetics and magnitude of the nitrite reduction by each enzyme, to have a glance
at how relevant the NO generation by each enzyme could be in vivo.

At first, the kinetic characterisation was performed under anaerobic conditions, using
similar nitrite and enzyme concentrations and reducing power (i.e., a reducing substrate
with a similar rate of reduction of all enzymes) [202,203]. Reflecting the similarity of
their molybdenum centres, it was found that XO, XD and AO behave very similarly.
Moreover, rat and human liver enzymes displayed comparable kinetic parameters [203],
which validated the utilisation of the rat liver enzymes (whose tissue is easier to obtain) as
a suitable model of the human counterparts.

Noteworthy, the XO- and AO-catalysed NO formation was found to be pH-dependent,
being greatly favoured (accelerated) at acidic pH values. Comparatively to the “normal”
pH of 7.4, the nitrite reduction rate constants were found to increase almost 10 times when
the pH is lowered to 6.3 (kapp,NO2

−
of 2.20 × 103 M−1 s−1 (XO) and 1.64 × 103 M−1 s−1

(AO)), while the Km
NO2

−
values significantly decrease (251 µM (XO) and 432 µM (AO))

(Figure 7a) [203]. These results were very interesting for two reasons. First, because upon
an ischaemic event, or any other condition of hypoxia/anoxia, the cellular pH can drop
to values as low as 6.0–5.5 (acidosis) [208–210]. Therefore, under hypoxia/anoxia, when
the activity of NOS would become compromised, the characteristic acidic conditions could
accelerate the NO generation by these enzymes, as a salvage pathway.

Second, the lower Km
NO2

−
values indicate that less nitrite is required to promote the

NO formation. The need for a millimolar concentration of nitrite (order of the Km
NO2

−
val-

ues at pH 7.4), when the physiologically available nitrite is much lower (<20 µM [211–213]),
was one of the strongest criticisms raised against the involvement of these enzymes in NO
generation. However, the generation of a signalling molecule like NO should not occur
as a burst of micromolar NO (such burst would lead to an “indefinitely on” signal and
result in an overproduction of highly deleterious nitrogen reactive species). But our results
showed that, at the acidic pH characteristic of a hypoxia/anoxia, when an alternative NO
generation pathway is needed, XO and AO affinity towards nitrite is enhanced and the
available nitrite could elicit the formation of physiologically meaningful NO. For example,
at pH 6.3, 10 µM nitrite and 30 µg enzyme/mL (to simulate 30 µg enzyme/g tissue) catalyse
the formation of 1.6–2.2 nM NO/s [203], rates that compare well with the 1 nM/s described
for the constitutive NOS [214].
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Figure 7. pH (a) and dioxygen (c) effects on the kinetic parameters of XO- and AO-catalysed nitrite 
reduction to NO. (b) Schematic representation of how dioxygen decreases the amount of NO 
formed (i) and NO available to exert its in vivo actions and also to be detected in the Lab (ii) and 
(iii). In the presence of superoxide dismutase (SOD), the NO consumption by superoxide radical 
anion (ii) is abolished (as represented by X) and the formation of peroxynitrite also prevented. See 
text for details. Adapted from [111] with permission. 
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Figure 7. pH (a) and dioxygen (c) effects on the kinetic parameters of XO- and AO-catalysed nitrite
reduction to NO. (b) Schematic representation of how dioxygen decreases the amount of NO formed
(i) and NO available to exert its in vivo actions and also to be detected in the Lab (ii) and (iii). In the
presence of superoxide dismutase (SOD), the NO consumption by superoxide radical anion (ii) is
abolished (as represented by X) and the formation of peroxynitrite also prevented. See text for details.
Adapted from [111] with permission.

After the detailed kinetic characterisation under anaerobic conditions, the effect of
dioxygen on the NO formation by XO/XD and AO had to be studied. Yet, assessing
the effect of dioxygen is not a trivial task, quite the opposite, and the assays took much
longer than initially anticipated. Dioxygen is efficiently reduced by these enzymes (it is the
physiological oxidising substrate of XO and AO) and, by consuming the electrons needed
to reduce nitrite, it should act as a strong competitive inhibitor of the NO formation, thus
decreasing the total amount of NO formed (Figure 7b—reaction (i)). For the same reason, the
inhibition of the XD-dependent NO formation by NAD+ should have also been considered,
but that study was not yet undertaken (neither by myself nor by any other author, as far as
I know). On the other hand, the superoxide anion formed during the dioxygen reduction
by XO and AO should promptly react with NO to yield peroxynitrite and, in this way,
decrease the amount of NO available to exert its in vivo actions and also to be detected
in the Lab (Figure 7b—reaction (ii)) [203]. This indirect consumption of NO by dioxygen
has been wrongly interpreted as an inhibition of NO formation and has contributed to the
inconsistencies found in the literature. In addition, dioxygen can also directly consume
(react with) NO, resulting in the formation of ·NO2 (Figure 7b—reaction (iii)).

The NO consumption in the direct reaction with dioxygen (as assessed using deflavo-
XO and deflavo-AO, enzyme forms that cannot reduce dioxygen and produce superoxide)
was not significant under our experimental conditions and was disregarded [203]. On the
contrary, the NO consumption in the reaction with superoxide was considerable, but not
total, and it was still possible to detect it in the absence of added superoxide dismutase
(SOD) (Figure 7b—reaction (ii)) [203]. These results highlighted the physiological relevance
of SOD to achieve a net flux of NO in vivo, as well as to avoid the formation of the highly
deleterious peroxynitrite.

To restrict our studies to the dioxygen effect in NO formation, the following assays
were carried out in the presence of SOD (this simplified the results analysis by eliminating
the NO consumption by superoxide). Even so, the system continued to be quite complex to
analyse, but the results very interesting. It was found that the inhibition of NO formation
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by dioxygen is dependent on the reducing substrate concentration, with a higher reducing
power giving rise to lower inhibitions [203]. In accordance, it is expected that the ischaemia-
induced accumulation of reducing substrates would decrease the inhibition imposed
by dioxygen—once more the results were pointing to hypoxia/anoxia boosting the NO
generation by these enzymes. The Ki

app,O2 values of XO (24 µM) and AO (25 µM) fully
supported this idea [203]. These dioxygen values are within the in vivo tissue dioxygen
concentrations, going from normoxia (around 50 µM) to hypoxia (>2 µM) [215], which
suggests that the cellular dioxygen availability would, in an integrated mode, fine-tune the
NO formation by XO and AO. That is, under normoxic conditions, the NO formation by
these enzymes would be considerably hindered and it would be NOS to sustain the NO
fluxes (no alternative pathway needed); however, as the dioxygen concentration decreases
towards hypoxic and anoxic conditions and NOS becomes impaired, the concomitant acidic
conditions and accumulation of reducing substrates would accelerate and “fuel” the nitrite
reduction and the dioxygen inhibition would be relieved, all resulting in the triggering of
NO generation by XO and AO, as a NO “backup” pathway.

Also, and more importantly, the XO- and AO-catalysed NO generation in the pres-
ence of dioxygen occurs at rates that can be physiologically meaningful. For example,
1.3–1.9 nM NO/s and 2.0–2.9 nM NO/s can be formed from 25 µM nitrite in the presence of
dioxygen 50 µM (normoxia) and 25 µM (hypoxia), respectively [203], values that compare
very well with the 1 nM/s described for the constitutive NOS [214]. These results clearly
contradict the general belief that there is no NO formation by these enzymes in the presence
of dioxygen—the second major criticism against the involvement of these enzymes in
NO metabolism.

4.3. How Is It Possible for XO (and Similar Enzymes) to Catalyse an OAT-A Reaction?

Molybdoenzymes are well known for their ability to catalyse OAT-A and OAT-I and
the respective reaction mechanism is presently well established, as briefly reviewed in
Section 1. XO family enzymes, in particular, are commonly associated with hydroxylation
reactions (OAT-I; Equations (5) and (6)), but the active site of the “XO type” is certainly
able to catalyse the reverse “dehydroxylation” (OAT-A), as exemplified by the bacterial
hydroxybenzoyl-CoA reductase (Equation (10)) [216–219]. The NO-forming nitrite re-
ductase activity of XO/XD and AO is now demonstrating that this versatile family is
also able to catalyse the simultaneous OAT-A and OAT-I, during the same catalytic cycle.
Yet, given the straightforward reversibility of the OAT mechanism (Figure 2—reaction
can take place without the occurrence of the oxidation/reduction in dashes) and the
precedent given by the bacterial pyrogallol:phloroglucinol transhydroxylase (a DMSOR
family enzyme; Equation (11)) [220], the simultaneous OAT-A and OAT-I should have been
anticipated before.

Molecules 2023, 28, x FOR PEER REVIEW 12 of 23 
 

 

enzymes in the presence of dioxygen—the second major criticism against the 
involvement of these enzymes in NO metabolism. 

4.3. How Is It Possible for XO (and Similar Enzymes) to Catalyse an OAT-A Reaction? 
Molybdoenzymes are well known for their ability to catalyse OAT-A and OAT-I and 

the respective reaction mechanism is presently well established, as briefly reviewed in 
Section 1. XO family enzymes, in particular, are commonly associated with 
hydroxylation reactions (OAT-I; Equations (5) and (6)), but the active site of the “XO 
type” is certainly able to catalyse the reverse “dehydroxylation” (OAT-A), as exemplified 
by the bacterial hydroxybenzoyl-CoA reductase (Equation (10)) [216–219]. The 
NO-forming nitrite reductase activity of XO/XD and AO is now demonstrating that this 
versatile family is also able to catalyse the simultaneous OAT-A and OAT-I, during the 
same catalytic cycle. Yet, given the straightforward reversibility of the OAT mechanism 
(Figure 2—reaction can take place without the occurrence of the oxidation/reduction in 
dashes) and the precedent given by the bacterial pyrogallol:phloroglucinol 
transhydroxylase (a DMSOR family enzyme; Equation (11)) [220], the simultaneous 
OAT-A and OAT-I should have been anticipated before. 

 + 2e− + 2H+ →  +  H2O 

                    hydroxybenzoyl-CoA                   benzoyl-CoA 

(10)

 +  →  +  

                                     pyrogallol                              phloroglucinol 

(11)

We have proposed the first and currently accepted molecular mechanism of nitrite 
reduction by molybdoenzymes (Figure 8) [111,202,203,206]. This was based on different 
experimental evidences that we and others gathered, combining EPR and NO electrode 
assays, exploring enzyme preparations with different AFR values, deflavo and desulfo 
forms [150,202,203] and using flavin- and molybdenum-specific inhibitors (DPI (XO and 
AO), allopurinol, BOF-4272 (XO) [148,150,151,202,203] and ethyleneglycol (AOR) [202]). 
Attention was also paid to the possible, but ruled out, reaction of NO with the 
molybdenum sulfido group (that would lead to the enzymes’ inactivation by formation 
of a molybdenum-nitrosothiol active site) [202,203]. 

Briefly, after the oxidation of the reducing substrate and release of the hydroxylated 
product (as described in Section 1; Figure 3c), nitrite would bind to the reduced 
molybdenum centre through one of its oxygen atoms. Its subsequent reduction should 
occur through a mechanism parallel to the OAT-A of NaR (Figure 3b), but involving the 
consecutive reaction of two molecules of nitrite (because nitrite reduction to NO, 
contrary to nitrate reduction, is a one-electron process). For the protonation steps 
required to abstract the nitrite oxygen atom, we proposed as proton donor the conserved 
and well-positioned glutamate residue (the same that is essential to the hydroxylation 
half-reaction, Glu1261 in bovine milk XO; see Section 1). Interestingly, the bacterial 
copper-containing nitrite reductase also uses an amino acid residue for this role (in that 
case, an aspartate). 

+ 2e− + 2H+ →

Molecules 2023, 28, x FOR PEER REVIEW 12 of 23 
 

 

enzymes in the presence of dioxygen—the second major criticism against the 
involvement of these enzymes in NO metabolism. 

4.3. How Is It Possible for XO (and Similar Enzymes) to Catalyse an OAT-A Reaction? 
Molybdoenzymes are well known for their ability to catalyse OAT-A and OAT-I and 

the respective reaction mechanism is presently well established, as briefly reviewed in 
Section 1. XO family enzymes, in particular, are commonly associated with 
hydroxylation reactions (OAT-I; Equations (5) and (6)), but the active site of the “XO 
type” is certainly able to catalyse the reverse “dehydroxylation” (OAT-A), as exemplified 
by the bacterial hydroxybenzoyl-CoA reductase (Equation (10)) [216–219]. The 
NO-forming nitrite reductase activity of XO/XD and AO is now demonstrating that this 
versatile family is also able to catalyse the simultaneous OAT-A and OAT-I, during the 
same catalytic cycle. Yet, given the straightforward reversibility of the OAT mechanism 
(Figure 2—reaction can take place without the occurrence of the oxidation/reduction in 
dashes) and the precedent given by the bacterial pyrogallol:phloroglucinol 
transhydroxylase (a DMSOR family enzyme; Equation (11)) [220], the simultaneous 
OAT-A and OAT-I should have been anticipated before. 

 + 2e− + 2H+ →  +  H2O 

                    hydroxybenzoyl-CoA                   benzoyl-CoA 

(10)

 +  →  +  

                                     pyrogallol                              phloroglucinol 

(11)

We have proposed the first and currently accepted molecular mechanism of nitrite 
reduction by molybdoenzymes (Figure 8) [111,202,203,206]. This was based on different 
experimental evidences that we and others gathered, combining EPR and NO electrode 
assays, exploring enzyme preparations with different AFR values, deflavo and desulfo 
forms [150,202,203] and using flavin- and molybdenum-specific inhibitors (DPI (XO and 
AO), allopurinol, BOF-4272 (XO) [148,150,151,202,203] and ethyleneglycol (AOR) [202]). 
Attention was also paid to the possible, but ruled out, reaction of NO with the 
molybdenum sulfido group (that would lead to the enzymes’ inactivation by formation 
of a molybdenum-nitrosothiol active site) [202,203]. 

Briefly, after the oxidation of the reducing substrate and release of the hydroxylated 
product (as described in Section 1; Figure 3c), nitrite would bind to the reduced 
molybdenum centre through one of its oxygen atoms. Its subsequent reduction should 
occur through a mechanism parallel to the OAT-A of NaR (Figure 3b), but involving the 
consecutive reaction of two molecules of nitrite (because nitrite reduction to NO, 
contrary to nitrate reduction, is a one-electron process). For the protonation steps 
required to abstract the nitrite oxygen atom, we proposed as proton donor the conserved 
and well-positioned glutamate residue (the same that is essential to the hydroxylation 
half-reaction, Glu1261 in bovine milk XO; see Section 1). Interestingly, the bacterial 
copper-containing nitrite reductase also uses an amino acid residue for this role (in that 
case, an aspartate). 

+ H2O (10)

Molecules 2023, 28, x FOR PEER REVIEW 12 of 23 
 

 

enzymes in the presence of dioxygen—the second major criticism against the 
involvement of these enzymes in NO metabolism. 

4.3. How Is It Possible for XO (and Similar Enzymes) to Catalyse an OAT-A Reaction? 
Molybdoenzymes are well known for their ability to catalyse OAT-A and OAT-I and 

the respective reaction mechanism is presently well established, as briefly reviewed in 
Section 1. XO family enzymes, in particular, are commonly associated with 
hydroxylation reactions (OAT-I; Equations (5) and (6)), but the active site of the “XO 
type” is certainly able to catalyse the reverse “dehydroxylation” (OAT-A), as exemplified 
by the bacterial hydroxybenzoyl-CoA reductase (Equation (10)) [216–219]. The 
NO-forming nitrite reductase activity of XO/XD and AO is now demonstrating that this 
versatile family is also able to catalyse the simultaneous OAT-A and OAT-I, during the 
same catalytic cycle. Yet, given the straightforward reversibility of the OAT mechanism 
(Figure 2—reaction can take place without the occurrence of the oxidation/reduction in 
dashes) and the precedent given by the bacterial pyrogallol:phloroglucinol 
transhydroxylase (a DMSOR family enzyme; Equation (11)) [220], the simultaneous 
OAT-A and OAT-I should have been anticipated before. 

 + 2e− + 2H+ →  +  H2O 

                    hydroxybenzoyl-CoA                   benzoyl-CoA 

(10)

 +  →  +  

                                     pyrogallol                              phloroglucinol 

(11)

We have proposed the first and currently accepted molecular mechanism of nitrite 
reduction by molybdoenzymes (Figure 8) [111,202,203,206]. This was based on different 
experimental evidences that we and others gathered, combining EPR and NO electrode 
assays, exploring enzyme preparations with different AFR values, deflavo and desulfo 
forms [150,202,203] and using flavin- and molybdenum-specific inhibitors (DPI (XO and 
AO), allopurinol, BOF-4272 (XO) [148,150,151,202,203] and ethyleneglycol (AOR) [202]). 
Attention was also paid to the possible, but ruled out, reaction of NO with the 
molybdenum sulfido group (that would lead to the enzymes’ inactivation by formation 
of a molybdenum-nitrosothiol active site) [202,203]. 

Briefly, after the oxidation of the reducing substrate and release of the hydroxylated 
product (as described in Section 1; Figure 3c), nitrite would bind to the reduced 
molybdenum centre through one of its oxygen atoms. Its subsequent reduction should 
occur through a mechanism parallel to the OAT-A of NaR (Figure 3b), but involving the 
consecutive reaction of two molecules of nitrite (because nitrite reduction to NO, 
contrary to nitrate reduction, is a one-electron process). For the protonation steps 
required to abstract the nitrite oxygen atom, we proposed as proton donor the conserved 
and well-positioned glutamate residue (the same that is essential to the hydroxylation 
half-reaction, Glu1261 in bovine milk XO; see Section 1). Interestingly, the bacterial 
copper-containing nitrite reductase also uses an amino acid residue for this role (in that 
case, an aspartate). 

+

Molecules 2023, 28, x FOR PEER REVIEW 12 of 23 
 

 

enzymes in the presence of dioxygen—the second major criticism against the 
involvement of these enzymes in NO metabolism. 

4.3. How Is It Possible for XO (and Similar Enzymes) to Catalyse an OAT-A Reaction? 
Molybdoenzymes are well known for their ability to catalyse OAT-A and OAT-I and 

the respective reaction mechanism is presently well established, as briefly reviewed in 
Section 1. XO family enzymes, in particular, are commonly associated with 
hydroxylation reactions (OAT-I; Equations (5) and (6)), but the active site of the “XO 
type” is certainly able to catalyse the reverse “dehydroxylation” (OAT-A), as exemplified 
by the bacterial hydroxybenzoyl-CoA reductase (Equation (10)) [216–219]. The 
NO-forming nitrite reductase activity of XO/XD and AO is now demonstrating that this 
versatile family is also able to catalyse the simultaneous OAT-A and OAT-I, during the 
same catalytic cycle. Yet, given the straightforward reversibility of the OAT mechanism 
(Figure 2—reaction can take place without the occurrence of the oxidation/reduction in 
dashes) and the precedent given by the bacterial pyrogallol:phloroglucinol 
transhydroxylase (a DMSOR family enzyme; Equation (11)) [220], the simultaneous 
OAT-A and OAT-I should have been anticipated before. 

 + 2e− + 2H+ →  +  H2O 

                    hydroxybenzoyl-CoA                   benzoyl-CoA 

(10)

 +  →  +  

                                     pyrogallol                              phloroglucinol 

(11)

We have proposed the first and currently accepted molecular mechanism of nitrite 
reduction by molybdoenzymes (Figure 8) [111,202,203,206]. This was based on different 
experimental evidences that we and others gathered, combining EPR and NO electrode 
assays, exploring enzyme preparations with different AFR values, deflavo and desulfo 
forms [150,202,203] and using flavin- and molybdenum-specific inhibitors (DPI (XO and 
AO), allopurinol, BOF-4272 (XO) [148,150,151,202,203] and ethyleneglycol (AOR) [202]). 
Attention was also paid to the possible, but ruled out, reaction of NO with the 
molybdenum sulfido group (that would lead to the enzymes’ inactivation by formation 
of a molybdenum-nitrosothiol active site) [202,203]. 

Briefly, after the oxidation of the reducing substrate and release of the hydroxylated 
product (as described in Section 1; Figure 3c), nitrite would bind to the reduced 
molybdenum centre through one of its oxygen atoms. Its subsequent reduction should 
occur through a mechanism parallel to the OAT-A of NaR (Figure 3b), but involving the 
consecutive reaction of two molecules of nitrite (because nitrite reduction to NO, 
contrary to nitrate reduction, is a one-electron process). For the protonation steps 
required to abstract the nitrite oxygen atom, we proposed as proton donor the conserved 
and well-positioned glutamate residue (the same that is essential to the hydroxylation 
half-reaction, Glu1261 in bovine milk XO; see Section 1). Interestingly, the bacterial 
copper-containing nitrite reductase also uses an amino acid residue for this role (in that 
case, an aspartate). 

→

Molecules 2023, 28, x FOR PEER REVIEW 12 of 23 
 

 

enzymes in the presence of dioxygen—the second major criticism against the 
involvement of these enzymes in NO metabolism. 

4.3. How Is It Possible for XO (and Similar Enzymes) to Catalyse an OAT-A Reaction? 
Molybdoenzymes are well known for their ability to catalyse OAT-A and OAT-I and 

the respective reaction mechanism is presently well established, as briefly reviewed in 
Section 1. XO family enzymes, in particular, are commonly associated with 
hydroxylation reactions (OAT-I; Equations (5) and (6)), but the active site of the “XO 
type” is certainly able to catalyse the reverse “dehydroxylation” (OAT-A), as exemplified 
by the bacterial hydroxybenzoyl-CoA reductase (Equation (10)) [216–219]. The 
NO-forming nitrite reductase activity of XO/XD and AO is now demonstrating that this 
versatile family is also able to catalyse the simultaneous OAT-A and OAT-I, during the 
same catalytic cycle. Yet, given the straightforward reversibility of the OAT mechanism 
(Figure 2—reaction can take place without the occurrence of the oxidation/reduction in 
dashes) and the precedent given by the bacterial pyrogallol:phloroglucinol 
transhydroxylase (a DMSOR family enzyme; Equation (11)) [220], the simultaneous 
OAT-A and OAT-I should have been anticipated before. 

 + 2e− + 2H+ →  +  H2O 

                    hydroxybenzoyl-CoA                   benzoyl-CoA 

(10)

 +  →  +  

                                     pyrogallol                              phloroglucinol 

(11)

We have proposed the first and currently accepted molecular mechanism of nitrite 
reduction by molybdoenzymes (Figure 8) [111,202,203,206]. This was based on different 
experimental evidences that we and others gathered, combining EPR and NO electrode 
assays, exploring enzyme preparations with different AFR values, deflavo and desulfo 
forms [150,202,203] and using flavin- and molybdenum-specific inhibitors (DPI (XO and 
AO), allopurinol, BOF-4272 (XO) [148,150,151,202,203] and ethyleneglycol (AOR) [202]). 
Attention was also paid to the possible, but ruled out, reaction of NO with the 
molybdenum sulfido group (that would lead to the enzymes’ inactivation by formation 
of a molybdenum-nitrosothiol active site) [202,203]. 

Briefly, after the oxidation of the reducing substrate and release of the hydroxylated 
product (as described in Section 1; Figure 3c), nitrite would bind to the reduced 
molybdenum centre through one of its oxygen atoms. Its subsequent reduction should 
occur through a mechanism parallel to the OAT-A of NaR (Figure 3b), but involving the 
consecutive reaction of two molecules of nitrite (because nitrite reduction to NO, 
contrary to nitrate reduction, is a one-electron process). For the protonation steps 
required to abstract the nitrite oxygen atom, we proposed as proton donor the conserved 
and well-positioned glutamate residue (the same that is essential to the hydroxylation 
half-reaction, Glu1261 in bovine milk XO; see Section 1). Interestingly, the bacterial 
copper-containing nitrite reductase also uses an amino acid residue for this role (in that 
case, an aspartate). 

+

Molecules 2023, 28, x FOR PEER REVIEW 12 of 23 
 

 

enzymes in the presence of dioxygen—the second major criticism against the 
involvement of these enzymes in NO metabolism. 

4.3. How Is It Possible for XO (and Similar Enzymes) to Catalyse an OAT-A Reaction? 
Molybdoenzymes are well known for their ability to catalyse OAT-A and OAT-I and 

the respective reaction mechanism is presently well established, as briefly reviewed in 
Section 1. XO family enzymes, in particular, are commonly associated with 
hydroxylation reactions (OAT-I; Equations (5) and (6)), but the active site of the “XO 
type” is certainly able to catalyse the reverse “dehydroxylation” (OAT-A), as exemplified 
by the bacterial hydroxybenzoyl-CoA reductase (Equation (10)) [216–219]. The 
NO-forming nitrite reductase activity of XO/XD and AO is now demonstrating that this 
versatile family is also able to catalyse the simultaneous OAT-A and OAT-I, during the 
same catalytic cycle. Yet, given the straightforward reversibility of the OAT mechanism 
(Figure 2—reaction can take place without the occurrence of the oxidation/reduction in 
dashes) and the precedent given by the bacterial pyrogallol:phloroglucinol 
transhydroxylase (a DMSOR family enzyme; Equation (11)) [220], the simultaneous 
OAT-A and OAT-I should have been anticipated before. 

 + 2e− + 2H+ →  +  H2O 

                    hydroxybenzoyl-CoA                   benzoyl-CoA 

(10)

 +  →  +  

                                     pyrogallol                              phloroglucinol 

(11)

We have proposed the first and currently accepted molecular mechanism of nitrite 
reduction by molybdoenzymes (Figure 8) [111,202,203,206]. This was based on different 
experimental evidences that we and others gathered, combining EPR and NO electrode 
assays, exploring enzyme preparations with different AFR values, deflavo and desulfo 
forms [150,202,203] and using flavin- and molybdenum-specific inhibitors (DPI (XO and 
AO), allopurinol, BOF-4272 (XO) [148,150,151,202,203] and ethyleneglycol (AOR) [202]). 
Attention was also paid to the possible, but ruled out, reaction of NO with the 
molybdenum sulfido group (that would lead to the enzymes’ inactivation by formation 
of a molybdenum-nitrosothiol active site) [202,203]. 

Briefly, after the oxidation of the reducing substrate and release of the hydroxylated 
product (as described in Section 1; Figure 3c), nitrite would bind to the reduced 
molybdenum centre through one of its oxygen atoms. Its subsequent reduction should 
occur through a mechanism parallel to the OAT-A of NaR (Figure 3b), but involving the 
consecutive reaction of two molecules of nitrite (because nitrite reduction to NO, 
contrary to nitrate reduction, is a one-electron process). For the protonation steps 
required to abstract the nitrite oxygen atom, we proposed as proton donor the conserved 
and well-positioned glutamate residue (the same that is essential to the hydroxylation 
half-reaction, Glu1261 in bovine milk XO; see Section 1). Interestingly, the bacterial 
copper-containing nitrite reductase also uses an amino acid residue for this role (in that 
case, an aspartate). 

(11)



Molecules 2023, 28, 5819 12 of 23

We have proposed the first and currently accepted molecular mechanism of nitrite
reduction by molybdoenzymes (Figure 8) [111,202,203,206]. This was based on different
experimental evidences that we and others gathered, combining EPR and NO electrode
assays, exploring enzyme preparations with different AFR values, deflavo and desulfo
forms [150,202,203] and using flavin- and molybdenum-specific inhibitors (DPI (XO and
AO), allopurinol, BOF-4272 (XO) [148,150,151,202,203] and ethyleneglycol (AOR) [202]).
Attention was also paid to the possible, but ruled out, reaction of NO with the molybdenum
sulfido group (that would lead to the enzymes’ inactivation by formation of a molybdenum-
nitrosothiol active site) [202,203].
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Figure 8. Reaction mechanism proposed for XO- and AO-catalysed nitrite reduction to NO, 
highlighting the details and evidences supporting each step. After the release of the 
oxidised-reducing substrate (for example, urate; i→ii→iii), nitrite binds to the reduced 
molybdenum ion through one of its oxygen atoms (iii→iv). Subsequently, a protonation step, 
where the nitrite oxygen atom is protonated (v), triggers the homolyitc O-N bond cleavage, 
resulting in the formation of the first NO molecule and a partially oxidised molybdenum (Mo5+) 
centre (v→vi). The residue responsible for the protonation step is suggested to be the conserved 
glutamate residue that is essential for the hydroxylation half-reaction (Glu1261 in bovine milk XO). 
The reaction proceeds with the formation of a good leaving group, a water molecule (Mo5+–OH2; 
vi→vii), which is subsequently displaced by the second molecule of nitrite (vii→viii). After a 
second cycle of nitrite reduction/molybdenum oxidation, triggered by another protonation step, 
the second NO molecule is released (viii→i). The molybdenum is now in a 6+ oxidation state, 
which would favour the deprotonation of its ligands, and the centre is ready to start a new 
catalytic cycle. More details in [111,203,206]. Adapted from [111] with permission. 
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Figure 8. Reaction mechanism proposed for XO- and AO-catalysed nitrite reduction to NO, high-
lighting the details and evidences supporting each step. After the release of the oxidised-reducing
substrate (for example, urate; i→ii→iii), nitrite binds to the reduced molybdenum ion through one
of its oxygen atoms (iii→iv). Subsequently, a protonation step, where the nitrite oxygen atom is
protonated (v), triggers the homolyitc O-N bond cleavage, resulting in the formation of the first
NO molecule and a partially oxidised molybdenum (Mo5+) centre (v→vi). The residue responsible
for the protonation step is suggested to be the conserved glutamate residue that is essential for the
hydroxylation half-reaction (Glu1261 in bovine milk XO). The reaction proceeds with the formation
of a good leaving group, a water molecule (Mo5+–OH2; vi→vii), which is subsequently displaced
by the second molecule of nitrite (vii→viii). After a second cycle of nitrite reduction/molybdenum
oxidation, triggered by another protonation step, the second NO molecule is released (viii→i). The
molybdenum is now in a 6+ oxidation state, which would favour the deprotonation of its ligands, and
the centre is ready to start a new catalytic cycle. More details in [111,203,206]. Adapted from [111]
with permission.
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Briefly, after the oxidation of the reducing substrate and release of the hydroxylated
product (as described in Section 1; Figure 3c), nitrite would bind to the reduced molyb-
denum centre through one of its oxygen atoms. Its subsequent reduction should occur
through a mechanism parallel to the OAT-A of NaR (Figure 3b), but involving the con-
secutive reaction of two molecules of nitrite (because nitrite reduction to NO, contrary to
nitrate reduction, is a one-electron process). For the protonation steps required to abstract
the nitrite oxygen atom, we proposed as proton donor the conserved and well-positioned
glutamate residue (the same that is essential to the hydroxylation half-reaction, Glu1261
in bovine milk XO; see Section 1). Interestingly, the bacterial copper-containing nitrite
reductase also uses an amino acid residue for this role (in that case, an aspartate).

4.4. If No Other Organism Is Known to Use a “True” Molybdenum-Dependent Nitrite Reductase
to Reduce Nitrite to NO, Why Would a Mammalian Cell Be Able to Do So?

To date, no “true” mammalian nitrite reductase has ever been identified. Yet, nu-
merous (very well-known) proteins were shown (by several authors) to be able to reduce
nitrite to NO [147–176] and also some protein-independent NO generation pathways were
proposed [221–228]. In all those cases, the nitrite reduction to NO was described to occur
under hypoxic/anoxic and acidic conditions, but most of those systems were not thor-
oughly characterised in vitro, ex vivo or in vivo. Presently, as far as I know, only Mb and
XO/XD have been demonstrated to be directly involved in the cytoprotective action of
nitrite in vivo or ex vivo [115,122,229–231]. The ground-breaking work of Webb et al. [115],
which isolated a rat heart under ischaemic conditions, demonstrating the NOS-independent,
largely XO/XD-dependent NO generation and cardioprotective protection, was inspira-
tional to me. The following contributions of Baker et al. [122] and Baliga et al. [142] were
also relevant.

I was (am) well aware of the importance of physiological studies and wanted to make
some “forays” into this area. However, the choice of the right biological model is critical
and measuring the NO formation in vivo is a very challenging task, with no clear ideal
methodology to follow (NO-specific electrodes or chemiluminescence (that measures NO
only in the gas phase) only detect NO after cell disruption or after NO has diffused out of
the cell/tissue; microelectrodes only solve that problem until a certain scale (µm); non-toxic
cell-permeable probes, such as spin-traps (EPR) or fluorescence probes, can still induce
alterations on the biological system and the fluorescence probes are not NO-selective in
the biological milieu). As no one in our group had experience in physiological studies, we
turned to our good friend Lurdes Mira, who had been carrying out several studies of a
“more medical nature”. Her team implemented a fluorescent method capable of measuring
intracellular NO and exploited the use of different specific inhibitors to assess the individual
contributions of a few NO generation pathways (NOS, mitochondrial complex I, XO/XD
and AO). Lurdes Mira’s efforts were essential to demonstrate the nitrite-derived, XO/XD-
and AO-dependent NO generation in a hypoxia model (23 µM dioxygen) using human
epithelial cells from liver carcinoma (HepG2) and human microvascular endothelial cells
(HMEC) [203]. Remarkably, XO/XD and AO were found to account for as much as ≈50%
of the measured NO in these systems.

5. Concluding Remarks

In the early 21st century, a new nitrate-nitrite-NO pathway began to emerge as a
physiological alternative to the “classic”, NOS-dependent, pathway and, presently, nitrite
is recognised as a relevant NO source for human cell signalling and survival under chal-
lenging conditions. In the absence of a “true” nitrite reductase, mammalian cells appear
to reduce nitrite to NO using different metalloproteins, present in the cells to accomplish
other (well-known) functions. The list of those proteins, that in 2014 we denominated
as the “non-dedicated nitrite reductases”, is actually quite long and it includes, among
others, several haem proteins and all known mammalian molybdoenzymes, XO/XD, AO,
SO and mARC.
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Over the past years, I have put a lot of effort into understanding the participation
of two molybdoenzymes, XO/XD and AO, in the nitrite-derived NO generation. All the
results obtained point to the same conclusion: XO/XD and AO do reduce nitrite and form
NO, as would be expected from a purely chemical perspective, as molybdenum centres are
known to be excellent “oxygen atom exchangers”. However, acidic and hypoxic conditions
are needed to amplify the NO formation (higher reaction rate and magnitude) and make the
reaction kinetically relevant in the physiological context. During this time, other authors
(as cited above) came along and contributed to show that other molybdoenzymes are also
able to catalyse the nitrite reduction, namely SO (mammalian enzyme), mARC (plant and
mammalian enzymes) and NaR (plant and bacterial enzymes). All these cases suggest that,
in the presence of both one oxo donor and one oxo acceptor, the molybdenum centres of
the three enzyme families (Figure 1) would be able to catalyse the OAT between the two
and, therefore, this “double oxo transfer” reaction should be possible for substrates other
than nitrite (as long as the thermodynamics of the global reaction are favourable).

The physiological relevance of the molybdoenzymes in NO metabolism is still, how-
ever, a matter of debate, in particular in humans, and I look forward to future works that
shed light on the role of nitrite (and also nitrate) in humans. In any case, I believe that
nitrite and NO have definitively entered the molybdenum world and opened a series of
exciting questions regarding the chemistry of these ancient molybdenum centres.
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