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A numeric‑based machine learning 
design for detecting organized 
retail fraud in digital marketplaces
Abed Mutemi * & Fernando Bacao 

Organized retail crime (ORC) is a significant issue for retailers, marketplace platforms, and 
consumers. Its prevalence and influence have increased fast in lockstep with the expansion of online 
commerce, digital devices, and communication platforms. Today, it is a costly affair, wreaking havoc 
on enterprises’ overall revenues and continually jeopardizing community security. These negative 
consequences are set to rocket to unprecedented heights as more people and devices connect 
to the Internet. Detecting and responding to these terrible acts as early as possible is critical for 
protecting consumers and businesses while also keeping an eye on rising patterns and fraud. The 
issue of detecting fraud in general has been studied widely, especially in financial services, but studies 
focusing on organized retail crimes are extremely rare in literature. To contribute to the knowledge 
base in this area, we present a scalable machine learning strategy for detecting and isolating ORC 
listings on a prominent marketplace platform by merchants committing organized retail crimes or 
fraud. We employ a supervised learning approach to classify postings as fraudulent or real based on 
past data from buyer and seller behaviors and transactions on the platform. The proposed framework 
combines bespoke data preprocessing procedures, feature selection methods, and state‑of‑the‑art 
class asymmetry resolution techniques to search for aligned classification algorithms capable of 
discriminating between fraudulent and legitimate listings in this context. Our best detection model 
obtains a recall score of 0.97 on the holdout set and 0.94 on the out‑of‑sample testing data set. We 
achieve these results based on a select set of 45 features out of 58.

Abbreviations
ML  Machine learning
ORC  Organized retail crime
RTC   Retail theft cases
LR  Logistic regression
KNN  k-nearest neighbor
SVM  Support vector machine
CART   Classification and regression tree
RF  Random forest
GNB  Gaussian naive bayes
GB  Gradient boosting
BRF  Balanced random forest
SG  Stacked generalization
FDM  Fraud detection model
SMOTE  Synthetic minority oversampling technique
SMOTENC  Synthetic minority oversampling technique for nominal and continuous
CV  Cross validation
EDA  Exploratory data analysis
TP  True positive
TN  True negative
FP  False positive
FN  False negative
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Recently, there has been a growth in the use of internet commerce and communication platforms, heightened 
even more by the COVID-19 pandemic. More than ever before, a sizable portion of the population conducts nor-
mal activities online and at home, including work, school, shopping, doctor appointments, and  entertainment1. 
Cybercrime and fraud have expanded substantially in line with the widespread use of digital devices and 
 platforms2 continuing the pattern of losing the global economy billions of  dollars3 and jeopardizing community 
 security4.

Cybercrime and fraud encompass a diverse range of heinous actions, including phishing, malware, fraudulent 
e-commerce, romance scams, tech support scams, extortion or blackmail, and denial of  service1. Additionally, 
there are instances of credit card theft, money laundering, and plagiarism. Both practices have a detrimental 
effect on both enterprises and customers, posing significant economic, reputational, and psychological dangers 
to these entities.

Combating cybercrime and fraud is a time-consuming and costly task since bad actors are always evolving 
and capitalizing on new chances to exploit the vulnerabilities of existing fraud protection and detection systems. 
Low development efforts exacerbate the problem further by limiting the sharing of ideas in fraud research. For 
instance, it makes no sense to explain fraud detection or prevention techniques in the public domain, as this 
could provide fraudsters with the information necessary to elude detection.

When it comes to addressing cybercrime and fraud, whether through prevention or detection, there are two 
primary methodologies documented in the literature. Prevention refers to steps taken to avert the occurrence of 
the acts in the first place. These include intricate designs, personal identity numbers, internet security for online 
interactions with digital platforms, and passwords and authentication mechanisms for computers and mobile 
 devices5. None of these solutions is perfect; frequently, a trade-off between cost (for the business) and discomfort 
(for the customer) must be made. On the other hand, detection entails recognizing fraudulent acts as soon as 
they  occur5. When prevention fails, it becomes material. For example, we can prevent credit card fraud by pro-
tecting our cards insidiously, but if the card information is stolen, we must notice the fraud as soon as  possible5.

There are two conflicting schools of thought when it comes to developing fraud detection and prevention 
systems. The first is pro-statistical and computational methods, with researchers such  as5–7 publishing extensively 
in this area. This school of thought applies statistical tools, including machine learning algorithms, to detect 
fraud. Classifiers can be trained to discern between the two classes using labeled data (fraudulent and non-
fraudulent). In these circumstances, classifiers are fed data from user profiles such as transaction amount, day of 
week, item category, age, gender, and geography. Those who argue against statistical and computational methods 
contend that these characteristics are easily fabricated by sophisticated  fraudsters8. Irani, Pu, and  Webb9,10 believe 
that once fraudsters discover that authorities have picked up on their jargon, they can avoid keyword traps by 
switching to new phrases. The latter school of thought proposes network analysis as an alternative method for 
developing fraud detection  features8,11. The concept takes advantage of the connectedness between nodes, often 
users or items, in a dataset to derive graph-theoretic variables or scores that uniquely characterize nodes. The 
strategies are predicated on the premise that abnormal users exhibit connection patterns that differ from those 
of regular  users8.

We do not officially subscribe to any of these schools of thought in our situation. Rather than that, we argue 
that the approach to fraud detection should be governed by the problem’s context and influenced further by 
many stakeholders invested in the goal of reducing fraud instances. As a result, it is vital to build systems that 
are constantly learning and adapting in order to keep bad actors at bay. Additionally, while we accept that human 
behavior, social and cultural aspects are key considerations when designing detection and prevention  systems1, 
we argue that they must operate in concert with automated processes to rein in the rising trend in fraud cases.

Automation of fraud detection by data mining and machine learning approaches represents a once-in-a-
generation chance to significantly lessen the burden on humans while still adjusting to a dynamic fraud envi-
ronment. In this paper, we emphasize the importance of automation in fraud detection with a machine learning 
approach to introduce efficient and scalable fraud detection in a domain that is rife with manual processes and 
inefficient methods such as heuristics and rule-based approaches. We present a framework for machine learning 
based on an experimental design setting in which we search for the optimal learning algorithm for discriminating 
between fraudulent and non-fraudulent events.

Our issue is contextualized within the backdrop of organized retail crime (ORC). ORC is defined as the 
widespread theft of everyday consumer goods from brick-and-mortar establishments, with the stolen goods 
then resold or fenced to other retailers or individuals via a variety of channels. In the digital age, organized retail 
thieves have become increasingly savvy, fencing their stolen products using online digital marketplaces. They 
intend to receive the same benefits as legal vendors from digital platforms, such as increased productivity or 
efficiency in  trading7 their stolen products.

Along with other forms of fraud, the economic costs of organized retail crime are substantial and have 
been increasing at an alarming rate year after year. Retailers lose an average of $719,548 per $1 billion in sales, 
according to the 2020 National Retail Foundation Organized Crime Survey. These losses are much higher than 
the $703,320 in 2019 and the $453,940 in 2015. Three in four ORC victims report an increase in ORC in  202012. 
Retailers believe the increase in ORC-related events is a result of altered shoplifting laws and punishments. ORC 
has a significant impact on crime statistics and revenue loss; it erodes the viability of retail firms; and it is com-
monly used to finance other illegal  operations13. The literature on ORC is sparse; just a few publications exist on 
the subject; therefore, this paper represents an excellent opportunity to contribute to the evidence base in this 
field. Reid et al.14 in the preventive literature examine automated ways for detecting general retail crime using a 
set of fifteen visual social variables extracted from video footage from the University of Central Florida’s Crimes 
dataset. We were unable to locate any literature on the detection of ORC.

Our research has consequences for both theory and practice. On the theory side of things, there are two major 
critiques in the literature that our approach addresses: a lack of publicly available real data on which to conduct 
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experiments and a shortage of published, well-researched methods and  techniques6. Additionally, we accept 
the challenge provided by previous research, which is that future work should employ text mining techniques 
(in a subsequent paper). To begin, we analyze a large data set from a major marketplace platform and make the 
results publicly available to spur future fraud detection research in the ORC area. Second, we develop a machine 
learning system for detecting and preventing platform ORC. In practice, we hope to reduce fraud by identify-
ing and pulling out bad actors or fraudsters. Specifically, we automate the finding of fraud leads in order to aid 
fraud investigation teams in their investigative efforts. Automation improves fraud detection and investigation 
efficiency, resulting in decreased operational expenses.

The rest of this paper is organized as follows: “Related work” section provides an overview of relevant literature 
for this topic; “The proposed framework” section provides a detailed description of the proposed framework 
as well as the experiments conducted in the study; “Data and methods” section offers a description of our data 
and methods; “Results and discussions” section provides the results and discussion; and “Conclusion and future 
research work” section concludes the paper and highlights opportunities for future work.

Related work
Due to their adaptability and profitability, e-commerce platforms such as Yahoo and eBay have been increas-
ing at a rapid  pace15. Online fraud on these sites has increased in lockstep with this growth. The Internet Fraud 
Complaint Center (IFCC) has categorized online fraud into six categories: (1) non-delivery of goods; (2) product 
misrepresentation; (3) triangulation; (4) fee staking; (5) black-market goods sales; and (6) multiple bidding and 
shill bidding. Other academics have proposed various classification schemes for online fraud. For  instance16, 
divide it into three time periods: pre-auction, during-auction, and post-auction,  while17 divide it into four sorts 
of fraudster attitudes: aggressive, classic, luxury, and low-profile. While some research indicates that bid shield-
ing is the most common type of fraud among these  categories7, it is likely that different categories affect different 
types of online market platforms disproportionately. In our situation, we organize our materials and procedures 
in order to detect a certain sort of online fraud classified as (v).

In response to the growing prevalence of online fraud, researchers have developed a variety of fraud detection 
 schemes7. Aleem and Antwi-Boasiako18 classify them into three categories: feedback anomaly detection methods, 
data mining schemes, and trust management schemes based on agents. Feedback anomaly detection methods 
employ a reputation system for the seller based on customer feedback to calculate fraud scores, with negative 
feedback increasing the fraud score by one and positive feedback decreasing it by  one17. According to several 
 researchers18,19 this strategy is frequently useless since it can be exploited to produce fabricated and inflated 
reputations. Data mining schemes are widely used today and consist of two basic steps: (1) developing features 
that extract user profiles and transaction histories from expertly labeled data or suspended accounts in order 
to discriminate between a legitimate trader and a fraudster, and (2) developing a fraud detection model based 
on the developed  features19,20. Researchers frequently use a classification algorithm as the detection model. In 
the literature, it has been demonstrated that tree-based classification algorithms perform  well6. Abdallah et al.7 
summarize the most frequently used data mining techniques in the literature as follows (Table 1):

Lastly, agent-based trust management solutions address issues of trust and identification through the interac-
tion of numerous intelligent  agents21,35.

A skewed distribution (unbalanced class) is one of the most serious problems encountered by fraud detec-
tion  systems7. By and large, the imbalanced class issue is one in which the sample size of fraudulent instances 
is significantly smaller than the sample size of normal  instances36. Working with skewed data is referred to as 
“imbalanced learning” Chawla et al.37and data in these circumstances exhibit a skewed distribution of classes in 
both binary and multi-class scenarios. When training traditional machine learning algorithms on imbalanced 
data, the minority class contributes less to the objective function  minimization38, resulting in the model’s low 
performance in predicting minority class instances. In the majority of actual applications, correctly identifying 
minority instances is more  critical39. Dealing effectively with this problem is essential to guaranteeing a good 
and robust generalization of machine learning algorithms.

Table 1.  Common data mining techniques in literature.

Techniques References

Supervised learning

 Logistic regression 21,22

 Decision trees 19,23–28

 Artificial neural networks 26,29

 K-nearest neighbor classifier 20

 Bayesian classification 30

 Support vectors machine 28,31

Unsupervised learning

 Association rule analysis 32

 Clustering graph and network data (social network analysis 24

 k-means 20,33

 Hierarchical agglomerative clustering 34
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Researchers have devised a variety of strategies for resolving class asymmetries, which can be classified into 
two broad categories: data level and algorithmic  methods7. In the first method, balancing techniques are used 
to rebalance the data prior to training classification algorithms. The majority of research on fraud detection 
systems employs data level rebalancing strategies, which typically entail undersampling the majority class, over-
sampling the minority class, or a combination of the two to achieve a 1:1 ratio between the classes. Numerous 
proposed fraud detection systems have undersampled rather than oversampled. As the simplest form of over-
sampling, random oversampling does not provide additional information to the data and frequently results in 
model  overfitting40. A superior alternative for oversampling is the Synthetic Minority Oversampling Technique 
(SMOTE)41. SMOTE oversamples the minority class by generating synthetic minority cases in the vicinity of the 
observed one. Dal Pazzolo et al.42 examines the SMOTE and EasyEnsemble rebalancing approaches for identify-
ing credit card fraud and discovers that both procedures contribute to the improvement of their model outputs. 
As the name implies, algorithmic level methods address minority (fraudulent) classes at the algorithmic level. 
They include cost-sensitive learning, which assigns a cost to misclassification of the various classes based on the 
assumption that a cost matrix exists for the various sorts of  errors43. Two approaches to cost-sensitive learning 
have been proposed in fraud detection systems: (1) metacost-thresholds, or the employment of learners who are 
not sensitive to class  imbalance40, and (2) employing the learner to cope with class skewness. The learners are 
either intrinsically resistant to the class imbalance problem, as is the case with the Repeated Incremental Prun-
ing to Produce Error Reduction (RIPPER)  algorithm44 or are modified internally to be resistant to the issue, as 
is the case with K-nearest neighbor and support vector machine  learners7.

In general, data-level methods outperform algorithm-level  methods7. They are also simple to implement and 
have no effect on compute overhead.

The proposed framework
The proposed framework comprises four distinct experiments. When executed, the experiments lead to the 
identification of the best detection model for organized retail fraud instances. The dataflow diagram shown in 
Fig. 1 illustrates the key steps of the proposed framework.

Experiment 1: individual classifiers. In this design, we extract numeric features and preprocess the data. 
Without applying any asymmetry resolution techniques, we train seven classifiers selected based on a literature 
review (see Table 4 for details). We use a grid search approach with repeated stratified k-fold cross validation to 
obtain the optimal hyperparameter configuration for each classifier. Stratification ensures that each fold of the 
dataset has the same proportion of observations with a given label.

Experiment 2: stacked generalization. We use the same data used in experiment 1 in this design to 
create an ensemble, stacking across the seven classifiers (see Fig. 2 for this architecture). This approach involves 
combining predictions from all the classifiers on the same data set and includes bagging and boosting. We do 
this to address the question of how, given multiple machine learning models that are skilled at a problem but in 
different ways, we can leverage the best aspects of the individual models. Generally, the architecture of a stacking 
model involves two or more base models, often referred to as level-0 models, and a meta-model that combines 
the predictions of the base models, referred to as a level-1 model. In our context, we train the meta-model on 

Figure 1.  Data and information for the marketplace organized retail fraud detection system.
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predictions made by the base models on the holdout data set. The predictions, along with the expected outputs, 
provide the input and output pairs of the training data set used to fit the meta-model. We follow an approach 
that uses k-fold cross-validation of the base models, where the out-of -fold predictions are used as the basis for 
the training data set. Below is a diagram to illustrate the architecture we follow:

Experiments 3 and 4: imbalanced learning. Class asymmetry resolution is at the heart of our frame-
work because fraud data often exhibit asymmetry in classes between fraudulent and non-fraudulent cases. As 
such, we search for appropriate class rebalancing techniques for our data set before repeating the steps in experi-
ments 1 and 2 (refer to Fig. 1). Essentially, the output of this part is the best class rebalancing technique – classi-
fier combination for our context. We describe our class resolution approach in more detail in “Data and meth-
ods” section.

Data and methods
In this section, we present the data and the methods used in our experiments. A brief description of the classifiers 
is given, as are the experimental settings.

Marketplace data. To detect the presence of ORC, we use historical data on activity and transactions from 
a popular worldwide online marketplace platform. We work with a sample of 3606 US-based sellers due to data 
labeling limits, and the primary data fields include product listing information and seller attributes. To ensure 
a consistent collection of listings and sellers, we restrict our research and modeling efforts to high-volume mer-
chants (top sellers by listings within the last ninety days). The sample composition is summarized in Table 2.

The final data collection has a mixture of numeric, category, and text data types, with the text characteristics 
consisting primarily of the item’s title and description. In this paper, we rely more on the numeric and categorical 
features than the text features. From our data exploration, we do not find the text data to significantly improve 
the models’ performance. We summarize the final feature set in Table 3.

Data preprocessing and feature engineering. As illustrated in Fig. 3 above, we undertake a number of 
data preprocessing operations on the dataset. They entail resolving issues such as duplicate listings, missing data, 
and outliers. The duplicate removal step is critical because listings can be reposted on the Marketplace; therefore, 
we drop duplicate listings based on the seller ID, listing title, description, and price. Missing values are handled 
by deleting rows or columns. If the fraction of missing data in a column is less than 20%, the concerned rows are 
dropped; otherwise, the entire column is dropped. We have no reason to believe that this approach diminishes 
the dataset’s value. We discard values that are more than three standard deviations from the mean in columns 
such as “product price,” where the likelihood of outlier effects is significant.

Figure 2.  Stacked generalization approach using all the seven classifiers as weak learners.

Table 2.  Marketplace sample summary.

Period Number of listings Number of sellers Percentage of suspicious sellers Variable types

November 2021 to February 2022 
(90 days) 50,000 1826 7.9% Categorical and continuous
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Table 3.  Feature definitions and description.

Feature category Feature name

Product -related

Length of the product title

Length of the product description

Current rice of the product

Initial price of the product

Product cross-posted from other groups

Product category, for example, electronics

User-related

Age of the merchant/seller

Number of friends of the merchant/seller

Is the merchant/seller employee of the digital marketplace?

Size of the largest-buyer-merchant/seller-group that the user is associated with

Age of the account

Median size of the buyer-merchant/seller associated with the user

Interaction-related

Lifetime number of meaningful interactions (buyer/seller interactions)

Number of buyer reports against the merchant/seller in a day

Number of initial messages sent in the last month

Number of daily followers on the merchant/seller

Number of good merchant/seller ratings received

Number of bad merchant/seller ratings received

Product delivery-related

Promotion eligibility of the product listing

Delivery types available for the product

Number open customer-customer orders on the product

Date of the latest shipped order on this product

Date of the latest cancelled order on the product

Product condition (new or used) as listed by merchant/seller

Whether the product has a delivery type of shipping onsite

Product inventory count

Figure 3.  Data preprocessing steps.
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Additionally, we use feature engineering to create new predictive features from existing ones.
Our feature engineering processes include one-hot encoding categorical variables, generating dummy col-

umns for shipping type, and generating new features based on title and product description characteristics such 
as the number of words, the percentage of capitalized words, and the percentage of punctuation. The final data 
preprocessing step entails scaling the final feature set to ensure that all features are comparable in size. In this 
instance, we use standard scaling. Table 3 shows a list of these features and their descriptions.

The initial selection of these features is informed by discussions with ORC experts who have extensive experi-
ence identifying and mitigating organized retail fraud cases.

Classifiers. In the literature on fraud detection, classification techniques are frequently used to develop the 
detection  model6. Classification is a supervised learning technique aimed at obtaining a discriminating func-
tion that categorizes  samples45. Table 1 covers the most frequently used classifiers identified in the literature. We 
adapt these classifiers to our context as a first step in our search for the best-performing model. Additionally, we 
introduce new learners to improve on these baselines. We specifically add a balanced random forest classifier 
and a stacked ensemble of all the classifiers in our experiment. The balanced random forest classifier is designed 
to cope with the issue of imbalanced classes that exists in our data set. Below, we present brief descriptions of 
each classifier used:

Logistic regression. Logistic regression is similar to linear regression on classification tasks. It finds the values 
for coefficients β1,β2, . . . .,βn that weigh each feature X1,X2, . . . ,Xn appropriately. It performs it predictions by 
transforming the output through a logistic  function46. Thus, the probability of a listing being considered ORC 
fraud (class1) versus legitimate (class 0) can be given by:

where

The weights are estimated from the input data using the maximum likelihood method. If P(class = 1) > 0.5 , 
then the listing is fraudulent, and if P(class = 1) < 0.5 , the listing is legitimate.

K‑nearest neighbor. The k-nearest neighbor algorithm assumes that similar data points are close by in n-dimen-
sional spaces. Similarity between the data points is often measured by the distance between the points (usually 
the Euclidean distance or the Mahalanobis distance)47. The class of a new data point is predicted by a validation 
of the local posterior probability of each class existing by the average class membership over its k-nearest neigh-
bors. High cardinality data sets could pose challenges for this algorithm due to it being based on the distance 
between data points and its  dimensions45.

Support vector machine. Support-vector machines (SVMs) are supervised learning models with algorithms 
that analyze data for classification or regression  analysis48. The objective of the algorithm is to find a hyperplane 
in an n-dimensional space that distinctly classifies the data points. The choice is based on the hyperplane that 
has the most significant margin, which is the hyperplane that presents the maximum distance between data 
points in a binary class setup. The points closest to the hyperplane are termed “support vectors” because they 
influence the position and orientation of the hyperplane. The number of features also influences the dimension 
of the  hyperplane46.

Naïve bayes. This classifier makes the naive assumption that all features in the input data are independent of 
each other while applying Bayes’ theorem, which describes the probability of an event, based on prior knowledge 
of conditions that might be related to the event. More specifically, it assumes all features independently contrib-
ute to the probability of the given class, which is often a strong assumption and unrealistic in practical settings. 
The algorithm assumes that the off-diagonal values of the covariance matrix are zero (independent). Then the 
joint distribution is the product of individual univariate densities (assuming that they are Gaussian in nature)49.

Decision tree. The decision tree algorithm is a supervised learning technique that can be used to solve both 
classification and regression problems. It uses tree representation to solve the problem, in which each leaf node 
corresponds to a class label and attributes are represented on the internal node of the tree. The branch or sub-tree 
represents a decision rule, and the topmost node is called a decision or a root node. CART is the most commonly 
used type of decision tree in which classification trees are applied to a target categorical variable and the tree is 
used to identify the class of the target variable. Regression trees, on the other hand, are applied to a continuous 
target variable, and the terminal nodes of the tree contain the predicted output variable  values50.

Random forest. Random forest is one of the ensemble algorithms based on boot-strap aggregation (bagging 
technique). Ensemble is a machine learning technique that combines several base learning algorithms in order to 
produce a better predictive performance model, while bagging is a technique that uses the bootstrap algorithm 
to obtain a random sample from a given dataset with replacement and trains the base learners and aggregates 
their outputs to provide a lower variance model. It creates a set of decision trees on random samples of the train-

P(class = 1) =
1

1+ e−g(x)

g(x) = β0 + β1X1 + β2X2 + . . .+ βnXn
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ing data and utilizes a voting mechanism based on the predictions of each individual tree to generate a final 
model. During training, it selects suboptimal splits for trees by randomness of the selected subset of the training 
set. As a result, different models are created, and their results are combined through the voting  mechanism51

Gradient boosting. Gradient  boosting52 builds an additive model in a forward stage-wise approach. A special 
algorithm, two-stage logistic likelihood, is used to solve a binary classification problem:

Gradient boosting of regression trees allows for the greedy optimization of arbitrary differential loss functions. 
At each fitting iteration, the solution (least square) tree is the one that minimizes the residuals, also known as the 
negative gradient of the binomial or multinomial deviance loss function. The gradient boosting method has two 
major parameters, the number of estimators and the learning rate. The former represents the number of boosting 
stages, where a large number often results in better performance, while the latter refers to a constant that controls 
the contribution of each tree to the model. There is often a trade-off between the learning rate and the number 
of estimators (n-estimators), making these two most important parameters for the algorithm.

Stacked generalization. Stacked generalization is an approach to minimizing the generalization error rate of 
one or more generalizers. With a given learning set, stacked generalization deduces the biases of the generalizers 
from the following steps: creating a partition of the learning set, training on one part of the partition, and then 
observing behavior on the other part. For a stacked model with multiple generalizers, it provides a more sophis-
ticated strategy than the cross-validation winner-takes-all strategy for combining the individual  generalizers53.

Data augmentation. Our data reveal an “unbalanced data problem”, which is a term that refers to an asym-
metric distribution of data across  classes38. The majority of machine learning algorithms do not perform well 
on unbalanced data, as the minority cases contribute less to the objective function minimization. To address the 
class imbalance issue, we adapt  SMOTE37 and its variants to our environment. It is a technique for oversampling 
the minority class that involves manufacturing “synthetic” examples rather than oversampling with replacement. 
The synthetic examples are constructed using Euclidean distances between nearest neighbors, and the process 
involves: (1) calculating the distance between the feature vector and its nearest neighbors; (2) multiplying this 
difference by a random number between 0 and 1 and adding it to the feature vector. Mathematically:

The data is then balanced by continuously inserting synthetic points between minority samples and neigh-
boring data points. This strategy effectively causes the minority class’s choice region to become more  general41. 
Because SMOTE in its original form is more appropriate for numeric data, we use its variation, SMOTENC, which 
can deal with categorical variables, in our data. The categories of newly generated examples are determined in 
this variation technique by selecting the most frequent category among the nearest neighbors present throughout 
the generation. A completely balanced dataset generated solely by SMOTENC may not be optimal, particu-
larly for strongly skewed class distributions with extremely sparse minority class samples, which introduces a 
class mixture problem. Additionally, it is necessary to clean up the noisy instances generated by interpolating 
between marginal outliers and inliers. To address the aforementioned difficulties, we merged SMOTENC with 
two under-sampling techniques: Tomek’s links (TomekLinks) and edited nearest neighbors (ENN) to improve its 
effectiveness in dealing with class distributions that are out of balance. A more sophisticated strategy incorporates 
majority under-sampling into a classifier, resulting in an ensemble model. For example, random under-sampling 
was integrated with boosting and bagging and applied to both classes in a tree-based method called Balanced 
Random  Forest54, which provides a balanced bootstrap sample to each tree of the forest.

The experimental setting. To conduct the fast-computing experiment, we randomly select 50 thou-
sand rows by stratified sampling from the Marketplace listing data to ensure an unbiased representation of all 
subgroups. Since our experiments focus on building a fraud detection model constructed from numeric and 
categorical features, our first step involves developing a pipeline of these features from the listings data and 
matching them with marketplace account owners’ demographic, behavioral data, and transaction histories. For 
experiments 1 and 2, this step is followed by another pipeline that cleans the data by handling duplicates, miss-
ing values, and outliers, encodes categorical variables, and scales continuous features. In experiments 3 and 4 
we add another pipeline that executes class asymmetry resolution by applying oversampling and/or undersam-
pling techniques to create a balance between the ratios of the minority and majority classes. The final pipeline 
executes training, hyperparameter optimization, and evaluation of the classifiers. Tables 4 and 5 below show the 
hyperparameters used for tuning each classifier and the evaluation metrics applied to evaluate the performance 
of each classifier, respectively.

Hyperparameter tuning. Table 4 below shows the list of classifiers we use in our experiments and the respective 
hyperparameters we use to optimize their performance.

L
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)

= log
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)
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2
log
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For each of the seven classifiers, the data are split into k-groups, (k = 5) in our case, where the choice of the 
value of k is informed by the literature review.

For each training iteration, k-1 groups of the data are used for training, while the remainder is used for 
validation. The groups are made, preserving the composition of the classes for our binary problem setting and 
each classifier is trained k times.

With k = 5, we have a fivefold cross-validation. The data are divided into 5 sets (see Fig. 4 below): set 1, set 2, 
set 3, set 4, and set 5. The algorithm is trained five times. In the first iteration, sets 1 through 4 are used as the 
training set, while set 5 is used as the validation set. In the second iteration, sets 1, 2, 3, and 5 are used as the 
training set and set 4 is used as the test set. This process is repeated until all the sets have been used for training 
and testing. The data are shuffled randomly before every split to minimize sample selection errors. The skill 

Table 4.  The hyperparameter grid used to tuning classifiers to achieve better performance.

Classifier Hyperparameters Values

Logistic regression (LR)

Max_iter 500

Classifier penalty [none, l1, l2, ‘elastic net’]

Classifier c [100, 10, 1.0, 0.1, 0.01]

Classifier solver [‘liblinear’, ‘newton_cg’, ‘libfgs’]

k-nearest neighbor (KNN)

Number of neighbors [1, 21]

Metric [‘euclidean’, ‘manhattan’, ‘minkowski’]

Weights [‘uniform’, ‘distance’]

Support vector machines (SVM)

Kernels [‘linear’, ‘poly’, ‘rbf ’, ‘sigmoid’]

Gamma

[0.05, 0.1, 0.5, 0.7, 1]

Decision trees (Cart)
n_estimators (# of trees) [10, 100, 1000]

Classifier c [100, 10, 1.0, 0.1, 0.01]

Random forest (RF)
Max_features [1 to 20]

n_estimators [10, 100, 1000]

Naïve bayes (GNB) cv [n_splits = 5]

Gradient boosting (GBC)

n_estimators [1, 2, 4, 8, 16, 32, 64, 100, 200, 300, 500,1000,10000]

Max_depth [1, 40]

Learning_rate [1, 0.5, 0.25, 0.1, 0.05, 0.01]

Table 5.  Key evaluation metrics.

Metric Formula Description

Accuracy (acc) acc =
tp+tn

tp+tn+fp+fn
The ratio of correct predictions by all predictions made

Precision (p) p =
tp

tp+fp
The ratio of correct positive predictions by all positively predicted classes

Recall (r) r =
tp

tp+fn
The ratio of correct positive predictions by all true positive classes

F1-score (f1) f 1 = 2 ∗
p∗r
p+r

The harmonic mean between precision and recall

Figure 4.  Repeated stratified k-fold cross validation procedure applied to each classification algorithm.
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of each algorithm is summarized by a voting mechanism across all iterations as measured by their respective 
validation scores on the validation set.

The holdout set is then used to test the performance of the trained classifier in a way that mimics the produc-
tion environment, as illustrated in Fig. 4 below:

Finally, we use the evaluation metrics described in below to evaluate the performance across the classifiers.

Evaluation metrics. Literature in this  area45 suggests the use of the evaluation metrics listed in Table 5 below, 
but we pay more attention to recall, which optimizes catching bad actors and minimizes false negatives (falsely 
predicting suspicious listings as not suspicious). The denotations tp, tn, fp, and fn used in the formulae column 
below carry their regular meaning in the classification context.

Additionally, we plot ROC-AUC curves as another measure of performance. This is important because some 
measures, such as accuracy, are unreliable in the case of imbalanced data sets.

Software implementation. We implement the experimental procedure based on the Python program-
ming language using Scikit–Learn in combination with other common Python libraries such as NumPy, Pandas, 
Matplotlib, Seaborn and SciPy. For data acquisition and retrieval, we use structured query language (SQL) to 
query Hive tables where the data was initially stored.

Results and discussions
This section summarizes and discusses the important findings from our experiments. The results are based on 
an 80:20 split of the data used to train and validate the classifiers. Additionally, we evaluate the classifiers’ per-
formance using a new set of data that the classifiers have never seen before (out-of-sample test set), simulating 
production reality. The remainder of this part presents and discusses main results to elicit key insights that can 
practical application of this framework in real-world problems.

Working with imbalanced data. A repeated stratified k-cross validation approach is used to evaluate 
the performance of each classifier for the unbalanced data set. Based on our evaluation metrics, we observe 
that although the Gaussian Naive Bayes model has the highest recall (0.954) of all models tested, including the 
stacked generalization model, it underperforms at predicting true positive instances and has the lowest accuracy 
(0.40). GNB assumes that all features are independent of one another, but given the nature of our data, this 
assumption may not hold true, and therefore the low results for some metrics may be explained by the viola-
tion of this critical assumption. Overall, tree-based classification models outperform others in this context, and 
the random forest classification model achieves the highest F1 score of all standalone models (mean value of 
0.920 before hyperparameter tuning), which climbs to 0.946 after hyperparameter tuning. The RF model’s per-
formance is consistent with the  literature7. While these results look very promising based on in-sample valida-
tion, the true test of any classifier is best done with an out-of-sample data set. Therefore, to simulate predicting 
instances in the production environment, we absorb a new sample of data (never seen in training) from the mar-
ketplace platform and make predictions on it. We present the results for predictions on this out-of-sample data 
in Table 6 below. Our findings indicate that all classifiers experience performance degradation, albeit to varied 
degrees, most notably in terms of precision, recall, and F1 values. According to the literature review, we expect 
this kind of degradation in performance to happen because of how frequently the fraud environment changes. 
Fraudsters evolve their behavior to evade being caught, and therefore the fraud detection system loses its power 
to detect fraudulent cases over time. This finding asserts that the detection model requires regular retraining in 
order to detect emerging cases of fraud. Consistent with the results from the in-sample evaluation, we observe 
that tree-based algorithms outperform the rest.

Working with balanced data. We posit that correcting for imbalanced classes in our context could help 
learning and ultimately the performance of our classifiers. On this premise, we proceed to apply select class 
rebalancing techniques based on literature and as described in “Data augmentation” section. At a high level, we 
test data-level and algorithmic approaches for balancing our classes. At the data-level, we test ROS, SMOTENC, 

Table 6.  Classification results based on imbalanced data and out-of-sample performance evaluation. Top 
performing models are in bold.

Algorithm Accuracy Precision Recall F1 score ROC-AUC 

LR 0.946 0.256 0.134 0.176 0.561

KNN 0.962 0.326 0.287 0.305 0.635

CART 0.974 0.535 0.739 0.620 0.860

RF 0.977 0.631 0.522 0.571 0.757

SVC 0.968 0.340 0.108 0.164 0.551

GNB 0.500 0.052 0.943 0.098 0.715

GBC 0.970 0.480 0.312 0.378 0.651

SG 0.982 0.665 0.745 0.703 0.867
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SMOTENC + ENN, and SMOTENC + TomekLinks, while at the algorithmic level we test EasyEnsemble and 
Balanced Random Forest algorithms. Following the same evaluation approach used in the section above, we use 
both in and out of sample data to check the performance of each method.

In general, our results show that the data-level approach to rebalancing classes outperforms the algorithmic 
approach. This finding is consistent with what we found in our literature review. Among the data-level methods, 
ROS outperforms all the other methods, achieving a 92.5%  improvement with the in-sample set and nearly 
70% with the out-of-sample set, across all the classification algorithms. SMOTENC, SMOTENC + ENN, and 
SMOTENC + TomekLinks achieve identical performance: 90% with in-sample data and nearly 55% with out-of-
sample data. In terms of classifier–rebalancing technique combination, the Random Forest achieves the overall 
best performance where it registers positive improvement across all the rebalancing techniques on all perfor-
mance evaluation metrics and with both in-sample and out-of-sample data. The SG classifier follows closely in 
overall performance. All the other classifiers register no to modest improvement across all comparison points. 
We show specific details of the performance in the Fig. 5 below.

As stated in our problem statement and objectives, the objective in a fraud environment is geared toward 
catching all the bad actors because they are the most impactful in damaging the reputation of the marketplace 
platform or generating losses. To that end, we err more on the side of optimizing recall values compared to the 
other performance metrics. With this in mind and comparing recall scores achieved through the data-level 
approach against the algorithmic approach, the algorithmic approach (the balanced random forest algorithm) 
outperforms the best data-level method–classifier combination. It achieves a top recall score of 97. 5% on in-
sample data and 94.9% on out-of-sample data, against 92.8% and 81.9%, respectively. We display more details of 
the above discussion in Tables 7 and 8, where we show the best overall performing classifiers (RF and SG) and 
their various combinations with data-level class rebalancing techniques. We do this to demonstrate how they 
stack up against algorithmic approaches.

Overall, we learn that in order to achieve state-of-the-art performance in this domain, important consid-
erations have to be made during the implementation of the proposed framework. First, the choice of potential 
features has to be carefully made with the help of tenured domain experts. Second, machine learning algorithms 
consume training data in various formats, as such, appropriate preprocessing techniques have to be applied to 

Figure 5.  Performance improvement achieved by each classifier for a given data-level class rebalancing 
technique out-of-sample evaluation).
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the data before it is fed to the algorithms. The choice of the preprocessing technique depends on the input for-
mat (e.g., categorical, text, image, etc.). Feature transformation is critical in this domain. It brings efficiency to 
learning, the model converges faster, saving a lot of costs on compute resources. It also creates a uniform intake 
format and a basis for comparison across the classifiers. Third, the imbalance between classes has to be addressed. 
Data-level augmentation results in a more diverse set of samples and is more flexible than algorithmic-level data 
augmentation. Finally, organized retail fraud is a highly dynamic fraud type, therefore, once the best-performing 
model is selected and put into production, it should be retrained regularly to address potential drift. In “Feature 
importance” sectio, we provide additional details about study challenges and how we addressed them.

Feature importance. Machine learning models can often be seen as “black box”. We take some features as 
input and produce some predictions as output. After training a machine learning model, we often wonder how 
different features affect the prediction results, what the top features are that influence the prediction results, and 
whether we should trust the good performance observed. Thus, model explainability plays an important role in 
machine learning. There are multiple techniques to explain models. In our research, we use the SHAP values 
approach, which is currently considered state-of-the-art machine learning model explanation technique. SHAP 
stands for “Shapley Additive exPlanations”. Shapley values are a commonly used approach in cooperative game 
theory. Essentially, they measure the contributions to the final outcome from each player separately among the 
coalition, while preserving the sum of contributions being equal to the final outcome. When using SHAP values 
in model explanation, we can measure the input features’ contribution to individual predictions. We will not 
cover the complex formulae used to calculate SHAP values, but more details can be found  in55. To obtain the 
SHAP values of the features in our best-performing classifier, we use the SHAP Python library. Using SHAP val-
ues gives us global interpretability of our model; they not only show feature importance but also show whether 
the feature has a positive or negative impact on the predictions. SHAP values also provide local interpretability, 
giving us the opportunity to see how the features contribute to a single prediction. Other methods only show 
aggregated results over the whole data set.

In this research, our feature discovery efforts start with the domain experts generating the initial set of 
variables, potentially influential in detecting fraudulent instances. We apply these features in our experimental 
setting to find the best tuned classifier and class asymmetric resolution combination. Once we select the best 
model, we carry out an ablation analysis on it to unravel the role played by each feature. Recall, our initial fea-
tures cluster around four broad groups, namely: (1) product-related, (2) user-related, (3) interaction-related, and 

Table 7.  Comparison of different class asymmetry resolution (in-sample). Top performing models are in bold.

Method Modification Sampling Accuracy Precision Recall F1 score ROC-AUC 

RandomOverSampler + RF Data Over-sampling 0.997 (0.001) 1.000 (0.000) 0.902 (0.023) 0.946 (0.011) 1.000 (0.000)

SMOTENC + RF Data Over-sampling 0.997 (0.001) 0.984 (0.010) 0.918 (0.019) 0.951 (0.012) 0.999 (0.000)

SMOTENC + ENN + RF Data Hybrid 0.996 (0.001) 0.985 (0.009) 0.907 (0.021) 0.944 (0.013) 0.999 (0.000)

SMOTENC + Tome-
kLinks + RF Data Hybrid 0.997 (0.001) 0.985 (0.009) 0.915 (0.019) 0.949 (0.012) 0.999 (0.000)

RandomOverSampler + SG Data Over-sampling 0.997 (0.001) 0.996 (0.006) 0.909 (0.022) 0.951 (0.012) 0.999 (0.001)

SMOTENC + SG Data Over-sampling 0.997 (0.001) 0.978 (0.014) 0.928 (0.017) 0.953 (0.011) 0.999 (0.002)

SMOTENC + ENN + SG Data Hybrid 0.996 (0.001) 0.978 (0.014) 0.901 (0.021) 0.938 (0.013) 0.998 (0.001)

SMOTENC + Tome-
kLinks + SG Data Hybrid 0.997 (0.001) 0.979 (0.013) 0.927 (0.018) 0.952 (0.011) 0.999 (0.001)

EasyEnsemble Algorithm Under-sampling 0.942 (0.004) 0.362 (0.017) 0.958 (0.015) 0.525 (0.018) 0.986 (0.005)

BalancedRandomForest Algorithm Under-sampling 0.975 (0.003) 0.581 (0.027) 0.975 (0.012) 0.728 (0.022) 0.998 (0.001)

Table 8.  Comparison of different class asymmetry resolution (out-of-sample set). Top performing models are 
in bold.

Method Modification Sampling Accuracy Precision Recall F1 score ROC-AUC 

RandomOverSampler + RF Data Over-sampling 0.983 0.693 0.720 0.706 0.855

SMOTENC + RF Data Over-sampling 0.983 0.677 0.815 0.740 0.902

SMOTENC + ENN + RF Data Hybrid 0.982 0.661 0.758 0.706 0.873

SMOTENC + TomekLinks + RF Data Hybrid 0.982 0.660 0.790 0.719 0.889

RandomOverSampler + SG Data Over-sampling 0.980 0.660 0.618 0.638 0.804

SMOTENC + SG Data Over-sampling 0.983 0.672 0.809 0.734 0.899

SMOTENC + ENN + SG Data Hybrid 0.982 0.659 0.777 0.713 0.883

SMOTENC + TomekLinks + SG Data Hybrid 0.982 0.648 0.796 0.714 0.892

EasyEnsemble Algorithm Under-sampling 0.914 0.234 0.866 0.368 0.891

BalancedRandomForest Algorithm Under-sampling 0.938 0.312 0.949 0.469 0.943
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(4) product-delivery-related features. Our analysis finds that each feature group contributes to the final list of 
important features. In Fig. 6, we show our features, their importance, and their range of effects over the data set.

This dot chart visualizes the directionality of the features. The x-axis shows the SHAP value (impact on model 
output), and the y-axis shows the names of the features. Each point on the chart is one SHAP value for a predic-
tion and feature. Red means a higher value of a feature and blue means a lower value of a feature. For example, 
from the chart, we can infer that a higher value of “median_bsg_size” (Median size of the buyer-merchant/seller 
associated with the user) is highly associated with fraudulent prediction, and a lower value of “age” of the user 
is highly associated with fraudulent prediction. We can infer a general sense of the features’ directionality of 
impact based on the distribution of red and blue dots. Essentially, we can intuitively see how the model is using 
the features to make its predictions on fraudulent instances.

With the global feature importance plot in Fig. 7, we show the top ten most important features that help our 
model achieve state-of-the-art performance in detecting fraudulent cases. Positive SHAP value means positive 
impact on prediction, leading the model to predict a fraudulent instance, while negative SHAP value means 
negative impact, leading the model to predict a non-fraudulent case. The features are ordered by how much they 

Figure 6.  A summary of the most influential features in detect fraudulent instances.
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influenced the model’s prediction. The x-axis shows the average of the absolute SHAP value of each feature, with 
higher values indicating more importance.

Key data considerations and study limitations. Given the sequential nature of our data, we were con-
cerned about the risk of data leakage, which occurs in machine learning when models incorporate knowledge 
about the data on which they were previously  trained56. We addressed the risk of data leakage by detecting leaky 
features during data preprocessing using exploratory data analysis and the predictive power score matrix. We 
ensured temporal alignment of listings and seller features to avoid using future data in training the classifiers. 
Out-of-sample test data were used to evaluate the model’s performance and confirm the resolution of potential 
leak issues.

Limitations of our research work include known biases in the marketplace listings data, such as demographics 
skewed towards young individuals in the United States, and data quality issues. Omitted or improperly captured 
data poses challenges for data cleansing and integration. Future work could focus on investigating these problems 
and developing advanced data imputation methods.

Adapting filtering algorithms to evolving fraudulent activity in the e-commerce market is challenging, espe-
cially for low-volume sellers. Aggregating fraud predictions from the listing level to the seller level requires 
manual processes and customized rules. Continuous retraining of the automated fraud detection system is 
necessary to maintain performance in the face of new fraudulent  behaviors57. Addressing data or concept drift 
should be considered in future implementations to tackle performance issues.

Our initial feature set is based on conversations with industry experts on organized retail fraud, primarily 
from the North American region. While efforts were made to mitigate regional information bias, some biases 
may still exist due to variations in text composition and semantics across regions. However, we mitigate this 
limitation by using high-level physical attributes of the title and description of the listing. Exploratory results 
indicate that listings with higher numbers of characters are more likely to contain organized retail fraud products, 
aligning with previous research  findings58.

Conclusion and future research work
Retail organized crime has been a persistent cybersecurity issue for e-commerce platforms such as Meta’s Mar-
ketplace and eBay, among others. With the growing amount of data available on users’ attributes and transaction 
histories, it’s becoming increasingly difficult to spot fraudulent actions using filtering rules and key word search 
and refinement. In our research, we proposed an automated fraud detection method for detecting possible 
frauds in the organized retail crime space using a supervised machine learning approach. We demonstrated that 
our system outperformed past systems based on rule-based and unsupervised learning approaches in terms of 
prediction accuracy and efficacy. To the best of our knowledge, this approach has not been applied in ORC set-
tings, and where it has been applied in other contexts, majority of cases have only used single-stage trials for data 
processing and/or imbalance learning. In our case, we demonstrated how to optimize a fraud detection modeling 
system by combining expert informed feature discovery, bespoke data processing, imbalanced learning, feature, 
and model selection, customized hyperparameter setup, and business-oriented assessment metrics to achieve 
state-of-the-art performance. In this work, we mainly used numeric and categorical features. Future work can 

Figure 7.  Ten most important features influencing the detection of fraudulent instances.
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focus on using a multimodal feature set (combination of numeric, text and image data) to train the algorithms. 
These additional features could potentially achieve a higher or similar performance without necessarily relying 
heavily on ORC domain experts.

Data availability
The data sets generated and/or analyzed during the current study are not publicly available due to sensitive 
information but are available from the corresponding author on reasonable request.
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