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ABSTRACT
Symbolic regression is a common problem in genetic programming
(GP), but the syntactic search carried out by the standard GP algo-
rithm often struggles to tune the learned expressions. On the other
hand, gradient-based optimizers can efficiently tune parametric
functions by exploring the search space locally. While there is a
large amount of research on the combination of evolutionary al-
gorithms and local search (LS) strategies, few of these studies deal
with GP. To get the best from both worlds, we propose embedding
learnable parameters in GP programs and combining the standard
GP evolutionary approach with a gradient-based refinement of the
individuals employing the Adam optimizer. We devise two different
algorithms that differ in how these parameters are shared in the
expression operators and report experimental results performed on
a set of standard real-life application datasets. Our findings show
that the proposed gradient-based LS approach can be effectively
combined with GP to outperform the original algorithm.
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1 INTRODUCTION
Genetic Programming (GP) [9] is a powerful population-based evo-
lutionary algorithm (EA) for solving many real-world optimization
problems by the automatic generation of computer programs. One
of the main strengths of GP, which still makes it one of the most
widely used algorithms nowadays, is that its solutions are natu-
rally interpretable. However, the GP algorithm only employs a
syntactic search that is intrinsically unable to efficiently adjust the
(implicit) parameters of a given expression. Powerful local search
(LS) algorithms, integrated into GP as additional search operators,
have been developed over the past years to overcome such limita-
tions. The resulting combination is usually referred to as memetic
algorithm in evolutionary computation literature [4]. Despite the
promising results obtained through the integration of LS in the
GP framework [8, 13, 16], LS strategies remain still seldom used,
if at all, in GP systems [15]. In this work, we chose a well-known
gradient descent algorithm to perform LS over the individuals of
a given GP population. A fundamental characteristic of gradient-
based search is that the solutions can be improved gradually and
steadily in a continuous fashion [2]. GP and gradient-based opti-
mizers present complementary strengths: the former, thanks to the
recombination operators, leads to the exploration of new areas in
the solution space, preventing the algorithm from getting stuck
in local optima, while the latter typically performs small shifts
in the local area of the solution space. Their combination should
guarantee a jump in promising areas (where good-quality solutions
lie) and a subsequent refinement of these solutions obtained with
the gradient-based algorithm. We propose an embedding of the
gradient-based optimizer in the GP framework that is quite intu-
itive: firstly, we parameterize the GP representation trees and, then,
optimize the parameters with LS. The optimization of the parame-
ters with gradient-based techniques is possible since GP individuals
encode mathematical formulas that can be differentiated, thus mak-
ing it possible to compute their gradients – as long as the function
set provided is composed of differentiable functions. Furthermore,
due to its simplicity, the GP tree embedding introduced in this work
can be easily integrated into other GP-based state-of-the-art tech-
niques that have proven successful in symbolic regression [10], e.g.,
leveraging more powerful evolutionary operators. The proposed
hybridization is tested on three benchmark problems and compared
to a standard GP algorithm to study its effectiveness.
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2 SYMBOLIC REGRESSIONWITH GP
Symbolic regression consists of learning a model in the form of a
mathematical formula that describes the relationship between an
input-output pair. Let T = {(x𝑖 , 𝑦𝑖 )}𝑖=1...𝑛 be the training set, the
goal of symbolic regression is to search for the symbolic expression
𝐾𝑂 : R𝑝 → R that fits well T. The GP approach [1] consists
in defining a function set and a terminal set, so that the generic
regression problem state as follows:

(𝐾𝑂 , 𝜃𝑂 ) ← argmin
𝐾∈G;𝜃 ∈R𝑚

𝑓 (𝐾 (x𝑖 , 𝜃 ), 𝑦𝑖 ) with 𝑖 = 1, . . . , 𝑝 (1)

where G is the solution space, 𝑓 is the fitness function, and 𝜃 is a
parametrization of 𝐾 , assuming𝑚 real-valued parameters. In the
GP workflow, parameter optimization is not performed explicitly,
as operators only focus on the syntax of the individuals [3]. This
approach leads to some performance limitations: let’s consider the
GP individual 𝐾 (𝑥) = 𝑥 + sin(𝑥), and let’s assume that the optimal
solution is 𝐾∗ (𝑥) = 3.3𝑥 + 1.003 sin(0.0001𝑥). Since the parameters
in traditional GP are left unchanged during the whole evolution,
the solution 𝐾∗ might be easily lost. The above argument lies at the
core of our investigation based on embedding an LS procedure to
improve the performance achieved by plain GP.

The combination of Evolutionary Algorithms (EAs) and local
optimizers attracted great interest in recent years [5]. Although
the number of studies based on the combination of EAs and LS is
quite large, the subset concerning the combination of GP and LS
is still very limited. Specifically, focusing on the use of gradient
descent in GP, the contributions found in the literature deal with
particular components or task-specific solutions. In Topchy et al.
[14], the effectiveness of gradient-based optimization of numeric
leaf values in GP is analyzed. In Graff et al. [6], the authors used
resilient back-propagation combined with GP in the wind speed
forecasting domain. In Smart and Zhang [13], authors included
weight parameters (called inclusion factors) for each function node
aiming at modulating the importance of each node belonging to
the tree. More recently, in Trujillo et al. [16], a straightforward
parametrization for GP trees is proposed. In Kommenda et al. [8], a
gradient-based optimization algorithm is used to adjust only the
constant values in trees during their evolution. Finally, a way to
combine a gradient-basedmethodwith Geometric Semantic Genetic
Programming (GSGP) has been proposed in Pietropolli et al. [12].

3 COMBINING GP AND GRADIENT DESCENT
Plain GP is unable to efficiently perform small adjustments on the
(implicit) parameters of a given expression. Also, gradient-based
approaches come with some limitations such as the tendency to
get stuck in local optima. To enhance the expressive capacity of
a GP individual, we propose the addition of learnable parameters
in its operators. These parameters act as multiplicative factors for
the operands of the operations which define the GP tree. In doing
so, the resulting GP individuals are interpretable as parametric
functions which can be optimized via gradient descent. We can,
therefore, use a gradient-based optimizer to find suitable values
for the tree parametrization. To better frame our method, let us
consider a canonical GP individual: it can be represented as a tree
where all the edge connections between nodes take a constant value
of 1. Yet, the possibility of modifying those values leads to a wider

spectrum of possible solutions and, thus, to a possible improvement
in the quality of the individual. Let us provide an example of the
proposed parametrization.
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On the left is represented a GP individual that encodes the fol-
lowing equation:

(𝑥 − 2) + (𝑦 + 3) (2)
On the right, is represented the same GP individual, with the addi-
tion of the parameters𝑤𝑖 over all the edge connections. Now, this
tree is encoding the following equation:

𝑤1 · (𝑤3 · 𝑥 −𝑤4 · 2) +𝑤2 · (𝑤5 · 𝑦 +𝑤6 · 3) (3)

that would correspond to Equation 2 if all the weights𝑤𝑖 were set
to 1. Because the individual on the right represents a parametric
function, we can apply a gradient-based optimizer to tune the pa-
rameter values and, consequently, improve the solution’s quality.
We propose and investigate two alternatives to embed parameters
on a GP individual. The first one isGenetic ProgramGradient Descent
(GPGD), which assigns a set of weights to each operator in the GP
function set. These weights are the same for different instances of
the same operator within a single program but may change among
different individuals. In the previous example, both sum operators
would have the same parameters, thus𝑤1 = 𝑤5 and𝑤2 = 𝑤6. The
second one is OPerators Gradient Descent (OPGD), which assigns
a different set of weights to each instance of the GP operators. In
the previous example, the two sum operators would have different
parameters, thus𝑤1 ≠ 𝑤5 and𝑤2 ≠ 𝑤6.

Another important aspect that needs to be considered is at which
point of the evolutionary process the gradient-based optimizer
should be applied. For a complete investigation of the proposed
methods, we consider two alternatives. First of all, we propose an
alternated (A) variant, where the gradient-based optimizer is ap-
plied after each generation, and before the following generation
begins. This means that the local optimization of individuals from
generation 𝑡 impacts the search at generation 𝑡 +1. In this version of
the algorithm, the optimizer is applied to all the individuals. Then,
in the consecutive (C) variant, all the GP genetic steps are performed,
and only after the evolutionary process stops the gradient-based op-
timizer algorithm is applied for a predetermined number of epochs.
Here, the optimizer is applied only to the best individual. These
two different alternatives will be considered for both GPGD and
OPGD.

Lastly, it is necessary to decide how much of the total computa-
tional budget (here defined as the total number of fitness evalua-
tions) to allocate to the GP routine and how much to leave to the
optimization phase. Hence, let us also introduce the tuple (𝑘1, 𝑘2),
which defines the ratio of fitness evaluations used for the evolution-
ary process (𝑘1) and the ones employed for updating the parameters
through the Adam optimizer (𝑘2). In the experimental phase, differ-
ent values for this ratio will be considered.
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Table 1: Principal characteristics of datasets: number of variables, number of instances, domain, and the task.

Dataset Variables Instances Area Task

yac 7 308 Physics Regression
conc 9 1030 Physics Regression
air 6 1503 Physics Regression

4 EXPERIMENTAL STUDY
This Section describes the datasets as well as all the experimental
settings. The code, for the complete reproducibility of the proposed
experiments, is available at https://github.com/federico-camerota/
gpxgp.

Three complex and multidimensional real-world datasets, widely
used in the literature as benchmarks for GP, are employed to assess
the validity of the proposed technique. Table 1 reports a short de-
scription of their principal features. For a more detailed discussion,
the reader is referred to McDermott et al. [11].

A total of 30 (random) partitions of the data into train and test
sets, according to a proportion of 70% and 30% respectively, has
been considered for each dataset. Moreover, experiments over each
partition have been repeated with 5 different random seeds. Thus,
for each dataset, a total of 150 runs are available for the experi-
mental study. A population of 100 individuals is considered. The
function set is composed of +, −, ×, and / (protected). To preserve
interpretability, we prune trees to enforce a maximum tree depth –
equal to 10 –during the whole process. Survival from one genera-
tion to the other is always guaranteed for the best individual in the
population (elitism). To optimize the individual’s parameters, we
use the Adam optimizer [7] with a learning rate equal to 0.01 (while
the remaining hyperparameters for the optimization algorithm are
the default ones). The optimizer and the hyperparameter values
were chosen after a preliminary tuning phase, in which different
combinations were tested. The total number of generations consid-
ered for the GP algorithm equals 200. To render the comparison
fair, the total number of fitness evaluations must be equal for every
method considered. Recall that (𝑘1, 𝑘2) indicates the ratio between
GP and gradient-based optimizer steps. We always consider 𝑘1 = 1,
while 𝑘2 ranges in {1, 5, 10}. Let 𝑛 denote the total number of fit-
ness evaluations, 𝑛1 be the number of GP generations, and 𝑛2 be
the number of Adam steps. The value of 𝑛1 and 𝑛2 is univocally
determined by 𝑛, 𝑘1, and 𝑘2, as follows:

𝑛1 =
𝑛

𝑘1 + 𝑘2
𝑘1 𝑛2 =

𝑛

𝑘1 + 𝑘2
𝑘2 (4)

This allows a fair comparison between different techniques, en-
suring that the number of fitness evaluations is the same for each
choice of 𝑘2. Fitness is calculated as the root mean square error
(RMSE) between the target and the predicted values.

5 EXPERIMENTAL RESULTS
In Figure 1, we report a series of results obtained during our in-
vestigation. Each row shows results related to one of the different
benchmark problems considered. The first (second) row compares,
via boxplots, the test performance after 200 fitness evaluations of
plain GP and the GPGD (OPGD) method. Furthermore, the results

Table 2: P-values returned by the Wilcoxon ran-sum test and
the correspondent improvement in percentage over the GP
median error. Results are reported solely for 𝑘2 = 10.

GPGD-A GPGD-C OPGD-A OPGD-C

yac p-value 0.09 2.84 e-08 0.0 2.85 e-08

% -1 -6 -15 -6

conc p-value 0.0 0.0 0.0 0.0

% -28 -83 -89 -85

air p-value 0.0 0.0 0.0 0.0

% -21 -48 -49 -49

of the GPGD (OPGD) method are analyzed for both the A and C
variants, for 𝑘2 values ranging in the set {1, 5, 10}.

Table 2 reports the p-values obtained from the Wilcoxon rank-
sum test for pairwise data comparison, for 𝛼 = 0.05, under the
alternative hypothesis that the samples do not have equal medians.
Furthermore, we include the percentage improvement w.r.t. GP,
computed as the difference between the median error of our method
and that of GP, over the GP median error. These values are reported
exclusively for 𝑘2 = 10, as it results in the best choice for this
hyperparameter. Across all the datasets, the proposed methods
achieve results equal to or better than simple GP, with at least
one of the configurations outperforming it. In general, the best
performance is achieved for both GPGD and OPGD when 𝑘2 is set
to 10. Thus, assigning a greater fitness evaluation budget to the
gradient-based optimizer improves the quality of the solution. For
all the considered benchmarks – except for yac –OPGD-Cwith𝑘2 =
10 leads to a test fitness that, also in the worst case (upper whisker in
the boxplot), is better than the one achieved in the best case (lower
whisker in the boxplot) by plain GP. All these considerations allow
us to conclude that the LS introduced in this work can effectively
explore the solutions landscape and steer the GP-based search
toward more promising areas. Specifically, considering the conc
and air datasets, all methods lead to a significant performance
improvement. Boxplots of all the variants of GPGD and OPGD show
very similar distributions in the test fitness. For the yac dataset,
different methods lead to different fitness results, demonstrating a
sensitivity to the choice of the variant (between A and C) and the
value of 𝑘2. The C variant seems to outperform the A one, and a
higher value of 𝑘2 seems to improve the algorithm performance.
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yac (testing RMSE with GPGD) conc (testing RMSE with GPGD) air (testing RMSE with GPGD)

yac (testing RMSE with OPGD) conc (testing RMSE with OPGD) air (testing RMSE with OPGD)

Figure 1: Boxplots of testing RMSE, obtained over 150 independent runs. In the first (second) row, classic GP is compared to
GPGD methods (OPGD methods) for all the considered datasets.

6 CONCLUSIONS
In this paper, to enhance GP performance in symbolic regression
tasks, we propose the addition of learnable parameters in its opera-
tors. Subsequently, through the use of a gradient-based algorithm,
we perform the optimization of the introduced parameterization of
the individuals. The intuition behind this work relies on the possi-
bility of exploiting and combining the advantages of evolutionary-
based algorithms and LS to achieve faster convergence of the evolu-
tionary search process. To assess the performance of our methods,
we consider complex real-life datasets. Experimental results show
that our methods outperform plain GP with statistical significance
both in the training and test set. Considering the promising results
obtained in this first analysis, this work paves the way for multiple
possible future developments. The most exciting research direction,
which is also one of themainmotivations for the approachwe chose,
is to combine the proposed methods with current state-of-the-art
GP-based algorithms that do not use any LS strategy. In any case,
the aim of this work is not limited to proving the effectiveness of
embedding a gradient-based optimizer in the evolutionary process.
The most important message that we want to convey is that there is
an unexplored (yet extraordinary) potential in integrating powerful
local search approaches into GP. This topic deserves more attention
from the GP community.
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